

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Central Scale, Inc. 4915 E 16th Street

Indianapolis, IN 46201

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 05 September 2026 Certificate Number: L1138-1

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

Central Scale, Inc.

4915 E 16th Street Indianapolis, IN 46201 Marcus Neyenhaus 317-356-8005

CALIBRATION

Valid to: **September 5, 2026** Certificate Number: **L1138-1**

Mass and Mass Related

Version 009 Issued: September 4, 2024

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
High Precision Balances and Scales ^{1,2}	Up to 200 g	0.000 77 % of applied load + 2d	ASTM E617 Class 1 & Class 2 weights and NIST Handbook 44 utilized for the calibration of the weighing system.
Class I Balances 1,2	1 mg to 200 g	0.006 7 % of applied load + 2d	
Class II & Equivalent Scales ^{1,2}	10 mg to 18 kg	0.000 9 % of applied load + 2d	
Class III & Equivalent or Industrial Scales ^{1,2}	(0.001 to 100 000) lb (0.000 1 to 125) kg	0.008 7 % of applied load + 2d 0.008 7 % of applied load + 2d	NIST Class F weights and NIST Handbook 44 utilized for the calibration of the
Class IIIL Vehicle Scales ^{1,2}	(5 to 200 000) lb	0.03 % of applied load + 2d	weighing system.
Unmarked High-Resolution Scales ^{1,2}	Up to 50 000 lb 1 mg to 125 kg	0.014 % of applied load + 2d 0.014 % of applied load + 2d	ASTM E617 Class 2 & NIST Class F weights and NIST Handbook 44 utilized for the calibration of the
			weighing system.
Force Measurement – Tension and Compression ^{1,2}	Up to 2 000 lbf	1 % of applied load + 1d	Direct comparison to NIST Class F weights.

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. d = unit under calibration resolution.
- 3. This scope is formatted as part of a single document including Certificate of Accreditation No. L1138-1.

101

Jason Stine, Vice President

Version 009 Issued: September 4, 2024

