

GLOBAL PETROLEUM SHOW

NORTH AMERICA'S LEADING ENERGY EVENT JUNE 12 - 14, 2018 CALGARY, CANADA AnBound Energy Inc.

MULTIDISCIPLINARY STATIC AND DYNAMIC DATA INTEGRATION TOWARDS BETTER RESERVOIR DYNAMICS UNDERSTANDING: A CASE STUDY OF THE RING BORDER FIELD IN CANADA

Andrea Bernal AnBound Energy Inc.

GPS18-111

Outline

- Introduction of the Ring Border Field
- Geology & Petrophysics
- Geological Modelling
- Reservoir Engineering & Simulation
- Reservoir Characterization workflow
- Conclusions

Introduction

- The Ring Border east field (BC-Alberta) has been producing since the early 1990's.
- There are > 300 wells in the total east field with a cum production of >500 Bcf
- Mostly vertical wells that have been hydraulically-fractured
- Wet gas production with variable condensate production across the field.
- Mobile water production does not appear to be an issue except in the proximity to down dip water contacts (SE of the reservoir)

Geological & Petrophysical Summary

Ring Border - Field Location

- Townships 99 102, Ranges 11-12
- Ring Border Field Alberta side

Lithostratigraphic units (After Edwards et al)

Bluesky Fm:

- m-c sandstones/mudstones /congl.
- Transgressive shoreface strata.

Montney Fm:

- Lower Triassic-shoreface Fine SS, siltstones, and shales.
- Ring Border produces from very fine-grain and well sorted, sandstones and siltstones.

Hydrocarbon Trap

- The shoreface sandstones from Montney Formation pinch out up dip against the pre-cretaceous unconformity (stratigraphic).
- A regional GWC is present in the lower Montney sands, defining the down dip edge of the hydrocarbon zone.
- The SW-NE faults are subparallel to Hay River Fault system and generate a compartmentalization of the gas field (After Edwards et al).

Integration of Core Evaluation and Logs

- 26 wells with core from the Montney and Bluesky.
- Core description + logs, and porosity & density ranges used to define main facies:
 - Shaly SS
 - Very Fine SS
 - Shales
- Full Petrophysical interpretation to match logs to core, and many iterations were done to get a good representation of the reservoir.

Geological Modelling Summary

Structural Model

Model Boundaries

Divided into four units

YEARS STORE

Variogram Modelling Core data – Perm (All Zones)

Observed cyclicity mainly in the vertical variograms.

Less periodicity in the horizontal direction but more noise

Cyclicity in the Montney

Geological Model

- Porosity cross section
- Multiple realizations run and ranked

Reservoir Engineering & Simulation Summary

Using Flow Simulation to Assess Fault Sealing Behaviour

- Identification of wells with well test data close to faults:
 - 2-4-100-12
 - 13-31-99-11
 - 15-32-99-11
- Well distance to the fault was too long, compared with the tests radius of investigation, so they were not detected by the tests. Simulation HM of well tests also corroborated that.

Using Flow Simulation to Assess Fault Sealing Behaviour

- 02-04 is about 1300m away from closest fault
- Well test estimates radius of investigation of ~315m
- We don't expect to see boundary effects in this well test analysis.

Fault Seal Interpretation Using Dynamic Data Integration

- Mapping Kh, Cum. Prod., and Pressure
- North Fault Interpretation:
 - Static pressures taken in 1998
 - Both wells have similar production but North well has significantly lower pressures
 - High productivity coincides with high Kh
 - North Fault displays sealing behavior.

Fault Seal interpretation using dynamic data integration

- Central Fault Interpretation
 - Static pressures measured in year 2000
 - Wells in NW of fault have overall lower pressures
 - Lower production in the south also correlates with lower Kh values.
 - Central fault displays sealing behavior.

Fault Seal Interpretation Using Dynamic Data Integration

- South Fault Interpretation:
 - Static pressures measured in 1999
 - Well in the SE has higher pressure (604 psia) and produced more than well in NW which has lower pressure (442 psia).
 - There is an aquifer providing some pressure support to the SE side of the reservoir.

Cumulative production Bubbles

Well Test Permeability Integration

- Integration of well test data to simulation model:
 - Used SGS with secondary variable to merge well test perms with permeability from logs.
- The resulting permeability was Qced and it matched the well test Kh at the wells

			Import well names from the view			permeability so that the total thickness weighted av
			Well	Perm, md	_ <u>^</u>	equals the well test permeability.
		1	2-4-100-12	33.10		Property for individual layer weighting values
		2	1-17-101-12	17.50	- 11	
		3	3-13-100-12	4.03		Well Test Interval Options
		4	3-18-100-11	7.30		Ose all blocks in the well path
		5	3-28-100-12	9.33		Use well path blocks extended through the ent
		6	3-33-99-11	20.20		thickness for weighting factors
		7	3-36-100-13	2.54		Specify the measured depth intervals
		8	4-1-102-13	4.70		Point Data Ontions
		9	5-13-99-11	5.80		
		10	5-7-100-11	3.26		
				x 20		 Delete existing points for well test data and app new points
Create Geostatistical Objects	Canal T	na imi	Correct	6		Ordered Ordered
lame Well Test com	Output Property	CHOIC	well test some	- 5		
vvei lest perm	Output Property	CMGLCust	om_vvei test perm	· 3	- 11	Write data to a file showing the ratio between v
				-	_	permeabilities and the currently displayed prope
Points Methods Bar	ainne			12		This data could be used to create a 2D map to
Points Methods Reg	gions			02	-11	This data could be used to create a 2D map to for trends.
Points Methods Reg	pions Defaults	Ordinary Kri	ging (OK) Estim: 🔻	02 7		This data could be used to create a 2D map to for trends. WellTestFactors.txt
Points Methods Reg Calculation method Number of nearest points	Defaults	Ordinary Kri	ging (OK) Estim. • riging (OK) Estima	02 7 100		This data could be used to create a 2D map to for trends. Well TestFactors.bt
Points Methods Reg Calculation method Number of nearest points Ignore faults	Defaults 10 NO	Ordinary Kr Ordinary Kr Ordinary Kr	ging (OK) Estim. • riging (OK) Estima riging Estimation v	D2 7 500 with Secondary Varia	able	This data could be used to create a 2D map to for trends. WellTestFactors.bt
Points Methods Reg Calculation method Number of nearest points Ignore faults Assign data to cells	Defaults 10 NO YES	Ordinary Kri Ordinary Kri Ordinary Kri Unconditio	ging (OK) Estim. riging (OK) Estimation v nal Gaussian Geo	D2 7 tion with Secondary Varia	able	This data could be used to create a 2D map to for trends. WellTestFactors.txt
Points Methods Reg Calculation method Number of nearest points Ignore faults Ignore faults Assign data to cells Variogram Parameters	Defaults 10 NO YES	Ordinary Kr Ordinary Kr Ordinary Kr Unconditio Gaussian C	ging (OK) Estims riging (OK) Estimat riging Estimation v nal Gaussian Geo Geostatistical Smo	D2 7 no. with Secondary Variation ulation	able	This data could be used to create a 2D map to for trends. WellTestFactors.bt
Points Methods Reg Calculation method Number of nearest points Ignore faults Ignore faults Assign data to cells Variogram Parameters Horizontal Variogram Direction Interction Interction	Defaults 10 NO YES	Ordinary Kr Ordinary Kr Ordinary Kr Unconditio Gaussian (Object Mo	ging (OK) Estim riging (OK) Estima riging Estimation v nal Gaussian Geo Geostatistical Sim deling (geologic b	D2 7 no. with Secondary Variation ulation ulation with Second odies)	able n ary Vari	This data could be used to create a 2D map to for trends. Well TestFactors.bt
Points Methods Reg Calculation method Number of nearest points Ignore faults Ignore faults Assign data to cells Variogram Parameters Horizontal Variogram Direction Horizontal Variogram	Defaults 10 NO YES	Ordinary Kri Ordinary Kri Ordinary Kri Unconditio Gaussian (Object Mor Cases to ex-	ging (OK) Estim riging (OK) Estima riging Estimation v nal Gaussian Geo Geostatistical Sim deling (geologic b at variogram usa	D2 7 nn with Secondary Varia statistical Simulation ulation with Second odies)	able n ay Vari	This data could be used to create a 2D map to for trends. WellTestFactors.bt
Points Methods Reg Calculation method Number of nearest points Ignore faults Ignore faults Assign data to cells Variogram Parameters Horizontal Variogram Direction Horizontal Variogram Vertical Variogram Enclose to the second se	Defaults 10 NO YES	Ordinary Kr Ordinary K Ordinary K Unconditio Gaussian (Object Mo Object Mo Click to et	ging (OK) Estim riging (OK) Estima riging Estimation v nal Gaussian Geo Secostatistical Sim deling (geologic b a variogram usa tit variogram data	D2 7 nn tion with Secondary Varia ulation ulation with Second odies)	able n ay Var	This data could be used to create a 2D map to for trends. WellTestFactors.bt
Points Methods Reg Calculation method Number of nearest points Ignore faults Ignore faults Assign data to cells Variogram Parameters Horizontal Variogram Direction Horizontal Variogram Vertical Variogram Vertical Variogram Additional Controls Horizontal Variogram	pions Defaults 10 NO YES	Ordinary Kr Ordinary K Ordinary K Unconditio Gaussian (Object Mo Object Mo Click to et	ging (DK) Estim. • riging (DK) Estimation v inal Gaussian Geo Seostatistical Sim Protection (Geologic b av variogram usar at variogram data	D2 7 nn with Secondary Varia statistical Simulation ulation ulation with Second odies)	able n ary Var	This data could be used to create a 2D map to for trends. WellTestFactors.bt
Points Methods Reg Calculation method Number of nearest points Ignore faults Assign data to cells Variogram Parameters Horizontal Variogram Direction Horizontal Variogram Vertical Variogram Additional Controls Use De-clustering Algorithm Horizontal factoring and factorial fac	pions Defaults 10 NO YES NO	Ordinary Kr Ordinary K Ordinary K Unconditio Gaussian C Object Moo Lack to ex Click to ex	ging (OK) Estima riging (OK) Estima ging Estimation v nal Gaussian Geo Secostatistical Sim Prostatistical Sim deling (geologic b as variogram uata st variogram data	D2 7 no. tion with Secondary Varia statistical Simulation ulation ulation with Second odies)	able n ary Var	This data could be used to create a 2D map to for trends. WellTestFactors.bt

Full Field Simulation Model

- Model details:
 - 2.2 million grid blocks
 - 200x200x1 m grid block size
 - Total of 72 wells in the model
 - 70 gas producers
 - 40 still producing to date
 - 27 pumping
 - 13 flowing
 - 2 Pressure Observation wells
 - 1-6-100-11
 - 10-28-99-11

Sensitivity Analysis – Pre-History Match

- Performed using CMOST. Experiments are generated to cover the full combination of parameters by using a response surface methodology
- A proxy model is generated and verified based on simulation results.

CMOST E:\UofC\RingBorder\Simulation\CMOST\RING BORDER.cmp												
<u>File</u> <u>I</u> ools <u>H</u> elp												
🗣 💩 🕞 💾 🗗 🗿 💿 👔												
Study Manager SENSITIVITY ANALYSIS * ×												
A X Parameterization	^ [Orag and drop a column	header here to gro	oup by that column	n							
(x) Parameters		ID	Generator	Status	Result Status	Proxy Role	Keep SR2	Has SR2	Highlight	GWCDepth	KvKhRatio	Permeabil
Hard Constraints		1 0	Reuse	Reused	NormalTerminatio	Ignore	Yes	V		128	0.9	0.99
Pre-Simulation Commands		2 191	Response Surface	Complete	NormalTerminatio	Training	No			129.28	0.7	4.16
▲ ∑ Objective Functions		3 192	Response Surface	Complete	NormalTerminatio	Training	No			122.88	0.52	3.32
Characteristic Date Times		4 193	Response Surface	Complete	NormalTerminatio	Training	No			126.72	0.7	1.22
1/1/ Basic Simulation Results		5 194	Response Surface	Complete	NormalTerminatio	Training	No			121.6	0.88	1.64
History Match Quality		6 195	Response Surface	Complete	NormalTerminatic	Training	No			133.12	0.76	1.64
Net Present Values		7 196	Response Surface	Complete	NormalTerminatio	Training	No			131.84	0.94	2.9
City Logic is 5 - is 6 - is 1		8 197	Response Surface	Complete	NormalTerminatic	Training	No			129.28	0.94	5
Global Objective Function Candidates		9 198	Response Surface	Complete	NormalTerminatio	Training	No			131.84	0.4	4.58
Sort Constraints		10 199	Response Surface	Complete	NormalTerminatio	Training	No			122.88	0.52	5
		11 200	Response Surface	Complete	NormalTerminatio	Training	No			124.16	0.58	2.48
Engine Settings		12 201	Response Surface	Complete	NormalTerminatio	Training	No			126.72	0.88	3.32
Simulation Settings		13 202	Response Surface	Complete	NormalTerminatio	Training	No			121.6	0.46	2.06
Experiments Table		14 203	Response Surface	Complete	NormalTerminatio	Training	No			122.88	0.94	1.22
Simulation Jake		15 204	Response Surface	Complete	NormalTerminatio	Training	No			134.4	0.76	3.32
Simulation Jobs		16 205	Response Surface	Complete	NormalTerminatio	Training	No			124.16	1	2.06
Kesults & Analyses		17 206	Response Surface	Complete	NormalTerminatio	Training	No			121.6	0.82	1.22
A Barameters		18 207	Response Surface	Complete	NormalTerminatio	Training	No			125.44	0.4	4.58
Run Progress		19 208	Response Surface	Complete	NormalTerminatio	Training	No			125.44	1	3.74
▶ Histograms	E	20 209	Response Surface	Complete	NormalTerminatio	Training	No			133.12	1	3.74
Cross Plots		20.	incoposise surface	compiete							-	5

Equation in Terms of Actual Parameters

Cum_Gas_Prod=6.97765E+08+1.54379E+07*GWCDepth+5.11879E+08*PermeabilityIMult+1.40443E+09*PorosityMod-3.44299E+0 *SwtInclude-4.00544E+07*PermeabilityIMult*PermeabilityIMult-5.46261E+08*PorosityMod*PorosityMod

History Match and Forecasts

- History Match of rates and pressures achieved
- Base case forecast kept 41 wells producing at a set min BHP constraint.
- P10, P50 and P90 forecasts were calculated assuming uncertainty in reactivation success, and reservoir quality variability away from the wells.
- 3 Well candidates were selected for reactivation based on individual well history, log data and HCPV.

22

Field Development Plan

- Possible well reactivations.
 - Drilling new wells is not economic
- The selected wells could then be refractured and re-completed in order to produce any gas that has been encapsulated by low permeability zones.
- To do this, a fracturing scheme should be designed in order to achieve optimum fracture length and conductivity.

	Base Case NPV	\$1,544 Million						
	NPV With	P10 (1.6% upside)	P50 (6% Upside)	P90 (10% upside)				
ADEAL YEARS	Re-Activation of 3 wells	\$1,569 Million	\$1,636 Million	\$1,706 Million				

Reservoir Characterization Workflow

Reservoir Characterization workflow

Conclusions

- Data and subsurface interdisciplinary integration allows for better reservoir characterization and understanding of reservoir fluid dynamics.
- Uncertainty analysis is a must as there is no perfect model or unique answers in reservoir characterization.
- Team dynamics are an essential soft skill component that can make a huge difference when working efficiently in a subsurface team.
 - Working with each other not against each other is the key!
- Multiple Iterations are required in order to understand the reservoir better.
- Companies must empower simulation engineers to get the process going.

Acknowledgements

- Co-Authors:
 - Luz Rodriguez Senior Geologist at Canacol Energy Ltd.
 - Samuel Quiroga Geophysicist and Modeller at Cenovus Energy
 - Yemna Kaiser Reservoir Engineer at the Petroleum Institude, Abu Dhabi
- University of Calgary interdisciplinary specialization in Reservoir Characterization .
 - Supervisors:
 - Dr. Jerry Jensen
 - Dr. Chris Clarkson
- All the software vendors for providing their products to the U of C.

GLOBAL PETROLEUM SHOW

NORTH AMERICA'S LEADING ENERGY EVENT JUNE 12 - 14, 2018 CALGARY, CANADA AnBound Energy Inc.

THANK YOU!

QUESTION?

GPS18-111