Quantitative and Semiquantitative Echocardiography

PERIOPERATIVE POCUS MODULE 6: TRANSESOPHAGEAL ECHOCARDIOGRAPHY ASSESSMENTS

Objectives

List five semi-quantitative assessments using advanced TEE

- Describe chamber assessment using TEE
- Discuss methods of assessing biventricular function using advanced TEE

Identify measurements used to assess valve area, gradients and regurgitant volumes

Essential Quantitative Assessments

- 1. Abnormal chamber sizes (LA, LV, RV)
- 2. Ejection Fraction
- 3. Pulmonary Artery Systolic Pressure
- 4. Mitral valve area and gradient
- 5. Aortic valve area and gradient
- 6. Mitral valve regurgitation
- 7. Aortic valve regurgitation
- 8. Aorta and aortic valve annulus dimensions
- 9. E/A ratio (diastology)
- 10. Tricuspid Annular Plane Systolic Excursion (TAPSE)

Measuring and Imaging Techniques

- Calipers
- Area Tool
- ► M-Mode
- Color flow mapping with Doppler
 - Use of color box and position
 - Manipulation of Nyquist limit
- Pulse Wave Doppler
- Continuous Wave Doppler
 - Velocity
 - Velocity Time Integral
 - Pressure Half-Time

M-Mode as a TEE Imaging Technique

- Waves are transmitted as a single beam
- Only a limited area is scanned as only tissues which come into this narrow beam are displayed
- Amplitude of returning waves are displayed in shades of brightness
- Valve tissue and myocardium are gray and white, blood is black
- Color doppler may be applied to display velocity and direction of blood flow

The Doppler Principle

- When a sound wave is reflected from a moving object, the frequency of the wave will be different from the emitted wave
- This frequency is called the Doppler principle
- The magnitude and direction of the frequency shift are related to the velocity and direction of the moving target
- In this manner blood flow velocity and direction may be determined ("BART")

Towards transducer

Away from transducer

Higher velocity

Pulsed Wave (PW) Doppler

- A single crystal sends and receives ultrasound signals then analyzes for frequency shifts
- A cursor is placed on a region on a 2-D image and velocity and direction of blood flow may be determined
- Allows flow direction and velocity in a small region (e.g., atrial appendage) to be measured
- Higher velocities (> 1 m/s) create aliasing and erroneous data (e.g., aortic stenosis)

Continuous Wave (CW) Doppler

- Continuous wave doppler uses continuous sampling instead of discrete pulses of ultrasound waves
 - Waves are being continuously emitted by multiple transducers
 - Region in which flow is measured cannot be precisely located
- Higher velocities are more accurately measured (e.g., aortic stenosis)

Equations and Calculations

- TEE may be used to estimate flows, gradients and valve areas
- Direction and velocity of flow may be qualitatively and quantitatively assessed using continuous and pulse wave Doppler
- Intravascular pressures and chamber dimensions may be measured to assess pathology

Simplified Bernoulli Equation

- If a volume of fluid is moving from higher to lower pressure, then the volume is accelerating in relationship to the pressure difference
- Used to estimate pressures and gradients across an orifice
 - Native aortic valve
 - Prosthetic aortic valve
 - Native mitral valve
 - Mitral valve repair/prosthesis

Bernoulli Equation

Conservation of Energy Principle Relationship between Velocity and Pressure

$$\Delta P = \frac{1}{2}\rho(V_2^2 - V_1^2) + \int_1^2 \frac{dv}{dt} x \, ds + R(v)$$
convective flow viscous acceleration friction

Modified Bernoulli's Equation $\Delta P = 4 (v_2^2 - v_1^2)$ Simplified Bernoulli's Equation $\Delta P = 4 v^2$

Velocity Time Integral (VTI)

- Flow towards and away from the transducer is plotted as velocity
 - Pulse wave Doppler measures flow in a specific sample
 - Continuous wave Doppler measures all flow along a line
- Velocity may be plotted over time (VTI) to estimate flow in a structure or chamber (SV=CSA x VTI)
- In this manner flow in a specific region is estimated

Continuity Equation

- Because liquids are not compressible, flow into an area must equal flow out of an area
- By applying the continuity equation, the flow must be greater in the more narrow area
- Used to calculate areas, specifically valve areas
- Area=A; Velocity=V
- \blacktriangleright A₁V₁=A₂V₂
- $\blacktriangleright A_2 = A_1 \times V_1 / V_2$

Proximal Isovelocity Surface Area (PISA)

- Used to quantify the severity of valvular regurgitation
- PISA assumes that as blood flows towards a regurgitant valve the flow comes together and accelerates
- Color flow Doppler (by adjusting Nyquist limit, V_n) may be used to identify the region of increasing velocity and its absolute velocity (V₀)
- Flow=Velocity x Area such that regurgitant orifice area (ROA) is calculated by:
- ► ROA= $2\pi r^2 V_n / V_o$
- Regurgitant Volume=VTI_{regurg} x (ROA)

Basic Principles of Semiquantitative Echocardiography

- Basic principles of assessing cardiac chamber size and intracardiac flows are similar to TTE
 - TTE was used for initial assessments
 - Optimal views for TEE are not established
 - Doppler alignment more difficult with TEE
- General anesthesia changes chamber sizes, volumes and pressures

Tricuspid Annular Plane Excursion

Measurement of Cardiac Chamber and Wall Dimensions

- Qualitative assessment of chamber size, function and flow is almost immediate
- Measurement of chamber sizes reveal ventricular function, valve pathology, cardiac defects and other pathology
- Chamber wall dimensions reveal pathology as well

Normal Chamber Dimensions: ME 4 Chamber

		Dimension
Structure	Measurement	Dimension (cm)
Left Atrium (unreliable)	Diameter (A)	2.7-4.0
Right Atrium	Minor Axis (B)	2.9-4.5
Right Ventricle	Basal Diameter (F)	2.0-2.8
	Mid Diameter (G)	2.7-3.3
	Length (H)	7.1-7.9

Midesophageal four chamber

Normal Chamber Dimensions: ME 2 Chamber and ME AV LAX

Structure	Measurement	Dimension	Midesophageal two chamber	Midesophageal AV LAX
		(cm)		
Left Atrium (unreliable)	Diameter (A)	2.7-4.0		
Left Ventricle	Diameter (E)	3.9-5.9	E	
Aortic Root	Sinus of Valsalva (L)	2.6-4.0		

Lang RM, Badanp LP, Mor-Avi B et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr, 2015, 28:1-39

Normal Chamber Dimensions: TG MP SAX

Structure	Measurement	Dimension (cm)
Left Ventricle	Wall Thickness (septal)(C)	0.6-1.0
	Wall Thickness (inferolateral)(D)	0.6-1.0

Transgastric mid SAX

Normal Chamber Dimensions

Structure	Measurement	Dimension (cm)
Right Ventricle	Wall Thickness (I)	<0.5
Right Ventricular OF	RVOT Diameter (below PV)(J)	2.5-2.9
	RVOT Diameter (above PV)(K)	1.7-2.3
Pulmonary Artery	Diameter (M)	1.5-2.1

Midesophageal RV inflow-outflow

Normal Chamber Dimensions

Structure		Measurement	View	Dimension (cm)
Chambers	Left Atrium (unreliable)	Diameter	ME4C or ME2C	2.7-4.0
	Right Atrium	Minor Axis	ME4C	2.9-4.5
	Left Ventricle	Wall Thickness (septal)	TGmidSAX	0.6-1.0
		Wall Thickness (inferolateral)	TGmidSAX	0.6-1.0
		Diameter	ME2C or TG2C	3.9-5.9
	Right Ventricle	Basal Diameter	ME4C	2.0-2.8
		Mid Diameter	ME4C	2.7-3.3
		Length	ME4C	7.1-7.9
		Wall Thickness	ME4C or RVIFOF	<0.5
Tracts/Vessels	Right Ventricular OF	RVOT Diameter (below PV)	ME AV SAX or RVIFOF	2.5-2.9
		RVOT Diameter (above PV)	ME AV SAX or RVIFOF	1.7-2.3
	Aortic Root	STJ, Proximal Ascending Aorta, Sinus of Valsalva	ME AV LAX	2.6-4.0
	Pulmonary Artery	Diameter	RVIFOF	1.5-2.1
	Inferior Vena Cava	Diameter	ME4C (modified)	1.2-1.7

Left Atrial Dimensions

Left Ventricular Wall Thickness

= []

Septal Wall Thickness

	ROI	SCALE	CURSOR
	POS SIZE	× ^	CALIPE
	2D GAIN		TRACE
	0		
DEPTH	SECTOR WIDTH	FOCUS	
			MEASUREMENTS

i:i

Right Ventricular Dimensions

1

\$ €

tt

6

Use of Doppler to Plot Velocity and Velocity Over Time

- Flow towards and away from the transducer is plotted as velocity
 - Pulse wave Doppler measures flow in a specific sample
 - Continuous wave Doppler measures all flow along a line
- Velocity is used to calculate gradients and regurgitant flow
- Velocity may be plotted over time (VTI) to calculate cardiac output and PASP

Velocity and Velocity Over Time (VTI)

Measurement of Intracardiac Flows

- Doppler allows estimation of intracardiac flows including pulmonary artery and cardiac output
- Flow can be measured over time by measuring VTI and CSA
- VTI is measured with CW doppler
- Cross sectional area is measured by (diameter² x 0.785)
- ► SV=VTI x CSA=57 ml

X tt tt Velocity Over Time (VTI) and Stroke Volume ++ TGC 2D CURSOR CALIPER 2D GAIN ^ DEPTH SECTOR WIDTH FOCUS REPORTS × ×

Calculating Pulmonary Artery Systolic Pressure (PASP)

- Doppler of TR jet measures maximum velocity (V_{max})
 OV(D is a lateria a sl
- CVP is obtained
- Peak gradient across the value is calculated using modified Bernoulli equation (4 x v_{max}²)
- PASP=CVP + peak gradient
- For CVP 12, max TR velocity 2.3 m/s,
- ► PASP=12 + (4 x 2.3²)=33 mmHg

Assessing Diastolic Function

- 38% of the time diastolic assessment is unsuccessful or inaccurate
- E:A ratio is simple yet less than precise
- Tissue Doppler Imaging necessary to make true diagnosis
- Regardless estimate of diastolic dysfunction may be possible
 - Normal: E/A > 0.8, e' > 8 cm/s
 - Grade 1 (Impaired): E/A < 0.8, e' < 8 cm/s
 - Grade 2 (Pseudonormal): E/A > 0.8 with
 - \circ Grade 3 (Rerstrictive): E/A > 2, e' < 8 cm/s

5 []

E=45.5

A=58.6

E/A=.78

e'=7.1 cm/s

REPORTS

~

~

Assessing Ventricular and Valvular Pathology

- Qualitative assessment of ventricular and valvular pathology may be made with 2-D and color flow mapping
- Quantitative and semiquantitative assessments may be made
 - Volumetric (EF, FAC)
 - Continuous and pulse wave doppler
 - Tissue velocity (Tissue Doppler Imaging)
 - Real-time 3-D TEE

Calculating Ejection Fraction by Fractional Area Change (FAC)

- Ejection Fraction may be calculated by "eyeball EF" or formula
- Ejection Fraction=

End-diastolic area minus end-systolic area

End-diastolic area

EF=(EDA-ESA)/EDA
EF=(9.46-4.08)/9.46=57%

Left Ventricular Function

EF=(EDA-ESA)/EDA 18.1-14.2=3.9 3.9/18.1=21.5%

×

REPORTS

Left Ventricular Function with M-Mode 7.5-6.2=1.3

1.3/7.5=17.3%

DEPTH

~

×

Measurements

₩

Calculating Valve Gradients

- Pressure drop across an orifice may be calculated using the modified Bernoulli equation
 - \circ Gradient=4(V)²
 - "V" is the velocity across the orifice
- Gradient across a value is calculated and degree of stenosis assessed

Gradient=4 x (1.5 m/s)²=**9 mmHg**

Calculating Valve Gradients

- Pressure drop across an orifice may be calculated using the modified Bernoulli equation
 - \circ Gradient=4(V)²
 - "V" is the velocity across the orifice
- Gradient across a value is calculated and degree of stenosis assessed

ţţ

- Measurements
- + PHT 166.5 ms decel time 574.3 ms

Mitral Valve Area by Planimetry and PHT

DO ·

50 ·

50

00 -

· 50

100

Conventional Aortic Stenosis Assessment

Calculating Valve Area Using the Continuity Equation

- To assess a ortic valve area:
 Cross section LVOT= π x radius² = 3.14 cm

 VTI LVOT = 15 cm/second

 VTI Aortic Valve=60
 - cm/second
- CSA_{AV}=3.14 x (15/60)=0.79 cm
- Aortic Valve Area = 0.79 cm (severe Aortic Stenosis)

Aortic Stenosis Severity by TEE

2D 0 180 75% C 50 P Off Gen	e	Max PG Mean PG VTI × LVOT VTI Vmax	87.0 cm 97.4 cm/s 76.1 cm/s 4 mmHg 3 mmHg 25.3 cm 0.58 cm ² 100 51 ml	Parameter	Normal	Mild	Moderate	Severe
P Off Gen				Peak Velocity (m/s)	1-1.5	<3	3-4	>4.0
				Peak Gradient (mmHg)		<36	36-64	>64
				(mmHg)		<20	20-40	>40
PAT T: 37.00	· · ·		12	AVA	2-4	>1.5	1.0-1.5	<1.0

Perioperative Role of TEE with Aortic Sten<mark>osi</mark>s

- Measure aortic valve area using the continuity equation
- Measure gradient across the valve
- Measure annulus size for prosthetic valve
- Measure ascending aorta
- Assess for coexisting value issues
- Assess biventricular function
- Assess for paravalvular leak and gradient after valve replacement

Doppler Assessment of Aortic Valve

Results of Doppler Assessment of Aortic Valve

- Velocity of flow across aortic valve: 3.8 m/s
- Gradient across valve: 57 mmHg
- LVOT diameter: 1.8 cm
- ► VTI LVOT: 16.3 cm
- VTI AV: 93.3 cm
- Aortic valve area: 0.44 cm

Aortic Regurgitation Severity

Aortic Regurgitation Severity PHT < 500 ms

5 []

Aortic Regurgitation Severity Vena Contracta

Utility of TEE for Aorta Surgery

Chamber/wall/aorta dimensions

- \circ LV/RV/LA
- o LVOT
- AV Annulus
- \circ ST Junction
- Ascending aorta
- Guidance for cannulation
- Assessment for air
- Assessment after repair or replacement
 - Paravalvular leak
 - Gradient across the valve

Mitral Regurgitation Severity

Mitral Regurgitation Severity Vena Contracta (Mild)

Mitral Regurgitation Severity Vena Contracta (Severe)

Mitral Regurgitation Severity (Pulmonary Venous S Wave)

Mitral Regurgitation

. ţţ

Normal

P2 Prolapse with 2D

P2 Prolapse with 3D

7

0 146 180

Mitral Valve Repair

- A ring may be sewn around the annulus to improve size or shape
- Leaflets may be better approximated by ring, depending on size of annulus
- Flail leaflet may be anchored with stitch or incised and re-sutured

Mitral Stenosis Severity

0 147 180	P	 ★ MV P½t Vmax 146 cm/s Slope 172.8 cm/s² P½t 248 ms MVA (P½t) 0.89 cm² 	Parameter	Mild	Moderate	Severe
			Orifice area (cm²)	1.5-2	1.0-1.5	< 1.0
		March 1 and 1 an	Mean gradient (mmHg)	<5	5-10	>10
+ 1:37.0C	+	1987 - HANNELLEN	Pressure Half Time (ms)	<150	150-220	>220

11cm

62 180

•

0

Stenotic Prosthetic Valve

-56 cm

P

TAPSE Using Two Techniques

1 cm

Dist 1.02 cm
 Time 380 ms
 Slope 2.67 cm/s

M4

-5

-10

ind ple to ment of the to have the

Role of TEE with Mitral Stenosis

- Assess pulmonary artery pressures
- Assess tricuspid value function
- Assess biventricular function especially RV
- Assess LV filling
- Assess for other issues such as patent foramen ovale

Mechanical AV Assessment

Mechanical AV Assessment

Summary

- Advanced TEE may be used as a supplement for line placement, de-airing and cannulation
- Diagnostic use of advanced TEE includes native and prosthetic valve assessment
- Continuous and pulse wave doppler modes have high utility in advanced TEE

