4.3 INTRODUCTION TO POWER AMPLIFIERS

An Amplifier system has more than one stage as shown in Fig. 4.11. Voltage amplifier) drives a load to An Amplifier system has more than one middle stages to handle small signals. The final stage (called power amplifier) drives a load like to handle considerable amount of power. So large swing of voltage or to handle considerable amount of power amplifier and large swing of voltage or to handle considerable amount of power. middle stages to handle small signals. The speaker and has to handle considerable amount of power. So large swing of voltage of careers are actually small signal amount. speaker and has to handle considerable and speaker are actually small signal amplifiers. So they raise only voltage level. amplify input voltage. So, they raise only voltage level.

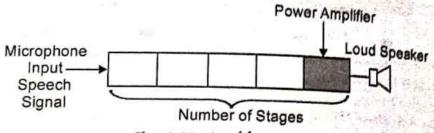
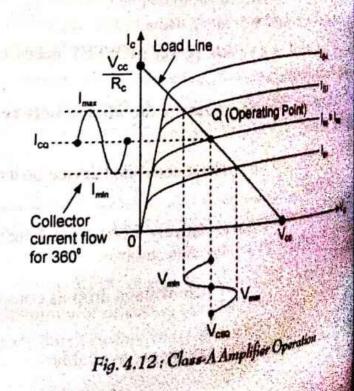


Fig. 4.11 : Amplifier System

Power amplifiers need large current. So they are known as large signal amplifier. Power amplifier. draw power from d.c. source and convert it to a.c. power to drive voice coil of loud speakers power amplifier, transformer primary winding is in series with collector. d.c. power loss in primary winding is very less as its resistance is small. Power transferred to secondary winding is ac.

Power amplifiers find their application in the public address system, radio receivers, T.V. receivers Tape players, CRTs and driving servomotors in industrial control system.


4.3.1 Classification Of Power Amplifiers

On the basis of period of conduction i.e. the portion of the input cycle during which out current (I_C) flows, the power amplifiers may be classified as

- (i) Class-AAmplifiers
- (ii) Class-B Amplifiers
- (iii) Class-AB Amplifiers
- (iv) Class-C Amplifiers

(i) Class-A Amplifiers:

In this type, the transistor is so biased that the output current flows for the full cycle of the input signal, as shown in Fig. 4.12. This means that the transistor remains forward biased throughout the input cycle. From Fig. 4.12 it is seen that the operating point Q is located at the centre of the load line. So that the output current flows for complete cycle of the input signal.

As the collector current flows for 360° (full cycle) of the input signal. We can say that the angle the collector current flow is 360°,

Inclass A operation, signal is faithfully reproduced at the output without any distortion. This is an portant feature of class-A operation. The efficiency of class-A operation is very small.

Class-B Amplifiers:

In class-B power amplifiers, the transistor se hissed that the output current flows only half cycle of the input signal. It means of the transistor is forward biased for half the input cycle. In the negative half cycle signals, the transistor enters in to cutand no signal is produced at the

MA. as the collector current flows only for (half cycle) of the input signal. In the transistor conduction angle is 10 180° as shown in Fig. 4.13. The mion point Q is located at (V_{CC}, 0) on the

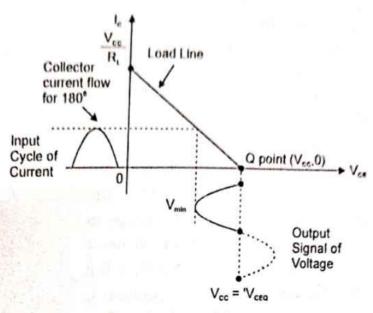


Fig. 4.13: Class-B Amplifier Operation

As only a half cycle is obtained at the output, for full input cycle, the output signal is said to be aline. in class B operation. The efficiency of class-B amplifier is much higher than the class A

Class-AB Amplifiers:

sine.

inhistype, the transistor is so biased that to output current flows for more than half less that the full cycle. The transistor alaction angle is between 180° and 360° shacondition is shown in Fig. 4.14. The Q is very close to cut-off value but well ine X-axis.

The output signal obtained in the class AB mion is distorted. The efficiency of class amplifier is more than class A but less la class B operation.

The class AB operation is important in mating the crossover distortion. This is assed later in this chapter.

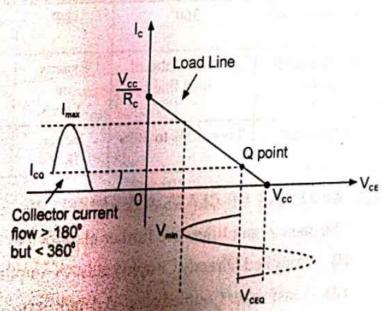


Fig. 4.14 : Class-AB Amplifier Operation

(iv) Class C Amplifier:

In class C Power Amplifier, the transistor bias and signal amplitude are such that the output current flows for appreciably less than half cycle of the input signal. Hence its conduction angle is upto 120° or 150° that is the transistor remains forward biased for less than half the cycle. Such a condition is shown in Fig. 4.15 For this operation the Q point is shifted below X-axis.

In class C operation as the collector current flows for less than 180°, the output is much more distorted. Due to this reason Class C Amplifiers are never used for audio frequency amplifiers. But the efficiency of class C operation is much higher and can reach very close to 100%.

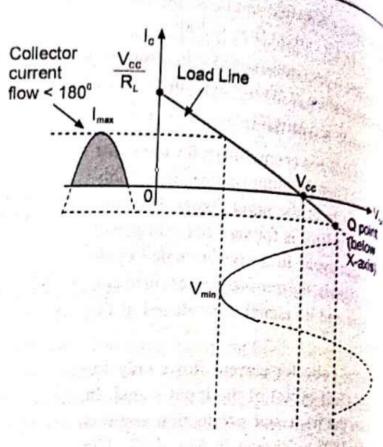
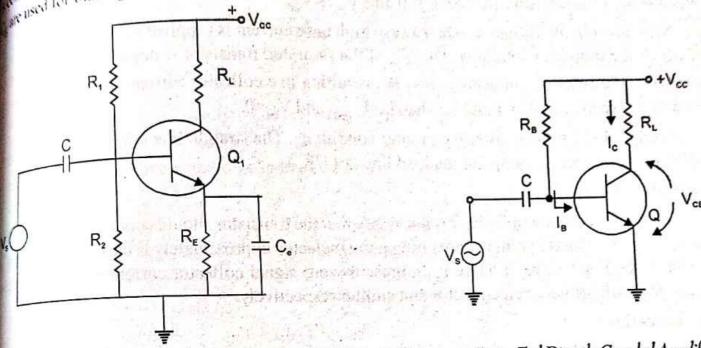


Fig. 4.15: Class-C Operation

Students may note here that, as the Q point moves away from the centre of load line below towards the X-axis, the efficiency of class of operation increases. Table below shows a summary different classes of operation of power amplifiers.

Class	A	В	AB	C
Operating cycle	360°	180°	180° to 360°	Less than
Position of Q point	At the Centre of load line	Exactly on X-axis	Above X-axis but below the centre of load line	Below X-
Efficiency	Poor, 25% to 50%	Better, 78.5%	Higher than A but less than B (50% to 78.5%)	Very high

Table : Comparison of Power Amplifiers


4.4 ANALYSIS OF CLASS-A AMPLIFIERS

The class-A amplifiers are further classified as

- (i) Series Fed Directly Coupled class-A Amplifiers
- (ii) Transformer Coupled class-A Amplifiers

In directly coupled type, the load is connected directly to the collector. While in the transformer coupled type, the load is coupled to the collector Through a transformer.

1 Series Fed Directly Coupled Class A Amplifiers 1 Series hows a Class A series fed amplifier. It is so named because the load resistance R_L rused for binsing.

Series Fed Directly Coupled Amplifier (b) Schematic Diagram to Series Fed Directly Coupled Amplifier

Fig. 4.16

Fig. 4.16 (b) shows a schematic diagram of the circuit shown in Fig. 4.16 (a) where in a detailed sing arrangement has been symbolically shown by single biasing resistance R_B.

To understand the operation of the circuit, we take help of graphical method. Fig. 4.17 shows the put characteristics (i.e. I_C Versus V_{CE}) of the transistor Q.

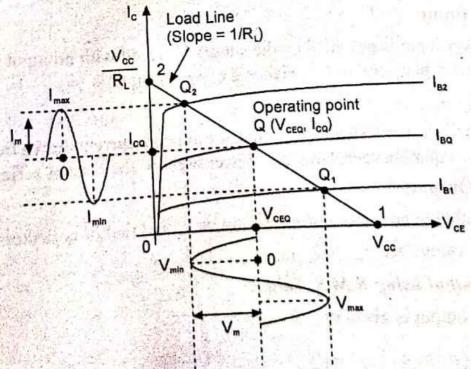


Fig. 4.17: Graphical Representation of Class A Amplifier

(a) Drawing of Lond Lines: When the base current I_b is zero, the collector current I_c is also equal to zero saturation current I_{co}). Therefore the voltage drop across load resistance is also the collector emitter voltage V_{ce} becomes equal to V_{ce} . Thus we get the point I_c is also equal to I_c . When the base current l_{co}). Therefore the vottage V_{ce} becomes equal to V_{ce} . Thus we get the bence the collector-emitter voltage V_{ce} becomes equal to V_{ce} . Thus we get the point l_{co} when a very high base current is supplied to the point l_{co} .

Now consider the situation when a very high base current is supplied to the transistor saturates. The V_{ce} of the saturated transistor is negligible (6.1 %) Now consider the situation when a very mg.

Now consider the situation when a very mg.

of which the transistor saturates. The V_{ce} of the saturated transistor is negligible transistor to the entire V_{ce} appears across R_L , resulting in a collector current I_{ce} and I_{ce} a Now consider the transistor saturates. The v_{ce} of which the transistor saturates. The v_{ce} of which the transistor saturates. The v_{ce} and hence the entire V_{ce} appears across R_L , resulting in a collector current I_{C} and I_{C} are is represented by Point 2, when $I_C = I_{C \text{ (set)}}$ and $V_{ce} = 0$.

Points 1 and 2 represents two extremes conditions. The straight line joining these bases of the load line is (1/R_L). called the load line. The slope of the load line is $(1/R_1)$. (b) The Q Point:

The Q Point:
For class-A power amplifier, it is necessary that the transistor should conduct for the fall of the f the input cycle. Thus Q point (or operating point) selected approximately is the mid of load.

Fig. 4.13 as O. Here I_{cO} represents zero signal collector current and V the input cycle. Thus Q point (or operating point) shown in the Fig.4.13 as Q. Here I_{cQ} represents zero signal collector current and v

(c) Operation:

Let us assume that the input signal applied to the amplifier is sinusoidal which results in the collector current I and call Let us assume that the input signal up.

variation of base current I_b. This inturn will cause the collector current I_c and collector. voltage Vce to vary sinusoidally around the Q point.

When the base current goes up to a value of I, the collector current goes up to a value of I. the collector current Similarly when the base current goes down to a value of Ibl the collector current goes down Correspondingly the collector-emitter voltage are V_{min} and V_{max} , and Q point shifts new point Q_2 and Q_1 . (d) D.C. Power Input:

The D.C. power input is provided by the supply V_{cc}. And with no input signal, the dec drawn is the collector bias current I_{CQ}. Hence d.c. power input is

$$P_{DC} = V_{CC} \cdot I_{CQ}$$

Note that even if a.c. input signal is applied, the average current drawn from the supply same. Hence above equation represents d.c. power input to the class A series fed amplific.

(e) A.C. Power Output:

Let the peak value of collector current swing be Im and that of collector voltage swing Hence there r.m.s. values are $I_m/\sqrt{2}$ and $V_m/\sqrt{2}$.

(i) A.C. Power Output using R.M.S. Values

The a.c. power output is given by

$$P_{ac} = V_{rms} I_{rms} = I_{rms}^2 R_L = \frac{V_{rms}^2}{R_L}$$

AC. Percer Output using Maximum Values

The are power output is given by

$$r_{in} = \Gamma_{rms} I_{rms}$$

$$=\frac{\Gamma_m}{\sqrt{2}}\frac{I_m}{\sqrt{2}}$$

$$=\frac{V_m I_m}{2}$$

Since $I_m = \frac{V_m}{R_L}$ the above equation can be rewritten as:

$$P_{ac} = \frac{V_m^2}{2R_L}$$

$$P_{ac} = \frac{I_m^2 R_L}{2}$$

quation (4.3) and (4.4) represents a.c. power output using peak values.

A.C. Power Output using Peak to Peak Values

We have from Equation (4.2)

$$P_{ac} = \frac{V_m I_m}{2}$$

But as

$$V_m = \frac{V_{pp}}{2} = \frac{V_{max} - V_{min}}{2}$$
 and

$$I_m = \frac{I_{pp}}{2} = \frac{I_{max} - I_{min}}{2}$$

$$P_{ac} = \frac{\left(\frac{V_{pp}}{2}, \frac{I_{pp}}{2}\right)}{2} = \frac{V_{pp}, I_{pp}}{8}$$

$$=\frac{\left(V_{\max}-V_{\min}\right)\left(I_{\max}-I_{\min}\right)}{8}$$

(f) Efficiency:

The efficiency of an amplifier represents the a.c. power delivered to the load from a generalised expression for efficiency of an amplifier is given as The efficiency of an amplifier is given as source. The generalised expression for efficiency of an amplifier is given as

$$\%\eta = \frac{P_{cc}}{P_{lX}} \times 100$$

$$\%\eta = \frac{\left(V_{\text{max}} - V_{\text{min}}\right)\left(I_{\text{max}} - I_{\text{min}}\right)}{8V_{cc}I_{CQ}} \times 100$$

This efficiency is also called as conversion efficiency of an amplifier,

(g) Maximum Efficiency:

From Fig. 4.13, we can see that minimum voltage possible is zero and maximum voltage possible is zero and the maximum voltage

$$V_{max} = V_{CC}$$
 and $V_{min} = 0$
 $I_{max} = 2I_{CO}$ and $I_{min} = 0$

Using Equation (4.8) we can write

$$\%\eta_{\text{max}} = \frac{(V_{cc} - 0)(2I_{CQ} - 0)}{8V_{CC} I_{CQ}} \times 100$$
$$= \frac{2V_{CC}I_{CQ}}{8V_{CC}I_{CQ}} \times 100 = 25\%$$

Thus the maximum efficiency possible in directly coupled series fed class-A amplifiers 25% (ideally). In a practical circuit it is less than 25%, i.e. of the order of 10 to 15%

(b) Power Dissipation:

The amount of power that must be dissipated by the transistor is the difference between the power input P_{DC} and the a.c. Power delivered to the load P_{ac} .

Power dissipation

$$P_d = P_{DC} - P_{ac}$$

Maximum power dissipation occurs when there is zero a.c. input signal, the a.c. power. (Pac) is also zero.

Then
$$P_{ac} = 0$$

$$P_{d} = P_{DC}$$
or
$$P_{d} = V_{cc}I_{CQ}$$
Equation (4.11)

Equation (4.11) gives the maximum power di

pages in the sampler to design and to implement, The load is directly connected in the collector circuit hence no output transformer is required.

load resistance is directly connected in the collector, therefore the quiescent collector the load resistance in the load resistance, therefore the quiescent collector, therefore the quiescent collector is the load resistance. power dissipation is more, hence use of heat sink is essential,

the efficiency is very poor due to large power dissipation.

the culput impedance is high so circuit can not be used for low impedance load like loud

Transformer Coupled Class-A Amplifier

new load resistance R_L is directly coupled to the output circuit of amplifier the overall efficiency ne load resistance of amplifier the overall efficiency and directly coupled class-A amplifier does not exceed 25%. Due to this I co passes through This current is representing a considerable waste of power = $I_{CQ}^2 R_L$ because it does esistance. This problem is solved by using a transformer as a coupling device contribute to useful ac power. This problem is solved by using a transformer as a coupling device contribute to useful of transistor and load. gen the output of transistor and load.

_{Circuit} Diagram:

18 shows the basic circuit of transformer coupled amplifier. It is also called as single ended A amplifier because single transistor is used for amplification. The primary of the transformer, ng negligible d.c. resistance, is connected in the collector circuit. The secondary of transformer mected to load R_L (loud speaker acts as a load).

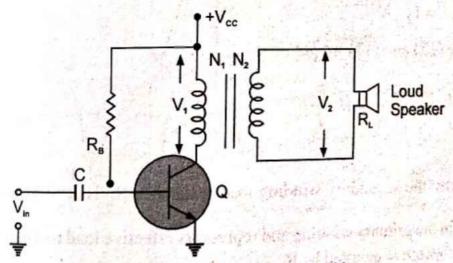


Fig. 4.18: Transformer Class-A Amplifier

npedance Matching:

he function of transformer is to match the low impedance load to the high output impedance of fier. Impedance matching is necessary to ensure that maximum power is transferred from

current can be changed by a transition and also be changed depending on the square of transformer and the load R_L.

Let us consider only the transformer.

Let us consider only the transformer R_L is connected across the transformer shown in Fig. 4.19 impedance R_L is connected across the transformer when viewed at the primary side (R_L). This is As shown in Fig. 4.19 impedance R_L is common viewed at the primary side (R_L). This is the standard of the primary side (R_L). This is the standard of the primary side (R_L). This is the standard of the primary side (R_L). This is the standard of the primary side (R_L). This is the standard of the primary side (R_L). This is the standard of the primary side (R_L). This is the standard of the primary side (R_L). This is the standard of the primary side (R_L). This is the standard of the primary side (R_L). This is the standard of the primary side (R_L). This is the standard of the primary side (R_L).

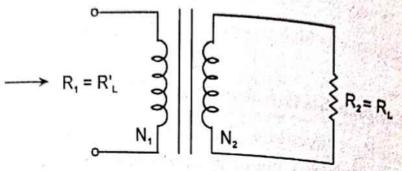


Fig. 4.19: Transformer with Load

Let the turns ratio between the primary and the secondary of the transformer be N. The the voltage ratio and current ratio can be written as

$$\frac{V_1}{V_2} = N \quad and \quad \frac{I_2}{I_1} = N \qquad \qquad \left[N = \frac{N_1}{N_2} \right]$$

Therefore, $V_1 = N.V_2$

 $I_1 = I_2/N$ and

From Equation (12) and (13) we get

$$\frac{V_1}{I_1} = \frac{NV_2}{I_2/N} = N^2 \frac{V_2}{I_2}$$

From ohm's law the secondary winding load resistance R_L is $\frac{V_2}{I_2}$. Therefore $\frac{V_1}{I_1}$ is a kind 'reflection' of R_L in the primary winding and represents effective load resistance on the primary of the transformer which is a of the transformer which is denoted by RL

Therefore from Equation (4.14) we can write

$$R_L' = N^2 R_L$$

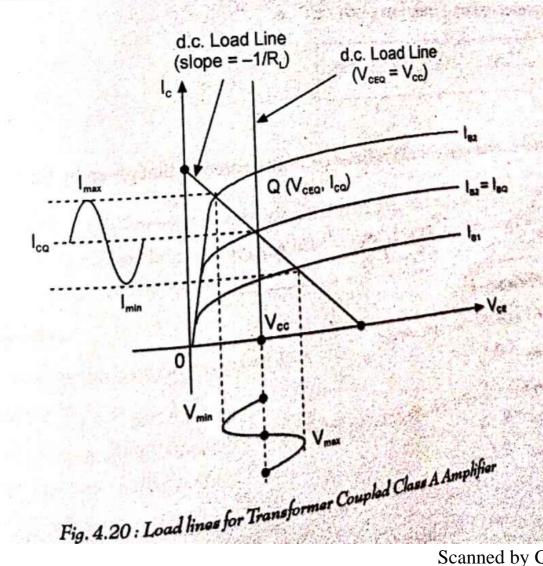
-(43

..(4.14

actual load resistance

resistance presented by the primary winding to the supply source,

(4.15) indicates that the effective load resistance viewed at the primary side (R_L) remains at the collector side of transistor is N² times the load resistance (R₁) connected to the In other words, the primary winding acts like a resistance (R₁) connected to the service secondary multiplied by the square of turns ratio,


perefore by choosing proper turns ratio N we can match the actual load resistance R_L to any wind value of RL.

operation:

nhere

Since the primary of the transformer has negligible d.c. resistance (0 Ω), There will be no drop across the primary winding of the transformer under quiescent condition.

The slope of d.c. load line is given as reciprocal of the d.c. resistance in the collector circuit. The resistance in this case is zero. Hence slope of d.c. load line will be infinite (ideally). In other the d.c. load line in ideal condition is a vertically straight line.

(d) DC Power Input:

The D.C. power input is given by

$$P_{oc} = V_{cc} I_{cQ}$$

This expression is same as for series fed directly coupled class A amplifier,

(e) AC Operation:

In class A operation the Q point is located at the centre of the load line.

In class A operation the Q pour is ...

The a.c. load line is obtained by drawing a line through the operating point or quiescent (Q-point). Slope of a.c. load line is equal to

$$\left(\frac{-1}{R_L'}\right)$$

When a.c. signal is applied, collector current varies with input signal and accordingly on up and down on load line. Collector voltage varies between v When a.c. signal is applied, content point Q shift its position up and down on load line. Collector voltage varies between v This varies in opposite phase to the collector current. The variation of collector voltage is induced in the second This varies in opposite phase to the across the primary of the transformer due to this a.c. voltage is induced in the secondary in the load.

AC Output Power:

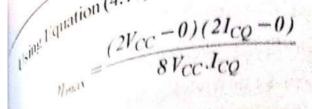
Generalised expression for a.c. output power (delivered to load) for transformer coupled and is same as represented by Equation (4.6) i.e.

$$P_{ac} = \frac{(V_{max} - V_{min})(I_{max} - I_{min})}{8}$$

Efficiency:

The general expression for the efficiency is also same as that given by Equation (4.7) and (4.7) i.e.

$$\%\eta = \frac{P_{ac}}{P_{DC}} = \frac{(V_{max} - V_{min})(I_{max} - I_{min})}{8 V_{CC} I_{CQ}} \times 100$$


Maximum Efficiency:

Looking at Fig.4.11 we can write

$$V_{min} = 0$$
and
$$V_{max} = 2 V_{CC}$$

$$I_{min} = 0$$
and
$$I_{max} = 2 I_{CO}$$

4.162

$$= \frac{4V_{cc}I_{cQ}}{8V_{cc}I_{cQ}} \times 100$$

$$= 50\%$$

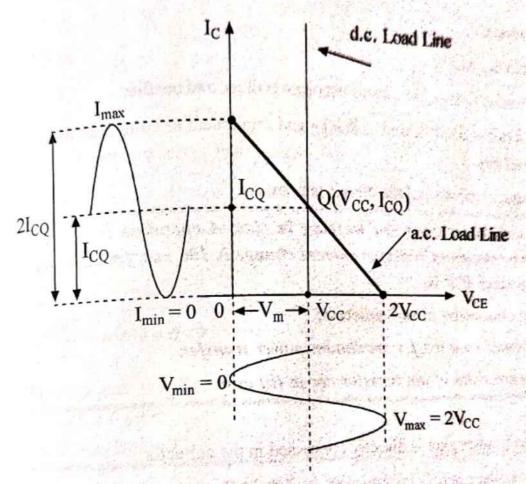


Fig. 4.15: Operating point for transformer coupled class A amplifier

Hence maximum efficiency in case of a transformer coupled class-A amplifier is 50%. For practical circuits it is about 30 to 35%.

^{® Power} Dissipation:

Power dissipation by the transistor is given by

Power dissipation $P_d = P_{DC} - P_{ac}$

When there is no input signal, the entire d.c. power gets dissipated in the form of heat (Pac=0), which is the maximum power dissipation. ...(4.18)

$$(P_d)_{max} = P_{DC} = V_{CC} I_{CQ}$$

HARMANIC Description of the amplifier is that the waveform of the amplified output the important faithful reproduction of the input waveform.

phare important requirements of an amplifier is that the will be the imput waveform.

The important requirements of an amplifier is that the will be imput waveform.

The important requirements of an amplifier is that the will be imput waveform. input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input waveform.

Input practice and the case due to the non-linear characteristics of transistor amplifier are to handle large signals, distortion is always introduced in the output i.e., manufacture of output is never exact replica of the waveshape of the input signal. Harmonic manufacture means the presents of the presents of the input signal of the

distortion means the presence of frequency components in the output waveform, was a prominent one.

per not present in the input signal, months input signal is applied to a translator, the non linear characteristics causes the positive and imput signal to be amplified more than negative half cycle. Due to this at the amplified more than negative half cycle. Due to this the output signal contains who signal for component and some undesired frequency components, which are integral included frequency. These additional frequency components, which are integral signal frequency. These additional frequency components are called harmonics. the comput is said to be distorted, this is called harmonic distortion.

for example if the fundamental frequency is f Hz, then the output signal contains fundamental for example it and additional frequency components at 2 f Hz, 3 f Hz and so on. The the second harmonic, the 3f component is called as third harmonic and so on. The amental frequency component is not considered as a harmonic because it has the frequency amental frequency component is not considered as a harmonic because it has the frequency amental frequency component is not considered as a harmonic because it has the frequency amental frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component is not considered as a harmonic because it has the frequency component in the frequency component is not considered as a harmonic because it has the frequency component in the frequency component is not considered as a harmonic because it has the frequency com

ess the input signal. Out of all the harmonic components, the second harmonic has the largest amplitude. As the order harmonic increases, its amplitude decreases. Since the second harmonic amplitude is largest, geond harmonic distortion is more important in the analysis of A.F. amplifier.

percentage Harmonic Distortion:

The percentage harmonic distortion due to each order (2nd, 3rd and so on) can be calculated by paring the amplitude of each order of harmonic with the amplitude of the fundamental frequency

If the fundamental frequency component has an amplitude of B1 and the nth harmonic component an amplitude of B_n then the percentage harmonic distortion due to nth harmonic component is essed as

$$\%D_{n} = \frac{|B_{n}|}{|B_{1}|} \times 100$$

$$\%D_{2} = \frac{|B_{2}|}{|B_{1}|}$$

$$\%D_{3} = \frac{|B_{3}|}{|B_{1}|} \text{ and so on}$$

$$(4.19)$$

Total harmonic Distortion:

Total harmonic distortion, D which is the effective distortion due to all the individual of the indivi

$$96 D = \sqrt{D_2^2 + D_3^2 + D_4^2 + \dots \times 100}$$

CLASS-A PUSH-PULL AMPLIFIER

on the distortion introduced by non-linearity discussed earlier can be minimized by the circuit known as push-pull amplifier. Fig. 4.24 shows a resistor T, and To are used both a Color.

Two transistor T_1 and T_2 are used, both of these transistors are identical. Their emitters are involved together. But bases and collectors are connected to opposite ends of input and output instances (i.e. T_{r1} and T_{r2}). Both the transformers T_{r1} and T_{r2} are centre-tapped transformers. And T_{r2} and T_{r2} provides biasing arrangement. Load is connected across secondary of T_{r2} is so choosen that output impedance of transistor matches to that of load impedance.

Operation:

Looking at the Fig. 4.24, i_{c1} and i_{c2} flows in opposite direction through the primary of transformer I_{c1} . In addition i_{c1} and i_{c2} are equal in magnitude. So there is no net d.c. component of collector arent in the primary of transformer I_{c2} . Hence there is no DC saturation in the transformer core. This results in increase in a.c. power output compared with single transistor operation.

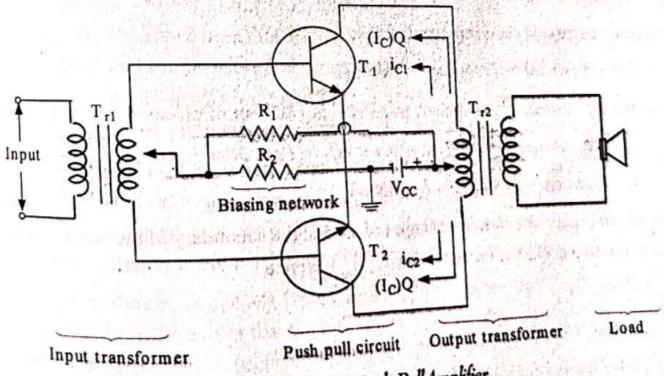


Fig. 4.24: Class-A. Push-Pull Amplifier

CLASS-B PUSH-PULL AMPLIFIER

In the earlier section, we have seen that though the class-A push-pull amplifier removes some of edrawbacks of single-ended transistors coupled amplifier, but the efficiency is only limited to 50%. It class-B push-pull amplifier which we will see in this section, helps in getting higher efficiency disconsequently a higher output power for a given type transistor.

Need for Push-pull: In class B amplifiers output current flows for only one half cycle. So ther positive or negative half cycle is missing in the output. This type of output produces large istortion. To avoid this, a push-pull configuration is used. Here one transistor conducts during one aff cycle and other transistor conducts during second half cycle of the input.

Fig. 4.25(a) shows the circuit of class-B push-pull amplifier. This circuit is similar to the class-A push-pull amplifier (Fig. 4.24) except that the biasing resistors R₁ and R₂ are absent so no biasing is provided for two transistors. This is because two transistors are to work in class-B operation. In this operation, operating point is set at cut off region (on X-axis) for which no biasing is required.

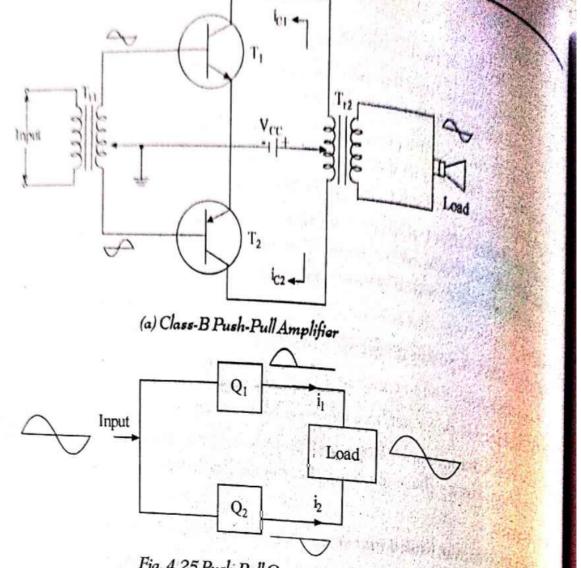


Fig. 4.25 Push-Pull Operation

Operation:

The input transformer is a phase splitter providing two signals 180° out of phase, one going with base of each transistor. When there is no signal, both the transistors are cut-off and hence no cure is drawn by either of them. Thus there is no power wasted during the no signal condition.

Now let us consider that an a.c. signal ($V_S = V_m \sin \omega t$) is applied at the input. During the positive half cycle of input signal i.e. when V_s goes positive, the induced voltage on the secondary of the input transformer becomes positive for the base of T_1 and is negative for T_2 . Thus T_1 conducts during positive half cycle and during this time T2 does not conduct.

In the negative half cycle, when V_s goes negative T₁ does not conduct but T₂ conducts. It Fig.4.25(b) the wave shapes for i₁ and i₂ are shown, each remaining zero for 180° and conducting in next 180° (similar to rectified below). next 180° (similar to rectified half waves). Due to transformer action the current induced in the D.C. power input:

The d.c. power input to the two transistors,

 $P_{dc} = 2 \times \text{power input to the transistor} = 2[I_{dc} \times V_{cc}]$

$$I_{dc} = \frac{I_m}{\pi} \text{ (for half wave)}$$

$$P_{dc} = \frac{2I_m}{\pi} V_{CC}$$

...(4.57)

ic power output: the tempower output using peak values is expressed as $P_{ac} = \frac{V_m I_m}{2}$

$$P_{ac} = \frac{V_m I_m}{2}$$

$$P_{ac} = \frac{I_m}{2} (V_{CC} - V_{min})$$

The efficiency of the class-B amplifier can be calculated using basic equation. Efficiency:

$$\% \eta = \frac{P_{ac}}{P_{dc}} \times 100$$

$$\eta = \frac{I_{ac}}{P_{dc}} \times 100$$

$$= \frac{\frac{I_m}{2} (V_{CC} - V_{min})}{\frac{2}{\pi} I_m V_{CC}} \times 100$$

$$\%\eta = \frac{\pi}{4} \frac{(V_{CC} - V_{min})}{V_{CC}} \times 100$$
 ...(4.59)

Maximum efficiency:

The maximum efficiency arises when $V_{min} = 0$

Therefore

$$\%\eta_{max} = \frac{\pi V_{CC}}{4 V_{CC}} \times 100$$

...(4.60)

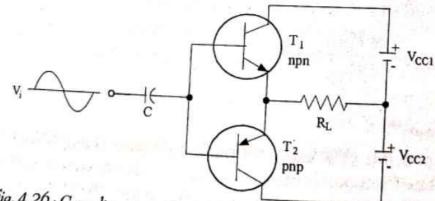
Thus maximum possible efficiency for push-pull class-B amplifier is 78.5%. This value is more inclass-A where the standing than class-A where the efficiency is maximum 50%. This increase in efficiency is due to the standing current being current being zero and hence no loss of power during the cut off half cycle.

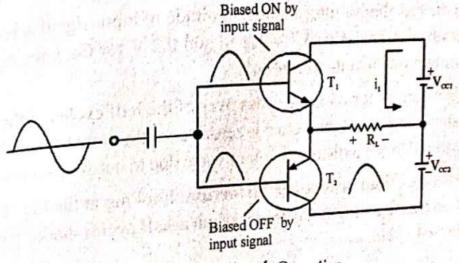
4.8 TRANSFORMER LESS CLASS-B AMPLIFIERS

The circuit of class-B push-pull amplifier discussed earlier (Fig. 4.26) uses two transformers, one the input and one at the output. However, transformers are costly and make the amplifier circu heavier. We now present complimentary symmetry circuits wherein the transformers are not require

Complimentary symmetry circuit:

This amplifier circuit shown in Fig. 4.20 does not use an input or output transformer.




Fig. 4.26: Complimentary Symmetry Class-B Push-Pull Amplifier

which makes only one transistor (either T₁ or T₂) to conduct at a time, only one plant of phase, which makes only one transistor (either T₁ or T₂) to conduct at a time, one plant complimentary transistors (one N-P-N and other P-N-P), if we introduce a time, consistors, the two collector current of translators. which makes only one transistor (either T₁ or T₂) to conduct transistors (one N-P-N and other transistors to conduct transistors) providing two input of phase, and of phase, one N-P-N and other P-N-P), if we introduce same base of phase transistors, the two collector current of transistors would be 180° out of phase transistors in the push-pull amplifier circuit. Description compliance of two collector current of transistors would be 180° out of phase. Thus the push-pull amplifier circuit. Perfectly matched pair of compliance in the market. residence manufactured in the push-pull amplifier circuit. Perfectly matched pair of complimentary available in the market. and push-j


The available are a voided using two separate but equal power supplies (Vest and Vest).

phone half cycle of input signal, transistor T₁ is forward biased and therefore it conducts, p-N-P, is reverse biased and therefore does conduct. This results in the conducts of the p-N-P, is reverse biased and therefore does conduct. p_{-N} , is reverse biased and therefore does conduct. This results into positive half p_{-N} , this is shown is Fig. 4.27. have the load R_L, this is shown is Fig. 4.27.

by the opposite takes place during negative half cycle of input signal, i.e. only T₂ conducts and half explained biased does not conduct. This result in to negative half explained. the opposite biased does not conduct. This result in to negative half cycle across load R_L.

(a) Positive Half Cycle Operation

(b) Negative Half Cycle Operation

Fig. 4.27: Operation of complimentary symmetry class B push-pull amplifier Fig. 4.27: Operation of complimentary symmetry class B push-pull. Therefore the total this the current i_1 and i_2 flow in one half cycle each but flow through R. Therefore the total limit through R is the current i_1 and i_2 flow in one half cycle each but flow through R.

through R_L is in both half-cycles.

Following are the advantage and disadvantages of this circuit:

Advantages :

- (i) As the circuit is transformerless, its weight, size and cost are less,
- (ii) The frequency response improves due to transformerless circuit.

Disadvantages :

4.9 CROSSOVER DISTORTION

Cross over distortion in output signal refers to the fact that during the time when input is positive to negative (or negative to positive), there is some non-linearing Cross over distortion in output signal refers to crosses over from positive to negative (or negative to positive), there is some non-linearity in

This is due to the fact that as long as the magnitude of input signal is less than cut-in voltage transistor (0.7 V for Si and 0.2 V for Ge), the collector current This is due to the fact that as long as the hase emitter junction of transistor (0.7 V for Si and 0.2 V for Ge), the collector current remains in cut-off region. zero, and transistor remains in cut-off region.

Hence there is a period between the cross over of the half cycles of the input signal, for the cutout signal does not fin none of the transistor is active and the output is zero. Hence the output signal does not follows their none of the translation is active and signal and gets distorted. Such a distorted output wave due to cut-in voltage is shown in Fig 421

Such a distortion is called cross over distortion. Looking at the Fig. 4.28 it is seen that the cross over distortion transistor conducts for less than a half cycle (shaded portion in Fig. 4.22) than the complete half cycle.

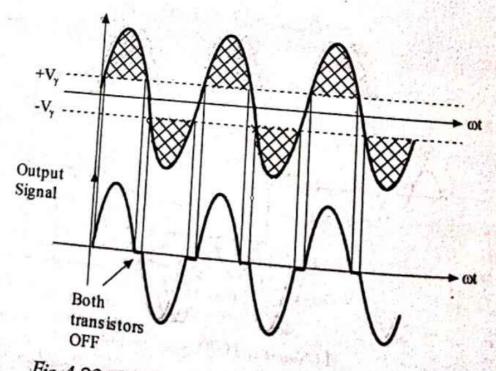
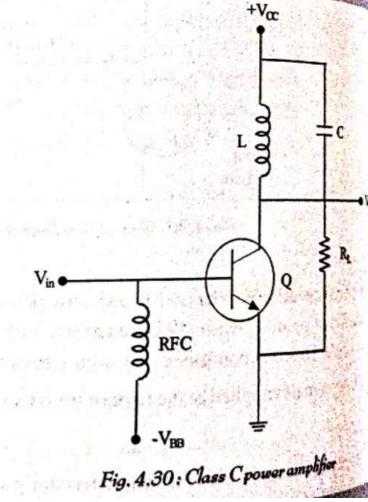


Fig. 4.28: Cross'Over Distortion in Class-B Amplifiers

Crossover distortion is eliminated in class-AB amplifiers where both the transistors are biased. be ON for more than half a cycle.


4.11 CLASS-AB AMPLIFIER

In class-B amplifier, distortions are introduced due to cross over distortion, mismatch of the class-B amplifier, distortions are introduced due to cross over distortion, mismatch of the class-B amplifier, distortions are introduced due to cross over distortion, mismatch of the class-B amplifier, distortions are introduced due to cross over distortion, mismatch of the class-B amplifier, distortions are introduced due to cross over distortion, mismatch of the class-B amplifier, distortions are introduced due to cross over distortion, mismatch of the class-B amplifier, distortions are introduced due to cross over distortion, mismatch of the class-B amplifier, distortions are introduced due to cross over distortion of the class-B amplifier, distortions are introduced due to cross over distortion of the class-B amplifier, distortions are introduced due to cross over distortion of the class-B amplifier and output characteristics. These distortions can be reduced as the class-B amplifier and output characteristics. In class-B amplifier, distortions and output characteristics. These distortions can be reduced by and non-linearity of input and output some modification. The basic reason some modification. The basic reason voltage, a small forward bias equal to cut-in voltage is junction. To over come this cut-in voltage is junction. To over come this cut-in voltage is junction. So that when an a.c. signal is applied to the base, collector circuit junction. To over come this cut in a constant and a consistent in a signal is applied to the base, collector circuit war, both the transistors. So that when an a.c. signal is applied to the base, collector circuit war, both the transistors. So that which the base bias during quiescent immediately i.e. no crossover distortion. So in class-AB mode, the base bias during quiescent immediately i.e. no crossover distortion. So in class-AB mode, the base bias during quiescent immediately i.e. no crossover distortion. So in class-AB mode, the base bias during quiescent immediately i.e. no crossover distortion. So in class-AB mode, the base bias during quiescent immediately i.e. no crossover distortion. immediately i.e. no crossover distortion but less than 360° (class-A) and is such that current flows for more than 180° (class-B) but less than 360° (class-A) and is name class-AB. Class-AB amplifier gives less distortion than class-B but efficiency is class-B.

4.12 CLASS C AMPLIFIERS

A basic class C amplifier with tank circuit as load is shown in Fig. 4.24. A class C power amplifier is biased to operate for less than 180° of the input signal cycle. The tuned circuit in the output however, will provide a full cycle of output signal for the fundamental or resonant frequency of the tuned circuit (L and C tank circuit) of the output.

The used of such amplifiers is therefore limited for a fixed frequency, as occurs in communication circuits. Operation of a class C circuit is not intended primarily for large signal or power amplifiers

