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PHYS'CAL SIGNIFICANCE OF DIVERGENCE
1.8

1 ce of vector field E (div I ) is defined as the limiting value of the ratio of the closed
,ﬁrl"rg"" :
¢

ral to the volume enclosed by the surface over which integration is carried out, when the
nteg ’

O e tends 10 €70,

"

divE = 1t L H> ff-cE\-‘

vy

is the volume enclosed by the source § over which integration is carried out. In vector form
s 11 18 . =
where , VB
 F isrepresented by V£
dl‘- e

The divergence of a vector field £ can be expressed as
& s

| A - i - - & =
3 ol n O ( 4 y : - )
divE = b=+ —+k—|-(i E.+JE . +kE.) =V-E
ox "oy oz

= +d <0 ¢
andis givenby V =i —+ j —+k
= : cxX oy cz

vhere symbol V (del) is a vector differential operator -
The divergence of electric field at any point gives the charge density at that point, which is a scalar
quantity.

' Ifavector function £ spreads out. i.c.. diverges from a point, then it has a positive divergence at that
point and point acts as a source of the field £ Indeed V-E can be taken to b_e a measure of the spreading
autof the field. On the other hand. if the field converges Lo a point then V-£ will be negative at that
point because the point acts as a sink for the field E. Finally, if the vector field £ neither converges
nor diverges then V-E =0, j.¢. the flux entering any element of Space is same as leaving it and such a
vector field is known as solenoidal vector field.

"3 PHYSICAL SIGNIFICANCE OF CURL

The curl of vector field signifies the whirling nature of the ve
&1otation. It is directed along the perpendicular to the pl
5‘0}, considering (he streamline flow of a liquid in
S¥elocity is maximum at the top and minmum

e_dirtclion of flow. It wil] begin to
PoSition wi]] be maximum and it will
0 the direction of fl

© Minimypm value,
€ rotation with

ctor field which is sometime also Known
ane of maximum rotation which can be proved
a pipe. There exists a velocity gradient in the liquid and
at the bottom. Put a toothed wheel, with its plane along
rotate in the direction of flow. Thus, the rotation of the wheel in this
be minimum if the toothed wheel is put with its plane perpendicular
ow. The rotation in any intermediate position will be in between the maximum and

g N maximum v_fjlue IS termed

€ above ¢xample by B, then

;i‘:c‘z“?ﬂ:ce With the right handed screw
*Tepresents the cur] into the plan

@ \ : 3
Curl of 4 Vector field B can be cX
on-
Whirrn %10 curl of 3 yecto
NG effecy or the form
e .
M B dllowed to flow ou

lﬁnu
le i
Mdency of rotation i

as curl and is a vector quantity,

If we denote the flow
rotation may be represented

as curl B 1t is represented in
rule, e.g. in the above case, the rotation being in clockwise
e of the paper ( Fig. 11.4),

pressed as curl B = Vx §
rfield implies existance of circulation or veloeity or rotation, It suggests a

ation of a vortex, We have seen the vortex in the river or in the tub, when

tolit through a hole in the bottom (Fig. 11.5), Vx E = signifies that there
nan electrostatic field,
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Fig. 11.4 Clockwise rotation of toothed wheel in the direction of flow
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Fig. 11.5 Demonstration of vortex

11.10 GRADIENT OF A SCALAR FIELD AND ITS PHYSICAL SIGNIFICANCE
By itself V has no physical significance. It acquires significance only when it operates upon a vector or

a scalar function.
Let U(F) be a scalar field. Then

- - "1 -~
VU =[!—§—+_}£+kaJU=EOU+jOU+kaU -“)
ox T dv oz

VU is termed as gradient of U and is abbreviated as grad U.
Let 7 be the position vector of a point, whose coordinates are (x, ¥, 2), then
T fx+jy+ £Z

dr = fdr-ﬁ-}'dy-{-f?dz

also,

Taking the scalar product VU of dF

VU.dF = (: Eg+_] E—+k-a£ -(idx + ] dy + kdz)
ox oy oz



e

Thcrefore- VU-dr =qu

ther words differential of a scalar function is eq
nr?oﬂ and the differential of the position vector.
unc
me eqn. (2) -
dU=VU.-dr or d

+(2)
ual to the scalar product of the gradient of the

U= |VU||dF|cos 0

here 01 the angle between the direction of VU and dF i
"

Maximum value of dU is (when cos 6 = 1)
AU oy = VU ||dF|
dU_ ..

dr

IVU|

or

(. |dF|=dr)

Therefore, it is clear that gradient of a scalar function U is the maximum rate of change of U with
distance and directed along the normal to the surface having same value of U. Thus, VU tells us how

U varies in the neighbourhood of a point.

1141 RELATIONSHIP BETWEEN ELECTRIC FIELD AND ELECTRIC POTENTIAL

We have seen that the electric potential is given by

q

r

o I
ur) = —.
dne,,

Now taking gradient of above expression, we have

= i | -1
VU = \‘——-I-—EJ = ——qV(iJ
(4ne, r 4ne, r
Since, ¥ = :’..\‘+}_1'+1:: , we have
l |
- 2 3 [:0 40 :0 "
V(l}:\(.r-‘f‘\ +2%) -:(1_i+j—-+k—:—)(x2+y2+zz) 2
\r ox “ody iz

:-r*3F = l,,f- =..—;- - ;=|;:|;:)
r-r r
= ] —r 1 ¢.
. VU = —¢g|—| =- i M-
47e, q[.-z] 4ne, p2

= = = 1 g .
o =- v E=s——=r
vU B E [ 41’[50 ."2 J
= E=_VU .0

Thus, electric field at a point is defined as the gradient of the potential at that point.
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41411 Curl of Electric Field E is Zero

Since E =-VU i )
Therefore, Curl E = VxE = VX[—\_’"U]
i] Kk
I 0 0 0
ie., VRE =+ B a‘: p
au oU du
v ?*1_ oz
(o’u & (a U ﬂfu) (a U &y
=-—[i F:"gr T;ﬁz]+l ox0z Ox0z Oxdy Uxéy]:l

That is, curl of electric field is zero.

11.12 DIV. GRAD U ; LAPLACIAN OPERATOR
- = ~@ ~0 @) ([:0U 08U roU
div.grad U=V - VU = 1—-+;~;+~:{—,\: | g

ox O Ox oy
20 A% B2 A2 2 2
FU o U (",+8,+5JU

+—-—- —_—

"l
(-'.l" rl (._

V.YU = VAU

L] "

2 7 e
=3 0° 0° 7, - i
where V7| =—5+—+ . is known as Laplacian operator.
oy~ oz"

11.13 DIFFERENTIAL VECTOR IDENTITIES

Followings are the possible combinations of differential operators and products which can be applied to
various products of two vectors (e.g., E and E’) and scalars (e.g. U).

() V-VU=VU (i) V-VxE =0

(i) VxVU =0 (iv) Vx(VxE) = V(V-E)-V’E
v) VUU) = (VYU + UV

i) V(ExE") = (E-V)E'+Ex(VxE)+(E-V)E + E'(V x E)

(viiy V(UE) = (VU)-E+UV-E

(viii) i?'-(ExE*}=(€fxE)-E-(€fxE*).E

(ix) Vx(UE) = (VU)xE +UV x f'

(x) \';'rx(E"xE*)=(\?-E')+E—(€'-E)E'+(E’-ﬁ)E-(E-€’)E'
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, TYPES OF VECTOR FIELDS
it

I
mé
i

1.6

. Vector Field (LNVE): A vector field is said to be lamella
of a scalar field. Electric field is a lamellar ficld
L = —-\7Lf

W1 ‘e Ooegls # + {3 _— o e
qame Jamellar .xue.;cmts.thal the field can be divided into layers over which the value of the
( function whose gradient gives the vector field, remains constant.

cald reeral of a lamellar vector is inde :
* e line integral of a lamellar vector is independent of the path followed and only depends on the

i ond final points of the path, e.g., the line integral of a lamellar ficld between two points A and B
1

 given OY

cllar (Laminar) if it can be expressed as
as 1tis expressed by gradient of potential U

vhere U i the elec}ric petential m?d Uy, and Uy are values of electric potential at A and B respectively.
From last equation, we may write

—_

B
(j‘E'dq — J'E'-df =U,-Up=0
A

ie. the closed line integral of a lamellar field is zero.
1 Solenoidal Vector Field (SVF): A vector field B is said to be solenoidal if its divergence is zero.

i€, V-B =0 (4)

Solenoidal fields neither have source nor sink of flux and the flux lines entering a closed surface must
so leave it. Incompressible fluids, steady magnetic fields, current density under steady state are some
of the examples of solenoidal vector fields.

3.Irrotational Vector Field (IVF): A vector field E whose curl is zero is called irrotational vector
field,
ie., VxE =0 (3

This equation is satisfied only by electric field E.

(: E==U then ¥ x £ = ¥ x [~ VU]=—[Vx VU] But (VxV =0 .. VxVU=00r VxE =0)

4. Rotational Vector Field (RVF): A vector field whose curl is non-zero is called rotational vector
fld, Magnetic flux density B satisfies this condition and is said to be rotational.

9xB #0 ~(©)

11’1§5T6KES THEOREM

h _: 3 .*
:lates that the integral over a surface of the normal component of the curl E is equal
0 t v —- 1 v r /
he tangentig] component of the £ around the path enclosing ared S, i.e.,

cﬁp_;_d;f - I!ﬁ'xﬁ.dﬁ

to the line integral
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Fig. 11.6 A closed curve ¢ having surface s

Proof: Consider a closed curve ¢ having surface § as shown in Fig. 1'1.6. Suppose this surface i Places
in a vector field. in the present case we have considered an clectric field £ . The line integral of E alon

G ok $
the closed curve c¢ is given by

cﬁf’.df
A

For our convenience we have divided the contour ¢ into two small contours ¢ and ¢, having respectively
surfaces S, and S,. Therefore, the sum of closed line integral of £ on both contours ¢; and c; gives
§E.di+§E.dl = [ E.di+ [E.di+[E.dl+ [ E.d
¢ ¢ ACB BA AB BDA
where line integrals are taken in the anticlockwise direction. But the line integrals along AB and BA are
equal and opposite, therefore
$E.dl+§E.dl = [ E.di+ [ E.dl =§E.dl
9] ¢ ACB BDA ¢
Suppose we divide the arca S into a large number of elementary areas, then the above equation wil
become

"

= (*l

Let ith surface element have area ds; , then the normal component of curl £ is given by

(I)E Ll
Icur] Elmmnal e
ds;
But Icurl EI ds; =curl E.dy;

normal

curl £.ds; = cJ-J!?.dI_

“



I

$ = - i=n = L
Qj’f-‘- el Z E.dl = Zcuri E . ds;
and “i =

| = 1{"-

Jin limiting case becomes

(j)f?.d? = IICUI‘IE.(}:‘C = J‘jf"xf_?c:’s

\\-’hiC‘



11.17 GAUSS’S LAW
-Accnrding to this law. the total electric flux through a closed surface is equal to the charge (in Coulomp,
enclosed by that surface. It D represents the clectric flux density through an elementary surface g,
ds drawn about any point. then the flux through this elementary arca IS
df = D-ds
Thus. the total flux through a closed surface is

o= Iddﬁ = “‘f)c_f'v
S

According to Gauss’s law
b= cﬂ)ﬁ-c?s = g in Sl system, where ¢ is charge
and for free space, the above equation can be written as
d} = @BUE ‘(?S — q
11.17.1 Gaussian Surface

An imaginary closed surface of any shape drawn in an electric field for the purpose of solving problems
concerning electric flux is called Gaussian surface. The shape of the Gaussian surface is chosen on the
basis of symmetry of the problem, so that the expression for Gauss’s law,

b= @ﬁ-ds , can be evaluated conveniently.

1917:2" Proof of Gauss's Law

Suppose a charge g, assumed to be situated at the origin of the co-ordinate axes as shown in Fig. 11+
Let § be a Gaussian surface around it. Consider an elementary area s at 7 . The electric flux through
ds is given by



A55
P is electric flux density a 7
a"c s

o b= [db = [f5.d,

gut the electric displacement veeror lor ree Space iy

D=l gy
Dsg b s 7

il Al = —
Am e 4l

]

-

I

Hence, we have

o= iy o 4 Jplas
"

4“,-' ‘.'n -H‘Iz’
rols
- [~ [er = an
r
o e solid angle subtended by o closed
wrfzee on a point inside iis 4 ¢ y ;
’ i I"
; :
(:; — / "1?’_ (
4n
. . ¥ f' /
shich s Gause™s Law, i.¢, the (o1l d
eete flurom SEaystem through o closed
sz v equal 1o the charpe Gn Coulomly)
eckred by the surface, /
Freenegn (12), 00 1s clear that the electrie ’
/ p. - N
b over asurface in equal (o 7
7 7
f:) [A ,/'-‘
An o
P ok
rodly /
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11.17.3" Differential Form of Gauss’s Law

Gauss’s law can also be written as

g _ 4 5 = e
IbE-ds = — {(r D = gLk )
lﬂ) ds = o 0 A5

From Gauss's divergence theorem (see #11.20), we have

C_H)E.(?s = '[1" div Edv (18)

Combining eqgns. (15) and (16), we have

a4
J_“?J‘dn Edv = G (17

If g is the total charge contained in the volume distribution having volume density of charge p, tpe,

we have
o= [ffps -
From eqgns. (17) and (18)

(o

IIJ'{?'h’ Ed‘;' = (19]
3 f.'-“
which gives
div E = 4
0]
But div E = G'E
VE=F (20
€
or V-D = p .21

The above equations have been derived from Gauss's law. V-E expresses the emergence of electric flut

from a point where volume density of charge is p. These equations express Gauss’s theorem in differential
form, because V is differential operator.

11.18 -LAPLACE’S AND POISSON’S EQUATIONS IN ELECTROSTATICS
7 i

We know that the electric field E is related to the electric potential Uas E = VU , where U s a scal¥

function of space coordinates.
Now, according to the differential form of Gauss’s law in free space, we have

V.E = 2 inSIsystem
€9

Where p is the volume density of charge. Also, V-E = —[V.VU] = —v2U



vy P
&0
which is the Poisson’s equation in electrostatics in SI system.
For free space, p = 0, therefore, we have
VU =0
which is Laplace’s equation in electrostatics in SI system. The above equation can also be written as

V-E =div E =0



11.20 - GAUSS’S DIVERGENCE THEOREM

Ti states that the surface integral of the normal component of electric field vector £ over the bounding

surface S of a volume v is equal to the volume integral of the div £ over the same volume, i.e.,
pE-ds = [[[div Eav
|4

Gauss’s divergence theorem is applicable to all types of vector fields. Let the bounding surface be
divided into a large number of elementary surfaces (see Fig. 11.15), say N, then

i=N
{pE-ds = Y. [[E-ds,
i=l §,
where 35; is the area of the ith surface.

Now dividing and multiplying the right hand side of the above equation by volume v;, the volume of
ith element whose surface area is ds, , we have

i=N g
Z[@Eﬁ},‘

=] ‘5, v;'



Let us consider the limiting case, i.e., as N approaches infinity, v; also approaches infinity. Therefore,

the above equation becomes

ZLtcﬁ)

V%0 V.
=l S, i

Fds‘

1‘!'

But, we know that

E.ds,
Lt $p——L =div
V=0 S, V.

I

tru

Therefore, we have
Z(divE' )v
i=]

. ([[divEay

Bounding surface

‘\\\\‘\\\\\\\

A WA

LA

T Y O L Y

ith surface element
Fig. 11.15 Alarge surface bounding many elementary surfaces

t#hem We have used the concept that the summation over all the volume elements reduce to volume

Mlegrals,

1=

-1

Or

[JE-ds

{.‘h 1
S Gauss’g divergence theorem.
M a.

E[HMJ - [faie 2

H div Edv
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11.40 MAGNETIC FIELD STRENGTH

We know that if a stationary charge g, 18 placed in auniformelectric field £ uc,‘mﬁenc“an
ot b b o8 Tdie]
force 7. which is given by eey "
] "
Fo=aqnlk
Alsoif atest charge g, is moving with a velocity v parallel to a current 7 3¢ 4 distance 4 A%
) r
» : T, p W cx i
a foree perpendicular to its own velocity and is given by l"‘cn.:“clh
’ Mg 21 - .
I = gpV n(in SI
dn d
- (57
where 7 is the unit vector perpendicular to v This foree £, is called magnetic force
3
g 2/
and B = Ho <!
dn d i

18 termed as magnetic field strength. Tt is a veetor quantity. 5 is the magnetic
clectric current 1. whose direction depends upon the direction of
current and 1s given by the right hand rule. i.e., il one grasps the
wire carrying electric current with right hand in such a way that the
thumb points in the direction of the current and fingers circle the
wire. then the direction of the magnetic field is same as the direction
of the fingers (Fig. 11.33). In general, the force experienced by a
test charge g, moving with velocity v in a magnetic ficld B is
ﬁm = qﬂrlx B (in SI) ...(39)
From egns. (56) and (59) it is evident that a test charge moving ing:cf

with a velocity Vin the electric field £ and magnetic field B mﬂgfﬂetlc
orce

experiences an electromagnetic force

Fo = qoE +qyvx B (60)

Here F,,, is also termed as Lorentz force and accordingly eqn.

(60) may be called as Lorentz force equation. Fig. 11.33 The right hand re

11.40.1 Ampere's Law

We already know that moving charges produce a magnetic field, which in turn influence any oths:r:.:ﬁaf:-ff
moving through it uand it does not affect a stationary charge. Also it is clear that the magnetic eftects



b=

—um when both the charges are moving parallel to cach other and is minimum when the charges
! "
"1‘1“:1“.-,“? pcrpcndlcul:nr to cach other.
are ¥

jtis well known thata current 7 produces a magnetic field 8 in a plane perpendicular to the direction
f fiow and 118 magnitude at a distance o is
'\

3 Mg 21
B =-—=— (in! .(61)
e (in SI)

Now consider a circular path of radius R in a planc perpendicular to the wire carrying /. Then the
magnetic field on every point of the circular path will e tangential to the path (see Fig. 11.34) and is

. 2/ -
B=LuZ g (in SI)

4n R -452)

where dl is the unit vector along the path. The closed line integral of B on the circular path is
$B-di = §|Blar-ai = b\ B\(dt)ar-ar
=dB-di
As B1s constant everywhere on the circular path, we have

jLB-dr & Bj)dl = Bx27R
Also, because d = R, we have

(- di-dl =1)

p=to?
4n R
Thus, the closed line integral of B on the circular path of radius R around
" curent carrying conductor is y r:jg lﬁ?cirz:.?f:ﬂi
(.[”'} dl = %?KZRR perp;ﬁ?;?::;&?r;ﬁ? lwe
= pyf «(63)

a T?‘-c above equation is known as Ampere’s law or Ampere’s circuital law, It is similar to the Gauss's
W . 2 . e
N electrostatics, Also, if the path goes round the current carrying conductor N times, then

$B-di =Ny, ..(64)

If1=. ; ; B.dl
=0; Le., the current enclosed by the circular path is zero then (J;B'f” =0.
14 ..



11.41 BIOT-SAVART'S LAW OR AMPERE’S RULE

Ampere’s law can be used to compute B only in the cases where the current distribution i1s symmetrica

v i
[

and the integral can easily be evaluated. Butitis difficultto

_app] v for nnn-synm]etrrcall charge drslnl?uuon. Thus there V2 dFss oF 11’,/
is another law which can easily be used for such cases and % ‘
is known as Biot-Savart’s law. This law is a summarization B .
of the experimental studies regarding the force between — hdh \ oo 7 lodl;
. . 21 M2
current carrying conductors. carried out by Ampere. Ampere ' K
concluded that: "
T % . Pl
The force on a current element /,d/, (a current carrying | .
conductor of length dl,. having a current /,) due to another A a
= . ; Fig. 11.36 Force between two current carrying
current element /,dh (Fig. 11.36) separated by distance ——
|2 | = |B) | is given by |
e _ Ho 111’2‘: 7 - dB i
dfy) = ——=|dl, x(di_?xr_-”)] ...(70)
4 r)

Also from egn. (69), the force on the current element 1\dl due to the

magnetic field @B is given by

a'ﬁ'ﬂ = [,dz x dB (71
On comparing (70) and (71), we have Fig. 11.37 Magnetic field
) I dl. xF dEie to a current elemenf
dB = Bﬂ_g_'—’_x_fl_!_ +712) ld! located at distance 7 -

4 T ;:331



o we omit the suffixes we can say that the
Supl’tﬂ.\b

nce 7 from it (Fig. 11.37)1s given by
Jistd

magnetic field due to a current element /dl at a

‘!’} — H_[_l l’(i,i )

4r _r'."

hichis known as Biot-Savart’s Law and it states that the magnetic field B due to
(i) directly proportional to the current 7 through it,

 directly proportional to the length dl of the conductor,

) is inversely proportional to the dist

acurrent element is

(it 5
(iif ancer of the observation point from current element, and

(iv) 1 directed along the dl x7 |
/

i 42/ MAGNETIC FLUX
e s

The nurfiber of lines of magnetic force crossing normally an area is known as magnetic flux. Itis represented
by the symbol &, If B is the magnetic field, the flux d¢,, through the area element is given by
dd, = B-ds
Thus, the flux through any surface § is given by

by = [db,,
= [[B-as (74)
S

In SI system, B is measured in tesla (7) and ds in metre square (m?) and hence the unit of flux in SI
system is Tm?. Tm? also called weber (wb); i.e., wbh = Tm?

={73)

From eqn. (73). if B is pendendicular to ds , we have

dd,, = Bds
do
B e m
ds

Thus, B is the magnetic flux per unit arca and is called magnetic flux density.

1143 FARADAY'S LAWS OF ELECTROMAGNETISM
Fﬂfﬂda}', tﬁrough his measurements, observed that:

(i) Whenever the magnetic flux linked with a circuit changes, induced emf is setup 'm.the circuit and
the induced current may flow through it, lasting so long as the change in ﬂt_lx cuntm.ues. -

{ii) The magnitude of the induced emf is proportional to the rate of change of magnetic flux linke
with the circuit.

The above statements are called Faraday's laws of electro-magnetism. e Ty
Let dg,, be the change in magnetic flux in time interval dr. The rate of change of magn o »

Proportional 1o the induced emf e and according to Lenz's law it opposes the cause that pr '
Us, we have



e o ——

/i

ot — ‘@_w_
dr

-~

(- of Lenz's |3W) --(75]

- A76)

where & is constant of proportionality, whose value depends upon the units in which various quantitie

are measured.
In ST units, & is one and eqn. (76) reduces Lo

= -
it

11.43.1 Differential Form of Faraday’s Law

Let us consider a loop of wire which encloses surface arca S and is placed
in a non-uniform magnetic field B (Fig. 11.38). The flux linked with
the loop 1s

o= [JB-5
<
Differentiating with respect to time, we have

d¢"’ I e d §

Here we have written partial differential of B as B may be a function
of both space and time co-coordinates.

- slaws o= —T0m
According to Faraday’s laws e = P
[4
0B
or e= - H( -ds

«(77)

Wire logg

Fig. 11.38 A wire loop enclosing
a surface area placed in a non-
uniform magnetic field

-(78)

Also emf is defined as the work done in taking unit charge completely around the closed circuit,

therefore we have
€= @E‘ (ﬂ-

where £ is the electric field.
Form egns. (78) and (79), we have

S 3
E-dl = j’j’ﬂ o
According to Stoke’s theorem

(j;f*f-d?

H VxE). ds
Therefore, on comparing eqns. (80) and (81), we have

H(Vx!‘) s = H.@ v
5

(79
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rential form of Faraday's |

-

y e awe " — ; p .
Jpich s 3 difte 1Ws of electromagnetic induction and is one of Maxwell's
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o D":FERENT|AL FORM OF AMPERE'S LAW
. ‘ ; : :

ow let us consider a region of space in which currents are llowing as shown in Fig. 11.39
. ‘A eady current distribution can be described by the current density vector k
'. _ 7). which may vary from point to point but is time independent. Let §

,;E;]nsfd curve in the region. By definition the total current 1, through the
rface area enclosed by curve S is given by

I= Hf-df ..(83)
S
's law Fig. 11.39 Aregicn
From Ampere s 1aw of space with various
ch-d! = Wyl (in SI) ..(84) currt:?ctz:s\:mg
:
JB-di =y, [[j-ds (83)
o 5

Also according to Stokes theorem, the closed line integral of B is related to the surface integral as

(_:.'E’-df = H(ﬁxff)-a’f ...(86)
¢ S

Therefore, on comparing eqns. (85) and (86), we have
([(9xB)-ds =y [[j-ds
S 3

= VxB = pof «(87)

Equation (87) is another form of Ampere's law and is known as Maxwell’s equation of magneto statics.

1'i4‘3")«‘/&1:3cl'iﬁ.f:d Ampere’s Law (Modifying Equation for Curl of Magnetic Fields
ﬂo Satisfy Continuity Equation)
Since divergence of a curl is zero, therefore, taking the divergence on both sides of equ. (87), we have

V.VxB = V-(1of)
) 0=po(V-/)
or (?j -0 ..(88)

Which i :
hich is true only for steady currents and for varying currents

o - op ..(89
Vij = (89)
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id ' t and should be .+

iven i ' be valid for varying curren -

s law iven in egn. (87) cannot Lioe s . | |
Max\'.::lr?rfc:;i;e:i\:\::pircw law ?naking it valid for varying current as well, by introducing the Bocg

of displacement current as described below:

We know that

Vil e =t (in SI)
&p
or p=gV-E
0 . OF
ct cl
Now add V ] to both sides, we have
5. 742 o T2
V.j+ By J t& or
o4 aE]
=V|j+e .(90)
(j O or.
But for varying currents
V.j+ L, J. (from continuity equation)
ot
(- gk
We have V. [; + €, —67) =0 «(91)
Thus for varying currents
V-ji#0

= [ ok
But V'(!*Eo'.—] =0
ol

Maxwell, therefore proposed that j in Ampere’s Law should be replaced by

Jreg—
O ot

And hence Ampere’s law (eqn. 87) becomes
VxB [ j+¢ ok ]

x L P —

i G ot

(92)

OF .
. . - . . . 53 3 n'ﬁ.
The term £5— in above relation is known as displacement current density in vacuum. The nd

was given by Maxwell. It will be
is consistent with continuity equ

the displacement vector by D, then in vacuum,
D = ¢yF (in SI)

ation since div.

. = 2)
appropriate to mention here that Ampere’s law as modified in eqﬂ-‘(f‘:_m
ergence of both sides in eqn. (92) is zero. If we repres



45 SCALAR AND VECTOR POTENTIAL

jrcase of clectric field E . curl E
slied clectric potential.

However, in case of the magnetic field.

Vx B = “[}.}:

=0 and it is possi LR =
nd it is possible to write £ = -V . where U is a scalar function

On]} mn SPECiH] cdases., thn ,’ = v" A B =0.In a]] other cases 6’ X E =0
Hence B cannot be expressed as gradient of a scalar function.

Another relation that defines Bis

V-B =0
This enables us to write
B =Vxd LA94)
diveurl 4 =0 or VA(Vx4) =0
Hence V-B=0

The vector quantity A ineqn. (94) is called vector potential.



