
Sealo

AxBxtB1

Elecbicit 2 Mytsn
Phsia) cnntily

Synbol vCNba)

GeAlENT

Sn
2

At

Cetyt?

A'XRABsino-n

The yient is e veto puo stich pates

scale Fune

+SFoe

(Aed

r

ient
G,y,)

B2

+2,ind tC,y2)

Ant



Dyegonce vectA ielc 7ies ahr:
Symbol

Diveyence
tkig

S

DIVERGENCE

F

fx

S

be coleult by
Can be

F2

Cel f vet Func

i obain by ttiy
f veto el

pMdct of vecto
optocv)ectFunives vests vect



Elec

11.8
PHYSICAL

SIGNIFICANCE OF DIVERGENCE

of vector ficld E (div E) isdefined as the limiting value of the ratio of the closed
ivergenceof

urfaceintegralto the volumeenclosed bythesurface over whichintegrationiscarriedout, whentherolametends to zero, i.c.,

div E is
represented by VË

div = LI
1'-0

where is the volume cnclosedby the source S ovcr whichintegration is carricd out. In vector form

where symbol V

1

The divergence of avector field Ë can be expresscd as

div E =i+j
Ox -+kE, + jE,+kE,) =

VËôy ôz

(del) is a vector differential operator and is given by V = i

11.9 PHYSICAL SIGNIFICANCE OF CURL

+j +

The divergence of electric field at any point gives the charge density at that point, which is a scalarquantity.

ôy

Ifa vector function E spreads out, i.e., diverges from a point, then it has a positive divergence at thatpoint and pointacts as a source of the field E. Indeed VE can be taken to be a measure ofthespreadingout of the field. On the other hand, if the field converges to a point then VE will be negative at thatpoint because the point acts as a sink for the ficld E.Finally, if the vector field E neither convergesnor divergesthen VE =0, i.e., the flux entering any element of space is same as leaving it and such avector field is known as solenoidal vector field.

Ihe curl of a vector field signifies the whirling nature of the vector field which is sometime also known
2S TOtation. It is directed along the perpendicular to the plane of maximum rotation which can be proved
byconsidering the streamline flow of a liquid in a pipe. There exists a velocity gradient in the liquid and
lS velocity is maximum at the top and minmum at the bottom. Put a toothed wheel, with its plane along
ne direction of flow. Itwill begin to rotate in the direction of flow. Thus, the rotation of the wheel in this
position will be maximum and it willbe minimum if the toothedwheel is put with its plane perpendicularOie direction of flow. The rotation in anyintermediate position willbe in between the maximum and
Iheminimumvalue.

Ine rotation with maximum value is termed as curl and is a vector quantity. If we denote the tlow
n theabove example by B,then rotation may be represented as curl B. Itis represented in

Thecurl of a vector field B can be expressed as curl B = xB.

accordance
with the right handed screwrule, e.g. in the above case, the rotation being in clockwise

direction,
represents the curlintothe plane of the paper (Fig. l1.4).

Non-zer
curl of a vector field implies existance of circulation or velocity or rotation. It suggests a

wtiring
effect orthe formation of a vortex, We have seen the vortex in the river or in the tub, when

Waler
is:allowedto flow out of itthrough a holeinthe bottom (Fig. l1.5). VxË =0signifies that there

tendency
of rotation in an electrostatic field.



Fig. 11.4 Clockwise rotation of toothed wheel in the direction of flow

Let U) be a scalar field. Then

11.10 GRADIENT OF A SCALAR FIELD AND ITSPHYSICAL SIGNIFICANCE

also,

Fig. 11.5 Demonstration of vortex

By itself V has no physical significance. It acquires significance only when it operates upon a vector or

a scalar function.

Curl
Toothed Wheel

ŽU= |i+j+u=iôU,;Uy

F = ix+jy + kz

VUis termed as gradient ofU and is abbreviated as grad U.

Taking the scalar product VU of d

Water Outlet

VU-d =i

Let be the position vector of a point, whose coordinates are (, y, z), then

dF = idx +jdy + k dz

+j
U

ôz ôy

-+k
ôz

+£0U

r tàtk(idt + jdy + kde)

..1)



Therefore,

Fromeqn. (2)

ŽU-d = dU

functionandthe differential of the, position vector.

or

5

Ôx

where Ois the angle between the direction of VUand dr.
Maximum value of dUis (when cos

|VU =

ber words differential ofa scalarfunctionis equal to the scalarproduct of the gradient of the

dx +

dU= VU-d or dU= |VU||dF|cos

= 1)

dUmay = |vU|dF|

UF) =

Since,F = ix +y+ kz, we have

d

ôy

max

VU =

dr

-dy+

Therefore, it is clear that gradient of a scalar function U is the maximum ate ofchange of U with
distance and directed along the normal to the surface having same value of U. Thus, VU tells us how

Uvaries in the neighbourhood of a point.

11.11 RELATIONSHIP BETWEEN ELECTRIC FIELD AND ELECTRIC POTENTIAL
We have seen that the electric poterntial is given by

Now taking gradicnt of above expression, we have

ôz

9

1

dz = dU

4tE0

=-(r+y² +y i2r +jzy + k2:)

Ox ôy ôz

r2

...2)

(: Jd|= dr)

ts, electrie feldat a point is defined as the gradient of the potential at thatpoint.

(:F=F|F)

1

...(3)
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11.11.1 Curlof Electric Field E is Zero

Since

Therefore,

i.e.,

That is, curlof electric field is zero.

where

Curl E = x = Îx[-u]

2

() -ÔU=$2U
(iti) V× VU =0

11.12 DIV. GRAD U: LAPLACIAN OPERATOR

ôx ôy

OU

div. grad U= .vU =|i

11.13 DIFFERENTIAL VECTOR IDENTITIES

(v) V(UU)= (VU)U' +UVU

.ou_ou)./ou_ou)

(vii) -(U) –
(TU):+U.Ë

is known as Laplacian operator.

k

Gzôy yôz

z

(ix) Vx(U) = (ÑU)x+Ux

(vii) T-(x) = (x)-Ë -(xE)-

Followings are the possible combinations of differential operators and products which can be applied to

various products of two vectors (e.g., E and E') and scalars (e.g. U).

(iv)

ûxôz axoz,
OxÔy

(ii) V.V× =0

(v) (Ex E") =
(-Î) E +x(Tx E') + (-) +E' (Õ×Ë)

+

Vx(0xE)= V)-$°E

() Tx(x E')= (. )+ -(Ý ) E' + (E-) Ë -(-Ô) '

ôz

ysics

=0.



11.14
TYPESOF VECTOR FIELDS

LLamellar
Vector Field(LVF): A vectorfield is saidtobe lamellar (Laminar) ifitcan be expressed as

ke
gradientof

The
name 'lamellar suggests that the ficld can be divided into layers over which the value of the

scalar
function whose gradient gives thc vcctor ficld, remains constant.

šgivenby

-field.Electric ficld is a lamellar ficld as it is expressed by gradient of potential U
Ë = -ÜU

ofasealarj

The.line
integral of a lamellar vector is independent of the path followed and only depends on the

iniialandfinal points of the path, e.g.,the line integral of a lamellar field betweentwo points A and B

i.e.,

B

A

i.e.,

B

A

where Uis the electric potential and U and Ugare values of electricpotential at A andB respectively.
From last equation, we may write

B

=-dU =U-UB

B

A

ie. the closed line integral of a lamellar field is zero.

GEdl - |dl =Uj-Up= 0

2.Solenoidal Vector Field (SVF): A vector field B is said to be solenoidal if its divergence is zero.

Solenoidal fields neither have source nor sink of flux and the flux lines entering a closed surface must
also leave it. Incompressible fluids, steady magnetic fields, current density under steady state are some

of the examples of solenoidal vector fields.

1,15 STOKES THEOREM

3. Irrotational Vector Field (IVE): A vector fieldE whose curl is zero is called irrotational vector

feld.

Žx =0

Ihis equation is satisfied onlyby electric field E.

("E=-VUthenx=Ôx[-U=-[Üx VU] But (Vx V =0 .:

..4)

feld.Magnetic flux density B satisfies this condition andis said to be rotational.

...(5)

x VU= 0 or ®x= 0)

T KOtational Vector Field (RV):A vector field whose curl is non-zero is called rotational vector

...(6)

istatesthatthe integral over a surface of the normal component of the curl E is equal to the line integral

ofthe tangential component of the E around the path enclosing area S, i.e.,



Surface S

become

C

C

But

C1

Proof: Consider aclosed curve c having surface Sas shown inFig. l1.6. Suppose this surface is at.
in a vector field,in the present case we have considered an electric field E.The line integral ofË
the closed curve c is given by

C1

For our convenience we have divided the contour c into two small contours cand c, having respectively

surfaces S,and S,. Therefore, the sum of closed line integral of E on both contours c and c, gives

Fig. 11.6 Aclosed curve c having surface s

C

ACB

|curl Epormal

B

where line integrals are taken in the anticlockwise direction. But the line integrals along AB and BA are

equal and opposite, therefore

ACB

normal

A

i=n

Suppose we dividethe area S into a large number of clementary areas, then the above equation wil

ds;

Jcurl E ds, = curl E .ds;

BA

curl E.dis, =
Ë.di

-Surface S,

Let ith surface element have area ds,
,

then the normal component of curl E is given by

AB

BDA

ysics

BDA



and (Ë.di =
Ë.di = Xcurl Ë.d,C;

whichin limiting case becomes

i=lc;

i=n

¢Ë.di =
fcurtË

. ds = (vxE.ds
S S



11.17 GAUSS'SLAW

According to this law, the total clectric fiux throughaclosed surface is cqual to the charge (in Coulomki

enclosed by that surface. If D represents the clectric flux density through an elementary surface area

ds drawn about any point. then the fiux through this clementary area is

do = D. ds

Thus, the total flux through a closed surface is

According to Gauss's law

11.17.1 Gaussian Surface

=

and for free space, the above equation can be written as

S

D.ds =qin SIsystem, where q is charge

11.17.2 Proof of Gauss's Law

An imaginary closed surface of any shape drawn in an electric field for the purpose of solving problems

concerning electric flux is called Gaussian surface. The shape of the Gaussian surface is chosen on the

basis of symmetry of the problem, so that the expression for Gauss's law,

=4

= p: ds
, canbe evaluated conveniently.

= - ds

Súpposeacharge 4, assumed to be situated at the origin of the co-ordinate axes as shown inFig.

Let S be a Gaussian surface around it. Consider an elementary area ds at ,The electric flux througu

ds is given by



nhere Diss clectric flux density at .
and

Butthe
clectric displacemnent vectorfor free

Hence, wc have

But

=E

it. the solid angle subtended hy a closcd
uface on a point inside it is 4 n

shich is Gauss's Law, i.e., he total
eesric fluz in SI systcmthrouh a closed
vifeisequal to the charpe (inConlonb)
chned ty thesurface,

frmen. (12), it is clearthat the clectrie
(rvera surlace is cqual to

4n

s the solid anple

space is

A:

(in S)

dlesityofchrge,

4y:2

4

Fig. 11,0 Deplolionof Gausslan surfage

455

Hd try the surfce at the locationof poit charge, IT le ehurpe cneloscd is zero, lhe total lux

#heeisutinuss distribution of chuupes, tlen we huVe

...(12)

rfe is en, Il inplies tbt either o lien of elecie lorce are euting the urlace or te
inestf force entering the sulace is equnl to the ounler of lines of loxee conmiug out of it.

sunfaceeneleses morethanone chwgetlen the (Cuosn's law cun be writlen aN

..()



11.17,3 Differential Form of Gauss's Law

Gauss's'law can also be writtenas

Or

we have

From Gauss's divergence theorem (see #11.20), we have

ffE-d =

Combining eqns. (15) and (16), we have

From eqns. (17) and (18)

which gives

But

9

fpEds = |[ div Edv

Ifq is the totalcharge contained in the volume distribution having volume density of chargep. then

q= || pdv

||| div Edv =

diy =

(":: = &E)

9

div E = -Ë

11.18 LAPLÁCE'SAND POISSON'S EQUATIONS INELECTROSTATICS

-.(15)

Now, according to the differential form of Gauss's law in free space, we have

-.(16)

ö.=P in SIsystem

..(17)

where p is the volume density of charge. Also, .= -.ul=-yU

..(18)

The above equations have been derived from Gauss's law. VE expresses the emergence of electric fiux

from a point where volume density of charge is p. These equations express Gauss' s theorem in differentad

form, because V is differential operator.

..(19)

..(20)

We know that the electric field E is related to the electric potential U as = -ÑU, where Uis a Sta

function of space coordinates.

.(.21)



P

which is the Poisson's equation in electrostatics in SI system.

For free space, p = 0, therefore, we have

v²U=0
which is Laplace's equation in electrostatics in SI system. The above equation can also be written- = diy E =0



11.20 GAUSS'S DIVERGENCE THEOREM

It states that the surface integral of the normal component of electric field vector E over the bounding

surface S of a volume v is equal to the volume integralof the div E over the same volume, i.e.,

Gauss'sdivergence theorem is applicable to all types of vector fields. Let the bounding surface be

divided into a large number of elementarysurfaces (see Fig. 11.15), say N, then

where ds; is the area of the ith surface.

i=N/

Now dividing and multiplying the right hand side of the above equation by volume v;, the volume ot
ithelement whose surface area is ds; ,we have

j=l|S;

-ds;

i=N

V

=l S;



let us consider the limiting case, i.e.,as N approaches infinity, v; also approaches infinity. Therefore,
the above equation becomes

Or

But, we know that

Lt

integrals.

Lt

Therefore., we have

14 a

S;

i=l

ž(div)

S

-ds,

V;

V;

i=N

= diy Ë

re we have used the concept that the summation over all the volume elements reduce to volume

whichisGauss's divergencetheorem.

ith surface element

Bounding surface

Fig. 11.15 A large surface bounding many elementary surfaces



11.40 MAGNETIC FIELD STRENGTH

We know that if a stationary charge qo is placed in a uniform elcctric ficld E,itexperiences
anvelectrostatisforce which isgiven by

Also if atest charge q is moving with a velocity parallclto a current Iat adistance
d,experienceAa forrepcrpendicular to its own velocity and is given by

and

where n is the unit vector perpendicular to i. This force Im is called magnetic forca

B=

21
= 4o"' -n(in SD

4n d

11.40.1

i

llo 2/

Ampere's Law

4 d
Is termed as magnctic field strength. It is a vector quantity. B isthe magnetic field. produced

bytheclectric current I.whose direction depcnds upon the direction of
curent and isgiven by the right hand rule, i.e., if one grasps the
Wire carying clectric current with right hand in such a way that the
thumb points in the direction of the current and fingers circle the
Wire. thcn the direction of the magnetic ficld is same as the direction

of thefingers (Fig. 11.33). In gencral, the force experienced by a

test charge qo moving with velocity ina magnetic field B is

Fromeqns. (56) and (59) it is evident that a test charge moving
with a velocity V in the electric field E and magnetic field B

experiences an electromagneticforce

m= ovx B (in SI) ...(59)

..(60)

Here Fem is also termedas Lorentz force and accordingly eqn.
(60) may becalled as Lorentz force equation.

Fem = 4oE +
q0ÜxB

Line of
magnetic

force

.56

Fig. 11.33 The right hand rule

We already know that moving charges produce a magnetic field, which in turn influence any other charge

moving through it and it does not affect a stationary charge. Also it is clear that the magnetic effect s



both the charges are moving parallel tocach otherand is minimum when the charges
art moving perpendicular to cach other.

maximum when

ie wellknownthat acurrent 7produces a magnetic ficld B in aplanc perpendicular tothe direction
of

flow and its magnitude at a distance d is

B Ho 2/
4T d

B=
Now consider a circular path of radius R in a plane perpendicular to the wire carrying /. Then the

muonetic ficld on every pointof the circular path willbe tangential to the path (see Fig. 11.34) and is

B=

Also, because d = R, we have

Ho 2/
4T R

where dl is the unit vector along the path. The closed line integral of B on the circular path is

As Bis constant everywhere on the circular path, we have

=GB-dl = B{dl = Bx2nR

B=

(in SI)

dl (in SI)

Ho 2/
41 R

Thus,the closed line integral of B on the circular path of radius R around
the Current carrying conductor is

Ho 2/
4n R

4B-dl = Nu

-x2TR

8

...(61)

...(62)

(: dl-dl = 1)

lawin electrostatics. Also, if the path goes round the current carrying conductor N times, then

=; i.e., the current enclosed bythe circular path is zero then Bdl =0.

4-R

Fig 11.34 Magnetic
field on a circular path

perpendicular to the wire
carrying current I

He above equation is known as Ampere's law or Ampere's circuital law. It is similar to the Gauss's

...(63)

..(64)



11.41 BIOT-SAVART'S LAW OR AMPERE'S RULE

Ampere'slaw can be used to compute B only in the cases where the current distribution is symmetrical

and the integral can easily be evaluated. But it is difficult to

apply for non-synmmetrical charge distribution. Thus there

is another law which can easily be used for such cases and
is known as Biot-Savart's law. This law is a summarization
of the experimental studies regarding the force between
current carrying conductors, carried out by Ampere. Ampere
concluded that:

The force on a current element I,dl,(a current carrying

conductor of length dl,, having a current l) due to another
current element /,dl (Fig. 11.36) separated by distance

i2=| is given by

dl21 =
4T

magnetic field dB is given by

dFz1 = I,dl,x dB

On comparing (70) and (71), we have

1,dl;

Also from eqn. (69), the force on the current element Ihdl, due to the

4

dF21

...(70)

Fig. 11.36 Force between two current carying
Conductors

..(71)

r21=-r12

...(72)

dB

P

dF12

r

I,dl,

Id

Fig. 11.37 Magnetic field

due to a current element

ldl located at distance r.



Suppose weomitthe suffixcs we can say that the magnetic field due to a current element ldl at a

distance Ffrom it (Fig. 1137) iis given by

whichisknown as Biot-Savart's Law and it statesthatthe magnetic field dB dueto a current element is

() the current /through it,n directly proportional to the

(i) thelength dl oftheconductor,directly proportional

41 3

is inversely proportional to the distancc F of the observation point from current element, and
(iv) is directedalong the dl xr.

11.42 MAGNETIC FLUX

The number of lines of magnetic force crossing normally an area is known as magnetic flux. It is represented
hy the symbol. If Bis the magnetic field, the flux do,, through the area element is given by

do,, = B- ds

Thus, the flux through any surface S is given by

S

From eqn. (73), if B is pendendicular to dš
, we have

B=

In SI system,B is measured in tesla (T) and ds in metre square (m²) and hence the unit of flux inSI
system is T'. Ti' also called weber (wb); i.e., wb = Tm?

do,, = Bds

dm
ds

Thus,B is the magnetic flux per unit area and is called magnetic flux density.

1.43 FARADAY'S LAWS OF ELECTROMAGNETISM

Faraday, through his measurements, observed that:

..(73)

...(74)

() Whenever the magnetic flux linked with a circuit changes, induced emfis set up in the circuit and
the induced current may flow through it, lasting so long as the change in flux continues.

) Ine magnitude of the induced enf is proportional to the rate of change of magnetic tlux linked

with the circuit.

Lne above statements are called Faraday's laws of electro-magnetism.
be the change in magnetic flux in time interval dt, The rate of change of magnetic fiux 1S

Tonal to the induced emf e and according to Lenz's law it opposes the cause that produces 1t.

Thus,wehave



Or

or

In Slunits, k is onc and cqn. (76) reduces to

where k is constant of proportionality, whose valuc depends upon thc units in which various quantii

are measured.

11.43.1 Differential Form of Faraday's Law

According to Faraday's laws

e= k

Let us consider a loop of wire which encloses surface area S and is placed

in a non-uniform magnetic field B (Fig. 11.38). The flux linked with

the loop is

therefore we have

Differentiating with respect to time, we have

d,m

where E is the electric field.

dt

Accordingto Stoke'stheorem

Here we have written partial differential of B as B may be a function

of both space and time co-coordinates.

e=

dm
dt

Form eqns. (78) and (79), we have

dhm.

S

e=

S

d ,m

dt

S

e=-[[6.

S

-ds

do,m

d

(:: of Lenz's law)

Therefore, on comparing eqns. (80) and (81), we have

B

B

Also emf is defined as the work done in taking unit charge completely around the closed circuit.

.75)

ds

..(76)

.(77)

Wire loop

Fig. 11.38 A wire loop enclosing
a surface area placed ir a non

uniform magnetic field

...(78)

...(79)

..(80)

...(81)



Eec

whichis a
differential

fomof Faraday's laws of electromagnetic induction and is one of Maxwell's
tquation.

11.44
pIFFERENTIAL

FORM OF AMPERE'S LAW

Nowlet us
consider a region of space in which currents are flowing as shown in Fig. 11.39

A
steady current distribution can be described bythe current density vector

j=jE). which may vary from point topoint but is time independent. Let S

he
closedcurve in the region. By definition the total current I, through the

surtacearea enclosed by curve S is given by

From Ampere's law

qBdl = Ho/ (in S)

C

S

C S

Therefore, on comparing eqns. (85) and (86), we have

..(83)

Also according to Stokes theorem, the closed line integral of B is related to the surface integral as

..(84)

0= Ho())
j=0

..(82)

S

which is true only for steady currents and for varying currents

Fig. 11.39 Aregicn
of space with various

currents flowing

...(85)

..(86)

Equation (87) is another form of Ampere's law and is known as Maxwell's equation of magneto staties.

1144, Modified Ampere's Law (Modifying Equation for Curl of Magnetic Fields
to Satisfy Continuity Equation)

...(87)

a dvergence of a curl is zero, therefore, taking the divergence on both sides of cqn. (87), we have

...(88)

...(89)

through it



.. Ampere's law as given in eqn. (87) cannot be valid for varying current andshould be modified,
Maxwell modified Ampere's law, making it valid for varying current as well, byintroducingtheconcept

of displacement current as described below:

or

We know that

But for varying currents

Now add Vi to bothsides, we have

We have

Thus for varying currents

But

.Ë
= -P (in SI)

ot

The term &o
ot

Ot

= EnV.

ot

= .j+e,.

=0

=0

j=0

=0

j+s07

Maxwell, therefore proposed that j in Ampere's Law should be replaced by

j+ Eo

And hence Ampere's law (eqn. 87) becomes

ot

t

TxB =
Ot

.(90)

(from continuity equation)

= &E (in SI)

.91)

...(92)

in above relation is known as displacement current density in vacuum. The nhante

was given by Maxwell. It will be appropriateto mention herethat Ampere's law as modified in eqn. (
(92)

is consistent with continuity equation since divergence ofboth sides in eqn. (92) is zero. If we reptethe displacement vector byD, then in vacuum,



11.45 SCALAR AND VECTOR POTENTIAL

onse of electricfield E,curl E =0 and it is possible to write E = -U
,
where U is ascalar function

caliedelectric potential.

However. in case of the magnetic field.

Only in special cases, when j =0, V xB =0. In all other cases V x B+0.
Hence B cannot be expressed as gradient of a scalar function.

xB = Hoj

Another relation that defines B is

This enables us to write

Hence

VB =0

B= VxÄ

div curlA =0 or .(xÄ) =0A ý.(×Ä)

VB =0

The vector quantity A in eqn. (94) is called vector potential.

...(94)


