WATER TECHNOLOGY

www.btechpdfs.ourstudycircle.in

Introduction

- For existence of all living beings (animals, humans, plants) water is very important.
- ➤ Almost all human activities, domestic, agricultural and industrial purpose water is used.
- Without food, human can survive for a number of days, but water is such an essential that without it one cannot survive
- ➤ Although water is nature's most abundant compound but only less than 1% of the world's water resources are available for ready use.

Importance of water

It is an important engineering material

- > In steam generation
- Coolant in power and chemical plants
- water widely used in Steel, plastic, atomic energy and textile industries.
- Other fields such as drinking, bathing, sanitary, washing irrigation etc.

- The major cationic species are Sodium (Na⁺)
- The major anionic species are Chlorides (Cl⁻)
- The major cationic species are Calcium (Ca²⁺)

- The major anionic species are
 - Carbonates,
 - Sulphates and
 - Silicates.
- Fresh water contains lesser amount of dissolved salts than Oceans & Seas.

About 97% of water is present in Oceans. It's salty hence it can't be used.

Of the remaining 3%, 2% is locked in the form of ice caps and glaciers. It is not available for human

Only 1% of water is pure water in liquid form, of which 0.9% is present as

Balance o.1% of water is available as surface water in rivers, lakes, steams, reservoirs.

Oceans & Sea Water

Ice Caps & Glatiers ircle.in Ground Water

River Water

Where does the water come from? I. Surface waters:

River water: This fed by rain water. Water flows over surface, dissolves salts of soil and suspended organic matter.

Lake water: Contain much lower amount of dissolved salts and organic matter.

Sea water: Most impure form of water. River water throws salts and matter. Continuous evaporation makes sea water more concentration.

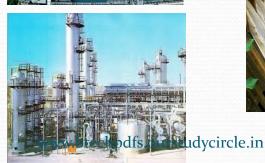
II.Underground water: water percolates into earth. During its journey it comes contact with minerals get concentrated.

Www.btechpdfs.ourstudycircle.in

How is the Available Water Used in the World?

Agriculture Sector

The 70% of water is used for irrigation.



Industrial things

The 20 % of water is used for industrial things. Examples: Power plants,
Oil refineries

Power Generation

Hydropower is the production of electrical power through the use of the gravitational force of falling or flowing water.

Domestic use

The 10 % of water is used for domestic uses.

- Drinking
- Bathing
- Cooking
- Sanitation
- Gardening

Other Uses are

- Recreation purpose
- Creating Artificial Environment

Impurities in water

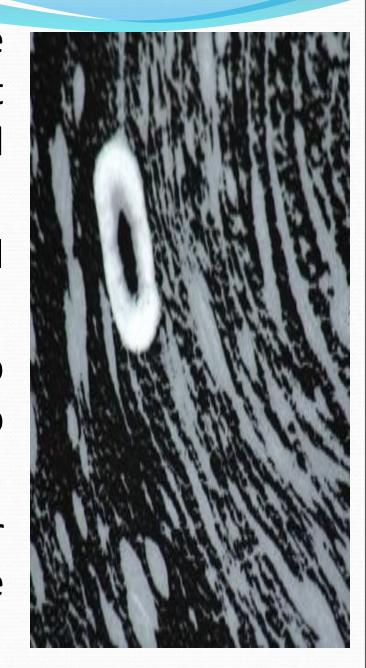
Impurities in water classified into following types.

- 1. Dissolved impurities: Dissolved salts like carbonates, bicarbonates, chlorides and sulphates of Ca, Mg, Fe and Na. Dissolved gasses like O2 and CO2.
- 2. Suspended impurities: inorganic impurities like clay and sand, organic impurities like oil globules, animal and plant matter.
- 3. Colloidal impurities: products from organic waste, finely divided silica and clay.
- 4. Microorganisms: Bacteria, fungi and algae.

www.btechpdfs.ourstudycircle.in

HARDNESS OF WATER

- Hardness of water is characteristic which prevents the lathering of soap. (or) The soap consuming capacity of water sample.
- When hard water when treated with soap do not produces lather, but forms insoluble precipitate which do not possess any detergent action.
- This is due to presence of certain salts of calcium, magnesium and other heavy metals dissolved in water.
- Na stearate + H₂O → NaOH + Stearic acid Stearic acid + Na-stearate → formation of lather
- > 2 Na- stearate + Hard water \rightarrow (Stearate)₂ Ca \downarrow +2Na⁺


Soft water

- Water that gives lather with soap easily and readily is known as Soft water.
- Soft water does not contain dissolved salts.
- In soft water cleaning quality of soap is not depressed and so soap not wasted.
- Less fuel are required for cooking in soft water.

Hard water

- Water which does not give lather with soap solution, but forms a white scum is called hard water.
- Hard water contains dissolved Ca and Mg salts.
- Cleaning capacity of soap depressed and lot of soap wasted.
- The boiling point of water elevated. Consequently, more fuel required for cooking.

Typical reactions of soap (sodium stearate) with Calcium chloride and magnesium sulphate:

$${}_{2}C_{17}H_{35}COONa + CaCl_{2} \rightarrow (C_{17}H_{35}COO)_{2}Ca \downarrow +2NaCl$$
 Calcium Stearate

$${}_{2}C_{17}H_{35}COONa + MgSO_{4} \rightarrow (C_{17}H_{35}COO)_{2}Mg \downarrow + Na_{2}SO_{4}$$

Magnesium Stearate

TYPES OF HARDNESS

Temporary hardness:

- It is caused by the presence of dissolved bicarbonates of calcium and magnesium and carbonates of Iron.
- Temporary hardness is easily removed by boiling, on boiling bicarbonates are decomposed into insoluble carbonates or hydroxides.

$$Ca (HCO_3)_2 \rightarrow CaCO_3 \downarrow + H_2O + CO_2 \uparrow$$

 $Mg (HCO_3)_2 \rightarrow Mg (OH)_2 \downarrow + 2CO_2 \uparrow$

It is also known as carbonate (or) alkali hardness.

II. Permanent hardness

- It is caused by the presence of dissolved chlorides, and sulphates of the calcium and magnesium and iron.
- The dissolved salts are CaCl₂, MgCl₂, CaSO₄, MgSO₄, FeSO₄, Al₂,(SO₄)₂ etc.
- Unlike temporary hardness, permanent hardness is not destroyed on boiling.
- ➤ It is also known as non carbonate (or) non alkaline hardness.
- The difference between the total hardness and alkaline hardness give the non-alkaline hardness.

Degree of Hardness:-

- The hardness of water is expressed in terms of calcium carbonate equivalents.
- The weights of different salts that causing hardness are converted to weight equivalent to that of calcium carbonate.
- The reason for choosing CaCO₃ as standard for reporting hardness is ease in calculations as its molecular weight is exactly 100 and is insoluble in water.

Eq. of CaCO₃ =
$$\frac{mass \ of \ hardness \ causing \ salt}{mol. wt \ of \ hardness \ causing \ salt} \times 100$$

Units for Hardness:-

Parts per million(ppm):-The number of parts by weight of $CaCO_3$ present per million (10⁶) parts by weight of water.

1ppm = 1 part of CaCO₃ equivalents in 10⁶ parts of water.

Degree Clarke(°Cl):- Parts of CaCO₃ equivalents of hardness per 70.000 parts of water.

1°Cl = 1 part of CaCO₃ per 70,000 parts of water.

Degree French(°Fr):- The parts of CaCO₃ equivalents of hardness per 10⁵ parts of water.

1°Fr = 1 part of CaCO₃ per 10⁵ parts of water.

$$10^6 \text{ ppm} = 10^5 \text{ r} = 70.000 \text{ °Cl}$$

Hence 1 ppm =
$$0.1 r = 0.07 l = 1 mg/L$$

A sample of water on analysis is found to contain the following impurities.

Impurity	Ca(HCO ₃) ₂	Mg(HCO ₃) ₂	CaSO ₄	MgSO ₄
Quantity mg/L	4	6	8	10
M.wt	162	146	136	120

Calculate the temporary, permanent and total hardness of water in ppm, °Fr and °Cl.

Solution:

Constituent	mg/L	100/M.wt	CaCO ₃ equivalent
Ca(HCO ₃) ₂	4	100/162	$0.617 \times 4 = 2.47 \text{mg/L}$
Mg(HCO ₃) ₂	6	100/146	$0.684 \times 6 = 4.11 \text{mg/L}$
CaSO ₄	8	100/136	0.735 X 8 = 5.58 mg/L
MgSO ₄	10	100/120	0.833 X 10 = 8.33 mg/L

www.btechpdfs.ourstudycircle.in

Determination of temporary Hardness:-

THS is due to presence of bicarbonates of Ca and Mg

THS =
$$2.47 + 4.11 = 6.58 \text{ mg/L (or) ppm}$$

As
$$1mg/L = 1ppm = 0.1 \, ^{\circ}Fr = 0.07 \, ^{\circ}Cl$$

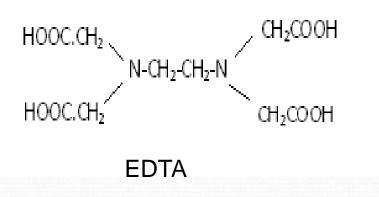
Temporary hardness =
$$6.58 \, mg/L \, (or) \, ppm$$

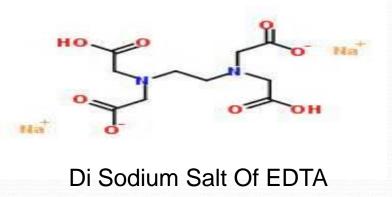
$$= 6.58 \times 0.1 = 0.658 \text{ }^{\circ}\text{Fr}$$

$$= 6.58 \text{ xo.o7} = 0.46 \, ^{\circ}\text{Cl}$$

Determination of permanent hardness:-

PHS is due to presence of CaSO₄ and MgSO₄


Permanent hardness =
$$5.88 + 8.33 = 14.21 \text{ mg/L}$$


$$= 14.21 \times 0.1 = 1.421 \, {}^{o}Fr$$

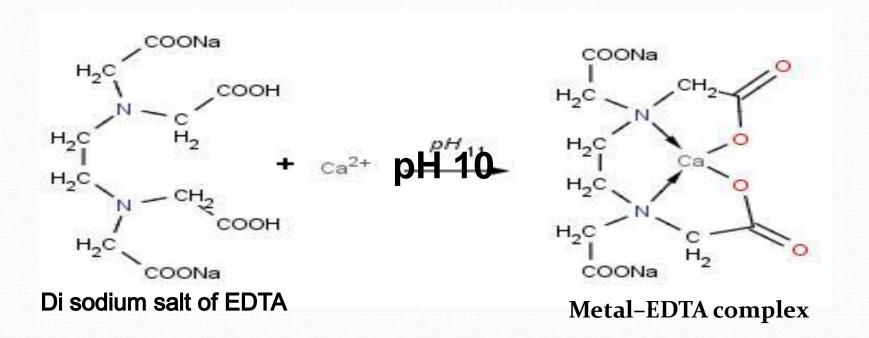
$$= 14.21 \times 0.07 = 0.995$$
°Cl

Total hardness = Temporary Hardness + permanent Hardness

Determination of hardness of water by EDTA method

Ethylene diamine tetra acetic acid (EDTA) in the form of di sodium salt yields the anion of Ethylene diamine tetra acetate which forms complex ions with Ca^{+2} and Mg^{+2}

Principle of EDTA method for the determination of hardness of water


- In order to determine the equivalence point, indicator eriochrome black T (EBT) is employed.
- EBT forms unstable wine red complex with Ca⁺² and Mg⁺² ions

$$M^{+2}$$
 + EBT \rightarrow [M-EBT] complex (Ca⁺² and Mg⁺² ions of hard water) wine red

• During titration EDTA combines with Ca⁺² or Mg⁺² ions and forms stable [M-EDTA] blue coloured complex.

[M-EBT] complex
$$+$$
 EDTA \rightarrow [M-EDTA] complex $+$ EBT wine red blue

The change of wine red colour to distinct blue colour marks the end point of titration.

PROCEDURE:

Preparation of Standard Hard water:

Transfer 1gm of CaCO₃ into a 100ml volumetric flask + 50 ml water + dil.HCl + Make up to the mark by adding water.

Molarity of CaCO₃ (M₁) = $\frac{wt}{M.wt} \times \frac{1000}{V_{ml}}$

II. Standardization of EDTA:

- ➤ 10ml of Standard hard water in conical flask + 5ml buffer + few drops Eriochrome black-T indicator. The solution attains wine-red colour.
- Titrate the contents against EDTA solution. Stop the addition, when the colour of solution changes from wine-red to blue.

Note the burette reading and repeat. Let the volume of EDTA consumed in this titration be 'V1' ml.

$$M_1V_1 = M_2V_2$$

(SHW) (EDTA)

III. Determination of Total Hardness of Unknown Water Sample:

- ➤ 10ml of Standard hard water in conical flask + 5ml buffer + few drops Eriochrome black-T indicator. The solution attains wine-red colour.
- Titrate the contents against EDTA solution. Stop the addition, when the colour of solution changes from wine-red to blue.
- Note the burette reading and repeat. Let the volume of EDTA consumed in this titration be 'V2' ml.

$$M_2V_2 = M_3V_3$$

(EDTA) (UWS)

The total hardness of the test sample of water is calculated as follows:

$$= M_3 \times 100 \times 1000 = ppm$$

- IV. Determination of Permanent Hardness of Unknown Water Sample:
 - ➤ 10ml of boiled water in conical flask + 5ml buffer + few drops Eriochrome black-T indicator. The solution attains wine-red colour.
 - ➤ Titrate the contents against EDTA solution. Stop the addition, when the colour of solution changes from winered to blue.

Note the burette reading and repeat. Let the volume of EDTA consumed in this titration be 'V2' ml.

$$M_2V_2 = M_4V_4$$
 (EDTA) (BWS)

Permanent hardness = $M_4 \times 100 \times 1000 = ppm$ Total hardness = Temporary hardness + permanent hardness.

Temporary hardness = Total Hardness – permanent Hardness.

Alkalinity of Water

- ➤ Alkalinity is a measure of the capacity of water to neutralize acids.
- The presence of anions, such as OH⁻, HCO₃⁻ CO₃²⁻ results in alkalinity of water due to their basic nature.
- ➤ Carbonate anion concentration is counted twice due to its ability to neutralize two protons.
- ➤ While bicarbonate is counted once as it can neutralize one proton.

- Out of the three anions OH^{-} , HCO_{3}^{-} , and CO_{3}^{2-} any two of them can exist in water together.
- >OH⁻ and HCO₃⁻ cannot be together because H⁺ ion of HCO₃⁻ neutralises OH⁻

$$HCO_3^- \longrightarrow CO_3^{2-} + H^+$$
 $H^+ + OH^- \longrightarrow H_2O$
 $HCO_3^- + OH^- \longrightarrow CO_3^2 + H_2O$

Estimation of alkalinity in water is done by titrating water sample against standard acid using phenolphthalein and methyl orange as indicators.

In this titration, two indicators are used as the different anions give end points at different pH values

i.
$$OH^- + H^+ \longrightarrow H_2O$$
i. $CO_3^{2-} + H^+ \longrightarrow HCO_3^-$

iii.
$$HCO_3^- + H^+ \longrightarrow CO_2 + H_2O$$

- P- pink in basic, clear in acidic(8.3 to 10 pH), M-Yellow to orange (below 7 pH).
- If there is no pink colour after adding phenolphthalein to the water, alkalinity is not present due to OH^{-} and CO_{3}^{2-} .

- If CO₃²⁻ is present in sample, CO₃²⁻ consume one H⁺ when the solution is titrated to pH 8.3, and it will consume another H⁺ during further titration from pH 8.3 to pH 4.5.
- If the volume of acid required to get pH 8.3 is equal to the volume of acid used from pH 8.3 to pH 4.5, sample contained only CO_3^{2-} (no OH^{-}) as the major alkalinity component.
- If the pH of your sample is below 8.3, and a certain amount of acid is required to reach pH 4.5, your sample contained only HCO_3^- (no OH^- and CO_3^{2-}).
- ➤ If your sample requires a certain amount of acid to reach pH 8.3, but no acid is required from pH 8.3 to pH 4.5, your sample contained only OH⁻.

Determination of alkalinity used in

- >In Corrosion control,
- In calculating the amount of lime and soda needed for water softening,
- Internal conditioning of boiler feed water
- ➤ In controlling caustic embrittlement, Sludges and Scales

Total dissolved solids(TDS)

- ➤ All inorganic and organic substances contained in water that can pass through a filter are TDS.
- ➤In general TDS is the sum of the cations and anions in water.
- Carbonates, bicarbonates, chlorides, fluorides, sulphates, phosphates, nitrates, calcium, magnesium, sodium and potassium any ion present contribute to TDS.
- Organic ions include pollutants, herbicide and hydrocarbons and soil particles.

Determination of TDS

- First remove suspended matter by filtration of selected water sample.
- Then evaporate water at 180°C in a pre weighed dish until the dish weight no longer changes.
- > The increase in weight of the dish represents TDS.
- TDS is a non specific, quantitative measure of the amount of dissolved chemicals but does not tell us anything about nature of it.
- TDS used as an indication of aesthetic characteristics of drinking water and a broad indicator of an array of chemical contaminants.

Specifications for water:

Different uses of water demand different specifications

I. Food Industry:

- 1. Poor quality water is responsible for diseases.
- 2.Free from microorganisms such as viruses, protozoa and bacteria.
- 3. Free from toxic chemicals like heavy metals and radio active compounds.

II. Laundries:

Require soft water, free from Mn and Fe salts. Hard water consume more soap, Fe and Mn import grey or yellow shade to the fabric.

III. Textile industry:

- a) If hard water used, uniform dyeing not possible,
- b) Hard water decreases solubility of acidic dyes,
- c) Basic dyes precipitated by hard water,
- d) Organic matter imparts foul smell,
- e) Fe and Mn salts leaves stains on fabrics, It should be from above impurities.

IV. In cooking:

If hard water used, fuel required is high. More time is required for cooking. Imparts unpleasant taste and muddy looking.

V. Pharmaceutical industries:

Require pure water, should be colourless, tasteless, odourless and free from pathogenic organisms.

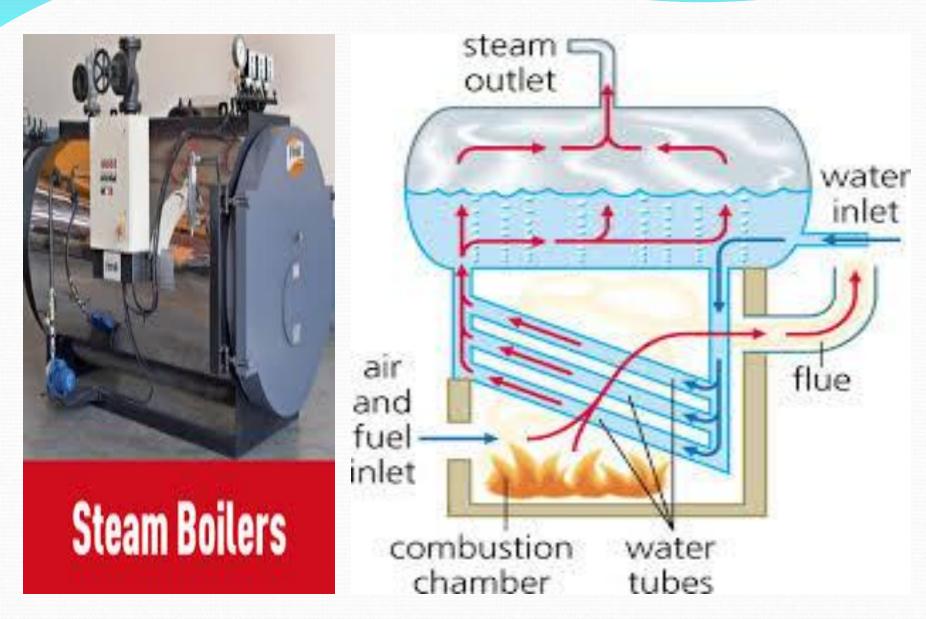
VI. Sugar industry:

If hard water is used, results in deliquescent sugar. Impurities cause difficulty in crystallization.

VII. Paper industry:

- ➤ Should free from SiO₂, Fe and Mn salts.
- ►SiO₂ produces cracks and Fe, Mn imparts colour to paper.

VIII.In Cooling systems:


Impure water leads corrosion, microbiological growth, scale formation and fouling in cooling systems.

IX. In Steam generation:

Require water of low hardness.

- Otherwise efficient heat transfer is prevented by scale formation,
- Untreated water leads to corrosion of boiler material,
- > Even explosion can also occurs.

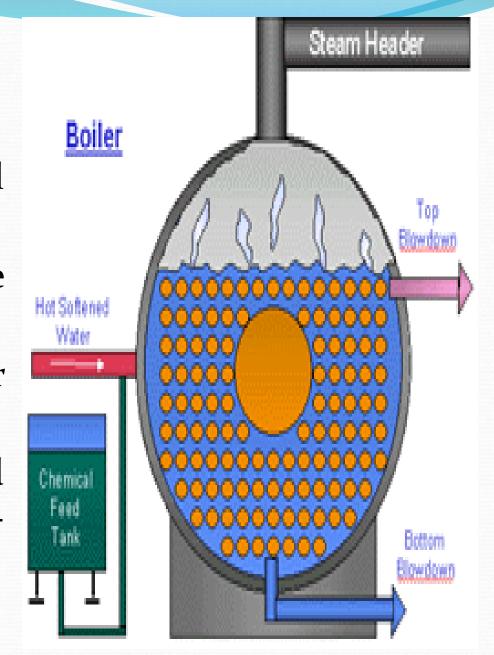
BOILER

www.btechpdfs.ourstudycircle.in

Boiler troubles:

- Boilers are employed in industries for generation of steam.
- ➤ When raw water is directly feed into the boilers various physical changes and chemical reactions are induced in the boiler with the action of the heat.
- > The ultimate result being the problem such as
 - Carry over,
 - 2. Boiler corrosion,
 - 3. Caustic embrittlement and
 - 4. Sludge and Scale formation.

1.Carry over:


The process of carrying of water with impurities by steam is called carry over.

- a) **PRIMING:** When boiler is steaming rapidly, some droplets of liquid water carried along with the steam. This process of wet steam formation is called priming.
- It is caused by the presence of large amount of dissolved salts,
- Improper boiler design,
- High steam velocities and sudden boiling.

Priming can be avoided

- ★ By fitting mechanical steam purifiers,
- ★ Avoiding rapid change in steaming rate,
- ★ Maintaining low water levels in boilers,
- ★ Efficient softening and filtration of the boilerfeed water.

b) FOAMING:

It is the production of persistent foam, bubbles in boilers, which do not break easily.

- ➤ It is due to presence of oils and alkalis in boiler water.
- ➤ Oils, alkalis react to form soaps which lower the surface tension of water and increase the foaming.

Foaming can be avoided by

- >Addition of antifoaming agents like castor oil.
- ➤ By removing foaming agent like oil and alkalis in boiler water.
- The oils can be removed by adding compounds like sodium aluminates and aluminum sulphate.

Disadvantages of priming and foaming:-

- The actual height of the water in boiler is not judged,
- Wastage of heat,
- > Efficiency f the boiler is lowered and
- corrosion of the machineries.

2.Boiler Corrosion:

The decay (or) disintegration of boiler material either due to chemical (or) electrochemical reaction with its environment is called boiler corrosion.

Disadvantages of boiler corrosion are:

- 1. Shortening of boiler life,
- 2.Leakages of boiler life,
- 3.Increased cost of repairs.

Main sources for boiler corrosion are

- A.Dissolved oxygen
- **B.** Dissolved carbon dioxide
- C.Acids from dissolved salts

- **A. Dissolved oxygen:** Water usually contains about 8ml of dissolved oxygen per lit. at RT.
 - ➤ It attacks boilers at high temperature.
 - \rightarrow 4Fe +2H₂O + O \rightarrow 4Fe [OH]₂ \downarrow

Removal of dissolved oxygen:

By adding sodium sulphite, hydrazine and sodium sulphide

$$2Na_{2}SO_{3} + O_{2} \rightarrow 2Na_{2}SO_{4}$$

$$N_{2}H_{4} + O_{2} \rightarrow N_{2} + 2H_{2}O$$

$$Na_{2}S + 2O_{2} \rightarrow Na_{2}SO_{4}$$

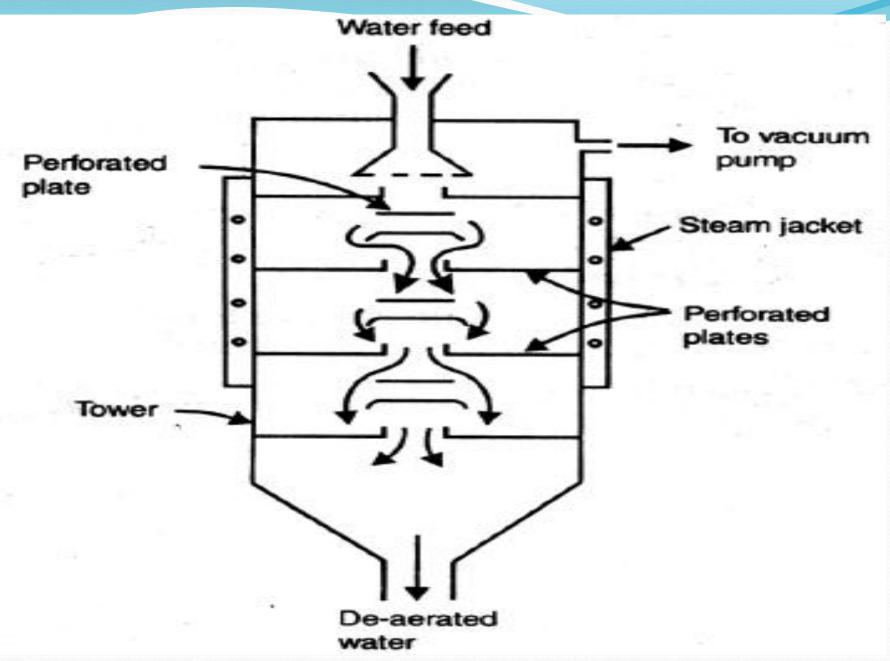
www.btechpdfs.ourstudycircle.in

B. Disolved carbon dioxide: The disolved CO₂ in water produces carbonic acid, which has slow corrosive effect.

This is also produced inside the boiler, if water contains bicarbonates.

$$H_2O + CO_2 \rightarrow H_2CO_3$$

 $Mg (HCO_3)_2 \rightarrow MgCO_3 + H_2CO_3$


Removal of dissolved CO₂:

a. By adding ammonia:

$$NH_4OH + CO_2 \longrightarrow (NH_4)_2CO_3 + H_2O$$

b. By mechanical de-aeration:

Spraying water over preheated plates stacked in a tower. www.btechpdfs.ourstudycircle.in

www.btechpdfs.ourstudycircle.in

C. Acids from dissolved salts:

- Mineral acids are generated by the hydrolysis of disolved acidic salts.
- ➤ The liberated acid reacts with Fe of boiler to form Fe(OH)₂ subsequently get converted into rust .
- > Small amount of MgCl₂ will cause corrosion of Fe to a large extent.

$$MgCl_2 + 2H_2O \rightarrow Mg(OH)_2 + 2HCl$$
 $2HCl + Fe \rightarrow FeCl_2 + H_2$
 $FeCl_2 + 2H_2O \rightarrow Fe(OH)_2 + 2HCl$
 $Fe(OH)_2 + O_2 \rightarrow Fe_2O_3 . 2H_2O$

www.btechpdfs.ourstudycircle.in

Prevention of Acid corrosion:

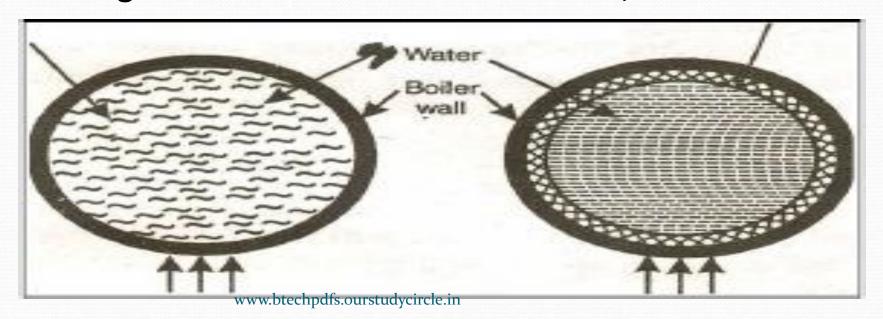
- HCl can be removed by adding alkalis
- By addition of inhibitors
- By frequent blow down operation
- By softening of boiler water .

3. Caustic Embrittlement:

- Caustic embrittlement is a phenomenon in which the boiler material becomes brittle due to accumulation of caustic substances.
- ➤ The boilers feed water contains carbonates and bi carbonates of alkali metals.
- ➤ Na₂CO₃ used for softening of the water decomposes to give NaOH and CO₂.

$Na_2CO_3 + H_2O \rightarrow 2NaOH + CO_2$

- ➤ The NaOH concentration increases by evaporation and attacks the surround area there by Fe dissolves as sodium ferrate.
- This causes embrittlement of boiler parts causing even failure of the boiler.


 www.btechpdfs.ourstudycircle.in

Prevention methods:-

- ▶ By using sodium phosphate as softening reagent instead of Na₂CO₃ for boiler water.
- ▶ By adding Na₂SO₄ to boiler water which blocks the hair cracks in the boiler.
- ➤ By adding tannin or lignin to boiler water which blocks the hair cracks in the boiler there by preventing formation of concentration cells.

4. SLUDGE & SCALE FORMATION

- In boilers, water evaporates continuously and concentration of dissolved salts increases. When it reaches saturation point they will be precipitated on the inner walls of the boilers.
- ➤If the precipitation takes place in the form of loose and slimy, it is called **sludge**.
- If the precipitation takes place in the form of hard, adhering on the inner walls of the boilers, it is called **scale**.

Difference between Sludges and Scales

- 1. Sludges are soft loose and slimy precipitate.
- 2. They are non-adherent deposits and can be easily removed.
- 3. Formed by substances like CaCl₂, MgCl₂, MgSO₄, MgCO₃ etc.
- 4. Formed at comparatively colder portion of the boiler.
- 5. They decrease the efficiency of boiler but are less dangerous.
- 6. Can be removed by blow-down operation.

Scales

- 1. Scales are hard deposits.
- 2. They sticks very firmly to the inner surface of boiler and are very difficult to remove.
- 3. Formed by substance like $CaSO_4$, $Mg(OH)_2$ etc.
- 4. Formed generally at heated portions of the boiler.
- 5. Decrease the efficiency of boiler and chances of explosions are also there.
- 6. Cannot be removed by blow-down operation.

a) SLUDGE:

- It is formed at colder portions of the boilers.
- It is formed by substances, which have greater solubility in hot water than cold water (MgCO₃, MgCl₂, MgSO₄, CaCl₂).
- > It can easily scrapped off with a wire brush.

Disadvantages:

- Sludges are poor conductors of heat.
- > Disturbs the working of boilers.

Prevention of Sludge Formation:

- > By using well-softened water.
- ➤ By frequently blow-down operation(nothing but the removal concentrated water through an out let at the bottom of the boiler).

b) Scales

Scales may be formed inside the boiler due to:

A).Decomposition of Ca (HCO₃)₂:-

$$Ca (HCO_3)_2 \rightarrow CaCO_3 \downarrow +H_2O +CO_2 \uparrow$$

 $CaCO_3 + H_2O \rightarrow Ca(OH)_2 + CO_2 \uparrow$

B).Deposits of CaSO₄:-

The solubility of CaSO₄ decreases with increasing the temperature. So it is soluble in cold water and insoluble in hot water. Hence it get precipitated in hotter region.

C). Hydrolysis of MgCl₂:-

$$MgCl_2 + 2H_2O \rightarrow Mg(OH)_2 \downarrow + 2HCl$$

D).Presence of silica:-

Even if small quantity of SiO₂ is present, it may deposits as CaSiO₃ (or) MgSiO₃. These deposits adhere very firmly on inner side of boiler surface.

➤ In low pressure boilers CaCO3 causes scale formation, but high pressure boilers CaCO3 is soluble

$$CaCO_3 + H_2O \rightarrow Ca(OH)_2 + CO_2 \uparrow$$

Disadvantages of scale formation:

- Wastage of fuel,
- Lowering of boiler safety,
- Decrease in efficiency,
- Danger of explosion

Removal of scales: removed by chemical and mechanical method.

- If scales are loosely sticking, removed with help of wire brush.
- By frequently blow-down operation.
- If the scales are brittle, it can be removed by giving thermal shocks.
- If the scales are hard, they can be removed with chemicals.

Treatment (or) Softening of water for industry:

- Treatment of boiler Feed water:Water used in boiler should be free from impurities. Otherwise cause operational troubles.
- The removal of hardness is done by following methods.
 - LInternal Treatment of water.
 - **II.** External Treatment of water

I. Internal Treatment

- > In this method, raw water is treated inside the boiler.
- Addition of suitable chemicals to reduce scale and sludge formation and to convert the scale forming chemicals into sludge which can be removed by blow down process.
- Some of the internal treatment methods used for the removal of scale formation in boilers are.
 - A) Phosphate conditioning
 - **B)** Carbonate conditioning
 - C) Calgon conditioning

A) Phosphate conditioning

- ➤ It is generally applicable to high pressure boilers.
- Scale formation is avoided by adding sodium phosphate, which reacts with magnesium and calcium salts forming non-sticky and easily removable sludge of calcium and magnesium phosphate and easily removed by blow down operation.

$$3MCl_2 + 2Na_3PO_4 \rightarrow M_3(PO_4)_2 \downarrow + 6NaCl$$

[Where M = Ca²⁺, Mg²⁺]

$$3MSO_4 + 2Na_3PO_4 \rightarrow M_3 (PO_4)_2 \downarrow + 6NaSO_4$$

B) Carbonate conditioning

- ➤ In low pressure boilers, scale formation can be avoided by adding sodium carbonate to boiler water.
- When salts like $CaSO_4$ can be converted into $CaCO_3$. $CaCO_3$ can be removed by blow down process.

$$CaSO_4 + Na_2CO_3 \rightarrow CaCO_3 \downarrow + Na_2SO_4 \downarrow$$

C) Calgon conditioning:

- It involves in adding Sodium hexa meta phosphate (calgon) to boiler water to prevent the scale and sludge formation.
- CaSO4 into soluble complex compound.

$$Na_2 [Na_4 (PO_3)_6] \leftrightarrow 2Na^+ + [Na_4 (PO_3)_6]^{2-}$$

Calgon

$$2\text{CaSO}_4 + [\text{Na}_4 (\text{PO}_3)_6]^{2-} \rightarrow [\text{Ca}_2 (\text{PO}_3)_6]^{2-} + 2\text{Na}_2\text{SO}_4$$
Insoluble

ww.btechpdfs.ourstudycircle.in

soluble insoluble

II. EXTERNAL TREATMENT:

- ➤ The removal of hardness causing salts from water before it *feed* into the boiler is external treatment
- ➤ This treatment is given outside the boiler, to reduce the concentration of hardness producing ions.

A.Lime –soda process,

B.lon exchange process.

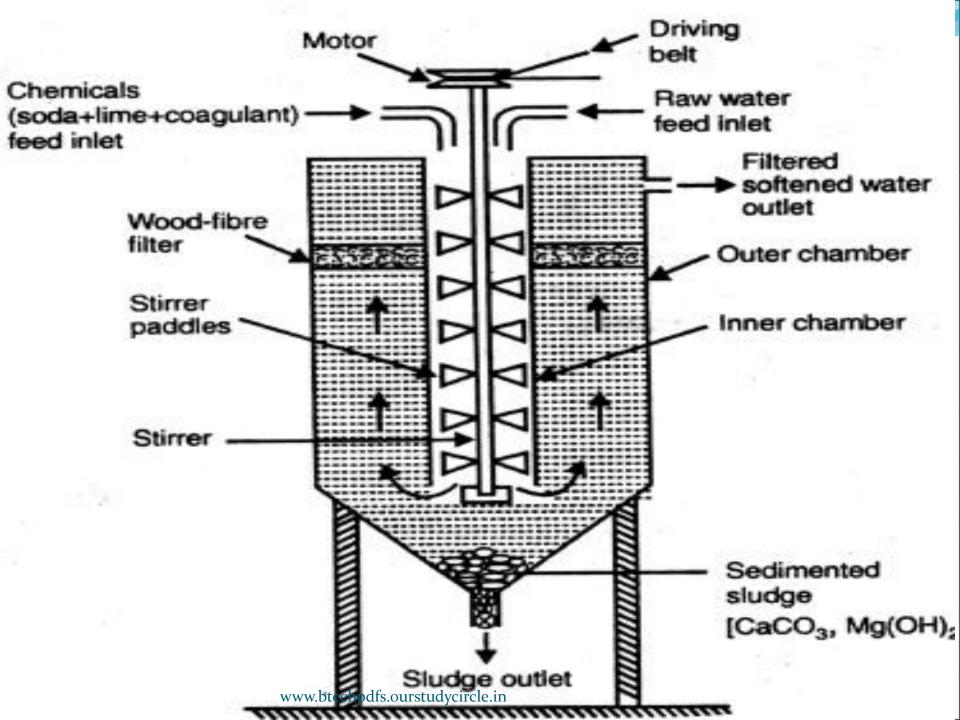
A. Lime -soda process:

- ➤ In this method soluble Ca & Mg salts in water are converted into insoluble compounds.
- Lime (Ca (OH)₂) and soda (Na₂CO₃) are quantitavely mixed with hard water with constant stirring either in cold (or) hot condition.
- The precipitates formed settle down at the bottom of the tank which can be removed by titration.

Reactions in L-S process:

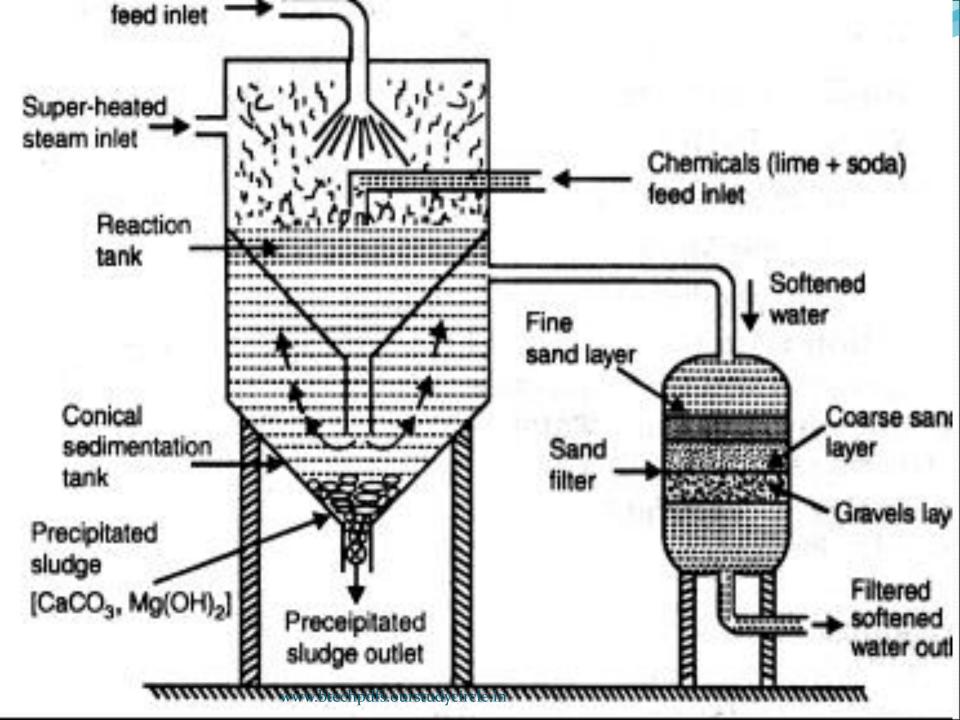
i. Temporary hardness causing salts:

- ightharpoonup Ca $(HCO_3)_2 + Ca (OH)_2
 ightharpoonup 2CaCO_3 + H_2O(1L)$
- $ightharpoonup Mg (HCO₃)₂ + 2Ca (OH)₂ <math>\rightarrow$ 2CaCO₃ + Mg (OH)₂ + 2H₂O(2L)


ii. Permanent hardness causing salts:

- - $CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 \downarrow + 2NaCl\{L+S\}$
- \triangleright CaSO₄ + Na₂CO₃ \rightarrow CaCO₃ \downarrow + Na₂SO₄(S)
- \triangleright CaCl₂ + Na₂CO₃ \rightarrow CaCO₃ + 2NaCl(S)
- \triangleright $CO_2 + Ca (OH)_2 \rightarrow CaCO_3 \downarrow + H_2O(L)$

COLD LIME SODA PROCESS:


- It involves treating water with softening chemicals at room temperature.
- There are two chambers shown in apparatus.
- ➤ Raw water, lime and soda are continuously poured in tank through inlet pipes. Mechanical stirrer is used for mixing.
- Precipitates and sludge formed settle down not easily.
- Coagulants are needed like alum ,Aluminum sulphate, sodium aluminates etc.
- Cold L-S process provides water containing residual hardness off 50-60 ppm.

www.btechpdfs.ourstudycircle.in

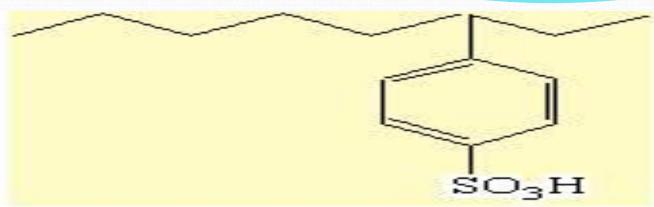
HOT LIME SODA PROCESS:

- It involves treating water with softening chemicals at a temperature of 80-150°C.
- Hot-lime soda apparatus contain three parts.
- 1. A reaction tank in which water, chemicals &steam are thoroughly mixed.
- 2. A conical sedimentation vessel in which sludge settle down.
- 3. A sand filter, for removal of sludge forms the softened water

Advantages of this process are

- Precipitation is rapid and it completes in 15 minutes.
- The residual hardness (15-30ppm) is far less than the cold process.
- Precipitate and sludge settle down rapidly. Hence coagulate is not needed.
- > Lime and soda required in small quantity.
- Much of the dissolved gases driven out of the water.

B. ION EXCHANGE PROCESS

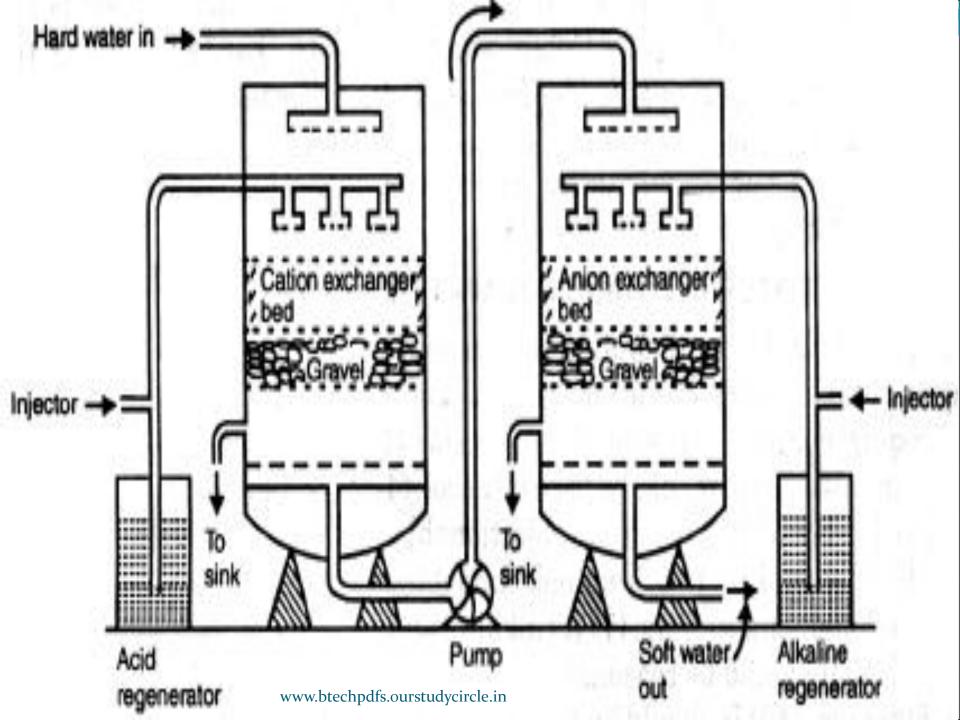

- > It is also called de-ionization or demineralization.
- ➤ Ion exchange resins are in soluble, long chain, cross-linked polymers with a micro porous structure.
- 1. Resins containing acid groups (COOH, SO_3H) are capable of exchanging their H+ ions with other cations. This is called Cation exchange resin.

Ex: RCOOH, RSO3H

2. Resins containing basic groups (OH-, NH₂-) are capable of exchanging their anions with other anions. This is called Anion exchange resin.

Ex: R-CH2NMe₂OH

Examples of resins:



Cation exchange

Anion exchange

www.btechpdfs.ourstudycircle.in

Ion exchange process:

The hard water is pass first through cation exchange column, which removes all the cations like Ca⁺², Mg²⁺ etc. from it, and equivalent amount of H+ ions are released from this column to water thus:

$$2RH + Ca^{+2} \rightarrow R_2Ca + 2H^+$$

 $2RH + Mg^{+2} \rightarrow R_2Mg + 2H^+$

• After cation exchange column, the hard water is passed through anion exchange column, which removes all the anions like SO₄⁻², Cl-etc. present in the water and equivalent amount of OH- ions are released from this column thus:

ROH + Cl⁻
$$\rightarrow$$
 RCl + OH⁻
2ROH + SO₄⁻² \rightarrow R₂SO₄ + 2OH⁻
www.btechpdfs.ourstudycircle.in

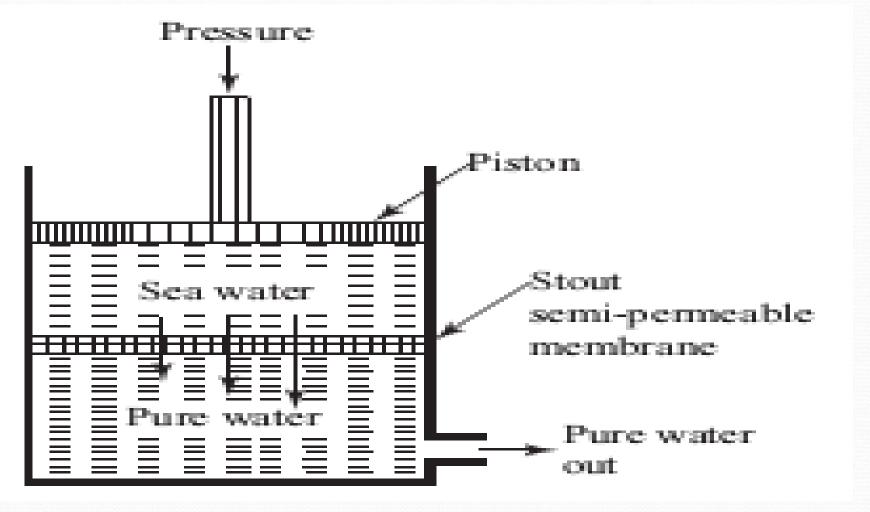
 H⁺ & OH⁻ ions get combined to produced water molecule.

$$H^++OH^- \rightarrow H_2O$$

 Thus water coming from the exchanger is free from cations as well as anions.

Regeneration: Exhausted cation resin regenerated by dil. HCl, anion by dil.NaOH.

R2Ca + 2 H⁺
$$\rightarrow$$
 2RH + Ca⁺² (washed)
R2SO4 + 2OH⁻ \rightarrow 2ROH⁻ + SO₄⁻² (washed)


Desalination

- The process of removal of dissolved salts (NaCl, KCl) present in water is known as desalination.
- Water is divided into three categories on the basis of salinity:
- (a) Sea water: The salinity is greater than 35000 mg/L.
- (b) Brakish water: The salinity is in the range of 1000–35000 mg/L. It has peculiar salty taste.
- ☐ Important desalination methods are:
 - > Reverse osmosis,
 - **Electrodialyis.**

Reverse Osmosis Process

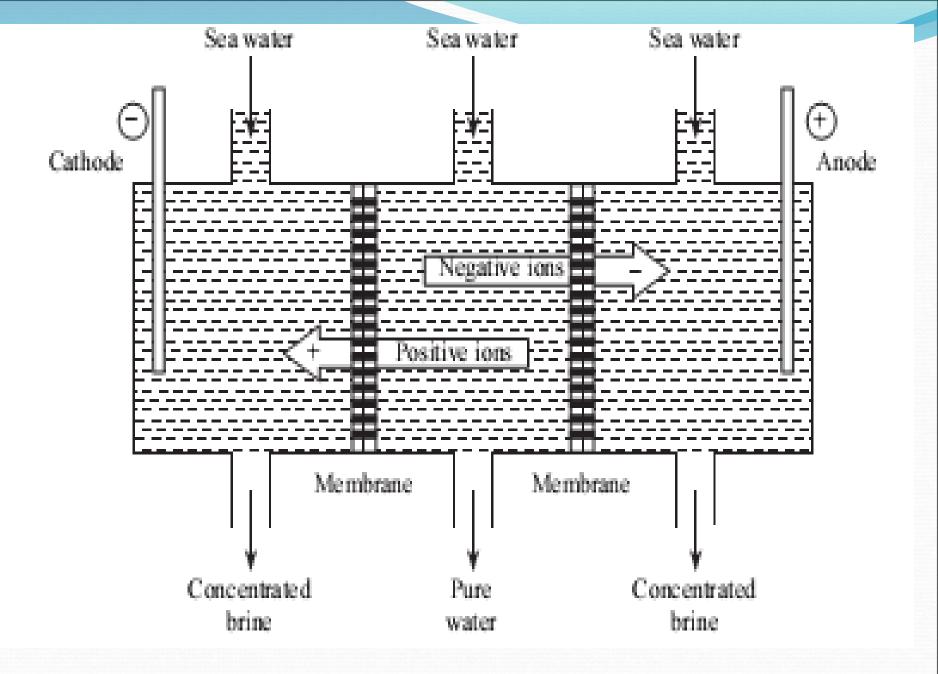
- When two solutions of unequal concentration are separated by a semi permeable membrane, flow of solvent takes from dilute solution to concentrated solution. This is called osmosis.
- During osmosis solvent develops a pressure on membrane which is called osmotic pressure.
- If pressure higher than osmotic pressure is applied from the higher concentrated side, so that the path of the solvent reversal which is called reverse osmosis.

This method is applicable mainly for the desalination of sea water. Ionic, non-ionic, Colloidal and organic matter can be removed from the water sample

Advantages of the process

- The process removes ionic as well as non-ionic dissolved salts easily.
- > It is effective in removing colloidal impurities in water.
- The process is economical and convenient. The process can be carried out at a room temperature.
- ➤ It is suitable for converting sea water into drinking water

Disadvantages:


- The life time of membrane is quite high ,which is an average more than a year.
- The maintenance cost is only replacement of membrane.

Electrodialysis

- Dialysis is a process in which diffusion of smaller particles takes place through a semi-permeable membrane.
- By this process, crystalloids are removed from colloids. The process has been successfully applied for the purification of sea water. Sea water is called brackish water (salty water). It has 3.5% salt. Dialysis removes salt from sea water (brine) through a membrane.

• Principle:

In electro dialysis, ion-selective membrane is used, which permits the passage of only one kind of ions having specific charge, i.e., cation selective membrane allows the passage of cations only but not anions and vice versa.

<u>Line diagram of electrodialysis</u> www.btechpais.ourstudychcie.m

Potable/Domestic/Municipal Water

The water supplied by municipality should be fit for human consumption. It should satisfy the following requirements:

- It should be colorless, odourless, and pleasant to taste.
- Turbidity should not exceed 10 ppm. TDS should not exceed 500 ppm.
- It should not be very alkaline (pH 8.0).
- It should be free from dissolved gases.(H2S,CO2)
- It should be free from objectionable minerals such as Pb, As, Cs, Mn

Water Treatment Plant Stages

Depending on the type of treatment plant and the quality of raw water, treatment generally proceeds in the following sequence of stages:

- 1. Screening
- 2. Sedimentation
- 3. Coagulation
- 4. Filtration
- 5. Disinfection(chlorination & ozonization)
- As required, other steps will be added, depending on the chemistry of the treated water.

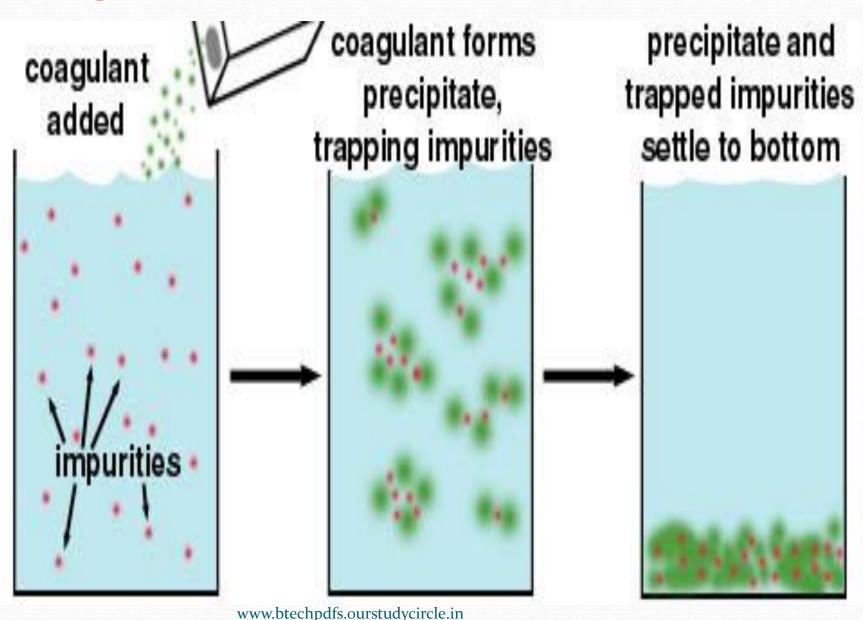
Treatment of municipal water involves the following:

▶1. Screening: Water is allowed to pass through the mesh screens whereby large floating matters are removed

www.btechpdfs.ourstudycircle.in

2. Sedimentation: Water is allowed to stand undisturbed for 2–5 h in big setting tanks. Suspended particles settle down due to gravity and clear water raises which can be drawn out with the help of the pumps.

Disadvantages


- It requires long big tanks. It takes a long time.
- It removes 70–75% suspended matter.
- If water contains clay and colloidal impurities, coagulants are added before sedimentation.

3. Coagulation: Colloidal particles from the water are removed by adding coagulants such as alum (Al₂(SO₄)₃, NaAlO₂). Smaller particles gather together to form bigger particles. They can be easily removed by filtration. Some bacteria and colour are also removed.

Al2
$$(SO_4)_3 + 3$$
 Ca $(HCO_3)_2 \rightarrow 2$ Al $(OH)_3 \downarrow + 3$ CaSO₄
 $+ 6$ CO₂
NaAlO₂ + 2 H₂O \rightarrow Al $(OH)_3 \downarrow +$ NaOH
FeSO₄ + Mg $(HCO_3)_2 \rightarrow$ Fe $(OH)_2 +$ MgCO₃ + CO₂ + H₂O
 $+ 4$ Fe $(OH)_2 +$ O₂ + $+ 2$ H₂O \rightarrow 4 Fe $(OH)_3$

Coagulation

4. Filtration:

Colloidal matter, bacteria, micro-organism are removed. Water is passed through a large area sand bed. The filter may be pressure filter or gravity filter.

>5. Sterilization/disinfection:

Water after passing through sedimentation, coagulation, and filtration still contains a small percentage of pathogenic micro-organisms such as bacteria. Its removal can be achieved by sterilization

- The chemicals used for killing bacteria are called disinfectants. Water can be sterilized by the following methods:
 - (a)Boiling: Water is boiled for 10–15 min, where most of the pathogenic bacteria are killed.

(b)By adding bleaching powder. Bleaching powder in calculated amount is added to water and allowedto stand for several hours.

$$CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + Cl_2$$

 $Cl_2 + H_2O \rightarrow HCl + HOCl$
 $HOCl + Germs \rightarrow germs are killed$

Disadvantages:

Bleaching powder introduces Ca2+ hardness in water and adds lime residue.

Excess of it gives bad smell and bad taste. Excess chlorine is irritating to mucous membrane.

(c)By chlorination

$$Cl_2 + H_2O \rightarrow HCl + HOCl$$

Bacteria + HOCl → killed bacteria

The quantity of chlorine to be added is important. The disinfection will not complete if chlorine is insufficient. If excess chlorine is added, it causes irritation, bad taste, and odour.

De-chlorination

Over chlorinated water can be de chlorinated by passing it through a bed of activated carbon. Excess chlorine can also be removed by adding SO2 (or) NaSO3.

SO2 + Cl2 + 2H 2O
$$\rightarrow$$
 H2SO4 + 2HCl
Na2SO3 + Cl2 + H2O \rightarrow Na2SO4 + 2 HCl

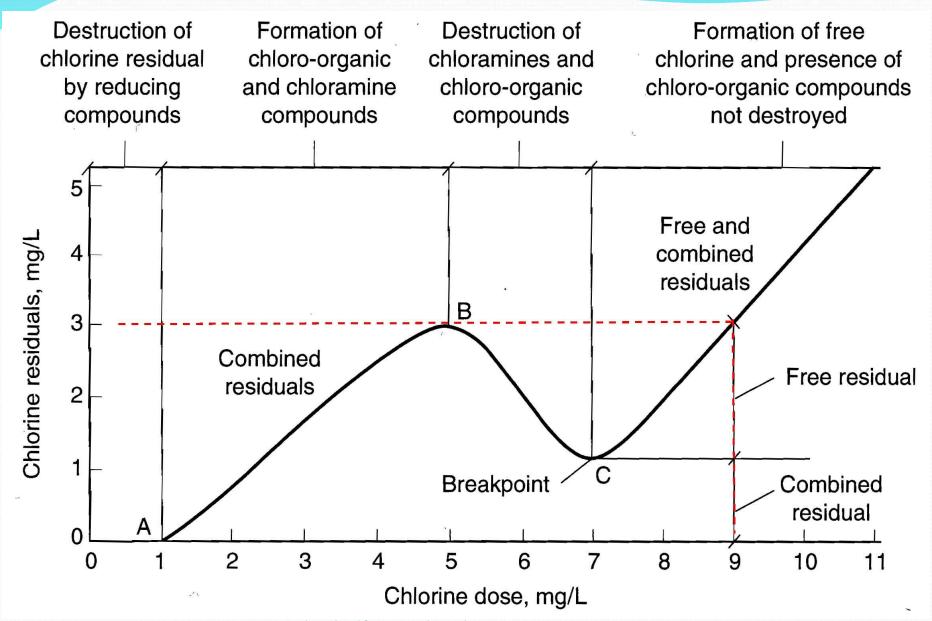
(d) By using chloramine (NH2Cl): It is obtained by mixing chlorine and NH3 in 2:1 ratio. It has better bactericidal action than chlorine. It is more stable and not producing any irritating odour.

NH3 + Cl2
$$\rightarrow$$
 HCl + NH2Cl
NH2Cl+ H2O \rightarrow NH3 + HOCl

(e) Disinfection by ozone: O3 is prepared by passing silent electric discharge through cold, dry O2. It is highly unstable.

$$O3 \rightarrow O2 + (o)$$

O3 is an excellent, harmless disinfectant. It is highly unstable and decomposes to give nacent oxygen (o). (o). is a powerful oxidizing agent. It oxidizes organic matter in water and also kills bacteria


Break-point Chlorination (Free residual chlorination):

It involves in addition of sufficient amount of chlorine to oxidize

- a) Organic matter
- **b**)Reducing substances
- c)Free ammonia

The dosage of applied chlorine and the free Chlorine can be depicted graphically in which appearance of following four stages occurs:

Break point chlorination

www.btechpdfs.ourstudycircle.in

- The graph below shows what happens when chlorine (either chlorine gas or a hypochlorite) is added to water.
- First (between points 1 and 2), the water reacts with reducing compounds in the water, such as hydrogen sulfide. These compounds use up the chlorine, producing no chlorine residual.
- Next, between points 2 and 3, the chlorine reacts with organics and ammonia naturally found in the water. Some combined chlorine residual is formed chloramines.
- Note that if chloramines were to be used as the disinfecting agent, more ammonia would be added to the water to react with the chlorine. The process would be stopped at point 3.
- ➤ Using chloramines as the disinfecting agent results in little tri halo methane production but causes taste and odor problems since chloramines typically give a "swimming pool" odor to water.

- In contrast, if hypo chlorous acid is to be used as the chlorine residual, then chlorine *will* be added past point 3. Between points 3 and 4, the chlorine will break down most of the chloramines in the water, actually lowering the chlorine residual.
- Finally, the water reaches the breakpoint, shown at point 4. The **breakpoint** is the point at which the chlorine demand has been totally satisfied - the chlorine has reacted with all reducing agents, organics, and ammonia in the water. When more chlorine is added past the breakpoint, the chlorine reacts with water and forms hypo chlorous acid in direct proportion to the amount of chlorine added. This process, known as **breakpoint chlorination**, is the most common form of chlorination, in which enough chlorine is added to the water to bring it past the breakpoint and to create some free chlorine residual.

Methodology and working of mineral water plant for drinking purpose:

