
Programming and Data
Structure
CS13002

Pabitra Mitra

Dept. of Computer Science &
Engineering

pabitra@cse.iitkgp.ernet.in

Room No: 310

Objective of the Course

• To learn programming
– The logic
– Style
– Method

• C Language is being chosen and used
just as a medium of expression

About the Course
• L-T-P rating of 3-1-0.

• There is a laboratory 0-0-3

• Individual practice and performance is required – the laboratory
will complement the theory classes

• Class attendance is mandatory

• Random checks – may lead to deregistration from the course

• Evaluation in the theory course:
– Mid-semester (30 %) – 25% + 5 % (regularity and

performance)
– End-semester (50%) – 45% + 5 % (regularity and

performance)
– Two class tests (20%)

Course Materials

• The course materials are available as PowerPoint
slides.

• How to get them?
1. A copy will be kept at the xerox centre so it will be

available to all the students. You may choose to bring the
handouts to the class and take notes on them

2. For students having access to Internet, the slides would
be available on-line at http://facweb.iitkgp.ernet.in/~pds

Reference Books

• Programming With C
– B.S. Gottfried, Schaum’s Outline Series, Tata

McGraw-Hill.
• The C Programming Language,

– B. W. Kernighan & D. M. Ritchie, Prentice Hall
• A Book on C

– Al Kelley & Ira Pohl, 4th Edition, Pearson
Education, Asia

What is a computer ?

• A computer is a machine which can
accept data, process the data and
supply results.

Computer

In

Out

A computer

Central
Processing
Unit (CPU)

Storage
Peripherals

Output
Peripherals

Input
Peripherals

Main
Memory

Input Devices

• Keyboard
• Mouse
• Joystick
• Scanners (OCR)
• Bar code readers
• Microphones / Sound

digitizers
• Voice recognition

devices

Output Devices
• VDU / Monitor
• Printers
• Plotters
• Sound cards
• Film and video
• Robot arms

Storage Peripherals
• Magnetic Tape

– Data stored sequentially (back ups)
• Magnetic Disks

– Direct (random) access possible
– Types

• Hard Disks
• Floppy Disks

• Optical Disks
– CDROM
– CD-RW

• Flash memory – Pen Drives

Typical Configuration of a PC

• CPU: Pentium 4, 2.8GHz
• Main Memory: 256 MB
• Hard Disk: 40 GB
• Floppy Disk: 1.44 MB
• CDROM: 52X
• Input Device: Keyboard, Mouse
• Output Device: Color Monitor (17 inch)

How does a computer work?

• Stored program
• A program is a coded form of an

Algorithm
• A program is a set of instructions for

carrying out a specific task.
• Programs are stored in secondary

memory, when created.
• Programs are in main memory during

execution.

CPU

• Central Processing Unit (CPU) is where
computing takes place in order for a
computer to perform tasks.

• CPU’s have large number of registers
which temporarily store data and
programs (instructions).

• The CPU receives stored instructions,
interprets them and acts upon them.

Computer Program

• A program is ultimately
– a sequence of numeric codes stored in memory

which is converted into simple operations
(instructions for the CPU).

This type of code is known as machine code.
• The instructions are retrieved from

– consecutive (memory) locations
unless the current instruction tells it otherwise (branch

/ jump instructions).

Programming Languages
• Machine language
• Assembly Language

– Mnemonics (opcodes)
• Higher level languages

– Compiled languages:
• C, C++, Pascal, Fortran
• Converted to machine code using compilers

– Interpreted Languages:
• Basic,
• Lisp

Instruction Set

♦ Start
♦ Read M
♦ Write M
♦ Load Data, M
♦ Copy M1, M2
♦ Add M1, M2, M3
♦ Sub M1, M2, M3
♦ Compare M1, M2, M3
♦ Jump L
♦ J_Zero M, L
♦ Halt

0: Start
1: Read 10
2: Read 11
3: Add 10, 11, 12
4: Write 12
5: Halt

Program

Examples of Software
• Read an integer and

determine if it is a prime
number.

• A Palindrome recognizer
• Read in airline route

information as a matrix
and determine the shortest
time journey between two
airports

• Telephone pole placement
problem

• Patriot Missile Control

• A Word-processor
• A C language Compiler
• Windows 2000 operating

system
• Finger-print recognition
• Chess Player
• Speech Recognition
• Language Recognition
• Discovering New Laws in

Mathematics
• Automatic drug discovery

Programming Languages

• Machine language
– Only the machine understands.
– Varies from one class of computers to another.
– Not portable.

• High-level language
– Easier for the user to understand.
– Fortran, C, C++, Java, Cobol, Lisp, etc.
– Standardization makes these languages portable.

• For example, C is available for DOS, Windows, UNIX, Linux, MAC
platforms.

Operating Systems

• Makes the computer easy to use.
– Basically the computer is very difficult to use.
– Understands only machine language.

• Categories of operating systems:
– Single user
– Multi user

• Time sharing
• Multitasking
• Real time

• DOS is a single-user operating system.
• Windows 95 is a single-user

multitasking operating system.
• Unix is a multi-user operating system.

– Linux is a version of Unix
• Question

– How multiple users can work on the same
computer?

• Computers are often connected in a
network.

• Many users may work on a computer.
– Over the network.
– At the same time.
– CPU and other resources are shared among

the different programs.

Multi-user environment

Computer Computer Computer Computer Computer Computer

User 1 User 2 User 3 User 4 User 5

Printer

Contd.

• Assembly Language
– Mnemonic form of machine language.
– Easier to use as compared to machine language.

• For example, use “ADD” instead of “10110100”.

– Not portable (like machine language).
– Requires a translator program called assembler.

Assembler
Assembly
language
program

Machine
language
program

Contd.

• Assembly language is also difficult to
use in writing programs.
– Requires many instructions to solve a

problem.
• Example: Find the average of three

numbers.
MOV A,X ; A = X
ADD A,Y ; A = A + Y
ADD A,Z ; A = A + Z
DIV A,3 ; A = A / 3

In C,

RES = (X + Y + Z) / 3

High-Level Language
• Machine language and assembly

language are called low-level languages.
– They are closer to the machine.
– Difficult to use.

• High-level languages are easier to use.
– They are closer to the programmer.
– Examples:

• Fortran, Cobol, C, C++, Java.
– Requires an elaborate process of translation.

• Using a software called compiler.

Contd.

Compiler Object code Linker

Library

HLL
program

Executable
code

Role of Operating System

• Accept command
• Initiate relevant system programs if the

command is valid

Command
Interpreter

vi myprog.c

Valid
command

vi editor
program

Invalid command

Save

cc myprog.c

C Compiler

successful

unsuccessful

Lab Environment

Number System Basics

Number System :: The Basics

• We are accustomed to using the so-called
decimal number system.

– Ten digits :: 0,1,2,3,4,5,6,7,8,9
– Every digit position has a weight which is a

power of 10.
• Example:

234 = 2 x 102 + 3 x 101 + 4 x 100

250.67 = 2 x 102 + 5 x 101 + 0 x 100 +
6 x 10-1+ 7 x 10-2

• A digital computer is built out of tiny
electronic switches.
– From the viewpoint of ease of

manufacturing and reliability, such
switches can be in one of two states, ON
and OFF.

– A switch can represent a digit in the
so-called binary number system, 0 and 1.

• A computer works based on the binary
number system.

Digital Information

• Computers store all information digitally:
– Numbers
– Text
– Graphics and images
– Audio
– Video
– Program instructions

• In some way, all information is –
broken down into pieces and represented as
numbers

Binary Numbers

• Once information is digitized, it is represented
and stored in memory using the binary number
system

• A single binary digit (0 or 1) is called a bit.
• A collection of 8 bits is called a byte.

– 00110010
• Word: Depends on the computer

– 4 bytes
– 8 bytes

• An k-bit decimal number
– Can express unsigned integers in the range

0 to 10k – 1
– For k=3, from 0 to 999.

• An k-bit binary number
– Can express unsigned integers in the range

0 to 2k – 1

Variables, Constants, Memory

Variables and constants

• All temporary variables are stored in
variables and constants.
– The value of a variable can be changed.
– The value of a constant does not change.

• Variables and constants are stored in
main memory.

Memory

• How does memory look like ?
– A list of storage locations, each having a

unique address
– Variables and constants are stored in these

storage locations.
– A variable is like a house. The name of the

variable is the address of the house.

Address and Values

Memory Map

Every variable is
mapped to a
particular
memory address

0000
0001

8000
800
1800
2

C

32

Variables in Memory
Instruction executed Memory location

allocated to a variable X

T
i

m
e

X = 10

10X = 20

X = X +1

X = X*5

Variables in Memory
Instruction executed

Memory location
allocated to a variable X

T
i

m
e

X = 10

20X = 20

X = X +1

X = X*5

Variables in Memory
Instruction executed

Memory location
allocated to a variable X

T
i

m
e

X = 10

21X = 20

X = X +1

X = X*5

Variables in Memory
Instruction executed

Memory location
allocated to a variable X

T
i

m
e

X = 10

105X = 20

X = X +1

X = X*5

Variables (contd.)

20

?

X

Y

X = 20

Y=15

X = Y+3

Y=x/6

Variables (contd.)

20

15

X

Y

X = 20

Y=15

X = Y+3

Y=x/6

Variables (contd.)

18

15

X

Y

X = 20

Y=15

X = Y+3

Y=x/6

Variables (contd.)

18

3

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

High-Level Programs
0: Start
1: Read 20
2: Read 21
3: Compare 20, 21, 22
4: J_Zero 22, 7
5: Write 20
6: Jump 8
7: Write 21
8: Halt

Variablesx, y;
Begin
Read (x);
Read (y);
If (x >y) then Write (x)

else Write (y);
End.

Multiplying two integers

11
12

13

14

15
16

→ 0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13

14

15
16

0: Start
→ 1: Read 12

2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 6

14

15
16

0: Start
1: Read 12

→ 2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 6

14 0

15
16

0: Start
1: Read 12
2: Read 13

→3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 6

14 0

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14

→ 4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 6

14 0

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15

→ 5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 6

14 5

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9

→ 6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 5

14 5

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14

→ 7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 5

14 5

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13

→ 8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 5

14 5

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15

→ 5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 5

14 10

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9

→ 6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 4

14 10

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14

→ 7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 4

14 10

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13

→ 8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 4

14 10

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15

→ 5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 4

14 15

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9

→ 6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 3

14 15

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14

→ 7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 3

14 15

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13

→ 8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 3

14 15

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15

→ 5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 3

14 20

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9

→ 6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 2

14 20

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14

→ 7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 2

14 20

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13

→ 8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 2

14 20

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15

→ 5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 2

14 25

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9

→ 6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 1

14 25

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14

→ 7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 1

14 25

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13

→ 8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 1

14 25

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15

→ 5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 1

14 30

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9

→ 6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 0

14 30

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14

→ 7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 0

14 30

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13

→ 8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 0

14 30

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15

→ 5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 0

14 30

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5

→ 9: Write 14
10: Halt

Multiplying two integers

11
12 5

13 0

14 30

15 1
16

0: Start
1: Read 12
2: Read 13
3: Load 0, 14
4: Load 1, 15
5: J_Zero 13, 9
6: Add 12, 14, 14
7: Sub 13, 15, 13
8: Jump 5
9: Write 14

→ 10: Halt

The C Programming Language

Why learn C ?

• "Least common denominator" - good building
block for learning other languages
– Subset of C++
– Similar to JAVA

• Closeness to machine allows one to learn
about system-level details

• Portable - compilers available for most
platforms

• Very fast

/* Program Name : countdown
Description : This program prompts the user to type

in a positive number and counts down from that
number to 0, displaying each number */
#include <stdio.h>
#define STOP 0
main ()
{

int counter ; /* Holds intermediate count value
*/

int startPoint ; /* Starting point for countdown */
/* Prompt the user for input */

printf (" Enter a positive number : ") ;
scanf (" % d" , &startPoint) ;
for (counter=startPoint; counter >=STOP; counter--

)
printf (" % d\n" , counter) ;

}

$ cc t1.c
$./a.out
Enter a positive number : 6
6
5
4
3
2
1
0
$

The first C program
#include <stdio.h>
void main ()
{

printf ("Hello, World! \n") ;
}
All programs run from the main function
printf is a function in the library stdio.h
To include any library use #include

Second C program
#include <stdio.h>
void main()
{

int x = 1, y;
int sum;
y = 3;
sum = x + y; /* adds x to y, places

value in variable sum */
printf(“%d plus %d is %d\n”, x, y, sum);

}

Comments

• Any string of symbols placed between the
delimiters /* and */.

• Can span multiple lines
• Can’not be nested! Be careful.
• /* /* /* Hi */ is an example of a

comment.
• /* Hi */ */ is going to generate a parse

error

Keywords

Reserved words that cannot be used as
variable names
OK within comments . . .
Examples:

Exhaustive list in any C book

Identifiers
� A token (word) composed of a sequence of

letters, digits, and underscore (_) character. (NO
spaces.)

– First character cannot be a digit
– C is case sensitive, so beware (e.g. printf ¹

Printf)
� Identifiers such as printf normally would not be

redefined; be careful
� Used to give names to variables, functions, etc.
� Only the first 31 characters matter

Constants

0, 77, 3.14 examples.
Strings: double quotes. “Hello”
Characters: single quotes. ‘a’ , ‘z’
Have types implicitly associated with
them
1234567890999 too large for most
machines

91

Simple Data Types
Void
Integer types (signed or unsigned): char,
short int, int, long int

char is an 8 bit (=1 byte) number
Floating-point types: float, double, long
double
No boolean types

Use 0=False and anything else(usually
1)=True

Input and Output

• printf : performs output to the standard output
device (typically defined to be the monitor)
– It requires a format string to which we can provide

• The text to print out
• Specifications on how to print the values
printf ("The number is %d.\n", num) ;
The format specification %d causes the value

listed after the format string to be embedded in
the output as a decimal number in place of %d.

Input

• scanf : performs input from the standard input
device, which is the keyboard by default.
– It requires a format string and a list of

variables into which the value received
from the input device will be stored.

• scanf ("%d", &size) ;
• scanf ("%c", &nextchar) ;
• scanf ("%f", &length) ;

Variables

• Variables hold the values upon which a
program acts. They are the symbolic reference
to values.

• The following declares a variable that will
contain an integer value.
int num_of_students ;
The compiler reserves an integer's worth of memory

for num_of_students
In C, all variables must be declared before they can

be used.

• A variable declaration conveys three
pieces of information
– the variable's identifier
– its type
– its scope - the region of the program in which

the variable is accessible.
(implicitly specified by the place in the code
where the declaration occurs.)

• #include <stdio.h>
main ()
{

int num_of_students ;
scanf ("%d", &num_of_students) ;
printf ("%d \n", num_of_students) ;

}

C Program # 3

Sample C program #4
#include <stdio.h>
#define PI 3.1415926

/* Compute the area of a circle */
main()

{
float radius, area;
float myfunc (float radius);

scanf (“%f”, &radius);
area = myfunc (radius);
printf (“\n Area is %f \n”,

area);
}

float myfunc (float
r)

{
float a;
a = PI * r * r;
/* return result

*/
return (a);

}

Operators and Expressions

Operators

• Operators are used to manipulate
variables.

• They perform
– arithmetic
– logic functions
– comparisons between values

int x = 6 ;
int y = 9;
int z, w;
z = x + y ; w = x * y ;

Expressions and statements
• Expressions : combine constants and variables

with operators
– x * y

• Expressions can be grouped to form
statements
– z = x * y ;
Semicolons terminate statements

• One or more simple sentences can be grouped
to form a compound sentence or a block by
enclosing within { }

Assignment operator

int x = 4 ;
x = x + 9 ;
1. The right hand side is evaluated.
2. The left hand side is set to the value of the

right hand side.
All expressions evaluate to a value of a

particular type.
x + 9 evaluates to the integer value of 13.

Arithmetic operators

+ : addition
- : subtraction
* : multiplication
/ : division
% : modulus

operator

• distance = rate * time ;
• netIncome = income - tax ;
• speed = distance / time ;
• area = PI * radius * radius
• y = a * x * x + b*x + c;
• quotient = dividend/divisor;
• remainder=dividend %divisor;

C Program # 5
/* FIND THE LARGEST OF THREE NUMBERS */
main()
{

int a, b, c;
scanf (“%d %d %d”, &a, &b, &c);
if ((a>b) && (a>c)) /* Composite condition

check*/
printf (“\n Largest is %d”, a);

else
if (b>c) /* return result */

printf (“\n Largest is %d”, b);
else

printf (“\n Largest is %d”, c);
}

Structure of a C program
• Every C program consists of one or more

functions.
– One of the functions must be called main.
– The program will always begin by executing

the main function.

Function

• Each function must contain:
– A function heading, which consists of the

function name, followed by an optional list
of arguments enclosed in parentheses.

– A list of argument declarations.
– A compound statement, which comprises

the remainder of the function.

Function

• Each function must contain:
– A function heading, which consists of the

function name, followed by an optional list
of arguments enclosed in parentheses.

– A list of argument declarations.
– A compound statement, which comprises

the remainder of the function.

Compound Statement

• Each compound statement is enclosed
within a pair of braces (‘{‘ and ‘}’).
– The braces may contain combinations of

elementary statements and other
compound statements.

• Comments may appear anywhere in a
program, enclosed within delimiters

• ‘/*’ and ‘*/’.

Compound Statement (or
block)

{
(optional)

}
Used for grouping, as function body, and to

restrict identifier visibility

Desirable programming style

• Clarity
– The program should be clearly written.
– It should be easy to follow the program

logic.
• Meaningful variable names

– Make variable/constant names meaningful
to enhance program clarity.

• ‘area’ instead of ‘a’
• ‘radius’ instead of ‘r’

Program Documentation

• Insert comments in the program to make
it easy to understand.

• Put a comment for each function.
• Put comments for the important

variables.
• Do not give too many comments.

Program indentation

• Use proper indentation.
• C has standard indentation conventions.

– Followed by any book on C
– Followed in the class

Identifiers

• Identifiers
– Names given to various program elements

(variables, constants, functions, etc.)
– May consist of letters, digits and the

underscore (‘_’) character, with no space in
between.

– First character must be a letter.
– An identifier can be arbitrary long.

• Some C compilers recognize only the first few
characters of the name (16 or 31).

– Case sensitive
• ‘area’, ‘AREA’ and ‘Area’ are all different

– Examples : number, simple_interest, List
– Non-examples :1stnum, simple interest,

no-of-students

Keywords

– Reserved words that have standard, predefined
meanings in C.

– Cannot be used as identifiers.
– OK within comments.
– Standard C keywords:

else

auto break case char const continue default
do

double else enum extern float for goto if

int long register return short signed sizeof
static

struct switch typedef union unsigned void volatile

Data Types in C

• int : signed integer, typically 2 / 4 bytes
int numberOfStudents ;

• char: character, typically 1 byte
char lock; char key = ‘Q’ ;

• float: floating point number (4 bytes)
float averageTemp ;

• double: double precision floating point (8 bytes)
double electrondPerSecond ;

Variations of these types

• short int, longed int, unsigned int
short int age;
long int worldPopulation;
unsigned int numberOfDays;

• long double
long double particlesInUniverse;

Values of Data Types
• 2 byte int :

– -32768 to +32767 (-215 to 215-1)
• 4 byte int :

– -2147483648 to +2147483647
• 2 byte unsigned int :

– 0 to 65535 (216-1)
• char : 0 to 255

– ‘a’, ‘A’, ‘+’, ‘=‘,
• float : -2.34, 0.0037, 23.0, 1.234e-5

E or e means “10
to the power of”

Constants

• integer constants:
– 0, 1, 648, 9999

• floating point constants:
– 0.2, 12.3, 1.67E+8, 1.12E-12

• character constants:
– ‘C’, ‘x’, ‘ ‘,

• string constants:
– “Welcome aboard”, “Rs. 89.95”, “Bye \n”

Ascii value Character
000 NUL

032 blank
036 $
038 &
043 +
048 0
049 1
057 9
065 A
066 B
090 Z
097 a
098 b
122 z

Escape Sequences: Certain non-
printing characters can be ex-

pressed in terms of escape
sequences:

‘\n’ : new line
‘\t’ : horizontal tab

‘\v’ : vertical tab
‘\\’ : backslash

‘\”’ : double quote
‘\0’ : null

Variables
• It is an identifier

– used to represent a specified type of information
– within a designated portion of the program

• The data item must be assigned to the variable at
some point of the program

• It can be accessed later by referring to the variable
name

• A given variable can be assigned different data items
at different places within the program.

int a, b, c ;
char d;
a = 3;
b = 5;
c = a+b;
d = ‘a’ ;
a = 4;
b = 2;
c = a-b;
d = ‘D’ ;

a b c d

3
? ? ? ?

5
8

97
4

2
2

68

? ? ?
3 ? ?
3 5 ?

3 5 8
5 8 97

4 8 97

4 2 97

4 2 2

Declaration of Variables

data-type variable-list ;
int a, b, c;
float root1, root2;
char flag, response;

Declaration :
1. specifies the name of

the variable
2. Specifies what type of

data the variable will
hold.

A First Look at Pointers

• A variable is assigned a specific memory location.
– For example, a variable speed is assigned memory

location 1350.
– Also assume that the memory location contains the data

value 100.
– When we use the name speed in an expression, it refers to

the value 100 stored in the memory location.
distance = speed * time;

• Thus every variable has an address (in memory),
and its contents.

Contd.

• In C terminology, in an expression
– speed refers to the contents of the memory

location.
– &speed refers to the address of the memory

location.

• Examples:
– printf (“%f %f %f”, speed, time, distance);
– scanf (“%f %f”, &speed, &time);

An Example
#include <stdio.h>
main()
{

float speed, time, distance;

scanf (“%f %f”, &speed, &time);
distance = speed * time;
printf (“\n The distance traversed is: \n”

,distance);
}

Assignment Statement
• Used to assign values to variables, using the

assignment operator (=).
• General syntax:

variable_name = expression;
• Examples:

– velocity = 20;
– b = 15; temp = 12.5; /* Multiple assign on same line */
– A = A + 10;
– v = u + f * t;
– s = u * t + 0.5 * f * t * t;

Contd.

• A value can be assigned to a variable at the
time the variable is declared.
– int speed = 30;
– char flag = ‘y’;

• Several variables can be assigned the same
value using multiple assignment operators.
– a = b = c = 5;
– flag1 = flag2 = ‘y’;
– speed = flow = 0.0;

Assignment Statement
• Used to assign values to variables, using the

assignment operator (=).
• General syntax:

variable_name = expression;
• Examples:

– velocity = 20.5;
– b = 15; temp = 12; /* Multiple assign on same line*/
– A = A + 10;
– v = u + f * t;
– s = u * t + 0.5 * f * t * t;

Operators in Expressions

Operators

Arithmetic
Operators

Relational
Operators

Logical
Operators

Operator Precedence

• In decreasing order of priority
1. Parentheses :: ()
2. Unary minus :: -5
3. Multiplication, Division, and Modulus
4. Addition and Subtraction

• For operators of the same priority, evaluation
is from left to right as they appear.

• Parenthesis may be used to change the
precedence of operator evaluation.

Examples: Arithmetic expressions

• a + b * c – d / e � a + (b * c) � (d / e)
• a * -b + d % e � f � a * (-b) + (d % e) � f
• a � b + c + d � (((a � b) + c) + d)
• x * y * z � ((x * y) * z)
• a + b + c * d * e � (a + b) + ((c * d) * e)

Integer Arithmetic

• When the operands in an arithmetic
expression are integers, the expression
is called integer expression, and the
operation is called integer arithmetic.

• Integer arithmetic always yields integer
values.

Real Arithmetic

• Arithmetic operations involving only real or
floating-point operands.

• Since floating-point values are rounded to the
number of significant digits permissible, the
final value is an approximation of the final
result.
– 1.0 / 3.0 * 3.0 will have the value 0.99999 and

not 1.0
• The modulus operator cannot be used with

real operands.

Mixed-mode Arithmetic

• When one of the operands is integer and the
other is real, the expression is called a
mixed-mode arithmetic expression.

• If either operand is of the real type, then only
real arithmetic is performed, and the result is a
real number.
– 25 / 10 � 2
– 25 / 10.0 � 2.5

• Some more issues will be considered later.

Relational Operators

• Used to compare two quantities.
< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

Examples

• 10 > 20 is false
• 25 < 35.5 is true
• 12 > (7 + 5) is false

• When arithmetic expressions are used on
either side of a relational operator, the
arithmetic expressions will be evaluated first
and then the results compared.
– a + b > c – d is the same as (a+b) > (c+d)

Logical Operators

• Logical operators act upon logical
expressions
– && : and (true if both operands are true)
– || : or (true if either or both operands true
– ! : negates the value of the logical expression

• Example
– (n >= lo_bound) && (n <= upper_bound)
– ! (num > 100)

Example: Logical Operators
int main () {

int i, j;
for (i=0; i<2; i++) {

for (j=0; j<2; j++)
printf (“%d AND %d = %d,

%d OR %d=%d\n”,
i,j,i&&j, i,j, i||j) ;

}
}

$./a.out
0 AND 0 = 0 0 OR 0 = 0
0 AND 1 = 0 0 OR 1 = 1
1 AND 0 = 0 1 OR 0 = 1
1 AND 1 = 1 1 OR 1 = 1
$

int main () {
int amount ; /* The no of bytes to be transferred */
int rate ; /* The average network transfer rate */
int time; /* The time, in seconds, for the transfer */
int hours, minutes, seconds; /* The no of hrs,mins,secs for the tr

printf (“How many bytes of data to be transferred ?\n”) ;
scanf (“%d”, &amount) ;
printf (“What is the average transfer rate in bytes/sec ?\n”) ;
scanf (“%d”, &rate) ;
time = amount / rate ;
hours = time / 3600 ;
minutes = (time % 3600) / 60 ;
seconds = ((time % 3600) % 60) /60 ;
printf (“The expected time is %dh %dm %ds\n”,

hours,minutes,seconds);
}

C’s special operators
• ++ and -- : a trademark of C programming
• ++ : increments a variable ;
• -- : decrements a variable
• x++

– In an expression, value of this expression is the
value of x prior to increment

• ++x
– In an expression, value of this expression is the

value of x after the increment.

x = 4;
y = x++;

x = 4;
y = ++x ;

y=4, x=5 after evaluation y=5, x=5 after evaluation

x += 5 equivalent to x = x + 5
h %= f equivalent to h = h%f
product *= num equivalent to product = product * num

void main ()
{

int x = 10;
printf (“ x = %d\n”, ++x) ;
printf (“x = %d\n”, x++) ;

}
Question : What will get printed ?

Exercise

• Suppose your program contains two integer
variables, x and y which have values 3 and 4
respectively, Write C statements that will
exchange the values in x and y such that after the
statements are executed, x is equal to 4 and y is
equal to 3.
– First, write this routine using a temporary

variable for storage.
– Now re-write this routine without using a

temporary variable for storage.

Control Constructs

Control Structures: conditional
constructs

if (x <= 10)
y = x * x + 5;

if (x <= 10) {
y = x * x + 5;
z = (2 * y)/4 ;

}if (x <= 10)
y = x * x + 5;
z = (2 * y)/4 ;

if (condition)
action ;

condition

action

