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Inverse	hyperbolic	functions	integrals

Math.Info	»	Pre-Calculus/Calculus	»	List	of	Integrals	of	Inverse	Hyperbolic	Functions	©	Copyright	2007	Math.Info	-	All	rights	reserved	Derivatives	and	Integrals	Involving	Inverse	Hyperbolic	Functions	Loading...		Found	a	content	error?	Tell	us	The	hyperbolic	functions	are	functions	that	have	many	applications	to	mathematics,	physics,	and
engineering.	Among	many	other	applications,	they	are	used	to	describe	the	formation	of	satellite	rings	around	planets,	to	describe	the	shape	of	a	rope	hanging	from	two	points,	and	have	application	to	the	theory	of	special	relativity.	This	section	defines	the	hyperbolic	functions	and	describes	many	of	their	properties,	especially	their	usefulness	to
calculus.	††margin:	(cos⁡θ,sin⁡θ)A=θ2x2+y2=1-11-11xy(cosh⁡θ,sinh⁡θ)A=θ2x2-y2=1-22-22xy	Figure	7.4.1:	Using	trigonometric	functions	to	define	points	on	a	circle	and	hyperbolic	functions	to	define	points	on	a	hyperbola.	Λ	These	functions	are	sometimes	referred	to	as	the	“hyperbolic	trigonometric	functions”	as	there	are	many	connections	between
them	and	the	standard	trigonometric	functions.	Figure	7.4.1	demonstrates	one	such	connection.	Just	as	cosine	and	sine	are	used	to	define	points	on	the	circle	defined	by	x2+y2=1,	the	functions	hyperbolic	cosine	and	hyperbolic	sine	are	used	to	define	points	on	the	hyperbola	x2-y2=1.	
We	begin	with	their	definitions.	(a)	cosh⁡x=ex+e-x2	(b)	sinh⁡x=ex-e-x2	(c)	tanh⁡x=sinh⁡xcosh⁡x	(d)	sech⁡x=1cosh⁡x	(e)	csch⁡x=1sinh⁡x	(f)	coth⁡x=cosh⁡xsinh⁡x	The	hyperbolic	functions	are	graphed	in	Figure	7.4.2.	In	the	graphs	of	cosh⁡x	and	sinh⁡x,	graphs	of	ex/2	and	e-x/2	are	included	with	dashed	lines.	As	x	gets	“large,”	cosh⁡x	and	sinh⁡x	each	act	like	ex/2;	when
x	is	a	large	negative	number,	cosh⁡x	acts	like	e-x/2	whereas	sinh⁡x	acts	like	-e-x/2.	††margin:	Pronunciation	Note:	“cosh”	rhymes	with	“gosh,”	“sinh”	rhymes	with	“pinch,”	and	“tanh”	rhymes	with	“ranch,”	Λ	Notice	the	domains	of	tanh⁡x	and	sech⁡x	are	(-∞,∞),	whereas	both	coth⁡x	and	csch⁡x	have	vertical	asymptotes	at	x=0.	Also	note	the	ranges	of	these
functions,	especially	tanh⁡x:	as	x→∞,	both	sinh⁡x	and	cosh⁡x	approach	ex/2,	hence	tanh⁡x	approaches	1.	f⁢(x)=cosh⁡x-3-2-1123-10-5510xyf⁢(x)=sinh⁡x-3-2-1123-10-5510xyf⁢(x)=tanh⁡xf⁢(x)=coth⁡x-3-2-1123-22xyf⁢(x)=sech⁡xf⁢(x)=csch⁡x-3-2-1123-3-2-1123xy	Figure	7.4.2:	Graphs	of	the	hyperbolic	functions.	Watch	the	video:	Hyperbolic	Functions	—	The	Basics	from
The	following	example	explores	some	of	the	properties	of	these	functions	that	bear	remarkable	resemblance	to	the	properties	of	their	trigonometric	counterparts.	

Use	Definition	7.4.1	to	rewrite	the	following	expressions.	(a)	(b)	(c)	(d)	(e)	(f)	Solution	(a)	cosh2⁡x-sinh2⁡x=(ex+e-x2)2-(ex-e-x2)2=e2⁢x+2⁢ex⁢e-x+e-2⁢x4-e2⁢x-2⁢ex⁢e-x+e-2⁢x4=44=1.	

So	cosh2⁡x-sinh2⁡x=1.	(b)	tanh2⁡x+sech2⁡x=sinh2⁡xcosh2⁡x+1cosh2⁡x=sinh2⁡x+1cosh2⁡x  Now	use	identity	from	#1.=cosh2⁡xcosh2⁡x=1.	So	tanh2⁡x+sech2⁡x=1.	(c)	2⁢cosh⁡x⁢sinh⁡x=2⁢(ex+e-x2)⁢(ex-e-x2)=2⋅e2⁢x-e-2⁢x4=e2⁢x-e-2⁢x2=sinh⁡(2⁢x).	Thus	2⁢cosh⁡x⁢sinh⁡x=sinh⁡(2⁢x).	(d)	dd⁡x⁢(cosh⁡x)=dd⁡x⁢(ex+e-x2)=ex-e-x2=sinh⁡x.	So	dd⁡x⁢(cosh⁡x)=sinh⁡x.	(e)	dd⁡x⁢(sinh⁡x)=dd⁡x⁢(ex-e-
x2)=ex+e-x2=cosh⁡x.	So	dd⁡x⁢(sinh⁡x)=cosh⁡x.	(f)	dd⁡x⁢(tanh⁡x)=dd⁡x⁢(sinh⁡xcosh⁡x)=cosh⁡x⁢cosh⁡x-sinh⁡x⁢sinh⁡xcosh2⁡x=1cosh2⁡x=sech2⁡x.	So	dd⁡x⁢(tanh⁡x)=sech2⁡x.	The	following	Key	Idea	summarizes	many	of	the	important	identities	relating	to	hyperbolic	functions.	Each	can	be	verified	by	referring	back	to	Definition	7.4.1.	(a)	(b)	(c)	(d)	(e)	(f)	(g)	Derivatives	(a)	(b)
(c)	(d)	dd⁡x⁢(sech⁡x)=-sech⁡x⁢tanh⁡x	(e)	dd⁡x⁢(csch⁡x)=-csch⁡x⁢coth⁡x	(f)	Integrals	(a)	(b)	(c)	∫tanh⁡x⁢d⁡x=ln⁡(cosh⁡x)+C	(d)	∫coth⁡x⁢d⁡x=ln⁡|sinh⁡x|+C	We	practice	using	Key	Idea	7.4.1.	Evaluate	the	following	derivatives	and	integrals.	
(a)	dd⁡x⁢(cosh⁡2⁢x)	(b)	∫sech2⁡(7⁢t-3)⁢d⁡t	(c)	∫0ln⁡2cosh⁡x⁢d⁡x	Solution	(a)	Using	the	Chain	Rule	directly,	we	have	dd⁡x⁢(cosh⁡2⁢x)=2⁢sinh⁡2⁢x.	

Just	to	demonstrate	that	it	works,	let’s	also	use	the	Basic	Identity	found	in	Key	Idea	7.4.1:	cosh⁡2⁢x=cosh2⁡x+sinh2⁡x.	dd⁡x⁢(cosh⁡2⁢x)=dd⁡x⁢(cosh2⁡x+sinh2⁡x)	=2⁢cosh⁡x⁢sinh⁡x+2⁢sinh⁡x⁢cosh⁡x	=4⁢cosh⁡x⁢sinh⁡x.	Using	another	Basic	Identity,	we	can	see	that	4⁢cosh⁡x⁢sinh⁡x=2⁢sinh⁡2⁢x.	

We	get	the	same	answer	either	way.	(b)	We	employ	substitution,	with	u=7⁢t-3	and	d⁡u=7⁢d⁡t.	Applying	Key	Idea	7.4.1	we	have:	∫sech2⁡(7⁢t-3)⁢d⁡t=17⁢tanh⁡(7⁢t-3)+C.	(c)	∫0ln⁡2cosh⁡x⁢d⁡x=sinh⁡x|0ln⁡2=sinh⁡(ln⁡2)-sinh⁡0=sinh⁡(ln⁡2).	We	can	simplify	this	last	expression	as	sinh⁡x	is	based	on	exponentials:	sinh⁡(ln⁡2)=eln⁡2-e-ln⁡22=2-1/22=34.	Just	as	the	inverse
trigonometric	functions	are	useful	in	certain	integrations,	the	inverse	hyperbolic	functions	are	useful	with	others.	Figure	7.4.3	shows	the	restrictions	on	the	domains	to	make	each	function	one-to-one	and	the	resulting	domains	and	ranges	of	their	inverse	functions.	Their	graphs	are	shown	in	Figure	7.4.4.	Because	the	hyperbolic	functions	are	defined	in
terms	of	exponential	functions,	their	inverses	can	be	expressed	in	terms	of	logarithms	as	shown	in	Key	Idea	7.4.2.	It	is	often	more	convenient	to	refer	to	sinh-1⁡x	than	to	ln⁡(x+x2+1),	especially	when	one	is	working	on	theory	and	does	not	need	to	compute	actual	values.	On	the	other	hand,	when	computations	are	needed,	technology	is	often	helpful	but
many	hand-held	calculators	lack	a	convenient	sinh-1⁡x	button.	(Often	it	can	be	accessed	under	a	menu	system,	but	not	conveniently.)	In	such	a	situation,	the	logarithmic	representation	is	useful.	The	reader	is	not	encouraged	to	memorize	these,	but	rather	know	they	exist	and	know	how	to	use	them	when	needed.	

Function	Domain	Range	Function	Domain	Range	cosh⁡x	[0,∞)	[1,∞)	cosh-1⁡x	[1,∞)	[0,∞)	sinh⁡x	(-∞,∞)	(-∞,∞)	sinh-1⁡x	(-∞,∞)	(-∞,∞)	tanh⁡x	(-∞,∞)	(-1,1)	tanh-1⁡x	(-1,1)	(-∞,∞)	sech⁡x	[0,∞)	(0,1]	sech-1⁡x	(0,1]	[0,∞)	csch⁡x	(-∞,0)∪(0,∞)	(-∞,0)∪(0,∞)	csch-1⁡x	(-∞,0)∪(0,∞)	(-∞,0)∪(0,∞)	coth⁡x	(-∞,0)∪(0,∞)	(-∞,-1)∪(1,∞)	coth-1⁡x	(-∞,-1)∪(1,∞)	(-∞,0)∪(0,∞)	Figure	7.4.3:
Domains	and	ranges	of	the	hyperbolic	and	inverse	hyperbolic	functions.	y=cosh-1⁡xy=cosh⁡x510510xy	y=sinh⁡xy=sinh-1⁡x-1010-10-5510xy	y=coth-1⁡xy=tanh-1⁡x-22-22xy	y=sech-1⁡xy=csch-1⁡x-3-2-1123-3-2-1123xy	Figure	7.4.4:	Graphs	of	the	hyperbolic	functions	and	their	inverses.	Now	let’s	consider	the	inverses	of	the	hyperbolic	functions.	We	begin	with
the	function	f⁢(x)=sinh⁡x.	Since	f′⁢(x)=cosh⁡x>0	for	all	real	x,	f	is	increasing	and	must	be	one-to-one.	y	=ex-e-x2	2⁢y	=ex-e-x  (now	multiply	by	ex)	2⁢y⁢ex	=e2⁢x-1  (a	quadratic	form	)	(ex)2-2⁢y⁢ex-1	=0  (use	the	quadratic	formula)	ex	=2⁢y±4⁢y2+42	ex	=y±y2+1  (use	the	fact	that	ex>0)	ex	=y+y2+1	x	=ln⁡(y+y2+1)	Finally,	interchange	the	variable	to
find	that	In	a	similar	manner	we	find	that	the	inverses	of	the	other	hyperbolic	functions	are	given	by:	(a)	cosh-1⁡x=ln⁡(x+x2-1);	  x≥1	(b)	tanh-1⁡x=12⁢ln⁡(1+x1-x);	  |x|<1	(c)	sech-1⁡x=ln⁡(1+1-x2x);	  01	(f)	csch-1⁡x=ln⁡(1x+1+x2|x|);	  x≠0	The	following	Key	Ideas	give	the	derivatives	and	integrals	relating	to	the	inverse	hyperbolic	functions.	In	Key
Idea	7.4.4,	both	the	inverse	hyperbolic	and	logarithmic	function	representations	of	the	antiderivative	are	given,	based	on	Key	Idea	7.4.2.	Again,	these	latter	functions	are	often	more	useful	than	the	former.	(a)	dd⁡x⁢(cosh-1⁡x)=1x2-1;	  x>1	(b)	dd⁡x⁢(sinh-1⁡x)=1x2+1	x≠0	(c)	dd⁡x⁢(tanh-1⁡x)=11-x2;	  |x|<1	(d)	dd⁡x⁢(sech-1⁡x)=-1x⁢1-x2;	  01	1.		∫1x2-a2⁢d⁡x
=cosh-1⁡(xa)+C;	00	=ln⁡(x+x2+a2)+C	3.		∫1a2-x2⁢d⁡x	={1a⁢tanh-1⁡(xa)+C|x|<|a|1a⁢coth-1⁡(xa)+C|a|<|x|	=12⁢a⁢ln⁡|a+xa-x|+C	4.		∫1x⁢a2-x2⁢d⁡x	=-1a⁢sech-1⁡(xa)+C;	00	=1a⁢ln⁡|xa+a2+x2|+C	We	practice	using	the	derivative	and	integral	formulas	in	the	following	example.	
Evaluate	the	following.	(a)	(b)	(c)	Solution	(a)	Applying	Key	Idea	7.4.3	with	the	Chain	Rule	gives:	dd⁡x⁢[cosh-1⁡(3⁢x-25)]=1(3⁢x-25)2-1⋅35.	(b)	Multiplying	the	numerator	and	denominator	by	(-1)	gives	a	second	integral	can	be	solved	with	a	direct	application	of	item	#3	from	Key	Idea	7.4.4,	with	a=1.	Thus	∫1x2-1⁢d⁡x	=-∫11-x2⁢d⁡x	={-tanh-1⁡(x)+Cx2<1-coth-
1⁡(x)+C1Four	Key	Ideas	were	presented,	each	including	quite	a	bit	of	information.	Do	not	view	this	section	as	containing	a	source	of	information	to	be	memorized,	but	rather	as	a	reference	for	future	problem	solving.	Key	Idea	7.4.4	contains	perhaps	the	most	useful	information.	Know	the	integration	forms	it	helps	evaluate	and	understand	how	to	use
the	inverse	hyperbolic	answer	and	the	logarithmic	answer.	The	next	section	takes	a	brief	break	from	demonstrating	new	integration	techniques.	It	instead	demonstrates	a	technique	of	evaluating	limits	that	return	indeterminate	forms.	This	technique	will	be	useful	in	Section	8.6,	where	limits	will	arise	in	the	evaluation	of	certain	definite	integrals.	1.	In
Key	Idea	7.4.1,	the	equation	∫tanh⁡x⁢d⁡x=ln⁡(cosh⁡x)+C	is	given.	Why	is	“ln⁡|cosh⁡x|”	not	used	—	i.e.,	why	are	absolute	values	not	necessary?	2.	The	hyperbolic	functions	are	used	to	define	points	on	the	right	hand	portion	of	the	hyperbola	x2-y2=1,	as	shown	in	Figure	7.4.1.	How	can	we	use	the	hyperbolic	functions	to	define	points	on	the	left	hand	portion	of
the	hyperbola?	3.	
Suppose	sinh⁡t=5/12.	Find	the	values	of	the	other	five	hyperbolic	functions	at	t.	4.	Suppose	tanh⁡t=-3/5.	Find	the	values	of	the	other	five	hyperbolic	functions	at	t.	In	Exercises	5–12.,	verify	the	given	identity	using	Definition	7.4.1,	as	done	in	Example	7.4.1.	5.	6.	7.	8.	
9.	dd⁡x⁢[sech⁡x]=-sech⁡x⁢tanh⁡x	10.	11.	
∫tanh⁡x⁢d⁡x=ln⁡(cosh⁡x)+C	12.	∫coth⁡x⁢d⁡x=ln⁡|sinh⁡x|+C	In	Exercises	13–24.,	find	the	derivative	of	the	given	function.	13.	14.	15.	
16.	17.	18.	19.	20.	21.	22.	23.	24.	
In	Exercises	25–30.,	find	the	equation	of	the	line	tangent	to	the	function	at	the	given	x-value.	25.	26.	27.	28.	29.	30.	In	Exercises	31–38.,	evaluate	the	given	indefinite	integral.	31.	32.	33.	34.	35.	36.	37.	38.	∫sech⁡x⁢d⁡x	 (Hint:	multiply	by	cosh⁡xcosh⁡x;	set	u=sinh⁡x.)	In	Exercises	39–40.,	evaluate	the	given	definite	integral.	39.	40.	41.	In	the	bottom	graph	of
Figure	7.4.1	(the	hyperbola),	it	is	stated	that	the	shaded	area	is	θ/2.	Verify	this	claim	by	setting	up	and	evaluating	an	appropriate	integral	(and	note	that	θ	is	just	a	positive	number,	not	an	angle).	
Hint:	Integrate	with	respect	to	y,	and	consult	the	table	of	Integration	Rules	in	the	Appendix	if	necessary.	7.3	Exponential	and	Logarithmic	Functions7.5	L’Hôpital’s	Rule	Generated	on	Sun	Nov	21	19:48:25	2021	by	LaTeXML	For	example,	inverse	hyperbolic	sine	can	be	written	as???\text{arcsinh}???	or	as???\sinh^{-1}???Some	people	argue	that	the
???\text{arcsinh}???	form	should	be	used	instead	of	???\sinh^{-1}???	because	???\sinh^{-1}???	can	be	misinterpreted	as	???1/\sinh???.	
Whichever	form	you	prefer,	you	see	both,	so	you	should	be	able	to	recognize	both	and	understand	that	they	mean	the	same	thing.The	general	rules	for	the	six	inverse	hyperbolic	functions	are???\int{\text{arcsinh}{(ax)}}\	dx=x\text{arcsinh}{(ax)}-\frac{\sqrt{a^2x^2+1}}{a}+C??????\int{\text{arccosh}{(ax)}}\	dx=x\text{arccosh}{(ax)}-
\frac{\sqrt{ax+1}\sqrt{ax-1}}{a}+C??????\int{\text{arctanh}{(ax)}}\	dx=x\text{arctanh}{(ax)}+\frac{\ln{(1-a^2x^2)}}{2a}+C??????\int{\text{arccoth}{(ax)}}\	dx=x\text{arccoth}{(ax)}+\frac{\ln{(a^2x^2-1)}}{2a}+C??????\int{\text{arcsech}{(ax)}}\	dx=x\text{arcsech}{(ax)}-\frac{2}{a}\arctan{\sqrt{\frac{1-ax}{1+ax}}}+C??????
\int{\text{arccsch}{(ax)}}\	dx=x\text{arccsch}{(ax)}+\frac{1}{a}\text{arccoth}{\sqrt{\frac{1}{a^2x^2}+1}}+C???We	also	have	a	few	other	standard	inverse	hyperbolic	integrals	that	are	based	on	the	standard	inverse	hyperbolic	derivatives.	In	the	following	formulas,	???u???	represents	a	function.???\int{\frac{1}{\sqrt{a^2+u^2}}}\
du=\text{arcsinh}{\left(\frac{u}{a}\right)}+C???	where	???a>0??????\int{\frac{1}{\sqrt{u^2-a^2}}}\	du=\text{arccosh}{\left(\frac{u}{a}\right)}+C???	where	???u>a>0??????\int{\frac{1}{a^2-u^2}}\	du=\frac{1}{a}\text{arctanh}{\left(\frac{u}{a}\right)}+C???	if	???u^2a^2??????\int{\frac{1}{u\sqrt{a^2-u^2}}}\	du=-\frac{1}
{a}\text{arcsech}{\left(\frac{u}{a}\right)}+C???	where	???0


