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ABSTRACT

Well-designed and effectively managed networks of marine reserves can be effective tools for both fisheries management
and biodiversity conservation. Connectivity, the demographic linking of local populations through the dispersal of
individuals as larvae, juveniles or adults, is a key ecological factor to consider in marine reserve design, since it has
important implications for the persistence of metapopulations and their recovery from disturbance. For marine reserves
to protect biodiversity and enhance populations of species in fished areas, they must be able to sustain focal species
(particularly fishery species) within their boundaries, and be spaced such that they can function as mutually replenishing
networks whilst providing recruitment subsidies to fished areas. Thus the configuration (size, spacing and location) of
individual reserves within a network should be informed by larval dispersal and movement patterns of the species for
which protection is required. In the past, empirical data regarding larval dispersal and movement patterns of adults
and juveniles of many tropical marine species have been unavailable or inaccessible to practitioners responsible for
marine reserve design. Recent empirical studies using new technologies have also provided fresh insights into movement
patterns of many species and redefined our understanding of connectivity among populations through larval dispersal.
Our review of movement patterns of 34 families (210 species) of coral reef fishes demonstrates that movement patterns
(home ranges, ontogenetic shifts and spawning migrations) vary among and within species, and are influenced by a
range of factors (e.g. size, sex, behaviour, density, habitat characteristics, season, tide and time of day). Some species
move <0.1–0.5 km (e.g. damselfishes, butterflyfishes and angelfishes), <0.5–3 km (e.g. most parrotfishes, goatfishes and
surgeonfishes) or 3–10 km (e.g. large parrotfishes and wrasses), while others move tens to hundreds (e.g. some groupers,
emperors, snappers and jacks) or thousands of kilometres (e.g. some sharks and tuna). Larval dispersal distances tend to
be <5–15 km, and self-recruitment is common. Synthesising this information allows us, for the first time, to provide
species, specific advice on the size, spacing and location of marine reserves in tropical marine ecosystems to maximise
benefits for conservation and fisheries management for a range of taxa. We recommend that: (i) marine reserves should
be more than twice the size of the home range of focal species (in all directions), thus marine reserves of various sizes will
be required depending on which species require protection, how far they move, and if other effective protection is in
place outside reserves; (ii) reserve spacing should be <15 km, with smaller reserves spaced more closely; and (iii) marine

* Address for correspondence (E-mail: agreen@tnc.org).

Biological Reviews 90 (2015) 1215–1247 © 2014 The Nature Conservancy. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no modifications or adaptations are made.



1216 A. L. Green and others

reserves should include habitats that are critical to the life history of focal species (e.g. home ranges, nursery grounds,
migration corridors and spawning aggregations), and be located to accommodate movement patterns among these.
We also provide practical advice for practitioners on how to use this information to design, evaluate and monitor the
effectiveness of marine reserve networks within broader ecological, socioeconomic and management contexts.
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I. INTRODUCTION

Marine reserves (defined here as areas of ocean that are
protected from extractive and destructive activities) can
be an effective tool for both conservation and fisheries
management in tropical marine ecosystems (Russ, 2002;
Lester et al., 2009). Marine reserves can increase the diversity,
density, biomass, body size and reproductive potential of
coral reef fishes (particularly focal fisheries species) within
their boundaries (Lester et al., 2009; Babcock et al., 2010;
Russ & Alcala, 2011), and provide conservation and fisheries
benefits to surrounding areas through the export of eggs,
larvae, juveniles and adults to other reserves and fished areas
(Russ, 2002; Halpern, Lester & Kellner, 2010; Harrison et al.,
2012).

The design and effective implementation of networks
of marine reserves is critical to maximise their benefits
to both conservation and fisheries management (Walmsley
& White, 2003; Gaines et al., 2010). Connectivity, the
demographic linking of local populations through the
dispersal of individuals as larvae, juveniles or adults (Sale et al.,
2005), is a key ecological factor to consider in marine reserve
design, since it has important implications for the persistence
of metapopulations and their recovery from disturbance
(Botsford, Micheli & Hastings, 2003; Almany et al., 2009;
McCook et al., 2009). Of particular importance are ecological

patterns of connectivity through larval transport and juvenile
or adult movement, which operate at different temporal
and spatial scales than those that influence genetic (or
evolutionary) patterns of connectivity (Cowen, Paris &
Srinivasan, 2006; Foster et al., 2012).

Most coral reef fish species have a bipartite life cycle
where larvae are pelagic before settling out of the plankton
and forming an association with coral reefs. These species
vary greatly in how far they move during their life-history
phases (Palumbi, 2004), although larvae of most species
have the potential to move much longer distances (tens
to hundreds of kilometres: Cowen et al., 2006; Jones et al.,
2009) than adults and juveniles, which tend to be more
sedentary (with home ranges <1 m to a few kilometres:
Russ, 2002). Exceptions include coral reef species where
adults and juveniles exhibit large-scale (tens to hundreds
of kilometres) ontogenetic shifts in habitat use (e.g. among
coral reef, mangrove and seagrass habitats: Nagelkerken
et al., 2001; Chin et al., 2013a) or migrations to fish spawning
aggregation sites (e.g. Starr et al., 2007; Rhodes et al., 2012),
and pelagic species that range over much longer distances
(hundreds to thousands of kilometres e.g. Ortiz et al., 2003).

When adults and juveniles leave the boundary of a marine
reserve, they become vulnerable to fishing mortality (Kramer
& Chapman, 1999; Gaines et al., 2010). However, larvae
leaving a reserve can generally disperse without elevated
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risk because of their small size and limited exposure to
fisheries (Gaines et al., 2010). Thus, consideration of the
spatial scale of movement of coral reef fish species at each
stage in their life cycle is critically important in designing
the configuration (size, spacing and location) of networks
of tropical marine reserves (Kramer & Chapman, 1999;
Palumbi, 2004; Botsford et al., 2009b; Gaines et al., 2010).

Where movement patterns of focal species are known, this
information can be used to inform guidelines or decisions
about the configuration of marine reserves to maximise
benefits to both fisheries and conservation (Botsford et al.,
2003; Palumbi, 2004; Jones, Srinivasan & Almany, 2007;
Gaines et al., 2010). For example, movement studies were
used to develop rules of thumb for minimum and preferred
size ranges of marine protected areas (MPAs) in a temperate
system in California, and species-specific information was
used to communicate with stakeholders regarding which
types of species would best be protected by MPAs of different
sizes (Gleason et al., 2013; Saarman et al., 2013). However,
the empirical information required to apply this approach
to tropical marine ecosystems has yet to be synthesised in
a format useful for marine reserve design (Sale et al., 2005;
Botsford et al., 2009b). Recent advances in technology, such
as the use of acoustic and satellite telemetry, have also
provided new insights into spatiotemporal movements and
habitat requirements of adults and juveniles of many species
that need to be considered.

Recent empirical studies have also redefined our
understanding of larval dispersal and connectivity among
populations (Jones et al., 2009; Harrison et al., 2012;
Almany et al., 2013) These studies have demonstrated that
self-recruitment (the proportion of recruits that are the
offspring of parents in the same population) and restricted
larval dispersal are more common than previously thought,
indicating that even small marine reserves can provide
recruitment benefits within and close to their boundaries
(Planes, Jones & Thorrold, 2009; Weeks et al., 2010). These
results provide an imperative to update recommendations
for marine reserve network design, and to re-examine the
level of benefits that many small and closely spaced reserves
can generate for fish populations, particularly if they are
combined with other management tools (Hilborn, Micheli &
De Leo, 2006).

Here we review and synthesise the best available
information regarding adult, juvenile and larval movement
patterns of coral reef and associated (coastal pelagic) fish
species, much of which has only become available since the
most recent reviews on movement and larval dispersal of
these species were conducted by Kramer & Chapman (1999)
and Jones et al. (2009). We use this information to refine
advice regarding the configuration of networks of marine
reserves, and implications for other management strategies,
to achieve conservation and fisheries objectives in tropical
marine ecosystems. We also provide practical advice for
field practitioners regarding how to use this information
to improve marine reserve network design within broader
ecological and socioeconomic contexts.

II. MOVEMENT PATTERNS OF ADULTS AND
JUVENILES

We distinguish three types of movement of adult and juvenile
coral reef and coastal pelagic fish species: home ranges,
spawning migrations and ontogenetic shifts in habitat. Each
of these movement types is described below, based on a
synthesis of the best available information for 34 families and
210 species provided in Table 1 (for additional details see
online Appendix S1).

This information is extremely useful for MPA
practitioners, since it will allow them to undertake detailed
discussions with governments, fishermen, communities and
other stakeholders regarding movement patterns of focal
species for protection and the implications of these for marine
reserve size. To facilitate such discussions, we provide an
illustrative figure that summarises fish movement for a range
of taxa by distance (Fig. 1). In this figure, we used conservative
measurements of how far fish move that excluded outliers
and were indicative of movement patterns for taxa across
studies.

In most cases, we used empirical studies that directly
measured movement using methods that include
tag-mark-recapture, passive and active acoustic telemetry,
satellite tracking and underwater observations (see online
Appendix S1). Only in rare cases, where direct empirical
measurements were either not available or inadequately
represented movement patterns of key species, did we
include estimates derived from other methods, i.e. we used
size-class distributions and age estimations from otoliths to
describe ontogenetic habitat shifts by a focal fisheries species
(Caranx sexfasciatus: Maypa, 2012), and estimates of spawning
movements of an endangered wrasse (Cheilinus undulatus) and
several species of herbivore from a recognised expert in that
field (Colin, 2010, 2012). These estimates may require val-
idation by empirical measurements of movement in future.

Each of the methods used to measure movement patterns
of adults and juveniles has its strengths and weaknesses.
For well-designed experiments (with adequate sample sizes
conducted over appropriate spatiotemporal scales for the
study species), methods that directly measure both the
spatial and temporal components of movement patterns
are considered the most reliable (for further details see online
Appendix S2).

For acoustic telemetry, spatial data is typically analysed
and subsequently viewed using several measurements (see
online Appendix S2). Where possible, we reported kernel
utilisation distributions with a 95% probability of location
(KUD95), because they provide a conservative estimate of
home range that includes both the core area of use and migra-
tions to feeding and often to spawning areas. Where KUD95
was not available, we used the minimum convex polygon
(MCP), which provides a more simplistic estimation of the
home range of the individuals examined during the study.

Because empirical measurements of movement were
provided in the literature as both linear distances and
home ranges (area), we standardised by converting all
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ré

(1
99

1)
;S

ib
er

t&
H

am
pt

on
(2

00
3)

;D
un

lo
p

&
M

an
n

(2
01

2)

Biological Reviews 90 (2015) 1215–1247 © 2014 The Nature Conservancy. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



1224 A. L. Green and others

T
ab

le
1.

C
on

tin
ue

d

C
L

A
SS

M
ov

em
en

t(
lin

ea
r

di
st

an
ce

in
km

)

Fa
m

ily
(c

om
m

on
na

m
e)

R
ec

om
m

en
de

d
m

in
im

um
m

ar
in

e
re

se
rv

e
si

ze
(li

ne
ar

di
st

an
ce

in
km

)

H
om

e
ra

ng
e

an
d

te
rr

ito
ri

es

Sp
aw

ni
ng

(b
re

ed
in

g)
m

ig
ra

tio
ns

O
nt

og
en

et
ic

ha
bi

ta
t

sh
ift

s

O
th

er
lo

ng
-t

er
m

m
ov

em
en

ts
(c

or
e

ar
ea

s
of

us
e)

So
ur

ce
s

T
hu

un
us

ob
es

us
—

—
—

—
<

10
0

(<
75

)
D

ag
or

n,
B

ac
h

&
Jo

ss
e

(2
00

0)
T

hu
nn

us
al

ba
ca

re
s

—
—

—
—

<
30

00
(<

60
0)

C
ay

ré
(1

99
1)

;S
ib

er
t&

H
am

pt
on

(2
00

3)
;D

un
lo

p
&

M
an

n
(2

01
2)

T
hu

nn
us

th
yn

nu
s

—
—

<
70

00
—

—
W

ils
on

et
al

.
(2

00
5,

20
11

)
T

hu
nn

us
m

ac
co

yi
i

—
—

∼9
00

0
—

—
Pa

tt
er

so
n

et
al

.
(2

00
8)

S
ig

an
id

ae
(r

ab
b

it
fi

sh
es

)
S
ig

an
us

li
ne

at
us

2
<

1
—

—
—

Fo
x

&
B

el
lw

oo
d

(2
01

1)
;F

ox
(2

01
2)

S
ig

an
us

do
li
at

us
an

d
S
.
fu

sc
es

ce
ns

6
<

3
—

—
—

B
el

le
fle

ur
(1

99
7)

;F
ox

(2
01

2)
S
ig

an
us

su
to

r
10

—
<

5
—

<
30

(<
5)

K
au

nd
a-

A
ra

ra
&

R
os

e
(2

00
4)

;S
am

oi
ly

s
et

al
.

(2
01

3)
S

p
h

yr
ae

n
id

ae
(b

ar
ra

cu
d

as
)

S
ph

yr
ae

na
je

ll
o

20
—

—
—

<
50

(<
10

)
D

un
lo

p
&

M
an

n
(2

01
2)

S
ph

yr
ae

na
ba

rr
ac

ud
a

40
—

—
—

<
20

0
(<

20
)

Sp
ri

ng
er

&
M

cE
rl

ea
n

(1
96

1)
in

O
’T

oo
le

et
al

.
(2

01
1)

;O
’T

oo
le

et
al

.
(2

01
1)

;D
un

lo
p

&
M

an
n

(2
01

2)
S

yg
n

at
h

id
ae

(s
ea

h
or

se
s)

H
ip

po
ca

m
pu

s
ba

rg
ib

an
ti

an
d

H
.
co

m
es

<
0.

1
<

0.
02

—
—

—
Pe

ra
nt

e
et

al
.
(2

00
2)

;B
ai

ne
et

al
.
(2

00
8)

H
ip

po
ca

m
pu

s
re

id
i

0.
4

<
0.

2
—

—
—

R
os

a,
D

ia
s

&
B

au
m

(2
00

2)
;F

re
re

t-
M

eu
re

r
&

A
nd

re
at

a
(2

00
8)

X
ip

h
ii

d
ae

(s
w

or
d

fi
sh

es
)

X
ip

hi
as

gl
ad

iu
s

—
—

—
—

10
00

s
T

ak
ah

as
hi

et
al

.
(2

00
3)

C
H

O
N

D
R

IC
H

T
H

Y
E

S
C

ar
ch

ar
h

in
id

ae
(r

eq
u

ie
m

sh
ar

k
s)

C
ar

ch
ar

hi
nu

s
br

ev
ip

in
na

an
d

C
.
le

uc
as

—
—

—
—

<
20

St
ev

en
s,

W
es

t&
M

cL
ou

gl
in

(2
00

0)
;Y

ei
se

r,
H

eu
pe

l&
Si

m
pf

en
do

rf
er

(2
00

8)

Biological Reviews 90 (2015) 1215–1247 © 2014 The Nature Conservancy. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



Connectivity and marine reserves 1225

T
ab

le
1.

C
on

tin
ue

d

C
L

A
SS

M
ov

em
en

t(
lin

ea
r

di
st

an
ce

in
km

)

Fa
m

ily
(c

om
m

on
na

m
e)

R
ec

om
m

en
de

d
m

in
im

um
m

ar
in

e
re

se
rv

e
si

ze
(li

ne
ar

di
st

an
ce

in
km

)

H
om

e
ra

ng
e

an
d

te
rr

ito
ri

es

Sp
aw

ni
ng

(b
re

ed
in

g)
m

ig
ra

tio
ns

O
nt

og
en

et
ic

ha
bi

ta
t

sh
ift

s

O
th

er
lo

ng
-t

er
m

m
ov

em
en

ts
(c

or
e

ar
ea

s
of

us
e)

So
ur

ce
s

C
ar

ch
ar

hi
nu

s
al

bi
m

ar
gi

na
tu

s
—

—
—

—
<

20
(<

2)
K

at
o

&
C

ar
va

llo
(1

96
7)

in
St

ev
en

s
(1

98
4)

;S
te

ve
ns

(1
98

4)
;B

ar
ne

tt
et

al
.
(2

01
2)

C
ar

ch
ar

hi
nu

s
pe

re
zi

—
<

40
—

—
<

40
(<

10
)

K
oh

le
r,

C
as

ey
&

T
ur

ne
r

(1
99

8)
;C

ha
pm

an
et

al
.

(2
00

5)
;G

ar
la

et
al

.
(2

00
6)

;B
on

d
et

al
.
(2

01
2)

R
hi

zo
pr

io
no

do
n

ac
ut

us
an

d
R

.
ta

yl
or

i
—

—
—

—
<

10
0

St
ev

en
s

et
al

.
(2

00
0)

;Y
ei

se
r

et
al

.
(2

00
8)

C
ar

ch
ar

hi
nu

s
am

bl
yr

yn
ch

oi
de

s,
C

.
fa

lc
if
or

m
is

an
d

C
.
fit

ro
ye

ns
is

—
—

—
—

<
20

0
K

at
o

&
C

ar
va

llo
(1

96
7)

in
St

ev
en

s
(1

98
4)

;S
te

ve
ns

(1
98

4)
;S

te
ve

ns
et

al
.
(2

00
0)

C
ar

ch
ar

hi
nu

s
pl

um
be

us
—

<
20

0
—

—
—

R
ec

hi
sk

y
&

W
et

he
rb

ee
(2

00
3)

C
ar

ch
ar

hi
nu

s
m

el
an

op
te

ru
s

—
<

20
<

50
<

10
0

<
20

0
(<

10
)

St
ev

en
s

(1
98

4)
;P

ap
as

ta
m

at
io

u
et

al
.
(2

00
9,

20
10

);
D

un
lo

p
&

M
an

n
(2

01
2)

;C
hi

n
et

al
.
(2

01
2,

20
13

a,
b)

;(
J.

M
ou

ri
er

,u
np

ub
lis

he
d

da
ta

)i
n

M
ou

ri
er

&
Pl

an
es

(2
01

3)
;M

ou
ri

er
&

Pl
an

es
(2

01
3)

C
ar

ch
ar

hi
nu

s
am

bl
yr

hy
nc

hu
s

—
<

10
—

—
<

20
0

(<
20

)
M

cK
ib

be
n

&
N

el
so

n
(1

98
6)

;H
eu

pe
l,

Si
m

pe
fe

nd
or

fe
r

&
Fi

tz
pa

tr
ic

k
(2

01
0)

;B
ar

ne
tt

et
al

.
(2

01
2)

;(
Sp

ee
d

et
al

.,
pe

rs
on

al
co

m
m

un
ic

at
io

n)
in

Fi
el

d
et

al
.
(2

01
1)

;F
ie

ld
et

al
.

(2
01

1)
;V

ia
nn

a
et

al
.
(2

01
3)

C
ar

ch
ar

hi
nu

s
am

bo
in

en
si

s
—

<
30

—
—

<
30

0
(<

20
)

St
ev

en
s

et
al

.
(2

00
0)

;K
ni

p
et

al
.
(2

01
1)

;D
un

lo
p

&
M

an
n

(2
01

2)
C

ar
ch

ar
hi

nu
s

m
ac

lo
ti

—
—

—
—

<
80

0
(<

50
)

St
ev

en
s

et
al

.
(2

00
0)

C
ar

ch
ar

hi
nu

s
so

rr
ah

—
<

20
—

—
<

20
00

(<
50

)
St

ev
en

s
(1

98
4)

;K
ni

p,
H

eu
pe

l&
Si

m
pf

en
do

rf
er

(2
01

2a
,b

)
C

ar
ch

ar
hi

nu
s

ti
ls

on
i

—
—

—
—

<
20

00
(<

50
)

St
ev

en
s

(1
98

4)
C

ar
ch

ar
hi

nu
s

ga
la

pa
ge

ns
is

—
—

—
—

<
30

00
(<

10
0)

K
oh

le
r

et
al

.
(1

99
8)

;L
ow

e
et

al
.
(2

00
6)

;M
ey

er
,

Pa
pa

st
am

at
io

u
&

H
ol

la
nd

(2
01

0b
)

C
ar

ch
ar

hi
nu

s
li
m

ba
tu

s
an

d
C

.
lo

ng
im

an
us

—
—

—
—

<
30

00
K

oh
le

r
et

al
.
(1

99
8)

;H
eu

pe
l,

Si
m

pf
en

do
rf

er
&

H
ue

te
r

(2
00

4)
;D

eA
ng

el
is

et
al

.
(2

00
8)

Biological Reviews 90 (2015) 1215–1247 © 2014 The Nature Conservancy. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



1226 A. L. Green and others

T
ab

le
1.

C
on

tin
ue

d

C
L

A
SS

M
ov

em
en

t(
lin

ea
r

di
st

an
ce

in
km

)

Fa
m

ily
(c

om
m

on
na

m
e)

R
ec

om
m

en
de

d
m

in
im

um
m

ar
in

e
re

se
rv

e
si

ze
(li

ne
ar

di
st

an
ce

in
km

)

H
om

e
ra

ng
e

an
d

te
rr

ito
ri

es

Sp
aw

ni
ng

(b
re

ed
in

g)
m

ig
ra

tio
ns

O
nt

og
en

et
ic

ha
bi

ta
t

sh
ift

s

O
th

er
lo

ng
-t

er
m

m
ov

em
en

ts
(c

or
e

ar
ea

s
of

us
e)

So
ur

ce
s

G
al

eo
ce

rd
o

cu
vi

er
—

<
35

—
—

<
80

00
(<

50
0)

K
oh

le
r

et
al

.
(1

99
8)

;H
ol

la
nd

et
al

.
(1

99
9)

;S
te

ve
ns

et
al

.
(2

00
0)

;L
ow

e
et

al
.
(2

00
6)

;H
ei

th
au

s
et

al
.

(2
00

7)
;M

ey
er

et
al

.
(2

00
9,

20
10

b)
;D

un
lo

p
&

M
an

n
(2

01
2)

N
eg

ap
ri

on
ac

ut
id

en
s

an
d

N
.
br

ev
ir

os
tr

is
—

<
5

—
—

<
10

00
(<

2)
St

ev
en

s
(1

98
4)

;G
ru

be
r,

N
el

so
n

&
M

or
ri

ss
ey

(1
98

8)
;M

or
ri

ss
ey

&
G

ru
be

r
(1

99
3)

;K
oh

le
r

et
al

.
(1

99
8)

;F
el

dh
ei

m
,G

ru
be

r
&

A
sh

le
y

(2
00

1)
;

W
et

he
rb

ee
,G

ru
be

r
&

R
os

a
(2

00
7)

;D
eA

ng
el

is
et

al
.
(2

00
8)

;Y
ei

se
r

et
al

.
(2

00
8)

T
ri

ae
no

do
n

ob
es

us
—

<
10

—
—

<
30

(<
10

)
R

an
da

ll
(1

97
7)

;B
ar

ne
tt

et
al

.
(2

01
2)

;W
hi

tn
ey

et
al

.
(2

01
2)

G
in

gl
ym

os
to

m
at

id
ae

(n
u

rs
e

sh
ar

k
s)

N
eb

ri
us

fe
rr

ug
in

eu
s

—
—

—
—

<
50

St
ev

en
s

et
al

.
(2

00
0)

G
in

gl
ym

os
to

m
a

ci
rr

at
um

—
—

—
—

<
60

0
(<

10
)

K
oh

le
r

et
al

.
(1

99
8)

;C
ha

pm
an

et
al

.
(2

00
5)

M
yl

io
b

at
id

ae
(e

ag
le

an
d

m
an

ta
ra

ys
)

M
an

ta
al

fr
ed

i
—

<
50

—
—

<
50

0
C

la
rk

(2
01

0)
;C

ou
tu

ri
er

et
al

.
(2

01
1)

M
an

ta
bi

ro
st

ri
s

—
<

40
—

—
<

20
0

D
ew

ar
et

al
.
(2

00
8)

;G
ra

ha
m

et
al

.
(2

01
2)

R
hi

no
pt

er
a

bo
na

su
s

—
—

—
—

<
20

(<
2)

C
ol

lin
s,

H
eu

pe
l&

M
ot

ta
(2

00
7)

P
ri

st
id

ae
(s

aw
fi

sh
es

)
P

ri
st

is
pe

ct
in

at
a

—
—

—
—

<
20

Si
m

pf
en

do
rf

er
,W

ile
y

&
Y

ei
se

r
(2

01
0)

R
h

in
co

d
on

ti
d

ae
(w

h
al

e
sh

ar
k

s)
R

hi
nc

od
on

ty
pu

s
—

—
—

—
<

20
00

–
<

13
00

0
W

ils
on

et
al

.
(2

00
6)

;E
ck

er
t&

St
ew

ar
t(

20
01

)
S

p
h

yr
n

id
ae

(h
am

m
er

h
ea

d
sh

ar
k

s)
S
ph

yr
na

le
w

en
i

an
d

S
.
ti
bu

ro
—

<
10

—
—

<
20

0
H

ol
la

nd
et

al
.
(1

99
3b

);
K

lim
le

y
(1

99
3)

;S
te

ve
ns

et
al

.
(2

00
0)

;H
eu

pe
le

t
al

.
(2

00
6)

;H
ea

rn
et

al
.

(2
01

0)
E

us
ph

yr
a

bl
oc

hi
—

<
20

—
—

—
St

ev
en

s
et

al
.
(2

00
0)

S
ph

yr
na

m
ok

ar
ra

n
—

—
—

—
<

40
0

St
ev

en
s

et
al

.
(2

00
0)

Biological Reviews 90 (2015) 1215–1247 © 2014 The Nature Conservancy. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



Connectivity and marine reserves 1227

F
ig

.
1.

L
in

ea
r

sc
al

e
of

m
ov

em
en

t
of

co
ra

lr
ee

f
an

d
co

as
ta

lp
el

ag
ic

fis
h

sp
ec

ie
s

(m
od

ifi
ed

fr
om

M
ay

pa
,2

01
2)

.N
um

be
r

co
lo

ur
s

ar
e:

bl
ac

k
(d

ai
ly

m
ov

em
en

ts
:h

om
e

ra
ng

es
,

te
rr

ito
ri

es
an

d
co

re
ar

ea
s

of
us

e)
;b

lu
e

(o
nt

og
en

et
ic

sh
ift

s);
re

d
(sp

aw
ni

ng
m

ig
ra

tio
ns

);
an

d
gr

ee
n

(lo
ng

-t
er

m
m

ov
em

en
ts

of
un

de
te

rm
in

ed
ca

us
e)

.1
,S

ea
ho

rs
es

(H
ip

po
ca

m
pu

s
sp

p.
);

2,
an

em
on

efi
sh

es
(A

m
ph

ip
ri

on
sp

p.
);

3,
m

os
t

da
m

se
lfi

sh
es

(e
.g

.
D

as
cy

ll
us

sp
p.

);
4,

m
os

t
bu

tt
er

fly
fis

he
s

(C
ha

et
od

on
sp

p.
);

5,
so

m
e

an
ge

lfi
sh

es
(e

.g
.

C
en

tr
op

yg
e

sp
p.

);
6,

so
m

e
w

ra
ss

es
(e

.g
.

H
al

ic
ho

er
es

ga
rn

ot
i);

7,
so

m
e

su
rg

eo
nfi

sh
es

(e
.g

.
A

ca
nt

hu
ru

s
li
ne

at
us

);
8,

or
an

ge
sp

ot
te

d
fil

efi
sh

(C
an

th
er

hi
ne

s
pu

ll
us

);
9,

so
m

e
so

ld
ie

rfi
sh

es
/s

qu
ir

re
lfi

sh
es

(H
ol

oc
en

tr
us

sp
p.

/M
yr

ip
ri

st
is

sp
p.

);
10

,
m

or
ay

ee
ls

(G
ym

no
th

or
ax

sp
p.

);
11

,
bi

gn
os

e
un

ic
or

nfi
sh

(e
.g

.
N

as
o

vl
am

in
gi

i);
12

,
so

m
e

sn
ap

pe
rs

(e
.g

.
L

ut
ja

nu
s

ca
rp

on
ot

at
us

);
13

,
so

m
e

gr
ou

pe
rs

(m
os

t
C

ep
ha

lo
ph

ol
is

sp
p.

);
14

,
so

m
e

gr
ou

pe
rs

(E
ph

in
ep

he
lu

s
sp

p.
);

15
,

so
m

e
bu

tt
er

fly
fis

he
s

(e
.g

.
C

.
st

ri
at

us
);

16
,

so
m

e
su

rg
eo

nfi
sh

es
(e

.g
.

A
.

co
er

ul
eu

s
an

d
C

te
no

ch
ae

tu
s

st
ri

at
us

);
17

,
so

m
e

an
ge

lfi
sh

es
(H

ol
oc

an
th

us
/

P
om

ac
an

th
us

sp
p.

);
18

,s
om

e
pa

rr
ot

fis
he

s
(so

m
e

S
ca

ru
s/

S
pa

ri
so

m
a

sp
p.

);
19

,s
om

e
sn

ap
pe

rs
(e

.g
.L

.
eh

re
nb

er
gi

i);
20

,y
el

lo
w

ta
ng

(Z
eb

ra
so

m
a

fla
ve

sc
en

s);
21

,
tw

ot
on

e
ta

ng
(Z

.
sc

op
as

);
22

,s
om

e
ra

bb
itfi

sh
es

(e
.g

.S
ig

an
us

li
ne

at
us

);
23

,g
oa

tfi
sh

es
;2

4,
bl

ue
sp

in
e

un
ic

or
nfi

sh
(N

.
un

ic
or

ni
s);

25
,s

om
e

pa
rr

ot
fis

he
s

(e
.g

.S
ca

ru
s

ri
vu

la
tu

s);
26

,s
om

e
gr

un
ts

(e
.g

.
H

ae
m

ul
on

sc
iu

ru
s);

27
,

sq
ua

re
ta

il
co

ra
lg

ro
up

er
(P

le
ct

ro
po

m
us

ar
eo

la
tu

s);
28

,
B

er
m

ud
a

se
a

ch
ub

(K
yp

ho
su

s
se

ct
at

ri
x)

;
29

,
so

m
e

pa
rr

ot
fis

he
s

(C
hl

or
ur

us
sp

p.
);

30
,

em
be

r
pa

rr
ot

fis
h

(S
.

ru
br

ov
io

la
ce

us
);

31
,g

ol
ds

po
tt

ed
sw

ee
tli

p
(P

le
ct

or
hi

nc
hu

s
fla

vo
m

ac
ul

at
us

);
32

,s
om

e
gr

ou
pe

rs
(e

.g
.P

.
le

op
ar

du
s);

33
,b

ig
ey

e
tr

ev
al

ly
(C

ar
an

x
se

xf
as

ci
at

us
);

34
,s

om
e

w
ra

ss
es

(e
.g

.C
or

is
ay

gu
la

);
35

,s
om

e
su

rg
eo

n/
un

ic
or

nfi
sh

es
(e

.g
.A

.
bl

oc
hi

i
an

d
N

.
li
tu

ra
tu

s);
36

,s
ho

em
ak

er
sp

in
ef

oo
t

(S
.

su
to

r)
;3

7,
re

d
sn

ap
pe

r
(L

.
ca

m
pe

ch
an

us
);

38
,s

om
e

gr
ou

pe
rs

(e
.g

.
C

.
so

nn
er

at
i

an
d

E
.

co
ic

oi
de

s);
39

,
so

m
e

em
pe

ro
rs

(e
.g

.
L

et
hr

in
us

ne
bu

lo
su

s);
40

,
si

lv
er

dr
um

m
er

(K
yp

ho
su

s
sy

dn
ey

an
us

);
41

,
ki

ng
fis

he
s

(S
er

io
la

sp
p.

);
42

,
gi

an
t

tr
ev

al
ly

(C
.

ig
no

bi
li
s);

43
,l

em
on

sh
ar

ks
(N

eg
ap

ri
on

sp
p.

);
44

,b
lu

e-
ba

rr
ed

pa
rr

ot
fis

h
(S

.
gh

ob
ba

n)
;4

5,
In

do
ne

si
an

sh
or

tfi
n

ee
l(

A
ng

ui
ll
a

bi
co

lo
r

bi
co

lo
r)

;4
6,

bu
m

ph
ea

d
pa

rr
ot

fis
h

(B
ol

bo
m

et
op

on
m

ur
ic

at
um

);
47

,h
um

ph
ea

d
w

ra
ss

e
(C

he
il
in

us
un

du
la

tu
s);

48
,g

re
en

jo
bfi

sh
(A

pr
io

n
vi

re
sc

en
s);

49
,l

eo
pa

rd
co

ra
lg

ro
up

er
(P

.
le

op
ar

du
s);

50
,w

hi
te

tip
re

ef
sh

ar
k

(T
ri

ae
no

do
n

ob
es

us
)a

nd
nu

rs
e

sh
ar

k
(G

in
gl

ym
os

to
m

a
ci

rr
at

um
);

51
,g

re
y

tr
ig

ge
rfi

sh
(B

al
is

te
s

ca
pr

is
cu

s);
52

,g
ag

gr
ou

pe
r

(M
yc

te
ro

pe
rc

a
m

ic
ro

le
pi

s);
53

,b
la

ck
tip

re
ef

sh
ar

k
(C

ar
ch

ar
hi

nu
s

m
el

an
op

te
ru

s);
54

,m
an

ta
ra

ys
(M

an
ta

sp
p.

);
55

,
G

al
ap

ag
os

sh
ar

k
(C

.
ga

la
pa

ge
ns

is
);

56
,

N
as

sa
u

gr
ou

pe
r

(E
.

st
ri

at
us

);
57

,
tr

um
pe

t
em

pe
ro

r
(L

.
m

in
ia

tu
s);

58
,

m
an

gr
ov

e
re

d
sn

ap
pe

r
(L

.
ar

ge
nt

im
ac

ul
at

us
);

59
,

tu
na

;
60

,
m

ar
lin

/s
w

or
dfi

sh
;6

1,
tig

er
sh

ar
k

(G
al

eo
ce

rd
o

cu
vi

er
).

M
os

t
ill

us
tr

at
io

ns
w

er
e

m
od

ifi
ed

fr
om

R
an

da
ll,

A
lle

n
&

St
ee

ne
(1

99
7)

,B
.

m
ur

ic
at

um
w

as
m

od
ifi

ed
fr

om
G

la
ds

to
ne

(1
98

6)
an

d
so

m
e

w
er

e
dr

aw
n

by
A

.P
.M

ay
pa

.T
ab

le
1

pr
ov

id
es

sp
ec

ifi
c

va
lu

es
an

d
ad

di
tio

na
ls

pe
ci

es
.

Biological Reviews 90 (2015) 1215–1247 © 2014 The Nature Conservancy. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



1228 A. L. Green and others

values to maximum linear distance in kilometres (between
movement boundaries in the longest dimension) because
the asymmetrical shape of some home ranges (Kramer
& Chapman, 1999) made converting distances to area
more problematic. Where only areal measurements were
provided, we either obtained maximum linear distances
from the authors or measured them from figures in papers.
Where this was not possible, we converted areas to linear
distance using the formulae for a circle or square (modified
from Kramer & Chapman, 1999) for species where home
ranges are small relative to patches of appropriate habitat
(e.g. for Sparisoma spp.: Mumby & Wabnitz, 2002).

(1) Home ranges

The home range of a fish is the area in which an individual
spends the majority of its time and engages in most of its
routine activities including foraging and resting (Kramer
& Chapman, 1999; Botsford et al., 2009a; Gruss et al.,
2011). Many species also undertake regular movements to
and from resident spawning aggregations (e.g. parrotfishes,
wrasses and surgeonfishes: Claydon, 2004; Domeier, 2012),
which are considered to be within the home range of
participating individuals (Kramer & Chapman, 1999).
Larger scale movements to transient spawning aggregations
are considered to be spawning migrations outside their home
ranges (see Section II.2 for definitions).

(a) Factors influencing home range size

Home range size varies among and within species (Table 1),
and is influenced by a range of factors (Kramer & Chapman,
1999; Speed et al., 2010; Gruss et al., 2011). Movement
distances generally increase with increasing body size, with
larger species (and individuals) tending to exploit wider
areas and greater distances than smaller ones (Kramer &
Chapman, 1999; Palumbi, 2004), probably because larger
individuals need more space to provide enough resources
to accommodate their greater energetic requirements and
range of behaviours (Speed et al., 2010; Gruss et al., 2011).
For example, Knip et al. (2011) found that older sharks
(Carcharhinus amboinensis) used larger areas and undertook
more excursions from their home ranges than younger
ones. However there are some exceptions, for example
some jacks (e.g. Caranx ignobilis and C. melampygus) undertake
long-distance excursions of tens to hundreds of kilometres
(Tagawa & Tam, 2006; Dunlop & Mann, 2012), but adults
tend to use core areas <5–10 km long (Holland, Lowe &
Bradley, 1996; Meyer, Holland & Papastamatiou, 2007a).

Habitat characteristics such as reef type, structure, size
and shape can also influence movement patterns (Kramer &
Chapman, 1999; Gruss et al., 2011), where home ranges are
likely to be smaller for species in habitats with more available
food and shelter compared to habitats where food and shelter
are scarce (Gruss et al., 2011). For example in the Caribbean,
Semmens, Brumbaugh & Drew (2005) found that due to
differences in the amount and distribution of resources,
surgeonfish (Acanthurus coeruleus) territories are larger in areas

of reef pavement (that have low biogenic structure) than
in areas of reef crest (that have high biogenic structure).
Similarly, Zeller (1997) found that the influence of reef type
and shape are reflected in the home ranges of a coral grouper
(Plectropomus leopardus) on the Great Barrier Reef, i.e. home
ranges on continuous fringing reefs are significantly smaller
than on isolated patch reefs.

Some coral reef species also make crepuscular movements
on a daily basis between daytime resting areas and nightime
feeding areas (Kramer & Chapman, 1999). Often, these
activities occur in different habitat types, and the home
range consists of two areas joined by a narrow movement
path. For example, in the Caribbean, many species of grunt
(Haemulon spp.) rest during the day on coral reefs and move
tens to hundreds of metres to feed over soft substrata at night
(Burke, 1995; Beets et al., 2003). Since some species may move
long distances between resting and feeding habitats (e.g. the
emperor Lethrinus nebulosus moves up to 1 km between lagoon
patch reefs and soft bottoms each day: Chateau & Wantiez,
2008b), they sometimes have home ranges that are larger
than species whose home ranges include only one habitat
type (Kramer & Chapman, 1999).

Some species also exhibit movement patterns in response
to social organisation and behavioural life-history traits.
Species and individuals that exhibit territoriality and intra-
and interspecific aggression tend to have a strong attachment
to sites, limiting their home range size (Afonso et al., 2008).
Territory size also varies among and within species, where
size can be influenced by many factors including substrate
rugosity, harem size and competition (Mumby & Wabnitz,
2002). Territory size may also differ between sexes. For
example in species that live in harems composed of a
dominant male and several females, males have larger
territories than females (Shpigel & Fishelson, 1991; Sakai
& Kohda, 1995).

Fish movement patterns are also influenced by
density-dependent factors (reviewed in Gruss et al., 2011),
including where they are driven by positive or negative
interactions with conspecifics or species belonging to the
same guild (e.g. the unicornfish Naso vlamingii moves away
from conspecifics in high-density areas: Abesamis & Russ,
2005) or where species exhibit movements in response to the
density of their prey or predators (Hixon & Carr, 1997).

Home range size in some species also varies with season,
tide and time of day (Meyer et al., 2007a; Speed et al., 2010;
Barnett et al., 2012). For example, many shark species tend
to have small daytime home ranges and use larger areas at
night, while others make seasonal migrations related to prey
movements and environmental gradients (reviewed in Speed
et al., 2010). Juvenile snappers and emperors also use different
habitats in different seasons or tidal phases (Dorenbosch et al.,
2004; Mellin, Kulbicki & Ponton, 2007).

(b) General patterns in home range size among taxa and trophic groups

Some fishes are found predominantly in and around coral
reef environments (including associated sand, rubble and
rocky areas) and depend on coral reefs for food and/or shelter
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(Bellwood, 1988). The scale of home range movements
of these species is highly variable among and within
families (Table 1 and Fig. 1, for further details see online
Appendix S1).

Some coral reef fishes have very small home ranges
(<10–20 m long) that are limited to one site or habitat. They
tend to include very small species such as cardinalfishes,
gobies, some seahorses, most damselfishes and some
angelfishes (e.g. Centropyge ferrugatus). Some small- to
medium-sized coral reef species also have small home ranges
or territories (<0.1 km long) including most butterflyfishes,
soldierfishes, squirrelfishes and filefishes (e.g. Cantherhines

pullus), while others move further (but still <0.5 km) such
as some butterflyfishes and angelfishes (e.g. Chaetodon striatus

and Pomacanthus paru: Chapman & Kramer, 2000).
Herbivorous reef fishes show a variety of movement

patterns. Some surgeonfishes (e.g. Acanthurus lineatus),
parrotfishes (e.g. Sparisoma spp.) and damselfishes (e.g.
Pomacentrus spp.) are territorial, and aggressively defend
feeding or breeding territories that range from <1 to
∼20 m across. Others form roving schools or have home
ranges that include movements between nocturnal shelters,
feeding and spawning sites (e.g. the surgeonfish A. nigrofuscus:
Mazeroll & Montgomery, 1995). Home range sizes for
most surgeonfishes and unicornfishes are <0.3–1 km long,
although some are several kilometres long (e.g. for A.

nigrofuscus and Naso lituratus). Similarly most parrotfishes do
not move very far (<0.1–0.5 km for most Sparisoma spp., and
small Scarus and Chlorurus species), although some have home
ranges up to 3 km across (e.g. some larger Chlorurus and
Scarus species). The largest parrotfish species, Bolbometopon

muricatum, may move up to 10 km a day (Hamilton, 2004).
Home ranges for other herbivores such as sea chubs

(Kyphosus spp.) have also been recorded to extend up to
3–5 km across. By contrast, most rabbitfishes have home
ranges <3 km long, with at least one species (Siganus

sutor) moving long distances (30 km) including undertaking
confirmed spawning migrations >3 km long (Samoilys et al.,
2013).

Coral reef piscivores such as groupers also show a
variety of movement patterns. Some species are sedentary
and have small home ranges or territories <100 m long
(e.g. most Cephalopholis and some Epinephelus species), while
others may have home ranges several kilometres across
(e.g. some Epinephelus and Plectropomus species). A few species
also undergo long-distance spawning migrations of tens to
hundreds of kilometres (e.g. E. fuscoguttatus and E. striatus: see
Section II.2).

Variation in home range size is also apparent in other
coral reef predators. Although few studies have focused on
movement patterns of wrasses, home range sizes seem to
vary with body size with small- to moderate-sized species
and individuals having small home ranges <100 m across
(e.g. Thalassoma bifasciatum and Bodianus rufus), larger species
having home ranges several kilometres long (e.g. Coris aygula),
and the largest species having home ranges up to 10 km long
(Cheilinus undulatus). By comparison, movement patterns of

goatfishes do not vary much, with most species having home
ranges <0.5–1 km long (e.g. Mulloidichthys and Parupeneus

species).
Many other large predatory fishes that are highly mobile

or nomadic (Gruss et al., 2011) are also typically found in
association with coral reefs (Bellwood, 1988), including some
species of jack, barracuda, snapper, emperor and sweetlip.
However, while many of these species range over large
distances (tens, hundreds and thousands of kilometres), some
exhibit site fidelity within core areas <5–10 km across includ-
ing some jacks (e.g. Caranx ignobilis), barracuda (e.g. Sphyraena

jello), snappers (e.g. Aprion virescens), emperors (e.g. Lethrinus

mahsena) and sweetlips (e.g. Plectorhinchus flavomaculatus).
Other snappers show a wide range of movement patterns.

Some species that are closely associated with coral reefs
have small home ranges (e.g. <100 m across for Lutjanus

carponotatus), while others have home ranges up to several
kilometres long (e.g. L. johni). Others move long distances
(e.g. tens to hundreds of kilometres), which may represent
ontogenetic shifts in habitat or spawning migrations (e.g. for
L. argentimaculatus and L. campechanus).

Coral reef and coastal pelagic sharks (e.g. some requiem,
nurse and hammerhead sharks) have complex movement
patterns that vary with species, size, reproductive status,
ontogeny, tide, time of day, prey availability and environ-
mental conditions (reviewed by Speed et al., 2010). Fidelity to
sites <5–10 km long is common in species that use nursery
areas (e.g. Carcharhinus amblyrhynchos and Negaprion brevirostris),
although some individuals make longer excursions that
extend far beyond their usual home ranges (e.g. >100 km
for C. amblyrhynchos and up to 1000 km for N. brevirostris:
Speed et al., 2010). Site fidelity to mating, feeding and natal
sites may be less common, and has only been observed in a
few species (e.g. Carcharhinus melanopterus moves up to 50 km
to specific pupping areas in French Polynesia: Mourier
& Planes, 2013). By contrast, large coastal and oceanic
sharks have been recorded to move 1000s of kilometres
(e.g. Carcharhinus limbatus and Carcharhinus longimanus) with
some undergoing transoceanic migrations (e.g. Galeocerdo

cuvier and Rhincodon typus), which may be a result of changing
reproductive status or shifting prey distribution (Speed
et al., 2010). Manta rays (Manta spp.) also show fidelity to
areas <50 km across (e.g. Clark, 2010), with excursions that
extend hundreds of kilometres beyond their home range.

Pelagic species (that may be found in the proximity of reefs,
but which principally occur in open water and have no direct
dependence on reefs for food or shelter) also typically move
over very large (10–100 km) or huge distances (hundreds to
thousands of kilometres) including mackerel and tuna (e.g.
Scomberomorus and Thunnus species), dolphinfish (Coryphaena

hippurus), billfishes (e.g. Makaira spp.) and swordfishes (e.g.
Xiphias gladius). These large-scale movements are most likely
part of ontogenetic and/or seasonal migrations for feeding
and breeding (e.g. Thunnus maccoyii move up to 9000 km
between feeding and breeding grounds: Patterson et al.,
2008). Despite many pelagic species moving long distances,
some species (or individuals) use more limited areas. For
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example, Begg, Cameron & Sawynok (1997) found that
while school mackerel (Scomberomorus queenslandicus) move up
to 270 km, most individuals move less than 50 km.

(2) Spawning migrations

Spawning migrations represent the movement of fish from
their home range to a spawning site. For many coral reef
fish species, the end result of a spawning migration is the
formation of a (fish) spawning aggregation (FSA), which by
definition is a group of conspecific fishes, gathered specifically
for the purpose of spawning, with densities typically four
times (or more) that found in non-reproductive periods
(Domeier, 2012; also see Sadovy de Mitcheson & Colin, 2012,
for a complete review). To date, 119 species from 18 different
fish families are known to form spawning aggregations
(Choat, 2012; www.scrfa.org). FSAs may be comprised of
a number of species, while individual sites may entertain
multiple species simultaneously or sequentially over time.

FSAs are predictable events that occur at highly specific
times and locations, making them particularly susceptible to
overfishing (Sadovy & Domeier, 2005; Rhodes & Tupper,
2008; Domeier, 2012). Recent evidence indicates that at least
some FSA-forming species of coral reef fishes utilise common
migratory corridors preceding or following reproduction
(e.g. Starr et al., 2007; Rhodes & Tupper, 2008; Rhodes
et al., 2012). Subgroups of reproductively active fish may also
form at nearby staging areas prior to and after migration to
FSA sites (Nemeth, 2012). Similar to the actual FSA, both
reproductive migratory corridors and staging areas concen-
trate reproductively active fish in a manner that enhances
the potential for removal of individuals prior to spawning.

FSAs generally fall within two primary categories: resident
and transient, which differ in the frequency of occurrence,
persistence of the aggregation, site specificity and the relative
distance that fish migrate to reach the site. Resident spawners
tend to spawn frequently throughout the year and travel short
distances (metres to hundreds of metres) to spawning sites
nearby, which are considered part of their home range (see
Section II.1). As such, resident spawners are less likely to be
impacted by fisheries when their home ranges are enclosed
in a marine reserve. Resident spawners primarily include
herbivorous and omnivorous fishes, such as parrotfishes,
surgeonfishes and wrasses (Colin, 2012).

By contrast, transient spawners often travel long distances
(kilometres to hundreds of kilometres) over days or weeks
to reach specific spawning sites outside of their home
range (Domeier, 2012: Table 1 and Fig. 1, for additional
details see online Appendix S1). More often than not,
transient spawners include large-bodied and commercially
important fishes, such groupers, snappers, emperors and
rabbitfishes. Spawning sites for transient spawners tend to
be concentrated on or near shelf edges, whereas resident
spawning aggregations may also occur in inshore areas
(Claydon, 2004; Colin, 2012). Transient spawners tend to
have relatively short reproductive seasons compared with
resident spawners, with actual spawning confined to one or a
few days toward the end of the aggregation period. Between

spawning periods, fish participating in transient spawning
aggregations often travel back to their home ranges only to
return to the FSA site during subsequent reproductive events,
which may be as long as 1 year or as short as several days
away. Since these migrations are often extensive, fish may
be drawn away from marine reserves where they become
subject to the fishery (e.g. Rhodes & Tupper, 2008; Rhodes
et al., 2012). For both resident and transient aggregations,
the area from which fish are drawn to reproductive sites is
referred to as the catchment area, and no fishing in this area
is often considered necessary to fully protect FSA-forming
species.

(3) Ontogenetic habitat shifts

Some coral reef fishes undergo ontogenetic shifts where they
use different habitat types (e.g. mangroves and seagrasses) as
nursery grounds before moving to their adult habitat on coral
reefs (e.g. some parrotfishes, grunts, snappers, surgeonfishes,
jacks, barracuda, emperors, groupers, goatfishes, wrasses
and rabbitfishes: Smith & Parrish, 2002; Mumby et al.,
2004; Nagelkerken, 2007). Many shark species also undergo
ontogenetic habitat shifts (reviewed in Speed et al., 2010;
Chin et al., 2013a). For instance, some coastal shark species
use shallow turbid waters in bays or rivers as nursery habitats
before moving offshore into deeper, clearer adult habitats
(e.g. some requiem and hammerhead sharks: Holland et al.,
1993b; Simpfendorfer & Milward, 1993; Knip et al., 2011).

Other species use different depths, zones or habitats
on coral reefs at different stages in their life histories
(e.g. some jacks, butterflyfishes, surgeonfishes and sharks:
Wetherbee et al., 2004; Claisse et al., 2009; Maypa, 2012).
For example, some butterflyfishes prefer shallow coral
reef habitats as juveniles, while adults are more widely
distributed throughout a range of depths (e.g. Chaetodon auriga:
Pratchett et al., 2008). Several studies have also documented
ontogenetic shifts among coral reef habitats to fully protect
sharks. For example, Papastamatiou et al. (2009) found that
juvenile blacktip reef sharks (Carcharhinus melanopterus) show
stronger selection for shallow sand flats while adults prefer
reef ledges.

These ontogenetic shifts in habitat use have been
hypothesised as a trade-off between mortality risk and growth
or foraging rate, and may also reflect a change in diet
preferences with age, a mechanism to reduce intraspecific
predation or competition, or changes in reproductive status
(e.g. Dahlgren & Eggleston, 2000; Mumby et al., 2004;
Nagelkerken, 2007; Speed et al., 2010). For example, the
surgeonfish Zebrasoma flavescens initially settle in deeper,
structurally complex coral-rich habitats that offer protection
from predation, then shift to a habitat with less shelter and
more food as they grow (Ortiz & Tissot, 2008; Claisse et al.,
2009).

These ontogenetic shifts in habitat have important
consequences for the structure of coral reef fish assemblages
and populations of key species (Nagelkerken, 2007). For
example, Mumby et al. (2004) demonstrated that the pres-
ence of juvenile habitat (mangroves) in the vicinity of coral
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reefs exerts a profound impact on community structure by
elevating the adult biomass of several species of parrotfishes,
grunts and snappers on reefs in the Caribbean (see also
Nagelkerken, 2007). Several studies in the Indo-Pacific have
also demonstrated that some wrasses, parrotfishes, snapper,
grouper and sweetlips are either absent or have lower
adult densities on coral reefs where their juvenile habitats
(mangroves, seagrasses or sheltered lagoonal, backreef or
inshore reefs) are lacking (e.g. Adam et al., 2011; Olds et al.,
2012; Wen et al., 2013). Coral reef species that depend
on juvenile habitats for population maintenance include
three species listed as Near Threatened, Endangered or
Vulnerable on the IUCN Red List (www.iucnredlist.org):
the humphead wrasse Cheilinus undulatus; the bumphead
parrotfish Bolbometopon muricatum; and the rainbow parrotfish
Scarus guacamaia (Mumby et al., 2004; Dorenbosch et al.,
2005, 2006; Hamilton & Choat, 2012).

With some exceptions (e.g. Verweij et al., 2007;
Papastamatiou et al., 2009; Chin et al., 2013a), our
understanding of these habitat shifts is generally based
on indirect evidence from studies comparing density and
size distributions of species in different habitats rather
than empirical measurements of movement patterns of key
species (e.g. Smith & Parrish, 2002; Simpfendorfer et al.,
2005; reviewed in Nagelkerken, 2007). While empirical
evidence of ontogenetic shifts in habitat use is limited,
some studies provide useful insights into the spatial scale of
these movements (Table 1 and Fig. 1, for additional details
see online Appendix S1). For example, the best available
information suggests that some snappers and damselfishes
have ontogenetic shifts of <10–100s of metres (e.g. Lutjanus
apodus and Dascyllus aruanus), while some jacks (e.g. Caranx
ignobilis and C. sexfasciatus) and grunts (Haemulon flavlineatum)
undergo ontogenetic shifts of more than 2–3 km (e.g. Maypa,
2012). Other species undergo much larger scale movements.
For example juvenile blackspot snapper (Lutjanus ehrenbergii)
and blacktip reef sharks (Carcharhinus melanopterus) move more
than 30 and 80 km respectively between coastal nursery
habitats and reefs (McMahon, Berumen & Thorrold, 2012;
Chin et al., 2013a).

III. LARVAL DISPERSAL

How far larvae disperse clearly has important consequences
for designing effective reserves and reserve networks. In the
last few decades, research on larval dispersal in coral reef
fishes has advanced rapidly. Since the last review of this topic
by Jones et al. (2009), a number of new empirical studies
have shed more light on the spatial scale of larval dispersal,
including the first studies of fishery species (Table 2). These
new studies have taken advantage of methodological and
technological innovations in the field of genetics (e.g. Planes
et al., 2009; Puebla, Bermingham & Guichard, 2009; Pinsky,
Montes & Palumbi, 2010) to quantify how far larvae disperse
from their parents during the pelagic larval phase.

Despite substantial progress made during the past decade,
our understanding of the extent of larval dispersal, and how to
use this information to inform marine reserve design, remains
preliminary. For example, population persistence within
a marine reserve or a network of reserves depends upon
recruitment to the local population, through local retention
(the proportion of larvae that return to their natal origin) and
other connectivity pathways (Botsford et al., 2009b; Burgess
et al., 2014). However, while local retention is the appropriate
metric to use to assess the contribution of local production
to population persistence (Burgess et al., 2014), this is difficult
(almost impossible?) to estimate empirically given that the
destination of all larvae produced at a particular location
must be known (Botsford et al., 2009b). Instead, most studies
have measured self-recruitment (i.e. the proportion of recruits
that are the offspring of parents in the same population),
which represents an unknown proportion of local production.
As such, the information on larval dispersal synthesised here
represents the best information currently available to inform
decisions about the design of marine reserve networks. Our
recommendations based on this information (see Section
IV.1) should be reviewed and refined as further empirical
results emerge.

In order to develop guidelines for spatial management,
we sought to infer from available studies the minimum,
maximum and average larval dispersal distances for a range
of species. Our objective was to provide a general idea (based
on empirical evidence from 14 species in 12 studies: Table 2)
of: how far larvae usually settle from natal populations
during single-generation dispersal events; the consistency of
these dispersal patterns across species and through time; and
the probable shape of the dispersal kernel (the likelihood of
successful dispersal as a function of distance from a source
population).

It is important to note that the relatively few available
studies employed different methodological approaches to
measure larval dispersal including larval tagging, genetic
parentage analysis, genetic isolation-by-distance and genetic
assignment (Table 2). Each of these methods has its strengths
and weaknesses. For example, larval tagging and genetic
parentage analysis can provide unequivocal empirical mea-
surements of larval dispersal but may underestimate average
dispersal distance because the large sample sizes required by
this approach limit its application to relatively small spatial
scales (tens of kilometers). Genetic isolation-by-distance
methods, on the other hand, can be used across considerably
larger spatial scales (hundreds to thousands of kilometers),
but they require knowledge about the effective population
size (conceptualised as the number of individuals in a
population that contribute offspring to the next generation),
which is difficult to estimate empirically (Pinsky et al., 2010).
For consistency with other metrics reported herein (see
Section II), where empirical measurements of dispersal were
reported as the size of the area occupied by the source
population (such as in measurements of % self-recruitment
within a particular area), we have converted these to a linear
measure by assuming that the area in question is a circle.

Biological Reviews 90 (2015) 1215–1247 © 2014 The Nature Conservancy. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



1232 A. L. Green and others

T
ab

le
2.

Su
m

m
ar

y
of

la
rv

al
di

sp
er

sa
lo

fc
or

al
re

ef
fis

he
s.

Fa
m

ily
L

oc
at

io
n

(h
ab

ita
tt

yp
e)

m
et

ho
d

E
gg

ty
pe

Pl
an

kt
on

ic
la

rv
al

du
ra

tio
n

(d
ay

s)

So
ur

ce
po

pu
la

tio
n

ar
ea

(h
a)

% se
lf-

re
cr

ui
tm

en
t

M
ea

n
(m

in
–

m
ax

)o
bs

er
ve

d
di

sp
er

sa
l

(k
m

)
Y

ea
r

So
ur

ce

C
h

ae
to

d
on

ti
d

ae
C

ha
et

od
on

ca
pi

st
ra

tu
s

C
en

tr
al

A
m

er
ic

an
C

ar
ib

be
an

co
as

t(
co

nt
in

uo
us

;b
ar

ri
er

re
ef

)G
ID

Pe
la

gi
c

20
–

57
21

25
00

n.
e.

41
.9

(?
–

?)
—

Pu
eb

la
et

al
.
(2

01
2)

C
ha

et
od

on
va

ga
bu

nd
us

K
im

be
B

ay
,P

ap
ua

N
ew

G
ui

ne
a

(p
at

ch
y;

m
ix

ed
)L

T
,G

P
Pe

la
gi

c
29

–
48

47
52

–
72

n.
e.

(<
1

–
<

1)
1

A
lm

an
y

et
al

.
(2

00
7)

—
47

32
–

47
n.

e.
(<

1
–

33
)

2
B

er
um

en
et

al
.
(2

01
2)

E
p

in
ep

h
el

id
ae

H
yp

op
le

ct
ru

s
ni

gr
ic

an
s

C
en

tr
al

A
m

er
ic

an
C

ar
ib

be
an

co
as

t(
co

nt
in

uo
us

;b
ar

ri
er

re
ef

)G
ID

Pe
la

gi
c

13
–

22
18

25
00

n.
e.

7.
7

(?
–

?)
—

Pu
eb

la
et

al
.
(2

01
2)

H
yp

op
le

ct
ru

s
pu

el
la

C
en

tr
al

A
m

er
ic

an
C

ar
ib

be
an

co
as

t(
co

nt
in

uo
us

;b
ar

ri
er

re
ef

)G
ID

Pe
la

gi
c

∼2
1∗

m
ul

tip
le

n.
e.

2.
3

–
14

.4
(?

–
?)

—
Pu

eb
la

et
al

.
(2

00
9)

P
le

ct
ro

po
m

us
ar

eo
la

tu
s

M
an

us
Is

la
nd

,P
ap

ua
N

ew
G

ui
ne

a
(c

on
tin

uo
us

;c
oa

st
al

)G
P

Pe
la

gi
c

(1
9

–
31

)†
56

3
15

–
21

14
.4

(2
.8

–
33

)
—

A
lm

an
y

et
al

.
(2

01
3)

P
le

ct
ro

po
m

us
m

ac
ul

at
us

K
ep

pe
lI

sla
nd

s,
A

us
tr

al
ia

(p
at

ch
y;

is
la

nd
ar

ch
ip

el
ag

o)
G

P
Pe

la
gi

c
24

–
29

36
0

8.
6

(0
.2

–
28

)
—

H
ar

ri
so

n
et

al
.
(2

01
2)

—
60

9
—

—
H

ar
ri

so
n

et
al

.
(2

01
2)

L
ab

ri
d

ae
T

ha
la

ss
om

a
bi

fa
sc

ia
tu

m
C

en
tr

al
A

m
er

ic
an

C
ar

ib
be

an
co

as
t(

co
nt

in
uo

us
;b

ar
ri

er
re

ef
)G

ID

Pe
la

gi
c

38
–

94
21

25
00

n.
e.

21
.8

(?
–

?)
—

Pu
eb

la
et

al
.
(2

01
2)

H
ae

m
u

li
d

ae
H

ae
m

ul
on

fla
vo

li
ne

at
um

C
en

tr
al

A
m

er
ic

an
C

ar
ib

be
an

co
as

t(
co

nt
in

uo
us

;b
ar

ri
er

re
ef

)G
ID

Pe
la

gi
c

13
–

20
21

25
00

n.
e.

37
(?

–
?)

—
Pu

eb
la

et
al

.
(2

01
2)

L
u

tj
an

id
ae

L
ut

ja
nu

s
ca

rp
on

ot
at

us
K

ep
pe

lI
sla

nd
s,

A
us

tr
al

ia
(p

at
ch

y;
is

la
nd

ar
ch

ip
el

ag
o)

G
P

Pe
la

gi
c

21
–

27
36

14
7.

4
(0

.2
–

28
)

—
H

ar
ri

so
n

et
al

.
(2

01
2)

—
60

16
—

—

Biological Reviews 90 (2015) 1215–1247 © 2014 The Nature Conservancy. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



Connectivity and marine reserves 1233

T
ab

le
2.

C
on

tin
ue

d

Fa
m

ily
L

oc
at

io
n

(h
ab

ita
tt

yp
e)

m
et

ho
d

E
gg

ty
pe

Pl
an

kt
on

ic
la

rv
al

du
ra

tio
n

(d
ay

s)

So
ur

ce
po

pu
la

tio
n

ar
ea

(h
a)

% se
lf-

re
cr

ui
tm

en
t

M
ea

n
(m

in
–

m
ax

)o
bs

er
ve

d
di

sp
er

sa
l

(k
m

)
Y

ea
r

So
ur

ce

P
om

ac
en

tr
id

ae
A

m
ph

ip
ri

on
ch

ry
so

pt
er

us
M

oo
re

a,
Fr

en
ch

Po
ly

ne
si

a
(c

on
tin

uo
us

;c
oa

st
al

)G
P

B
en

th
ic

∼1
7

67
4

54
n.

e.
1

B
el

da
de

et
al

.
(2

01
2)

—
—

67
4

32
n.

e.
2

A
m

ph
ip

ri
on

cl
ar

ki
i

L
ey

te
&

C
eb

u
Is

la
nd

s,
Ph

ili
pp

in
es

(c
on

tin
uo

us
;

co
as

ta
l)G

ID

B
en

th
ic

7
–

11
M

ul
tip

le
n.

e.
8.

8
(?

–
?)

—
Pi

ns
ky

et
al

.
(2

01
0)

A
m

ph
ip

ri
on

pe
rc

ul
a

K
im

be
B

ay
,P

ap
ua

N
ew

G
ui

ne
a

(p
at

ch
y;

m
ix

ed
)L

T
,G

P
B

en
th

ic
10

–
13

47
42

n.
e.

(?
–

33
)

1
Pl

an
es

et
al

.
(2

00
9)

—
47

60
n.

e.
(<

1
–

<
1)

2
A

lm
an

y
et

al
.
(2

00
7)

—
47

65
n.

e.
(?

–
25

)
3

B
er

um
en

et
al

.
(2

01
2)

A
m

ph
ip

ri
on

po
ly

m
nu

s
K

im
be

B
ay

,P
ap

ua
N

ew
G

ui
ne

a
(p

at
ch

y;
co

as
ta

l)L
T

,G
P

B
en

th
ic

9
–

12
20

16
U

nk
no

w
n

1
Jo

ne
s

et
al

.
(2

00
5)

—
50

32
n.

e.
(0

.1
–

?)
2

B
ot

tle
ss

B
ay

,P
ap

ua
N

ew
G

ui
ne

a
(p

at
ch

y;
co

as
ta

l)G
P

—
32

00
18

5.
1

(0
.0

15
–

27
.2

)
1

Sa
en

z-
A

gu
de

lo
et

al
.
(2

01
2)

—
32

00
22

4.
8

(0
.0

15
–

35
.6

)
2

—
32

00
23

5.
2

(0
.0

15
–

27
.2

)
3

S
te

ga
st

es
pa

rt
it
us

C
en

tr
al

A
m

er
ic

an
C

ar
ib

be
an

co
as

t(
m

ix
ed

;m
ix

ed
)G

A
B

en
th

ic
24

–
40

>
18

70
00

22
46

.9
(0

.0
6

–
18

7)
1

H
og

an
et

al
.
(2

01
2)

—
>

18
70

00
15

58
.9

(0
.0

6
–

18
7)

2
—

>
18

70
00

14
72

.9
(0

.0
6

–
18

7)
3

C
en

tr
al

A
m

er
ic

an
C

ar
ib

be
an

co
as

t(
co

nt
in

uo
us

;b
ar

ri
er

re
ef

)G
ID

—
21

25
00

n.
e.

7.
5

(?
–

?)
—

Pu
eb

la
et

al
.
(2

01
2)

G
A

,g
en

et
ic

as
si

gn
m

en
t;

G
ID

,g
en

et
ic

is
ol

at
io

n-
by

-d
is

ta
nc

e;
G

P,
ge

ne
tic

pa
re

nt
ag

e;
L

T
,l

ar
va

lt
ag

gi
ng

;n
.e

.,
no

te
st

im
at

ed
.

∗ W
el

lin
gt

on
&

V
ic

to
r

(1
98

9)
.

† Pl
an

kt
on

ic
la

rv
al

du
ra

tio
n

of
19

–
31

da
ys

is
fr

om
P

.
le

op
ar

du
s

(se
e

D
oh

er
ty

et
al

.,
19

94
).

Biological Reviews 90 (2015) 1215–1247 © 2014 The Nature Conservancy. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



1234 A. L. Green and others

Estimates of self-recruitment to small areas of known size
provide an indication of the shortest distances that reef
fish larvae disperse. Several studies that employed larval
tagging and/or genetic parentage analysis on anemonefishes
(Amphiprion spp.) and a butterflyfish (Chaetodon vagabundus)
occupying areas of habitat with a diameter of 505–800 m (i.e.
20–50 ha) have recorded levels of self-recruitment ranging
from 16 to 72% (Jones, Planes & Thorrold, 2005; Almany
et al., 2007; Planes et al., 2009; Berumen et al., 2012). By
contrast, a genetic parentage study of two fishery species
(the grouper Plectropomus maculatus and the snapper Lutjanus

carponotatus) occupying two marine reserves with diameters
of 677 m (36 ha) and 874 m (60 ha) recorded levels of
self-recruitment ranging from 0 to 16% (Harrison et al.,
2012). In these studies, some larvae were recorded to have
dispersed from as little as 10 m to several hundred metres
from their parents (see also Buston et al., 2012). Overall,
evidence suggests that some reef fish larvae disperse very
short distances, and that self-recruitment is common (see
also Jones et al., 2009).

At the other end of the spectrum, in the studies mentioned
above on Amphiprion, Chaetodon, Plectropomus and Lutjanus

species, the furthest larvae have been recorded to disperse is
28–36 km (which was as far as the authors sampled from the
source populations: Table 2). However, reef fish larvae can
and do disperse greater distances. For example, studies of
the damselfish Stegastes partitus in the Caribbean (Hogan et al.,
2012, using genetic assignment: Table 2) and a subtropical
species of wrasse, Coris picta, in Australia (Patterson &
Swearer, 2007, using natural environmental markers in
otoliths) provided evidence of larval dispersal to 187
and ∼570 km, respectively. However, these long-distance
dispersers are likely to represent the tail of the dispersal
kernel. While long-distance dispersers are clearly important
over evolutionary timescales, they are unlikely to constitute a
significant source of population replenishment or connectiv-
ity over the ecological timescales that are the focus of fisheries
management and the design of marine reserve networks.

Among the studies mentioned above, the genetic
parentage analysis by Almany et al. (2013) on a spawning
aggregation of a grouper (Plectropomus areolatus) in Papua New
Guinea is the only one that could provide a quantitative
description of the probable shape of the larval dispersal
kernel of a fishery species over a spatial scale that is relevant
to reserve networks. The study showed that the probability
of successful larval dispersal (and therefore the number of
settlers arriving at a site) declined rapidly as a function of dis-
tance from the source population. For instance, the dispersal
kernel suggested that the magnitude of larval settlement
>25 km from the source was <50% of the expected settle-
ment at or very close to the source (0–5 km). The dispersal
kernel also predicted that 50 and 95% of P. areolatus larvae
settled within 13 and 33 km from the spawning aggregation,
respectively. The dramatic decline in larval connectivity
with distance was consistent with theoretical expectations
(e.g. Siegel et al., 2003; Cowen et al., 2006) and the results
of the only other empirical study of a reef fish (a non-fishery

species) that estimated the shape of a dispersal kernel over
a much smaller spatial scale (<1 km) (Buston et al., 2012).

Several studies that followed Jones et al. (2009) sampled
juveniles across a range of distances from the larval source(s),
which can be used to estimate mean larval dispersal distance
(Table 2). A number of studies sampled across a range of
distances from source populations to a maximum distance of
between 28 and 36 km, and used genetic parentage analysis
to estimate mean larval dispersal ranging between 4.8 km
in an anemonefish (Amphiprion polymnus: Saenz-Agudelo
et al., 2012) and 14.4 km in a coralgrouper (Plectropomus

areolatus: Almany et al., 2013). Perhaps sampling over greater
distances would result in larger mean estimates. Two studies
(Puebla et al., 2009; Pinsky et al., 2010) employing genetic
isolation-by-distance methods on damselfishes (Stegastes

partitus and Amphiprion clarkii) sampled across larger spatial
scales (≥200 km), but provided mean dispersal estimates that
are similar to those suggested by the studies using parentage
analysis (Table 2). However, in one study using genetic
assignment tests on S. partitus (Hogan et al., 2012), mean
dispersal was >10 times than in the aforementioned studies
(Table 2). Although some studies have reported longer mean
dispersal estimates, most recent studies suggest that, on
average, larval dispersal in coral reef fishes across a variety of
habitat configurations and life-history characteristics may be
in the order of 5–15 km. Clearly, further studies on different
species and in different habitat configurations would be useful
in understanding to what extent this is true.

Another key question involving larval dispersal and the
design of reserves and reserve networks is the degree
of consistency in both self-recruitment and connectivity
from 1 year to the next. Three recent studies measured
connectivity and self-recruitment over 2 or 3 years (Table 2).
Hogan et al. (2012) studied seven locations scattered across
187 km for the damselfish Stegastes partitus. They found that
some self-recruitment occurred at each site in every year, but
that the proportion of self-recruitment at a site varied among
years, ranging from 0 (one site in 1 year) to 50%, with an
overall site average of 15%. Similarly, connectivity among
sites varied between years, but there was no evidence that the
strength of connectivity was related to the distance between
sites. Berumen et al. (2012) measured self-recruitment at a
single, isolated island and connectivity between that island
and two coastal sites located 25 and 33 km away for Amphiprion

percula and Chaetodon vagabundus. They found that mean
self-recruitment at the island was similar for both species
and over 2 years, ranging between 40 and 65%. However,
the strength of connectivity between the island and the
two distant sites varied significantly between years for A.

percula (connectivity for C. vagabundus was only measured in
a single year). Finally, Saenz-Agudelo et al. (2012) conducted
a 3-year study of a metapopulation of A. polymnus consisting
of nine subpopulations spread over 35.5 km. They found
that at both the level of the entire metapopulation and at
the subpopulation level, self-recruitment was similar among
years. However, unlike the two previous studies, they found
that connectivity between subpopulations was broadly similar
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among years, and that the magnitude and temporal stability
of connectivity between sites was related to the distance
between sites. Overall, these temporal studies reinforce the
assertion that self-recruitment is common in coral reef fish
populations, while highlighting that connectivity between
sites can be variable or consistent over time, perhaps as a
result of species- or location-specific factors (Jones et al., 2007;
Pinsky et al., 2012).

IV. IMPLICATIONS FOR CONSERVATION AND
MANAGEMENT

(1) Implications for marine reserve network design

In the past decade, many papers and policy documents
have put forth guidelines that have emphasised the need
to incorporate ecological patterns of connectivity in marine
reserve network design (e.g. Palumbi, 2004; Almany et al.,
2009; McCook et al., 2009). However in this context,
connectivity is often poorly defined, and guidelines that
specifically address connectivity have focused on providing
general guidance (e.g. take a system-wide approach that
considers patterns and processes of connectivity within and
among ecosystems: McCook et al., 2009) or rules of thumb
for size and spacing of marine reserves to protect most species
(e.g. McLeod et al., 2009).

Specific scientific advice regarding the configuration of
marine reserves with respect to movement patterns of focal
species can form an invaluable input to the MPA network
design process, as demonstrated by the implementation of a
state-wide network of MPAs in California that was informed
by movement patterns of temperate species (Gleason et al.,
2013; Saarman et al., 2013). Our synthesis of new information
on the connectivity patterns of coral reef and coastal pelagic
fishes allows us, for the first time, to provide specific advice
on how to use connectivity to determine the size, spacing and
location of marine reserves in tropical marine ecosystems, to
maximise benefits for conservation and fisheries management
of a range of taxa.

Marine reserves can be designed to provide protection for
a broad array of species of interest (e.g. in a biodiversity
conservation context) or a handful of important species
(e.g. in a fishery management context) or a combination of
both (Gaines et al., 2010). Where the primary objective is to
protect a few focal species, these guidelines can be specifically
tailored to those species and their movement patterns. Where
protecting multiple key species or a broad range of taxa is
the focus, it may be necessary to identify a range of reserve
sizes and spacing that maximises benefits across these taxa.

(a) Size

For marine reserves to protect biodiversity and enhance
populations of fisheries species in fished areas, they must
be able to sustain target species within their boundaries
throughout their juvenile and adult life-history phases, when

they are most vulnerable to fishing pressure (Palumbi, 2004;
Hastings & Botsford, 2006; Gaines et al., 2010). This will
allow for the maintenance of spawning stock, by enabling
individuals within reserves to grow to maturity, increase in
biomass and reproductive potential, and contribute more to
stock recruitment and regeneration (Russ, 2002).

Marine reserve size should therefore be determined by
the rate of export of adults and juveniles (‘spillover’) to fished
areas. Whilst spillover directly benefits adjacent fisheries, if
the reserve is too small, excessive spillover may reduce fish
density and biomass inside the reserve (Kramer & Chapman,
1999; Botsford et al., 2003; Gaines et al., 2010). This trade-off
has led to divergent recommendations regarding the size of
marine reserves for different objectives. From a conservation
perspective, larger reserves (e.g. 10–20 km in diameter) are
recommended because they enhance population persistence
by increasing the protection of larger populations of more
species (IUCN-WCPA, 2008; McLeod et al., 2009; Gaines
et al., 2010; Saarman et al., 2013). By contrast, smaller
reserves (0.5–1 km across) have been recommended for
fisheries management, since they protect some species and
allow for the export of adults and larvae to fished areas,
leading to direct benefits to fishers and potential increases in
levels of recruitment (e.g. Alcala & Russ, 2006; Jones et al.,
2007; Harrison et al., 2012).

Accordingly, marine reserve size should be informed by
both management objectives and home range sizes of adults
and juveniles of focal species (Table 1 and Fig. 1). Ideally,
this information should be combined with knowledge of
how individuals are distributed relative to one another
(e.g. in exclusive versus overlapping ranges) to determine
how many individuals a marine reserve of a specific size
will protect. In the long term, this information might be
accumulated through meta-analyses of fish densities from
within well-designed and effectively implemented marine
reserves, and models developed to refine recommended
reserve sizes for species that take all aspects of their movement
patterns into account.

Until such models are developed, we recommend that
marine reserves should be more than twice the size of the
home range of focal species for protection (in all directions,
see Table 1). This will ensure that the reserve includes the
entire home range of at least one individual, and will likely
include many more where individuals have overlapping
ranges (noting that a sufficiently large proportion of the
meta-population must be protected overall: see Section
IV.1d ). For species that undergo ontogenetic shifts in habitat
use, smaller marine reserves may be appropriate for nursery
habitats if juveniles have smaller home ranges than adults
(e.g. for some sharks: Speed et al., 2010).

Some species (e.g. some groupers, surgeonfishes, grunts,
snappers, goatfishes and parrotfishes) can be protected within
small marine reserves (0.5–1 km across) because they do not
move very far, while others are more wide-ranging (e.g. some
jacks, sweetlips, groupers, wrasses, parrotfishes, snappers,
emperors and sharks) and require medium to large marine
reserves (2–5 or 10–20 km across, respectively: Table 1
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and Fig. 1). Others move long distances and require very
large marine reserves (20–100 km across or larger) such as
some snappers, jacks, most sharks and manta rays. Since
highly migratory pelagic fishes (e.g. tuna, billfishes and some
mackerel) and oceanic sharks can range over much larger
distances, marine reserves are likely to have limited utility for
these species unless the reserves are thousands of kilometres
across. Species that move over larger distances than a reserve
size will only be afforded partial protection; however, reserves
can provide benefits for these species if they protect specific
locations where individuals aggregate and become especially
vulnerable to fishing mortality (see Section IV.1c) (Norse
et al., 2005).

Optimal size will also depend on the level of resource use
and the efficacy of other management tools. Where fishing
pressure is high and there is no additional effective fisheries
management in place outside reserves, then networks of both
small and large marine reserves will be required to achieve
both biodiversity and fisheries objectives. However, if addi-
tional effective management is in place outside reserves for
wide-ranging species, then networks of small marine reserves
can contribute to achieving both conservation and fisheries
objectives (provided that a sufficiently large proportion of
the meta-population is protected overall: see Section IV.1d ).

A preliminary analysis of long-term monitoring of
marine reserves in the Philippines suggests that using these
recommendations for marine reserve size to protect focal
species (Table 1) is likely to be successful. For example,
species that do not move very far (e.g. the unicornfish
Naso vlamingii, the surgeonfish Ctenochaetus striatus and small
groupers such as Cephalopholis argus that move <0.1–0.3 km:
Table 1) have shown significant increases in their density and
abundance within small marine reserves such as Apo Island
Marine Reserve (Russ et al., 2004; Abesamis & Russ, 2005),
which encompasses a 0.5 km long section of coral reef that is
similar to the minimum marine reserve size recommended
for those species (0.2–0.6 km: Table 1). Apo Island also
demonstrates that small reserves can provide benefits for
some wide-ranging species (e.g. the jack Caranx sexfasciatus

that has core areas of use <3 km across), where they
are combined with other fisheries management strategies
(Maypa et al., 2002; Maypa, 2012). By contrast, some species
that move further and are more vulnerable to fishing (e.g.
sharks that have core areas of use up to 10 km across such as
Carcharhinus melanopterus and Triaenodon obesus) have not shown
increases in their populations in this small reserve (A. White
& R. Abesamis, personal observations). However, these shark
species have shown a dramatic recovery in their density and
biomass in the much larger Tubbataha Natural Park (A.
White, unpublished data), which is a marine reserve that
has a maximum reef length of 20 km that is large enough to
protect these species. Sharks and jacks have also been found
to be more abundant in larger versus smaller MPAs in others
studies (e.g. in Hawaii: Friedlander, Brown & Monaco, 2007).

However, it is important to note that these recommenda-
tions regarding minimum reserve size based on movement
patterns of focal species must apply to the habitats that adults

and juveniles of these species use (rather than total size of
the marine reserve per se). For example, if a reserve includes
seagrass, coral reef and open water habitats, for species that
use reef habitats only, the minimum size refers to the reef
habitat that these species use within the reserve.

Larval dispersal also has implications for marine reserve
size. For instance, Botsford, Hastings & Gaines (2001)
recommended that reserves must be larger than the mean
larval dispersal distance (at least twice the size) of the species
they aim to protect in order for reserve populations to be
self-sustaining. Since the best available empirical evidence
indicates that coral reef fish larvae tend to settle on average
5–15 km from their parents (see Section III), reserves more
than 10–30 km across are likely to be self-sustaining for
these species. While smaller reserves are more likely to be
sustained by connectivity with other populations rather than
by self-seeding, the available empirical evidence also shows
that self-recruitment at more limited spatial scales (<1 km) is
common, indicating that a certain degree of larval retention
usually occurs and that some larvae have limited dispersal.
Thus, smaller reserves may still provide recruitment benefits
within and close to their boundaries.

(b) Spacing

Benefits for both conservation and fisheries management are
increased by placing reserves within a mutually replenishing
network (McLeod et al., 2009), with spacing such that reserves
are highly connected to one another through larval dispersal
(Shanks, Grantham & Carr, 2003; Palumbi, 2004; Almany
et al., 2009; Gaines et al., 2010) while providing recruitment
subsidies to fished areas (Botsford et al., 2001, 2003, 2009a;
Almany et al., 2009). Data from the available empirical studies
(Table 2) indicate that reef fish larvae tend to settle close to
their parents and that linkages between local populations via
larval dispersal are more likely to occur at limited distances
(few tens of kilometers). Across species and locations, reef
fish larvae appear to settle within 5–15 km of their parents
on average; some larvae disperse up to 35 km from their
parents, and a few larvae may disperse several hundred
kilometres. At the same time, self-recruitment, even to
small areas of habitat (diameters of 0.5–0.9 km), appears
to be common and to occur consistently through time,
indicating that short-distance dispersal is relatively frequent.
This information is consistent with the prediction that the
probability of successful larval settlement (and therefore
the magnitude of recruitment) declines considerably with
increasing distance from a source population (e.g. a reserve).

In terms of reserve spacing, the diminishing probability
of successful larval dispersal with increasing distance from a
source population (i.e. the shape of the dispersal kernel) may
lead one to assume that situating reserves within a certain
minimum distance from one another will provide sustaining
recruitment (i.e. recruitment sufficient to equal or exceed
natural mortality in a population; see Steneck et al., 2009).
However, there is no evidence to support this at present. At
best, the available evidence suggests that larval connections
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between reserves are likely to be stronger at more limited
spatial scales, e.g. <15 km.

Until better information is available, we recommend a
maximum spacing distance between reserves of 15 km. This
spacing distance is about 2–3 times greater than the typical
larval dispersal distance estimated for several fishery and
non-fishery species (Puebla et al., 2009; Pinsky et al., 2010;
Harrison et al., 2012; Puebla, Bermingham & McMillan,
2012; Saenz-Agudelo et al., 2012) but conservative compared
to the dispersal potential of other species (Table 2). Spacing
reserves no more than 15 km apart will likely enhance the
recruitment effect of reserves to other reserves and fished
areas within that spatial scale. We further recommend that
if reserves tend to be small as they are in certain regions
(<1 km2: see Section IV.1d ), the spacing distance between
them should be less than 15 km because the magnitude of
larval export from the small source populations in these
reserves will probably be less than from larger source
populations in larger reserves.

Our recommendations with regards to spacing reserves
may require revision as additional information from methods
that can explicitly consider population persistence within
reserve networks becomes available. However, it may be
some time before information from such methods are
available since they require empirical estimates of larval
dispersal as well as information on population size, survival,
and fecundity within patches (Burgess et al., 2014).

(c) Location

The location of marine reserves should largely be informed
by information about the distribution of key habitats utilised
by focal species and movement patterns of adults and
juveniles among them (e.g. Olds et al., 2012). Since areas with
high habitat connectivity can improve reserve performance
(by supporting more species and maintaining ecosystem
processes), these areas should be prioritised for protection
(Edwards et al., 2010; Olds et al., 2012).

Furthermore, the location of a reserve to protect a
particular species or group of species must be placed in the
habitats that are suitable for the home ranges of those species.
For example, marine reserves focused on protecting sharks
should include coral reef habitats where reef sharks aggregate
or show fidelity to specific sites (nursery, reproduction or
feeding areas: see Section II.1), and extend a significant
distance from the reef to incorporate deep-water foraging
habitats of other shark species (e.g. Carcharhinus albimarginiatus
and Sphyrna lewini: Hearn et al., 2010; Barnett et al., 2012).

To provide adequate protection for species that undergo
ontogenetic habitat shifts, some portion of each habitat
utilised by juveniles (e.g. recruitment hotspots: Wen et al.,
2013) and adults should be protected within the same reserve.
If multiple small reserves protecting different habitats are
more feasible, they must be spaced to allow for movement
among protected habitats.

For species that undertake spawning migrations, it is
important to protect FSAs, migratory corridors and staging
areas, in addition to protecting the home range of a

sufficiently large proportion of their population (Rhodes
& Tupper, 2008; Rhodes et al., 2012). If the temporal and
spatial location of these critical areas is known, they should be
protected in permanent or seasonal marine reserves (Zeller,
1998; Sadovy & Domeier, 2005; Rhodes & Tupper, 2008;
Rhodes et al., 2012). If the location of these areas is not
known, or if the scale of movement is too large to include in
marine reserves (e.g. migration corridors), other management
actions will be required (see Section IV.2).

Another consideration when placing reserves is maximis-
ing their potential to provide a source of larvae to other
reserves and fished areas (Gaines et al., 2010). A common
recommendation is to protect larval ‘source’ populations
(e.g. Roberts et al., 2006; Almany et al., 2009), which can
consistently provide larvae to other populations. In practice,
identifying source populations is difficult and typically relies
on oceanographic modelling (e.g. Bode, Bode & Armsworth,
2006). Furthermore, our review of larval dispersal studies
indicates that delivery of larvae from one site to another is
likely to vary in time, such that a location might act as a
source in 1 year, but not another. Consequently, we recom-
mend that marine reserves are located on the basis of key
habitats and fish movements among these. However since
currents are likely to influence dispersal to some degree, if
there is a strong, consistent, unidirectional current, a greater
number of marine reserves should be located upstream
relative to fished areas.

Another aspect of larval dispersal that is relevant to
selecting reserve sites is the need to protect spatially isolated
populations (e.g. remote atolls). Isolated populations that
are largely self-replenished have high conservation value,
especially where they harbour endemic species and/or
unique assemblages (Jones, Munday & Caley, 2002; Roberts
et al., 2006). Low connectivity with other areas makes these
locations less resilient to disturbance, so protecting a large
fraction of their area may be required to ensure population
persistence (Almany et al., 2009). Pinsky et al. (2012) suggest
that populations or locations separated from their nearest
neighbour by more than twice the standard deviation of
larval dispersal would be largely reliant on self-recruitment
for replenishment. In this context, and given the data so far
obtained from dispersal studies, conservatively, a location or
population >20–30 km from its nearest neighbour should
be considered isolated and afforded greater protection.

(d ) Consideration of broader ecological and social factors

The recommendations proposed above are based on larval
dispersal and movement patterns (connectivity) alone. To
inform real-world planning initiatives, these guidelines must
be considered alongside other ecological criteria (Green
et al., 2014), and applied within different, context-dependent,
socioeconomic and governance constraints (Walmsley &
White, 2003; Ban, Picard & Vincent, 2009; Lowry, White &
Christie, 2009; Ban et al., 2011).

In addition to connectivity, there are other ecological
considerations required to ensure that marine reserves are
designed to maximise their benefits for conservation and
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fisheries management (reviewed in IUCN-WCPA, 2008;
McLeod et al., 2009; Green et al., 2014). They include:
representing 20–40% of each habitat in marine reserves
(depending on fishing pressure, other fishery management
measures, and the availability or rarity of habitats) to ensure
that a sufficiently large proportion of the meta-population is
protected overall; protecting at least three widely separated
examples of each habitat in marine reserves (to minimise
the risk that they might all be adversely impacted by a
single disturbance); ensuring marine reserves are in place
for the long term (preferably permanently); protecting
special and unique areas in marine reserves (e.g. resilient
sites, turtle nesting areas, FSAs); minimising and avoiding
threats (such as land-based runoff) in marine reserves; and
creating large multiple-use MPAs that include (but are not
limited to) marine reserves. Whilst many of these guidelines
can be applied alongside our recommendations regarding
connectivity, some might create design trade-offs that need
to be resolved. For example, small reserves should be spaced
close together to maximise connectivity between them (see
Section IV.1b), but this might require further replication
of habitats in more distant reserves due to the increased
likelihood of closely spaced reserves being impacted by a
single disturbance event.

Social, economic and cultural factors often determine the
degree to which ecological criteria regarding the optimal
configuration of marine reserves can be applied (Ban et al.,
2009, 2011; Lowry et al., 2009; Gleason et al., 2013). For
example in some situations, large marine reserves might be
a viable option, e.g. in California (Gleason et al., 2013) or in
remote oceanic areas with small or no human populations
(e.g. Tubbataha Reef, Philippines: Green et al., 2011).
However, in many countries with coral reefs, especially where
communities rely heavily on these reefs for their livelihoods,
large reserves are both socially and politically impractical
(Ban et al., 2011). In these settings, smaller reserves are
more acceptable to local communities because they exclude
smaller areas from fishing and fit within customary marine
tenure boundaries or local government jurisdictions (Kramer
& Chapman, 1999; Ban et al., 2009). In these cases, reserves
are commonly much smaller (∼1 km across: e.g. Weeks et al.,
2010) than typically recommended (e.g. 3–10 km across:
Halpern & Warner, 2003; Shanks et al., 2003).

Many previous recommendations for marine reserve
design from a conservation perspective have conveyed
the message that ‘bigger is better’ (e.g. Sale et al., 2005;
IUCN-WCPA, 2008; McLeod et al., 2009). Whilst the results
of this review reinforce this idea since larger reserves are
able to provide protection for a broader range of species
(Table 1, Fig. 1), they also demonstrate that smaller reserves
can be effective for some species and objectives. For example,
small reserves (e.g. 0.5–1 km long) are capable of providing
protection for adults of fishery species that do not move
very far (e.g. small groupers, parrotfishes, surgeonfishes
and unicornfishes). Furthermore, self-recruitment seems
highly probable even in small reserves. Thus small reserves
should contribute to overall reserve network connectivity

and persistence for some species provided that the reserves
collectively represent a minimum proportion of the habitat
of these species (20–40%) and they are close enough to
each other to be connected by larval dispersal (Botsford
et al., 2001; Kaplan & Botsford, 2005). This conclusion is
supported by empirical evidence that networks of small,
well-designed and effectively managed marine reserves can
provide local fisheries benefits for some species through adult
spillover and larval export (e.g. Russ et al., 2004; Harrison
et al., 2012; Almany et al., 2013).

Nevertheless, for species with extensive movement patterns
such as bumphead parrotfish, the minimum linear dimension
of marine reserves would need to be at least 20 km
(Table 1), which is much larger than the size typically
implemented by coastal communities in many countries
(most community-based marine reserves in Southeast Asia
and the Pacific are <1 km across: e.g. Weeks et al., 2010).
Where marine reserves are smaller than the home ranges
of species of interest, management strategies must be
diversified to include alternative fisheries management tools
designed to protect wide-ranging species outside reserves
(see Section IV.2).

(2) Implications for other management strategies

Information regarding larval dispersal and movement
patterns of populations of key species can also be used to
inform other management strategies where marine reserves
are either insufficient (e.g. for species that have large
home ranges or undergo long-distance ontogenetic shifts
or spawning or breeding migrations) or impracticable (e.g.
where large marine reserves are not enforceable or favoured
by communities). Alternative fisheries management strategies
might include harvest controls such as catch, size, gear or
effort restrictions, or outright bans on fishing for selected
species or time periods to protect species with large home
ranges or high vulnerability to fishing due to life-history
characteristics (Hilborn et al., 2006; Speed et al., 2010; Sadovy
de Mitcheson & Colin, 2012).

In many places, small marine reserves may be the
only feasible spatial management tool (Alcala & Russ,
2006). However, in some contexts it may be possible to
combine marine reserves with other spatial management
tools to protect a broader range of species while also
addressing socioeconomic and feasibility considerations.
This may include combining marine reserves with adjacent
limited-take or ‘buffer’ zones that provide additional
protection for wide-ranging species that are unlikely to
be protected within small marine reserves (e.g. humphead
wrasse, bumphead parrotfishes and large grouper) or for
all species except those that move over very large distances
that are unlikely to benefit from marine reserves and are
important for food security or economic reasons (e.g. tuna:
see Gleason et al., 2013; Saarman et al., 2013). By combining
these spatial management approaches, greater protection
might be provided to more species over larger areas than
could be achieved with marine reserves alone. For example
in Palau, the protected area network is combined with
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legislation to protect wide-ranging species in a national shark
sanctuary (www.sharksanctuary.com).

Coral reef species that move long distances to spawn
(see Section II.2), are also likely to require a combined
approach to management that protects their home ranges
and spawning sites within reserves, and prohibits the capture
and sale of reproductive adults during spawning migration
and aggregation periods (Rhodes et al., 2012) to prevent
overfishing. Similar approaches might be required to protect
species that undergo ontogenetic shifts in habitat use (i.e.
seasonal fisheries restrictions during critical phases in their life
history). Other management strategies may also be required
to protect critical habitats, such as improved land use to
protect coral reefs, mangroves and seagrass (Sanchirico &
Mumby, 2009).

(3) Practical advice for practitioners

Of the suite of ecological criteria for marine reserve network
design, connectivity has been one of the most challenging
to put into practice (Almany et al., 2009; McCook et al.,
2009), since empirical data for movement patterns of
important species have typically been unavailable or
inaccessible to those responsible for planning. Syntheses of
available information for a broad array of taxonomic groups
(combined with local knowledge) can help to overcome
the problem of poor data availability in designing marine
reserves for connectivity. However, a new challenge emerges
in how to apply this information in different socioeconomic
contexts.

The maximum size at which reserves are likely to be
feasible (given socioeconomic constraints) may ultimately
drive reserve design, but this should be informed by
information regarding which species will or will not likely
benefit from reserves, given their configuration (size,
location, and distance from other reserves). In many contexts
it will not be feasible, for example, to create marine reserves
that are sufficiently large to protect the full range of species
occurring within a region. However, having information on
how different sizes of reserves may benefit different species
provides a foundation for reserve design against which feasi-
bility trade-offs can be explicitly evaluated. For example in a
temperate context, information on adult movement patterns
and larval dispersal distances informed easy-to-understand
guidelines for size and spacing of marine reserves in a
state-wide MPA network in California (Saarman et al., 2013).
The guidelines provided a framework that allowed partici-
pants to understand better which species might benefit from
different sizes and spacing of MPAs, which informed a more
realistic evaluation of trade-offs between protection and
other socioeconomic considerations (Gleason et al., 2013).

Information on species movement patterns can inform
marine reserve network design in two ways – by identifying
focal species for protection and determining the reserve
configuration needed to protect them, or by using the
configuration of proposed or existing reserves to evaluate
which species might be protected within their boundaries
(Fig. 2). Where reserve configurations are likely to be

inadequate to protect focal species, their design should be
refined or additional management tools will be required
(see Section IV.2). This information can also be used to
inform the design of programs to monitor the effectiveness
of marine reserves by ensuring they focus on species likely to
be protected by reserves with different configurations.

V. CONCLUSIONS

(1) Well-designed and appropriately managed marine
reserves can be effective tools for biodiversity protection
and fisheries management in tropical marine ecosystems.
Benefits for both of these objectives can be increased by
taking larval dispersal and movement patterns of focal
species into account in marine reserve design.

(2) Marine reserves should be more than twice the size of
the home range of adults and juveniles of focal species for
protection (in all directions).

(3) Some species (e.g. some groupers, surgeonfishes, grunts,
snappers, goatfishes and parrotfishes) can be protected within
small marine reserves (<0.5–1 km across) because they do
not move very far, while more wide-ranging species (e.g. some
jacks, sweetlips, groupers, wrasses, parrotfishes, snappers,
emperors and sharks) require medium to large (2–5 or
10–20 km across, respectively) or very large marine reserves
(20–100 km across or larger). Marine reserves may have
limited utility for highly migratory pelagic fishes (e.g. tuna,
billfishes and sharks) that range over much larger distances
unless the reserves are thousands of kilometres across.

(4) Optimal size will also depend on the level of resource
use by people and the efficacy of other management
tools: where fishing pressure is high and there is no
additional effective fisheries management in place outside
reserves, then networks of both small and large marine
reserves will be required to achieve both biodiversity
and fisheries objectives; if additional effective management
is in place for wide-ranging species, then networks of
small marine reserves can contribute to achieving both
conservation and fisheries objectives (provided a sufficiently
large proportion of the meta-population is protected
overall).

(5) Marine reserves should include key habitats utilised by
focal species (for home ranges, nursery grounds, migration
corridors and spawning aggregations), and be located to
accommodate movements among them.

(6) Species whose movement patterns are larger than a
reserve size will only be afforded partial protection; however,
reserves can provide benefits for these species if they protect
specific locations where individuals aggregate and become
especially vulnerable to fishing mortality (e.g. FSAs).

(7) Marine reserve benefits are increased by placing
reserves within mutually replenishing networks with spacing
such that reserves are connected to one another by larval
dispersal of focal species, while providing recruitment subsidy
to fished areas.
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Establish marine reserves at 
least as large as the minimum 
recommended sizes for these 
species in appropriate home 
range habitat types 

Determine if these species 
undergo spawning 
migrations or ontogenetic 
habitat shifts  

Identify focal 
species for 
protection 

Identify home range habitat 
types, home range sizes and 
minimum recommended 
marine reserve sizes for 
these species 

Space marine reserves <15 
km apart (the smaller the 
reserves, the closer they 
should be) 

If so, include critical habitats (e.g. FSAs, 
migration pathways, staging areas, nursery 
habitats) in marine reserves at critical times 

Ensure marine reserve design complies with other ecological and social 

considerations (e.g. 20–40% habitat representation)

If marine reserves comply 
with these recommendations, 
these species are likely to be 
protected 

(B)

(A)

Determine if focal species 
undergo spawning migrations 
or ontogenetic habitat shifts 

Identify marine 
reserve sizes and 
locations 

Determine if focal species are likely to be protected based on 
their home range habitat types, home range sizes and minimum 
recommended marine reserve sizes 

If so, confirm critical habitats are protected (e.g. 
FSAs, migration pathways, staging areas, 
nursery habitats) in marine reserves at critical 
times 

Determine if marine 
reserves are spaced <15 km 
from each other (the smaller 
the reserves, the closer they 
should be)

Ensure marine reserve design complies with other ecological and social 

considerations (e.g. 20–40% habitat representation) 

If marine reserves do not  
comply with these 
recommendations, either 
refine marine reserve 
design or use alternative 
management tools to 
protect these species (e.g. 
permanent or seasonal 
species, catch, size, gear, 
sale or effort restrictions) 

If marine reserves comply 
with these recommendations, 
these species are likely to be 
protected  

If marine reserves do not  
comply with these 
recommendations, either 
refine marine reserve design 
or use alternative 
management tools to protect 
these species (e.g. 
permanent or seasonal 
species, catch, size, gear, 
sale or effort restrictions) 

Fig. 2. Protocol for using connectivity information for marine reserve network design and adaptive management using either (A)
focal species for protection or (B) marine reserve sizes and locations as starting points. Focal species may be high-priority species
for fisheries, tourism or conservation (e.g. species listed as Vulnerable or Endangered on the IUCN Red List); home range habitat
type is available in local fish identification guides and Fishbase (http://www.fishbase.org/); movement patterns (home range sizes,
spawning migrations and ontogenetic habitat shifts) are summarized by taxa in Table 1 and Appendix S1, and by distance in Fig. 1;
minimum recommended reserve sizes are provided in Table 1; and other ecological and social considerations are discussed in
Section IV.1d. If a focal species is not listed in Table 1, Fig. 1 or Appendix S1, similar taxa might be appropriate proxies but caution
should be taken when applying this approach. FSA, fish spawning area.

(8) Larval dispersal distances of coral reef fishes tend to
be <5–15 km, and self-recruitment seems more common
than previously thought, thus: reserve spacing should
be <15 km with smaller reserves spaced closer together
(although these recommendations may require revision as
more information becomes available), isolated populations
(>20–30 km from their nearest neighbour) should be
afforded greater protection, and large marine reserves are
more likely to be self-sustaining (although small reserves
can provide recruitment benefits within and close to their
boundaries).

(9) Larval sources are temporally variable and difficult to
identify. So if there is a strong, consistent, unidirectional
current, a greater number of marine reserves should be
located upstream relative to fished areas.

(10) These recommendations can be used by practitioners
to: design marine reserve networks to maximise benefits for

focal species; review the configuration of existing marine
reserves to ensure they are adequate to protect focal species;
integrate marine reserves with other fisheries management
tools; and refine monitoring programs to measure the
effectiveness of marine reserves.

(11) These recommendations for marine reserve network
design regarding connectivity of reef fish populations must
be considered alongside other ecological design criteria, and
applied within different, context-dependent, socioeconomic
and governance constraints.
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VIII. SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article.
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reported for adult and juvenile coral reef and coastal pelagic
fishes for a range of movement types, locations and habitat
types based on a variety of methods and parameters.

Appendix S2. Methods used for adult and juvenile
movement studies.
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