1. Data Collection

How many fish are there?

Fishing	Catch per unit effort (CPUE)
E.g. 10 fish/hr or 100 fish/hr	
Lots of fish in the catch EQUALS	

To estimate population size of mobile organisms: CaptureRecapture Method (Lincoln Index) More tagged recaptures EQUALS smaller population, right?!

2. Stock Assessment

How many fish can we catch?

First Catch (tag and release)

Tagged
NOT tagged
Lincoln Index:
$1: 3=6: 18$
$\mathrm{m} / \mathrm{n}=\mathrm{M} / \mathrm{N}$
$\mathrm{N}=\mathrm{M} \times \mathrm{n} / \mathrm{m}$
$18=6 \times 3 / 1$

aximum ustainable ield

- K/2
- Fastest Birth rate
- Fastest Population Growth rate

Logistic Growth Curve

- K: carrying capacity
- K: maximum population size
- K: births + immigration EQUALS deaths + emigration

Fastest Population Growth rate

aximum conomic ield

- At MEY, the fishery (as a whole) makes MORE money, for LESS fishing effort (than MSY)

3. Management
 How do we stop people overfishing?

"Fisheries Management is about managing people, not fish"
Input controls Licences, gear restrictions, taxes, closures... Output controls Selectivity criteria (e.g. size/agelsex), landing

E to catch fish"
Who is making and enforcing the rules?
Governance: Top-down vs. bottom-up governance, co-mgmt., RFMOs.. Types of management plans

Single-Species Fisheries Management (SS)	\%	$\begin{gathered} \text { Fishery } \\ \text { Mamt } \\ \text { Mant } \\ \hline \text { Plan } \end{gathered}$	$\left\lvert\, \frac{M S Y}{M E Y}\right.$
Ecosystem-based Fisheries Management (EBFM)		$\begin{gathered} \text { Fishery } \\ \text { Momt } \\ \text { Malant } \end{gathered}$	$\begin{array}{\|l\|} \text { MSY Pus MPA's }_{\&} \\ \text { MEY Bycatch } \downarrow \end{array}$

Q. Not enough scientific data? Ans. Precautionary Principle applies!

A Marine Protected Area (MPA) MUST be designed well

