Name:

Date:

Measuring Marvellous Mangroves

using Rapid Long Plots (RLPs)

a.k.a. transects

Methods provided by Dr Norm Duke & Jock Mackenzie

MangroveWatch and Earthwatch

Booklet created by Gail Riches © Marine Education

© Marine Education 2023 CC BY-NC-SA

Published by Marine Education 2023 ABN: 48765406873 Author: Gail Riches Email: info@marineeducation.com.au www.marineeducation.com.au M. 0434 934 184

More resources available at: <u>https://earthwatch.org.au/research/wetlands-reefs/wetlands-education-resources</u> EarthWatch Australia School programs; <u>https://earthwatch.org.au/education/school-programs</u>

Interested persons are invited to contact the author for information or to indicate errors and omissions.

This booklet was created by Gail Riches following a teacher PD at Boyne Island Environmental Education Centre in August 2023 as part of EarthWatch Australia's 'Protecting Wetlands for the Future' program.

@mangrovewatch @earthwatch_aus @GreatBarrierReefFoundation. Department of Climate Change, Energy and Water.

The 'Protecting Wetlands for the Future' program is proudly supported by partnerships between the Australian Government Reef Trust and the Great Barrier Reef Foundation Citizen Science for Change Grants.

#lovethe reef #ReefTrust #TeachLive #ProtectingWetlandsForTheFuture #mangrove #CitizenScience #education #professionaldevelopment #greatbarrierreef #wetlands #mangroves #conservation #teachers #STEM #stemeducation #environment #conservation #benanddiphotography #BIEEC #MarineEducation

Multi disciplinary

Date:

This booklet is used to teach science and math, plus many more subjects

Cross-curriculum priorities: Aboriginal and TS Islander Histories and Culture; and Sustainability

Science (yr5-10)

Mathematics

ART

Aquatic Practices (yr11&12)

Marine Science (yr11&12)

Carbon Super Stores

Name/s:

Date:

Mangroves trap carbon 50 times faster than any other forest! How? Mangroves have adapted to living in very salty environments by dropping lots of leaves (containing salt) *all* the time.

This rapid leaf production and leaf turnover rates trap more carbon than any other forest.

Hence, mangrove forests store 4-10 times MORE carbon than any other forest!

Walk into a mangrove forest. Is there a healthy population of crabs? Can you see lots of burrows? How many leaves do you see? Not many? Crabs are super efficient at burying the leaves. Lots of crabs = very few leaves (now buried and stored as carbon under the ground).

Jock Mackenzie

Marine Education

The scientist for this program

Date:

Name/s:

HELP JOCK save the mangroves!

earth**watch**

AUSTRALIA

Jock Mackenzie

Wetlands Program Manager and MangroveWatch Coordinator @ Earthwatch Institute Australia Mangrove and Saltmarsh Conservation and Management through Citizen Science. Founder and Co-Director of MangroveWatch - a community science partnership to educate, engage and empower local communities to protect and improve mangrove habitats through local management initiatives. 15+ years playing in the mangrove mud.

Jock will turn your data into *meaningful* outcomes for mangroves. But he needs more data. He can't do it on his own. Jock developed this methodology so you can help him collect the data he needs to save the mangroves. It's easy and it's fun! Email your data to him directly at: jmackenzie@earthwatch.org.au

Equipment

Date:

Step 1: Tick the box to remember what each group has packed in their equipment bag

Data SHEET

Date:

Date:			S	start Time:					Location:							
			E	ind Time:					Forest Type:							
Collectors:									Plot number:							
GPS Start Coordinates:									Distance to shore:							
GPS End Coordinates:								Plot length: Plot Width								
Compass bearing from START:																
Dead T	ree Tally:								Live Ca	anopy Tre	e Tally:					
Stem Number	Tree Number	ulti-stem (a,b ?)	ong Tape (in m)	<i>om</i> Tape (in m)	Image: Character with the second s					ecimal	Lean: (°)	or Emergent (E)	salth score (0-5)	e Damage Code		
		W	Distance Al	Distance Fr	Side of transect: Left		Diameter (cm) to 0.1 decimal point	Circumference – calculate in class (3.14 x D) to 0.1 decimal point	Degrees to top of tree (protractor)	Height of person (cm)	Distance from person to tree (cm)	Tree height (m) – calculate in class		Position: Canopy (C) or Sub-canopy (SC)	эн	Tree
1																
2																
3																
4																
5																
6																
7																
8																

Data SHEET (make enough copies to record 50 stems)

Name/s:

Date:

Number	Number	(; d,b) ι	e (in m)	pe (in m) Right (R)			Tree	girth m)	Tree I	neight (m) po	to 0.1 de int	ecimal	ean: (°)	(SC) or gent (E)	ire (0-5)	je Code
Stem 1	Tree h	Multi-stem	Distance Along Tap	Distance From Tap	Side of transect: Left (L) or R	Specie	Diameter (cm) to 0.1 decimal point	Circumference – calculate in class	3.14 x D) to 0.1 decimal point Degrees to top of tree (protractor)	Height of person (cm)	Distance from person to tree (cm)	Tree height (m) – calculate in class	Le	Position: Canopy (C) or Sub-canopy Emerg	Health sco	Tree Damag

Look the Part

Name/s:

Date:

Step 2: Put on your hat, long-sleeve shirt, long pants & dive booties (or old full-covered shoes)

Photo © BenAndDi. On location in Yellow Mangrove Forest at EarthWatch's 'Protecting Wetlands for the Future' program, Boyne Island Environmental Education Centre August 2023. From left to right: Jock MacKenzie (MangroveWatch, EarthWatch), Liz Irvine (EarthWatch) and Danny Hudson (Pioneer Catchment & Landcare Group Inc.)

Select a Mangrove Forest

Name/s:

Date:

Marine Education

Position the Plots PARALLEL to shore

Name/s:

Date:

START TIME:

LOCATION:

Step 3: Select a *dense* part of the mangrove forest *parallel* to the shoreline to put your first transect (tape measure). Pick a spot that is representative of the dominant vegetation zone.

PLOT N°:

DISTANCE FROM SHORE:

FOREST TYPE:

Plot Number (transect or group number): Number each transect as plot 1, 2, 3, etc. *Hint:* 4 people/transect works well. Distance from Shore: How close are you to water (when it's low tide)? 10 metres? 30 metres? 50 metres? Forest Types: What is the dominant type of vegetation? E.g. Red mangrove forest, grey mangrove forest, etc.

Experimental Design

Long plots are *line transects* set up *parallel* to the shore in (the middle of) each zone of a mangrove forest (e.g. low-tide zone, mid-tide zone, high-tide zone) ideally with a similar number of trees left and right of the transect line. **Teams of 4 people** measure 1-2 long plots each (one at a time). Pictured above is the ideal scenario, with 4 long plots in each zone, making a total of 12 long plots. Each long plot takes approximately 1-2 hours to measure (after learning the method and finding your groove by creating a system that works best for you). Therefore, this is a full day excursion.

Tag a Tree

Name/s:

Date:

E

Step 4: Pick a tree to be the start of the transect. It can NOT be too thin. If the tree is >10cm in circumference or >3.2cm in diameter, write number "1" on the tree trunk with chalk. This is tree number 1 !!! This is the START of your transect/long plot.

Step 3: Attach the tape measure to tree 1 and record your GPS location (on google maps)

A global positioning system (GPS) is a network of satellites and receiving devices (e.g. you phone) used to determine the location of something on earth. GPS coordinates pinpoint your start & end point.

Q: What is the GPS reading for LONGITUDE? Ans.

Reel out the Line

Name/s:

Date:

Step 5: Roll out the tape measure approximately 10-20m. The length of each transect will be determined by the density of the forest, but is required to include at least 25 canopy trees (trees that reach the top of the canopy).

Step 5: Take a compass bearing of the direction of the transect line

Your compass bearing is the clockwise angle between north and your point of reference (i.e. the direction of the transect line). Instructions on how to take a magnetic compass bearing Step 1: hold the compass flat so the red part of the compass needle points to NORTH.

Step 2: stand in the direction you wish to measure (in this case, the direction of the transect line).

Step 3: turn the bezel so that zero degrees is on NORTH (the needle always points to North).Step 4: read the bearing (where the lubber line intercepts the bezel) and write that down.

Q: What is the compass bearing of the transect line? Ans.

degrees

Snap a Pic

Name:

Date:

Step 6: Take a photo of your transect.

Trees with multiple stems

Some mangrove trees have more than one stem, a.k.a. trunk. For example, the stem in the ground splits in two stems at some point (not to be confused with branches). We count each stem as a separate entity. On multi-stem trees, we call the first stem "a" and the second stem "b" and so on.

Measure distance (m)

Name:

Date:

Step 8: Measure distance along, and distance from the tape measure.

For every tree, you will measure:

- (1) how far along the tape measure it is (distance along tape in metres), and
- (2) how far left or right it is from the tape measure (distance from tape in metres) pictured below.

Hint: Tree #1 will always be at the start of the tape measure and neither left nor right.

Do NOT spend too much time measuring this EXACT distance. You only need to give the measurement to one decimal place in meters. In the picture above, you can see the person is *not* using a meter ruler, but instead has made his own (2m) ruler using PVC pipe from bunnings (25mm) that works well too!

ID the Tree

Name/s:

Date:

Step 9: Identify the Genus and Species of the Mangrove Tree. Remember, Red Mangrove trees (*Rhizophora stylosa* or RS) have large stilt-like prop roots to breathe and Grey mangrove trees (*Avicennia marina* or AM) have snorkel-like pneumatophores to breathe ⁽³⁾

Photo above: Red Mangrove Trees (Rhyzophora stylosa) © GBR Foundation [1] Photo below: Grey Mangrove (Avicennia marina)

¹¹Project News (2022). Citizen Science project wrap: Stories of impact. Accessed Sept 4th 2023 from: https://www.barrierreef.org/news/project-news/kickstarting-blue-carbon-projects-in-the-asia-pacific

ID the Tree

Date:

Orange Mangrove Trees Bruguiera gymnorhiza (BG) have very distinctive 'knee roots'

Yellow Mangrove Trees *Ceriops australis* (CA) have very yellow leaves and distinctive <u>'buttress roots'. They are often found in the high tide zone & above (less muddy to walk!)</u>

ID the Tree

Name/s:

Date:

River Mangrove Trees Aegiceras corniculatum (AC) occur as a bushy shrub 2 to 3 m high.

Q: What is the species code (first letter of Genus & Species) of Tree 1? Ans.

Measure tree GIRTH

a.k.a. circumference

Name/s:

Date:

Save the mangrove trees and help save the planet!

During these transect (long plot) studies you will be doing lots of measuring. Dr Jock Mackenzie converts your measurements of tree girth (circumference) and tree height to estimate the amount of carbon dioxide the mangrove forest removes from the atmosphere (via photosynthesis) every year. This information is used to preserve and protect mangrove forests. By measuring the trees and sending that information to Jock, you will be directly helping to reduce carbon emissions by saving the mangrove trees.

Step 10: Measure tree thickness ABOVE the roots and BELOW the lowest branch

You can measure tree thickness two ways:

- (1) Wrap the measuring tape around the tree to measure its girth (circumference); or
- (2) Use a set of vernier calipers (or ruler) to measure tree DIAMETER and later in class, convert all measurements of diameter (D) to circumference (C) using the formula: C = 3.14 x D.

Q: What is diameter of Tree 1 (if applicable)? Ans.

Q: What is the circumference of Tree 1? Ans. exact, to one decimal point

Importance of accuracy

Name/s:

Date:

Remember, measure tree thickness ABOVE the roots and BELOW the lowest branch

Name/s:

Date:

Step 11: Measure the height of the tree

How do you to calculate the height of the tree when it's all the way up there? It MUST be as accurate as possible, and exact to one decimal of a meter, for Jock to get his biomass estimates correct. If you have a ruler or pole (of known length) high enough to reach, great! Otherwise, use your protractor and apply some maths to calculate tree height. See below:

How to calculate tree height when your measuring stick doesn't reach...

- 1. Determine the highest point of the tree (you may need to shake the tree to see it).
- 2. Measure the distance (d) from you and the point directly beneath the tree's highest point.
- 3. Measure the angle (a) between your eye level and the top of the tree (use your protractor).
- 4. Apply the formula above*, not forgetting to add your own height (h).

*Hint: record d and a on your data sheet, and do the calculations when you return to school.

Working area:

Q: What is the HEIGHT of Tree N°. 1? Ans. (to one decimal point)

Step 12: Decide if the tree is sub-canopy (short) canopy (forest roof) or emergent (extra tall)

Q: Is the tree a sub-canopy, canopy or emergent tree? Ans.

Measure tree LEAN

Date:

Name:

WHY measure these?

Tree girth, height and lean are used to calculate total standing biomass (carbon capture)

Tree girth and stem diameter

The reason for measuring the stem diameter of trees and shrubs is to use those measurements as proxies of their standing biomass (to estimate the mass of all the wood and leaves etc. in the forest). The standing biomass is directly related to the amount of carbon stored in the trees and below the ground.

Tree height

Height data is used to verify (check) biomass calculations, particularly for species *without* specific allometric equations (that estimate biomass using tree girth and diameter), and for small trees. Tree height, therefore, like tree girth and diameter, should be determined with as much accuracy as possible. Up to 5 metres in height, a height pole is the best method. For taller trees, trigonometric methods or a laser device is useful.

Tree lean

If trees are leaning over, the height measurement could be misleading (i.e. biomass estimate comes up short). Therefore, the overall percent lean is measured to adjust any trigonometric calculations related to biomass. E.g. tree lean is recorded to enable calculation of the total length of the trunk.

Below are graphs that highlight the importance of your work towards protecting mangroves

Mangroves are one of the most carbon-rich ecosystems on earth. In order for mangroves to be included in carbon offsets, it is necessary to know how much carbon they store and sequester. Mangroves use atmospheric carbon to grow. Some carbon is locked up in their trunks, branches and roots. But even more is isolated in the forest soils. The deep muddy soils that mangroves live in provide ideal conditions for preventing decomposition of carbon, keeping it locked up for millennia.

Below are some ideas of what you can do with YOUR data to help save the mangroves

AIM: The aim of this study is to assess mangrove forest condition and forest structure within the fringing mangroves of [your location].

Data collected during this study will contribute to three long-term outcomes;

- Development of a map of [your location's] mangrove biomass to contribute to assessment of mangrove values (needed as justification for their protection).
- Monitoring mangrove condition in different mangrove zones in [your location] over time.
- Validation of MangroveWatch shoreline condition data collected previously.

During this study you will be helping to answer the following questions:

- 1. Do field observations of mangrove forest structure and condition match previous assessments?
- 2. Is the condition of fringing mangrove forest representative of overall forest condition?
- 3. Which mangrove zone has the greatest mangrove biomass (carbon storage)?
- 4. Has mangrove biomass and forest condition changed over time? If so, how?

LET's KEEP GOING!!!

112 Comley, B. W. T. and McGuinness, K. A. (2005). Above- and below-ground biomass, and allometry, of four common northern Australian mangroves. Australian Journal of Botany. 53, 431–436.

Measure tree HEALTH

Step 13: Measure tree health (1-5) for the entire tree. For example, 5 is healthy, 3 is half dead

Tree Health Scores 25% Dieback 50% Dieback 5% Dieback 75% Dieback Dead (DB Noticeable) (DB Obvious) Healthy (DB Present) (DB Very No live leaves -Dead Twigs Dead Twigs No dead twigs of Dead Twigs visible Obvious) obvious obvious Đ branches No dead branches +1-2 Branches dead +Some Whole Tree mostly dead Leaves green Leaves light green Branches Dead Only a few 5 <5% of tree affected <25% of tree Crown retreat leaves/ sparse affected Leaves light coverage 4 ·Leaves yellow/ green/yellow 3 necrotic 2 1

Q: What is the tree health code for tree 1? Ans.

Step 14: Measure tree damage (see codes below). You can choose more than one code.

	Live Trees		Dead Trees
LTW	Live with dead twigs	DTW	Dead with twigs
LDB	Live with dead branches	DB	Dead with branches
LC	Live with low canopy cover	DT	Dead trunk (no branches)
ID	Live with insect damage (herbivory)	ST	Dead stump (<1m tall)
LF	Live Fallen Tree	DF	Dead fallen
LBT	Live Broken Trunk	DC	Dead cut
LHD	Live with Cut or Trimmed Branches	STC	Dead stump cut (<1m tall)
LSD	Live with grazing damage (e.g. cows)		

Note: A dead tree (or dead branch) will have NO GREEN. If you're not sure if the tree (or branch) is dead or alive, take a finger nail and scratch the bark. If you see no green, assume that part of the tree is dead. Green is an indicator of photosynthesis – yes, mangrove trees carry out photosynthesis in their trunks (as well as their leaves). Pretty cool huh.

Q: What is the tree damage code/s for tree 1? Ans.

Designate Roles

Date:

Name:

Step 14: Now you know what to do....designate jobs to people in your group so you can complete the remainder of the transect as fast as possible. Complete the table below.

Job	Name of Group Member
Record data on data sheet (and be the boss person)	
Write tree number (and letter) on tree with chalk	
Measure distance along tape	
Measure distance from tape	
Determine LEFT or RIGHT side	
Measure girth or diameter	
Measure tree HIEGHT	
Measure tree LEAN	
Decide on Position (canopy, sub-canopy, emergent)	
Identify the tree (Genus species code)	
Determine the HEALTH score (0-5)	
Determine the TREE DAMAGE CODE	

Complete the data sheet

Date:

Step 15: Select your next (closest) tree (>10cm girth)...label it with chalk as tree number '2'

IN or OUT?

Only measure trees inside the long plot area. More than 50% of it's stem must be inside the long plot.

Q: What is the length of the entire transect? Ans.	
Q: What is the LATITUDE of the last tree? Ans.	S
Q: What is the LONGITUDE of the last tree? Ans.	E
Q: What is number of DEAD trees? Ans.	
Q: What is the number of live canopy trees? Ans.	

What happens next?

Name/s:

Date:

Examples of processed data & results kindly shared by students at Pioneer Valley (Mackay)

	ut Formulas Data Review	View Add-in	ns 🛛 Tell me wh	at you want to de	•			-			-	ef s
4 V X .												
A 8 C D	е , с н	1000	JK	L	M	N	0			8		U
AUSTRALIA	failers matter matte		0	- C.7	1	an unset day	(Indexistence)	Phatophone approximate	0.627	Lunriques	0.64	illectria :
								Lummittens	0.02.1	Xukocarpue	-	Icennia
SITE 0 : Plot 1	Compass bearing	from START: 112	90+1149.12974					ano-ee	0.64	98.8M	0.605	and a
DATE: 25-04-10	Total Pla	e Longth Ind-	116		Caro	py Weighted	neight	1000	-CH	10	r0	10
COLLECTORS: MCC		NHEA m2+	94.2		Lorey's	Height (m) -	4.49	refer above	W abg + 0.0	W abg + 0.0 W	+0g - 0.2 W	696 - 0.7 SU
Field Hearnes		15			Derived M	essures .		Wood Density	CHAVE 200	CHAVE 200 KD		MYAMA KO
Dist-3P Species G	inth Height Lean off Vert Log Lengt	h Multi-stem			Tree Diamet	Basal Arms	84.1		Above grou	Above grou Ab	iove grou Be	krw prour TO
Heat 13.55	22.7 3.8	-	MAENT Canopy	meanings -	4.9	1736.9	7802		7.7	16.9 49	24.6	11.5 **
34 50 48.56 48.80 4	515(19 ag, 1(1) ag, 0.25 Lean DW	SIT 45.5 46.	Deed, in eg., Canaga, Su	00				HAGERT Sop	ANSERT WE	od Density «B	SERT Wood	Densty
2 2 1.5 85	75 15 0	2	50 C		2.4	45	7	0.765	0.3	21.6	1.6	15.6
3 1 1.7 444	32.4 5.6 30	•	¢		10.3	83.5	468	0.765	25.2	40.9	\$9.7	27.8
4 5 17 AM	214 12 10		C C		7.5	43.9	342	0.765	7.0	71.5	27.1	13.4
5 6 12 K	14 21 0	2	uc		45	15.6	36	0.765	1.8	5.2	7.6	4.3
5 7 53 AC	8 23 0	2 100	- broken UC		1.0	2.9	26	0.765	1.5	35	8.2	81
4 9 34 AM	37.5 4.8 20	1	¢		11.9	111.9	\$37	0.765	28.6	58.7	25.4	38.5
7 20 41 CA	24.4 2.25 0	1	uc uc		**	16.5	47	0.765	23	**	81	**
9 12 175 EA	24.4 1.8 0		uc		44	16.5	30	0.765	1.5	\$5	8.1	**
20 21 421 6A	24.5 8.1 0	1	UC UC		**	16.7	12	0.765	24	14	11	47
12 15 4.3 EA	9 3.1 0	i	vc		2.9	6.4	20	0.705	10	1.7	24	1.6
53 34 4.25 6A	13.5 3.3 20	1	30		43	14.5	48	0.765	2.4	4.7	6.9	4.0
25 28 4.37 64	17.4 3.9 0	4	vc		5.5	24.5	34	0.765	47	4.0	12.9	7.0
26 29 4.47 EA	29.4 5.9 0	•	e		3.4	49.7	402	0.765	20.4	82.7	47.8	22.7
10 21 475 EA	21 5.6 10		00		4.7	35.1	11	0.765	2.6	34.0	20.6	3.1
TEMPLATE EXAMPL	E Plot 1 Plot 2 Plot 3 P	lot 4 (+)				•						
145 43683 120 17 221 10821 Roman 201 27										SMOES O AA	e Wood Densi 006 WOOD	Over ig/on DENSITY ig/o
Carbon stor Pioneer Oess of carbon 3 162.0 2 104.6 3 152.4 4 152.6	age in the Valley ser heters) Population size 4 Median 160.3 Manuma: 124 Manuma: 124 Manum	1 -1 -3 752 - (a) 26 785586671	3.vikce	Soil Site	50kg 50mf 1 5: 1 - 2 cm 6 - 2 cm 6 - 2 cm	21.12	Soil	Abiotic facto pH	ors:	1 2 2 2 0 0 0 0 0 0 2 2 2 1		0.819 0.78 0.79 0.6475 0.75 0.75 0.75 0.75 0.875
000	Standard deviation		Salied	PH - 5:	6.19 13.3 p	gt / 6	34	Temperat	ure J	00 PA BA		0.85 1.055 0.827
	Standard deviation		Saliy I.	pi) - Sk pine - famp - do - S	6.19 13.3 p 24.60 44.5	1. 129	34	Temperat Dissolver Oxygen	ure J (DO)	00 M 40 M 10 M 10 M 10 M 10 M 10 M 10 M		0.85 0.827 0.827 0.855 0.855 0.855 0.658 0.625 0.625 0.647
Carbon storag	standard deviation		Sidie.1	PH - Sk P these - Jone - S	6.19 13.3 p 24.6 49.5 - 52 E1	1. 129 1. 129	34 .51 .86 8990	Temperat Dissolver Oxygen	ure J (DO)	5 00 14 15 15 15 15 15 15 15 15 15 15 15 15 15		0.80 0.807 0.807 0.805 0.805 0.808 0.508 0.505 0.607

Email Jock Mackenzie

Name/s:

Last step: Email your datasheet and photos to... jmackenzie@earthwatch.org.au

Jock will send you an excel spreadsheet that will include pre-filled formulas used to calculate: Stem Above Ground Biomass (kg), Stem Below Ground Biomass (kg), Stem Total Biomass (kg), Stem Carbon Content (kg C) and Stem CO₂ Storage Equivalent (tonnes). From there, you can make any graph you need!

For example:

						4	M	M	σ	P	P		. 5	r	υ.
Ĩ	2em	Ince	Species	dirth icml	Derived Diameter	Height	Laure (Ba)	Height adjusted	Living	Health	Stem Above Ground	Stem Below Ground Roman Dati	Stam Total Boman (M)	Stem Carbon Content	Sten 002 Strage
34	1	3	45.	F 113	3.6	2.00	0	2.00	AIN	5	1 329 895492	2 969493099	4.348887916	1.820211995	0.006680178
11	2	2	44	. 112	4.2	0.50	20	0.58	AUM	45	0 382524367	3.218/1906/29	3 600715045	1.438706061	0.005280051
16	3		65	· 15	2.4	6.50	Ċ.	0.50	AUM	5	0 120748846	0/82/9310364	1.04985933	0.42031.2488	0.001542547
kt .	4		AM	· 13.2	4.2	2.20	ú.	3.20	AM	4	1.830052129	3.288364097	5.613410966	2.85399738	0.00863895
bk.	5	5	AA	* #1	2.2	0.80	Ó.	0.30	AM	5	6.09030141	1206773888	5.24960752498	0.514946498	0.001889854
19	6	6	AM	12.2	28	0.30	25	3.56	DEAD	Ð	27.06171144	364.0303204	191.9930018	7785368066	0.285723008
40	3	,	AA	P 25	3.4	0.10	25	0.33	AIM	5	0.080734154	0.829310364	5.009844558	0.401305455	0.001472057
41			AA	110	3.5	0.40	0	0.40	AM	5	0.302837055	3 546986958	2.549824013	0.9345867	0.0034303
41			AA	P 75	2.4	0.35	0	0.35	AINE	4.5	0.085250842	0.829310364	1014361206	0.403273446	0.001480034
41	33	10	45	· 13.2	4.2	2	0	2 1	ALME	4.5	1.86.1670297	4.581229812	5.044900049	2.525341341	0.0093167636

This booklet was created by Gail Riches following a teacher PD at Boyne Island Environmental Education Centre in August 2023 as part of EarthWatch Australia's '*Protecting Wetlands for the Future*' program

@mangrovewatch @earthwatch_aus @GreatBarrierReefFoundation. Department of Climate Change, Energy and Water.

The 'Protecting Wetlands for the Future' program is proudly supported by partnerships between the Australian Government Reef Trust and the Great Barrier Reef Foundation Citizen Science for Change Grants.

#lovethe reef #ReefTrust #TeachLive #ProtectingWetlandsForTheFuture #mangrove #CitizenScience #education #professionaldevelopment #greatbarrierreef #wetlands #mangroves #conservation #teachers #STEM #stemeducation #environment #conservation #benanddiphotography #BIEEC #MarineEducation

Sub-canopy

Saplings, small mature trees

Marvellous Mangroves

Cheat sheet

d

h

Name/s:

Date:

BG

orange

	Live Trees
LTW	Live with dead twigs
LDB	Live with dead branches
LC	Live with low canopy cover
ID	Live with insect damage (herbivory)
LF	Live Fallen Tree
LBT	Live Broken Trunk
LHD	Live with Cut or Trimmed Branches
LSD	Live with grazing damage (e.g. cows)

Dead Trees							
DTW	Dead with twigs						
DB	Dead with branches						
DT	Dead trunk (no branches)						
ST	Dead stump (<1m tall)						
DF	Dead fallen						
DC	Dead cut						
STC	Dead stump cut (<1m tall)						

Record at least 30 live trees, including at least 25 live canopy trees and 50 stems.

Take photos of

transect and

canopy every 10m

Multi-stems >10cm circumference. Multi-stems = 1 tree.