Year 11 Mandatory Practical

Conduct an investigation to determine factors of population dynamics (e.g. density or distribution) and assess abiotic components of a local ecosystem case study. Emphasis should be placed on assessing the processes and limitations of the chosen technique (e.g. quadrat, transect). When identifying and describing marine species, use field guides and identification keys.

ANSWERS

© Marine Education 2018
CC BY: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).
This license is only granted to the school or persons named on a receipt of payment for an annual subscription to Marine Education which allows them to print from a private printer, school printer, or commercial printer, copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, for within-school use only, for a period of one year only from date of payment on the receipt, so long as attribution is given to the creator or publisher.

Publisher

Gail Riches
Marine Education
ABN: 48765406873
PO Box 394
Bli Bli Qld 4560
Email: info@marineeducation.com.au
www.marineeducation.com.au
Course Overview and Learning Objectives derived from Marine Science 2019 v1.2 General Senior Syllabus ${ }^{[1]}$
ISBN-13: 978-0-6484089-5-6
${ }^{[1]}$ Queensland Curriculum and Assessment Authority (2018). Marine Science 2019 v1.2: General Senior Syllabus. QCAA.
Accessed 2019 from: https://www.qcaa.qld.edu.au/senior/senior-subjects/sciences/marine-science/syllabus

1. Observation

The scientific process always starts with an observation. Something is observed about something. Whether that something was the result of a previous study, a political issue, or just your own sense of curiosity, an observation was made. For this investigation, the observation will be something you observe about a population. For example, you might observe that some species are present in some places and absent from others (i.e. distribution). Or, you might observe a population has a very large abundance compared to others (i.e. relative density).

2. Model

It may or may not be obvious why a population is the way that it is. Regardless, it is important to first research as much background information as you can to find out. There will be more than one explanation. Model all explanations (i.e. mind-map or list). Select one to test. Keep the model - don't throw it away - because you'll need to either control or measure the remaining items on the list.

3. Aim, Research Question \& null Hypothesis

Once you have your aim, create one or more research questions. Each question must be very specific. It must include the dependent and independent variable and have a null hypothesis to test.

4. Experimental Design

So, what sampling method is most appropriate? The easy answer to that question is a sampling method that has been used, tried and tested before! The benefit of standardising the methodology is that your data can be compared to other data! Do your homework, thoroughly, for this part of the planning process is very important!!

5. Data Collection

The fun part!

6. Data Analysis

The Results. What is the answer to your research question/s? Do you accept or reject the null hypothesis? Could your answer be incorrect?

7. Interpretation and Evaluation

Why did you get those results? What do the results mean? How bulletproof was your experimental design? How can it be improved? Can you update your model? Any other variables to test (new questions)? Did you come across any new observations to investigate?

What do you want to know? Research can be categorised into four general types of study ${ }^{[1]}$:

\square Baseline Study

Data is collected to define the present state of a biological assemblage (i.e. surveyed for the first time).

\square Impact Study

Data is collected to determine if an impact changes a population or assemblage. Note: some impacts have negative effects (i.e. sewage outfalls, dumping of dredging, introduction of exotic species, climate change) whilst others have positive effects (i.e. marine parks, catch limits etc.).
\square Monitoring Study
Data is collected repeatedly to detect any changes from the present state (often follows an impact study).

\square
 Patterns and Processes

Data is collected to describe the distribution and abundance patterns of organisms, with the intention of identifying the processes responsible for them.

Activity: Tick one box above to indicate the type of research (\& purpose) of your investigation

The Study Site/s...To make an observation, it really helps to visit the study site (this can be virtual).
Activity: Describe the study site/s.

Make the Observation...Look at the ife that is around you (at the study site/s). What do you see? Make an observation about a population - a group of individuals of the same species living in the same place and time. Choose wisely. This is what you will be measuring. This is your dependent variable!

Q1. What is the name (Genus species) of the population? Ans.
Suggestions: a bio-indicator, habitat forming species, keystone species, herbivore, primary producer, tertiary consumer, commercial species

Q2. What was the observation you made about this population? E.g. Does the population change between two different times, or two different locations, or over a gradient of time or space? Ans.

Q3. What is the best way to measure this population? E.g. population density? distribution? Ans.
E.g. population size, population density, percentage cover, frequency, etc.

[^0]
Making a Model

Why was the population like that? To find out, you need to make a model. Your model will comprise of a collection of explanations for your observation. Examples of models include a mind-map, a list, a bunch of graphs, an animation, etc. When making your model, include ALL plausible explanations for the observation (not just the most obvious explanation, or the one you are most familiar with). This will require lots of reading (hint: start your bibliography now - it will save you lots of time later!!!).

Activity: Research the following (and take lots of notes). Tick the checklist box when complete.
Biology: adaptations for survival (e.g. structural, functional, behavioural), reproductive strategies
\square Ecology: the biotic and abiotic components of its environment (and the interactions within and between them)
Activity: In the space below, create a model to include all explanations for your observation.

Pick ONE to investigate!

Your model will be far too complex, with too many explanations to investigate all at once on your own. Therefore, pick just one explanation from the model (above) to investigate further. Pick the one that makes the most sense (and other scholars think so too) and, if possible, is easy to measure (e.g. abiotic). This is your independent variable!
Importantly, all other variables must be controlled (CV). If they can't be controlled, they must be measured (MV), so their influence can be considered in the outcome of the study.

Q1. Which explanation did you pick? E.g. What changed that (you think) made the population change? Was it time, location, other species, protection level, a pollutant? Pick only ONE! Ans.

Q2. How are you going to measure this change to the independent variable, to measure its effect on the population? E.g. group 1 (effect) vs group 2 (no effect). Ans.

The aim of this investigation is to measure the effect of

The aim of your investigation will be to measure the effect of the independent variable (Q1 on page 63) on the observation that you made about a population (Q1 \& 3 on page 62).
Activity: Complete this sentence: The aim of this investigation is to

The Research Question

It is very important to create a research question that can be answered using the data that you collect!!!!! One way to ensure you can do this, is to word the research question in one of two ways....

> Is there a difference in between \& ? Is there a (linear) relationship between \& ?
If you don't word it like this, you won't be able to (statistically) answer your research question! For example,

Q. Is there a difference in

The dependent variable (Q1\&3 page 62)

Two groups to compare (Q2 page 63)
For example,
Is there a difference in the density of Morula sp. between the high tide zone and low tide zone? Is there a difference in percentage cover of Rhizophora stylosa between Location A and Location B? Is there a difference in the density of a bio-indicator species between a protected and unprotected zone? Is there a difference in the population size of an endangered species between last year and this year?
Or, you can word it like this....

Q. Is there a (linear) relationship between

Must be CONTINUOUS data (\& measured as a pair)
For example,
Is there a (linear) relationship between abundance of Grapsidae crabs and abundance of pnematophores?
Is there a (linear) relationship between abundance of species x and body size?
Is there a (linear) relationship between coral mortality and temperature?
For this type of question, once you have measured both pairs of continuous data, draw up a scatter graph (with one dataset on the x-axis and the other dataset on the y-axis). Plot the data and draw a (straight) line of best fit ($y=m x+c$). If plots are close to the line, a 'linear' relationship exists, which is quantified by Pearson's Correlation Coefficient or 'r ' The closer r is to 1 , the closer the plots are to the line and the stronger the relationship.

Activity: Create one or more research questions using the formatting described above

Note: the 'nulf' hypothesis is a statistical term that always states there is NO difference (or NO relationship) between this and that. Your results will either accept or reject the null hypothesis.

Sampling Techniques and Equipment

Your choice of sampling technique and equipment depends on a number of factors: the environment that you are sampling, the scale of the sample question, the size and mobility of the organisms, and time and budget constraints. Note: if you standardise the methodology by replicating what others have done in the past, you can compare data! Below is a comprehensive list of sampling techniques and equipment.

Subtidal Hard Substrata (e.g. reefs)		Intertidal Estuarine Vegetation (i.e. mangroves)			
Satellite Images and Aerial Photography Echo sounding Side-scan sonar (swath mapping) Remote sensing and GIS Manta Tow Free-swimming Observer Underwater Video (remotely or diver controlled)	Spot-checks Quadrats and Transects Photography Sample Removal (plastic and mesh bags) Marking and Tagging Core Sampling Benthic Grabs Airlifts (i.e. suction airlift)	Aerial photography, remote sensing and GIS Quadrats and Transects			
		Fish Communities			
		Hand lines and set lines Traps Belt transects Stationary visual technique Video methods (i.e. BRUV) Tagging Gill nets Fish traps	Seine (drag) nets Trawls Electrofishing Fish poisoning Visual consensus Pot-net traps Drop net traps and throw traps Cast nets		
Intertidal Hard Substrata (e.g. rocky shores)					
Quadrats \& Transects Remote sensing and GIS Photography Sample removal Marking and Tagging Exclusion Cages					
		Plankton			
		Plankton nets and Plankton Tows Continuous plankton recorder (i.e. towed over transects 400 nmiles at speeds up to 20knots)			
Soft Sediments (e.g. beach)		Remote sensing			
Box corer and sieve with various mesh sizes for:		Water pumps			
		Water bottles (open and close at depth)			
- Megafauna >200mm		Cod-ends and collecting buckets			
- Macrofauna $0.5 \mathrm{~mm}-200 \mathrm{~mm}$	Sediment Analyses	Purse-seine nets			
- Meiofauna $0.063 \mathrm{~mm}-0.5 \mathrm{~mm}$	Echo sounding	Plankton traps (demersal and light)			
- Microfauna <0.063mm		Optical plankton counters			

Addressing limitations

Every sampling technique, every piece of equipment and every methodology has certain limitations. If you fail to identify these limitations, the validity of your experiment will be compromised.
E.g. you will accept the null hypothesis when it should have been rejected, or vice versa.

For example, pictured left is a crown of thorns starfish (note the spikes). It is tucked in behind the branches of a staghorn coral. Its hidden position may obscure it from view. As a result, the 2D (as opposed to 3D) nature of the quadrat is a limitation of the quadrat. Another limitation is when mobile animals 'flee from the scene'. Or, if the quadrat is too large or too small (or out of focus) for the size and scale of what is being measured.

Activity: Download and peruse the following publication:

Hill J. \& Wilkinson, C. (2004). Methods for Ecological Monitoring of Coral Reefs: A resource for Managers: Version 1. AIMS. Townsville. QLD. ISBN: 0642322376

Quadrats and Transects

Quadrats and transects are common tools of the trade in marine science research. Below is a brief overview of the Quadrat-transect method, the Point Intercept Method and the Line Intercept Method ${ }^{[1]}$.

Quadrat-transect method

Quadrats (i.e. squares) are randomly placed along a transect, or, evenly spaced along a transect.
For example, a 1 mx 1 m square quadrat is placed every 2 m along a transect (tape measure)......

Point Intercept Method

Identify \& record anything under a point along a transect (points are randomly or equally spaced)

Line Intercept Method
Identify and record anything under a length of transect (the transect is a tape measure)

Replicates and Precision

Marine environments can be highly variable (i.e. different) in both space and time. To collect enough information that is representative of the entire area of interest, you need to take more than one sample at a survey site. Additional samples are called replicates ${ }^{[1]}$. The number of replicates that you choose to include in your experimental design depends on the level of precision (and reliability) that you desire. Precision is the degree to which several measurements (replicates) provide answers very close to each other.

Because marine environments, such as coral reefs, are highly variable, replicates are rarely exactly the same. But if you have enough of them, they can come close. If you don't have enough replicates, the level of precision, and the reliability of the experiment, will be low (you will know this because your standard deviation will be high). As a result, you will not be able to detect any significant difference between two populations (if there is one) and accurately answer your research question. If you think this has happened to you, recommend more replicates and consider a stratified, or nested sampling design for next time.

[^1]
Quadrat and Transect Data

Either identify species as you go along, writing their scientific names on the data sheet in the field (see below left) OR set up categories of what to measure, prior to sampling in the field (see below right).

Activity: Complete the tables below

Hazard	Likelihood it occurs 1 (unlikely) - 5 (highly likely)					Severity of injury (worst case scenario)					Action/s to reduce the risk
	1	2	3	4	5	1	2	3	4	5	
On a BOAT											
Seasickness	x	x	x	x		x	x				Seasickness tablets
Dehydration											Bring extra water, drink often
Sunburn											Sunscreen, wear protective clothing
Equipment malfunction											Maintain, check and safely stow equipment, bring spares
Collision											Follow COLREGS and IALA, maintain lookout
Loss of a passenger											Buddy system, log book, roll call, head count
IN the WATER											
Ruptured eardrum											Equalisation of ears every metre going down
Swept away by current											Listen to safety brief and follow instructions
Separation from others											Look up and around you at least every minute
Lookout can't see you											Take a whistle and safety sausage with you in the water
Hyperthermia											Wear the correct wetsuit, bring warm change of clothes
Mask strap breaks											Don't stray far from boat. Bring spares
Lack of floatation											Take floatation device (i.e. noodle)
Ethical Standard Breach											Find out the rules when working with animals
Irukandji Sting											Avoid (Oct-April). Wear stinger suit.

Dangerous Marine Creature	Signs/Symptoms	First Aid
Irukandji - related to box jellyfish (note: average size is 2 cm).	Initial sting is painless. 20min later, severe lower back pain followed by nervous system shut down	Evacuate asap to nearest medical facility. Reassure patient and be ready to conduct CPR. Administer O2.
Box Jellyfish	Very painful whip marks \rightarrow Heart attack	DRABC. Vinegar to remove tentacles.
Blue bottle	Painful whip marks \rightarrow Lymph node pain	Remove tentacles. ICE to soothe pain.
Stinging Hydroid (e.g. fire coral)	Painful, itchy weals	Flush with Vinegar. ICE to soothe pain.
Sea urchin or Crown of Thorns (spine)	Pain, redness and swelling around wound	Bathe in vinegar before removing.
Stone fish (spine)	Extreme pain at the site of the wound	DRABC. HOT water
Sting ray (barb)	Extreme pain at the site of the wound	DRABC. HOT water
Animal Bite (moray eel, shark etc.)	Excessive bleeding	DRABC. Stop bleeding. Treat for shock.
Textile Cone Shell	Puncture \rightarrow numbness \rightarrow breathing failure	DRABC. Immediate evacuation.
Blue-ringed Octopus (bite)	Bite is often not felt \rightarrow paralysis	DRABC. Immediate evacuation.

Activity: Follow the flow chart to analyse your data and answer your research question!

Q. Is there a difference in | Dependent |
| :---: |
| Variable |\quad between \quad Population (Group) $1 \quad$ \& \quad Population (Group) $2 \quad$?

Start here

Q1. Is this the wording of your research question? No
 Q2. Is the dependent variable abundance? Yes,

Q4. Is the dependent variable population density? No
Go to Next Page - No

Condense your data into two columns, x and y .

Pearson's Correlation (r)...sa measurv of the strenght of the inearrealions ship beween ww vaiabes, xand y.
The value $r=1$ indicates the strongest possible positive relationship between x and y (i.e. as one increases the other increases).
The value $r=-1$ indicates the strongest possible negative relationship between x and y (as one increases, the other decreases).
The value $r=0 \pm 0.5$ indicates no linear relationship between x and y. Note: this does not rule out any strong relationship between x and y. There could still be a strong relationship, but one that is not linear.

How to calculate r manually

$$
r=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{\left.\sqrt{\left[n \sum x^{2}-\left(\sum x\right)^{2}\right]\left[n \sum y^{2}\right.}-\left(\sum y\right)^{2}\right]}
$$

where: $n=$ sample size (i.e. 5) and; \sum is the SUM of....(i.e. total).

\mathbf{X}	\mathbf{Y}	$\mathbf{X Y}$	$\mathbf{X}^{\mathbf{2}}$	$\mathbf{Y}^{\mathbf{2}}$
10	1	10	100	1
20	2	40	400	4
30	2	60	900	4
40	3	120	1600	9
50	5	250	2500	25
$\Sigma \mathrm{x}$	Σy	$\Sigma \mathrm{xy}$	$\Sigma \mathrm{x}^{\mathbf{2}}$	Σy^{2} 150 13
480	5500	43		

How to calculate r in EXCEL:

Simply click on an empty cell and type $=\operatorname{CORREL}(\mathrm{X}, \mathrm{Y})$ where: X is the column containing all the data for the X-axis \& Y is the column containing all the data for the y -axis.

	A	B	C
$\mathbf{1}$	\mathbf{X}	Y	= CORREL(A2:A6,B2:B6)
2	10	1	
3	20	2	
4	30	2	
5	40	3	
6	50	5	

Taking control

In the lab, when conducting an experiment, conditions are strictly controlled. In the field, we aim to control as many variables possible (i.e. date, time, tide, etc.). However, given that it is outside, there are many variables that can not be controlled. These are called 'measured variables'. They're called measured variables because they need to be measured. Why? Because they can influence the result.

Activity: Below, list the measured variables from your original model on page 63 (those you couldn't control....and hopefully measured!). Rank them from most likely to least likely to influence the result.

Detective work

A researcher must always consider the probability that the result is incorrect - either the experiment failed to pick up a difference when there was one, or the experiment found a difference that didn't exist. The data analysis (incl. measured variables) and experimental design must therefore be critically analysed.

	Question	Answer
	- Did you use the correct statistics test for the wording of the research question? - How close to 0.05 (the cut-off point) was the P value? - If the difference was significant, how close to zero was the P value? - If applicable, how close was r (Pearson's correlation coefficient) to 1.0 or -1.0 ? - How close to zero were the values for s (standard deviation), SE \& Cl ? (if they were not close to zero, you need to examine why your replicates were not the same) - Did you construct a graph to make a visual comparison before reaching a conclusion? - Were any measured variables likely to have influenced the result? - Were there any variables that could not be controlled, measured?	
등	- Could you have picked a better dependent variable (population) to measure? - Could you have changed the independent variable in a different (and more effective) way? - Should you have used qualitative data instead of quantitative data and vice versa? - Did the experimental design take into account the dispersion patterns of the population (i.e. clumped)? - Were there enough replicates? Were the replicates independent of each other, to avoid double counts? - Was there randomisation in sampling to avoid bias? - Was the size of the sample unit appropriate for the size of the organism? - Was the choice of sample unit appropriate for the mobility of the organism? - Were the limitations of the sampling technique addressed? - Was the scale of the experimental design suitable for the scale of the research question?	

Q. How valid are your results (e.g. answers to data analysis questions above) and WHY? Ans.
Q. How reliable are your results (e.g. answers to experimental design questions) and WHY? Ans.

The aim of this investigation is to measure the effect of depth on mean percentage hard coral cover.

Q. Is there a difference in

Mean Percentage Hard Coral Cover
between
Site 1 Shallow
$(1-5 m)$
\&
Site 2 Deep
$(10-12 \mathrm{~m})$
$?$

Reef Check Methodology

Reef Check surveys ${ }^{[1]}$ use the point-intercept method along an 80 m transect line (at constant depth) that has been divided into four x 20 m sections, each separated by 5 m . Divers measure and record the substrate code of benthos under every point at 0.5 m along each section of transect to later calculate percentage cover. Transect sites are grouped into Shallow (1-5m) and Deep (10-12m).

Substrate Code

HC hard coral
NIA nutrientindicator algae
RB rubble
SC soft coral
SD sand
RC rock OT other SP sponge
RKC recently killed coral
SI silt/clay
${ }^{[1]}$ Adapted from: Hodgson, G., Hill, J., Kiene, W., Maun, L., Mihaly, J., Liebeler, J., Shuman, C. and Torres, R. (2006). Reef Check Instruction Manual: A Guide to Reef Check Coral Reef Monitoring. 2006 Edition. Reef Check Foundation, Pacific Palisades, California, USA. Accessed 2018 from: https://www.biosphere-expeditions.org/images/stories/pdfs/2006\% 20Reef\%20Check\%20Instruction\%20Manual\%20with\%20covers.pdf

Site 1 Shallow (1-5m) Raw Data

SECTION 1 (S1)			
0	HC	10	RC
0.5	HC	10.5	RC
1.0	NIA	11	RC
1.5	SD	11.5	OT
2.0	SD	12	SC
2.5	HC	12.5	SC
3.0	OT	13	SP
3.5	RC	13.5	SP
4.0	OT	14	HC
4.5	NIA	14.5	HC
5.0	NIA	15	RKC
5.5	NIA	15.5	RKC
6.0	SP	16	RKC
6.5	SP	16.5	RKC
7.0	SI	17	RC
7.5	SI	17.5	HC
8.0	SI	18	SI
8.5	SI	18.5	SI
9.0	SI	19	SI
9.5	SI	19.5	SP

SECTION 2 (S2)			
0	HC	10	HC
0.5	HC	10.5	HC
1.0	HC	11	HC
1.5	SC	11.5	SC
2.0	RC	12	RC
2.5	HC	12.5	HC
3.0	RCK	13	OT
3.5	RCK	13.5	RC
4.0	SD	14	OT
4.5	SD	14.5	OT
5.0	SD	15	SC
5.5	RB	15.5	SC
6.0	RB	16	SP
6.5	RB	16.5	SP
7.0	RB	17	SI
7.5	SI	17.5	SI
8.0	SI	18	SI
8.5	SI	18.5	SI
9.0	SI	19	SI
9.5	SI	19.5	SI

SECTION 3 (S3)			
0	RC	10	HC
0.5	RC	10.5	HC
1.0	RC	11	HC
1.5	OT	11.5	SC
2.0	RKC	12	RKC
2.5	RKC	12.5	RKC
3.0	RKC	13	RKC
3.5	SP	13.5	RC
4.0	HC	14	OT
4.5	RC	14.5	RKC
5.0	RC	15	RC
5.5	SP	15.5	RKC
6.0	RC	16	SP
6.5	RC	16.5	SP
7.0	NIA	17	SO
7.5	SP	17.5	SO
8.0	SI	18	SO
8.5	SI	18.5	SD
9.0	SI	19	SD
9.5	SP	19.5	SI

SECTION 4 (S4)			
0	RC	10	HC
0.5	RC	10.5	HC
1.0	RC	11	HC
1.5	NIA	11.5	SC
2.0	RB	12	RC
2.5	RB	12.5	HC
3.0	SP	13	OT
3.5	NIA	13.5	RC
4.0	NIA	14	OT
4.5	NIA	14.5	OT
5.0	RKC	15	SC
5.5	RC	15.5	NIA
6.0	RKC	16	NIA
6.5	SC	16.5	NIA
7.0	SP	17	SI
7.5	SP	17.5	SI
8.0	SI	18	SI
8.5	SI	18.5	SI
9.0	SI	19	SI
9.5	SP	19.5	SI

Site 1 Shallow (1-5m) Analysis

Tally how many times Hard Coral (HC) was recorded under a point along each 20 m transect section on page 72. For example, HC was found under 6 points along section 1 , under eight points along section 2, under four points along section 3, and under four points along section 4 (highlighted on Table 1). Importantly, our dependent variable is \% HC cover (not a tally of the number of HC points). Therefore, we must now calculate the \% HC cover using the tally of points that were recorded as HC . Because there were a total 40 points in each section, simply divide each tally of HC by 40 . This gives \% HC cover as a decimal. To convert from decimal to percentage, simply multiply by 100 . For example, 6 out of 40 points (for HC in S1) is the same as 15% cover $(6 / 40) \times 100=15$

Table 1: Tally

Code	Number of points			
	S1	S2	S3	S4
HC	6	8	4	4
SC	2	4	1	3
RKC	4	3	8	2
NIA	4	0	1	7
SP	5	2	6	4
RC	5	3	9	6
RB	0	4	0	2
SD	2	3	2	0
SI	9	10	7	9
OT	3	3	2	3
TOTAL	40	40	40	40

Table 2: Percentage Cover

Code	$\%$ Cover (_140*100)			
	S1	S2	S3	S4
HC	15	20	10	10
SC	5	10	2.5	7.5
RKC	10	7.5	20	5
NIA	10	0	2.5	17.5
SP	12.5	5	15	10
RC	12.5	7.5	22.5	15
RB	0	10	0	5
SD	5	7.5	5	0
SI	22.5	25	17.5	22.5
OT	7.5	7.5	5	7.5
TOTAL	100	100	100	100

Site 2 Deep (10-12m) Raw Data

SECTION 1			
0	HC	10	SC
0.5	HC	10.5	SC
1.0	HC	11	OT
1.5	HC	11.5	OT
2.0	HC	12	SP
2.5	SC	12.5	SP
3.0	SC	13	SP
3.5	SC	13.5	RC
4.0	SC	14	RC
4.5	HC	14.5	SD
5.0	HC	15	SD
5.5	HC	15.5	SD
6.0	HC	16	RB
6.5	HC	16.5	RB
7.0	SC	17	RB
7.5	SC	17.5	HC
8.0	SC	18	HC
8.5	SC	18.5	HC
9.0	SC	19	HC
9.5	SC	19.5	HC

SECTION 2			
0	SC	10	OT
0.5	SC	10.5	OT
1.0	SC	11	OT
1.5	SC	11.5	OT
2.0	HC	12	SP
2.5	HC	12.5	SP
3.0	HC	13	SP
3.5	HC	13.5	RB
4.0	HC	14	RB
4.5	HC	14.5	HC
5.0	HC	15	HC
5.5	HC	15.5	HC
6.0	HC	16	HC
6.5	RC	16.5	HC
7.0	RC	17	HC
7.5	RC	17.5	HC
8.0	SD	18	SC
8.5	SD	18.5	SC
9.0	SD	19	SC
9.5	SD	19.5	SC

Table 1: TOTAL count

Substrate Type	Number of points			
	S1	S2	S3	S4
HC	15	16	14	16
SC	12	8	4	7
RKC	0	0	0	0
NIA	0	0	2	4
SP	3	3	6	4
RC	2	3	3	0
RB	3	2	4	2
SD	3	4	3	3
SI	0	0	0	0
OT	2	4	4	4
TOTAL	40	40	40	40

SECTION 3			
0	SC	10	HC
0.5	SC	10.5	HC
1.0	SC	11	HC
1.5	SC	11.5	HC
2.0	HC	12	HC
2.5	HC	12.5	HC
3.0	HC	13	HC
3.5	HC	13.5	HC
4.0	SP	14	HC
4.5	SP	14.5	HC
5.0	SP	15	RB
5.5	SP	15.5	RB
6.0	NIA	16	RB
6.5	OT	16.5	RB
7.0	SD	17	RC
7.5	SD	17.5	RC
8.0	SD	18	RC
8.5	OT	18.5	NIA
9.0	OT	19	SP
9.5	OT	19.5	SP

SECTION 4			
0	HC	10	SC
0.5	HC	10.5	SC
1.0	HC	11	SC
1.5	HC	11.5	OT
2.0	HC	12	OT
2.5	HC	12.5	OT
3.0	HC	13	OT
3.5	HC	13.5	RB
4.0	HC	14	RB
4.5	HC	14.5	NIA
5.0	HC	15	NIA
5.5	HC	15.5	NIA
6.0	HC	16	SP
6.5	HC	16.5	SP
7.0	HC	17	SP
7.5	HC	17.5	SP
8.0	SC	18	SD
8.5	SC	18.5	SD
9.0	SC	19	SD
9.5	SC	19.5	NIA

Table 2: TOTAL \% Cover

Substrate Type	$\%$ Cover $(\ldots / 40 * 100)$			
	S1	S2	S3	S4
HC	37.5	40	35	40
SC	30	20	10	17.5
RKC	0	0	0	0
NIA	0	0	5	10
SP	7.5	7.5	15	10
RC	5	7.5	7.5	0
RB	7.5	5	10	5
SD	7.5	10	7.5	7.5
SI	0	0	0	0
OT	5	10	10	10
TOTAL	100	100	100	100

Analysis

Because there are 4 repeats, the next step is to calculate the MEAN \% hard coral cover for all 4 repeats (using data from Table 2). E.g. Site 1 is $(15+20+10+10) / 4=13.75 \%$. Site 2 is $(37.5+40+35+40) / 4=38.125 \%$ Table 3 shows you how to make the same calculations in EXCEL using the formulas for average as well as standard deviation, standard error and confidence interval (that you'll need to add error bars to your graph).

Table 3: Analysis of Data for \% Hard Coral (HC) Cover for Site 1 Shallow (1-5m) and Site 2 Deep (10-12m)

¢	Mean=AVERAGE()		Standard Deviation (s)=STDEV()		Standard Error (SE) =STDEV()/SQRT(4)		Confidence Interval (CI) $=C O N F I D E N C E . T(0.05,(\mathrm{~s}), 4)$	
1	HC	13.79	HC	4.79	HC	2.39	HC	7.62
2	HC	38.125	HC	2.39	HC	1.20	HC	3.81

Statistics

So far we know that the mean \% HC cover for Site 1 was not the same as the mean \% HC cover for Site 2. Site 1 has less \% HC cover than Site 2. BUT, is the difference significant? To find out, we did a t-test and got a P value. The P value was 0.0000984 . Therefore, the difference in $\% \mathrm{HC}$ cover between Site 1 and Site 2 is indeed significant. Hence, the null hypothesis (stating there was no difference) was rejected. When the P value is less than 0.05 the difference is significant. Note: the term significant means a stat test was used.

Evidence that the difference is significant (and the null hypothesis is rejected) include: a significant difference in the height of the columns; the error bars do NOT overlap; and the P value is <0.05 (and close to zero). However, the t-test only had 4 data points per site. More would make the results more reliable. Note: The error bars were drawn using Standard Error (SE). The SE for Site 1 (shallow) was 2.39 (HC). Whereby the top of the error bar is the mean (13.75) plus 2.39, whilst the bottom of the error bar is the mean (13.75) minus 2.39. The SE and error bar for Site 2 was smaller (less error) than for Site 1.

The aim of this investigation is to measure the effect of distance from high tide on ghost crab distribution

Juvenile ghost crabs have small, shallow burrows. Whilst mature ghost crabs have large, deep burrows. Ghost crabs are sensitive to human disturbance (i.e. 4WD). Thus, ghost crabs are used as bio-indicators ${ }^{[1]}$.
Q. Is there a (linear) relationship between
\&
distance between burrow and high tide line in cm .

Method: The high tide line was identified and drawn as a line in the sand. Once a ghost crab burrow was located, the diameter of the entrance to the burrow was measured with a ruler (Y), and the distance between the burrow and the high tide line was measured with a tape measure (X). The data was plotted on a scatter graph and Pearson's correlation coefficient was calculated on EXCEL.

ANALYSIS: scatter graph on EXCEL
\& calculation of Pearson's correlation coefficient (r)

Remember the comma!

For there to be a relationship between X and Y, the value for ' r ' needs to be between 0.5 and 1.0 or between -0.5 and -1.0 ... which it isn't.

Therefore, there is no relationship between the size of the burrow and the distance from the high tide line. The null hypothesis is accepted ($\mathrm{r}=-\mathbf{0} .3443$).
(Note: the 'null'
hypothesis is a statistical term that always states there is NO relationship (or difference) between this and that).

Note: if a relationship did exist, there would be a straight line of best fit drawn between all the dots.

Evaluation: The reliability and validity of this experiment is questionable. There were no transects or quadrats, no replicates (in space or time), no consistency when taking measurements, no randomisation in burrow selection (leading to bias), burrows had been disturbed by trampling, the high tide line had suffered erosion, and no other variables were measured, nor controlled.

[^2]
[^0]: ${ }^{[1]}$ Adapted from: Kingsford, M. and Battershill, C. (1998). Studying temperate marine environments: A handbook for ecologists. Canterbury University Press. NZ. p. 19

[^1]: ${ }^{[1]}$ Adapted from: Hill J. \& Wilkinson, C. (2004). Methods for Ecological Monitoring of Coral Reefs: A resource for Managers: Version 1. AIMS. Townsville. QLD. ISBN: 0642322376

[^2]: ${ }^{[1]}$ Schlacher, T. A. \& Lucrezi, S. (2010). Compression of home ranges in ghost crabs on sandy beaches impacted by vehicle traffic. Mar Biol. 157:2467-2474. DOI: 10.1007/s00227-010-1511-8

