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The genetic enhancement of wild animals and plants for characteristics that benefit human populations has been practiced for thousands of
years, resulting in impressive improvements in commercially valuable species. Despite these benefits, genetic manipulations are rarely
considered for noncommercial purposes, such as conservation and restoration initiatives. Over the last century, humans have driven global
climate change through industrialization and the release of increasing amounts of CO2, resulting in shifts in ocean temperature, ocean
chemistry, and sea level, as well as increasing frequency of storms, all of which can profoundly impact marine ecosystems. Coral reefs are
highly diverse ecosystems that have suffered massive declines in health and abundance as a result of these and other direct anthropogenic
disturbances. There is great concern that the high rates, magnitudes, and complexity of environmental change are overwhelming the intrinsic
capacity of corals to adapt and survive. Although it is important to address the root causes of changing climate, it is also prudent to explore the
potential to augment the capacity of reef organisms to tolerate stress and to facilitate recovery after disturbances. Here, we review the risks
and benefits of the improvement of natural and commercial stocks in noncoral reef systems and advocate a series of experiments to determine
the feasibility of developing coral stocks with enhanced stress tolerance through the acceleration of naturally occurring processes, an
approach known as (human)-assisted evolution, while at the same time initiating a public dialogue on the risks and benefits of this approach.
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Contemporary coral reefs worldwide have
suffered and continue to face large declines in
coral cover and shifts in community compo-
sition as a consequence of global and local
disturbance regimes that include warmer
than usual summer sea surface temperatures,
cyclones, crown-of-thorn starfish assaults, de-
structive fishing, and terrestrial run-off (1,
2). A growing body of experimental data fur-
ther suggests that the negative effects of ele-
vated temperature may be compounded by
increasing ocean acidification (3, 4). This de-
terioration raises concern regarding the resil-
ience of coral reefs and their ability to retain
their vital role as engineers of structures that
support important ecosystem services. Recent
scientific reviews and commentary on the fu-
ture of reefs contend that corals may not
be able to adapt in time to avoid major
changes, or even loss of reef systems at
a global scale. Although it is critical to in-
crease efforts to reduce these threats, the pos-
sibility that these efforts might be too little
and/or too late provides a clear need to con-
sider alternative strategies that involve more
direct intervention. One approach to direct
mitigation that has attracted some controver-
sial exchanges is environmental engineering
(5) to increase atmospheric reflectivity using
aerosols or to increase oceanic carbon assim-
ilation by fertilizing the oceans. Another ap-
proach, which we explore here, is to enhance
the ability of key reef organisms to tolerate
stressful environments and to accelerate re-
covery after acute impacts. In this context,

terrestrial restoration ecology provides exam-
ples relevant to reef scientists and managers
in the use of genetically resilient or modified
stocks or species that can restore or maintain
key ecosystem attributes and processes (6).
However, this approach raises important
theoretical and ethical questions regarding
the feasibility and desirability of creating
anthropogenically enhanced systems. Intro-
duction of genetically superior corals may
enable reefs to persist in the future, but there
is a risk of unanticipated and unintended
ecological consequences. Against the back-
drop of the serious decline of coral reefs
worldwide, we assert that there is an urgent
need for research to evaluate the potential
for developing resilient varieties of key reef
organisms, an assessment of the ecological
risks associated with assisted evolution, and
the initiation of a public dialogue around the
risks and benefits of such interventions. The
application of assisted evolution approaches to
coral reefs is discussed here from the perspec-
tive of our growing understanding of evolu-
tionary mechanisms and knowledge gleaned
from breeding programs for commercial and
noncommercial stocks.

Fears and Facts
The genetic manipulation of biota through
the translocation of species and populations
and the release of captively bred or geneti-
cally modified (GM) organisms into the wild
is sometimes criticized because of its poten-
tial to benefit some facets of an ecosystem,

while simultaneously harming others. A
major concern is that artificially enhanced
organisms might possess novel traits that give
them a competitive advantage over the native
population. From this perspective, artificially
enhanced organisms are sometimes viewed as
exotics (7), which can be invasive. For in-
stance, of the 44 freshwater fish species that
have been introduced into South Africa, 37%
are considered invasive (8). Alternatively,
exotics may hybridize with native species or
other introduced species to produce invasive
hybrids. Interspecific hybridization com-
monly facilitates invasiveness in plants (9).
For example, invasive cordgrass species in the
genus Spartina all originate from hybridiza-
tion among introduced Spartina species (10).
In this context, it is important to note that the
approaches discussed for reef corals later
in this Perspective article are restricted to
explanting manipulated coral stock within
the distribution range of its wild conspecifics,
and only species that are sympatric in nature
will be used for hybridization.
Other concerns are that translocated plants

and animals may carry pathogens or parasites
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affecting the health of the native pop-
ulations, or that they may cause a change
in genetic composition or population struc-
ture (i.e., genetic pollution) of native
organisms, a loss of genetic diversity, or a
break-down of coadapted gene complexes
(11). These concerns have been debated in
relation to commercially important species
(11) as well as plants and animals whose
phenotypes have been altered by the in-
sertion of foreign genetic material [i.e., ge-
netically engineered (GE) organisms or
genetically modified organisms (GMOs)]
(7, 12, 13). Although the development of
GMO corals might be contemplated in
extremis at a future time, we advocate less
drastic approaches (discussed in Assisted
Evolution Approaches to Build Coral Reef
Resilience) that use widely accepted tech-
niques to accelerate naturally occurring
evolutionary processes (e.g., random muta-
tions, natural selection, acclimatization, and
changes in microbial symbiont communi-
ties). Nevertheless, there still is a possibility
of adverse outcomes (11). Our proposal is,
therefore, to develop a biological tool box for
enhancing coral resilience and stress toler-
ance in step with an ecological risk–benefit
analysis, with implementation being de-
pendent on the outcomes of this analysis,
the health status of coral reefs in years to
come, and the likelihood of natural recovery
of severely damaged reefs over ecological
time scales. Therefore, there is an urgent
need for an informed discussion among
environmental managers, policy makers,
scientists, and the general public on the
value, feasibility, and risk associated with
assisted evolution in corals. Well-established
protocols exist for the risk assessment and
approval process for the use of GMOs (7),
which can guide this process for coral reefs.

Acclimatization, Adaptation, and
Evolution
The response of organisms to environ-
mental change can occur through both
genetic (i.e., adaptation) and nongenetic
(i.e., acclimatization) processes (Fig. 1).
Genetic adaptation is defined as a change in
the phenotype from one generation to the
next through natural selection and involves
a genetic change in the form of allele fre-
quency changes between generations. It is
sometimes referred to as hard inheritance.
Acclimatization is a phenotypic response to
variation in the natural environment that
alters performance and possibly enhances
fitness but does not involve a genetic change.
Until recently, acclimatization has been
considered to occur only within the life span
of an organism providing no trait evolution
from one generation to the next. It is, how-
ever, becoming evident that some environ-
mentally induced nongenetic changes are
heritable (14). This process is called trans-
generational acclimatization or soft or non-
genetic inheritance (15) and occurs through
epigenetic processes. Epigenetics sensu
stricto refers to the external modification of
genes (without a change in the actual gene
sequence) that causes a change in expression
level of those genes. Well-documented epi-
genetic mechanisms are DNA methylation,
histone tail modification, chromatin remod-
eling, and biogenesis of small noncoding
RNAs (16). Some authors extend the defi-
nition of epigenetics to include the commu-
nity of microbes associated with an organism
(e.g., bacteria, algal endosymbionts, and
viruses) (17) because microbial symbionts are
able to influence the host phenotype. Specif-
ically, a change in community composition
can cause a change in the host phenotype,
and, in some organisms, the microbes are
passed on from one generation to the next.

We accept this extension because microbial
symbionts play key roles in stress tolerance
and health in many organisms (18) and in
corals specifically (19–22). Although genetic
adaptation and epigenetic acclimatization
contribute to an organism’s response, human-
assisted acceleration of these mechanisms has
historically been targeted to commercially
relevant species and applications.

Genetic and Epigenetic Modification of
Stock for Commercial Applications
Natural mechanisms of adaptation can be
harnessed in various ways to produce organ-
isms with characteristics that benefit human
populations. Humans have been improv-
ing wild animal and plants for thousands of
years through selection of superior phenotypes
resulting from intra- or interspecific crosses:
i.e., selective breeding (23, 24). With a growing
understanding of genetics over the past cen-
tury, breeding methods have become more
sophisticated, and advances in biotechnology
have led to the creation of novel alleles and
traits that do not exist in natural populations;
these innovations have been achieved through
mutagenesis or the insertion of foreign genetic
material (i.e., the development of GMOs). The
selective breeding and genetic modification
of plants and animals to improve traits for
commercial purposes is now commonplace
(25, 26). Targeted traits include nutrient con-
tent, environmental stress tolerance, and her-
bicide/pest resistance in crops (27), growth
rate and wood quality in forest trees (28), and
meat yield in aquaculture species or farm
animals (29, 30). Positive side effects of se-
lection for a certain trait are occasionally ob-
served. For instance, Sydney rock oysters
artificially selected for faster growth exhibit
a smaller reduction in shell growth under el-
evated pCO2 conditions compared with wild
populations (31). Conversely, trait evolution
may be constrained due to tradeoffs between
competing functions (32), and a lack of trait
improvement despite artificial selection has
been recorded in various breeding programs
(33, 34). In the Nile tilapia, for example, two
rounds of mass selection for growth did not
result in a significant increase in growth,
which was attributed to loss of genetic di-
versity due to inbreeding or drift (35).
More recently, epigenetic modifications

have been used to generate commercially
advantageous phenotypic effects through
controlled stress exposure. Some of these
epigenetic marks are mitotically stable (i.e.,
within a sexual generation) and therefore
relevant in terms of sustained changes in
perennial and strictly clonally reproducing
species that can pass on these modifica-
tions to new ramets produced over extended

Parental Generation (P) Offspring (F1)

ENVIRONMENT

Non-Genetic Elements

SELECTION AND

ADAPTATION

TRANS-GENERATIONAL

ACCLIMATIZATION

INTRA-

GENERATIONAL

ACCLIMATIZATION

Alleles (Genetic Variants)

Fig. 1. Diagram showing within-generation acclimatization through nongenetic processes, as well as trans-
generational nongenetic and genetic inheritance.
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periods of time. For instance, exposure to
mild stress conditions is known to lead to an
increase in tolerance to more severe stress
later in life in a range of plant species (i.e.,
hardening or priming) (36, 37). Vernalization,
where plants require a prolonged period of
exposure to cold to initiate the development
of reproductive organs, is another example of
a mitotically stable, environmentally induced
epigenetic change (38). Exposing plants to
mild stress can in some instances result in
enhanced stress tolerance beyond the sexual
generation that was exposed to the stress event
(39). Epigenetic mechanisms also provide one
possible explanation for the substantial
amount of heritable variation that cannot be
explained by genomic DNA sequence varia-
tion alone (24). Further, natural variation in
DNA methylation and small RNAs among
individuals of several plant species has been
documented, and such variants can be stable
for hundreds of years (24). As a consequence,
the notion of exploiting epigenetic mecha-
nisms for stock improvement is gaining trac-
tion (24, 39).
A growing body of evidence supports

a critical role for microbes in the health and
functioning of most if not all eukaryotic
organisms. Well-studied examples are the
human gut microbiome, the insect gut
microbiome, Vibrio fisheri in the bobtail
squid’s light organ, nitrogen-fixing bacteria in
legumes, and mycorrhizal fungi that enhance
nutrient uptake in plants (18, 40, 41). A dis-
ruption of or change in the composition of
these microbial communities can have far-
reaching effects on the host phenotype. Recent
research has shown that inoculation of plants
with microbes from other species can increase
their stress tolerance and growth dramatically
and that the modification of microbial com-
munities has a range of commercial applica-
tions (42, 43). For instance, salt, drought, and
cold tolerance of two commercial rice vari-
eties is enhanced by colonizing them with
fungal endophytes isolated from other
plant species (44). A range of soil bacteria,
in particular plant growth-promoting rhi-
zobacteria (PGPR), are also known to im-
prove plant growth under stressful conditions
(45). The combined application of fungi and
PGPR may be extremely beneficial for sus-
tainable agriculture (39, 45).

Enhancement of Stock for
Noncommercial Purposes
In comparison with commercial applications,
the development of genetically enhanced
stocks that can boost resilience of natural
populations and be used in restoration of
natural ecosystems is rare. Terrestrial land-
scape ecologists are pioneering this field and

advocate manipulations that accelerate natu-
rally occurring evolutionary processes for
wildland restoration in heavily disturbed
ecosystems (6). For example, a new green
needlegrass variety, called Fowler Germplasm,
was developed through artificial selection of
five natural plant populations. The expecta-
tion is that Fowler will be used in landscape
restoration projects (46). In the animal realm,
at least one attempt to restore wildlife pop-
ulations via selective breeding has been
reported; selected animals of the plains ze-
bra, Equus quagga, were successfully bred
for three generations to reduce the degree of
body striping and to resemble the extinct
quagga phenotype (47). A more indirect and
less controlled form of genetic enhancement
through selective breeding is the trans-
location of individuals between conspecific
populations within the current distribution
range of the species (i.e., assisted migration
or assisted translocation). Assisted migra-
tion is generally done to facilitate mixing of
stocks and increase genetic diversity, resil-
ience, and adaptability in the receiving
population (i.e., augmentation) (48–51).
Other enhancement approaches have

taken more extreme measures and have de-
veloped GMOs to be used in landscape res-
toration because selective breeding did not
yield the desired outcomes. Four billion
American chestnut trees (Castanea dentata)
dominated the North American landscape
until a fungus introduced from Asia wiped
out most trees by the early 1900s. Recent field
trials with transgenic trees have confirmed
that the insertion of a wheat gene has resulted
in heritable fungus resistance. Pending regu-
latory approval, these genetically modified
(GM) trees will be planted in the wild for
reestablishing this species in America’s
woodlands (52–54).
Finally, the manipulation of soil microbial

communities is a well-documented strategy
for crop improvement, and, recently, inocu-
lation of the rhizosphere with fungi and/or
PGPR has been proposed as a strategy to
improve the success of landscape-restoration
initiatives (55). The reconstruction of pre-
disturbance soil bacterial diversity may be
used to guide such landscape-restoration
efforts (56).

State of Coral Reef Restoration
Approaches
Coral reef restoration efforts have mostly
been based on the use of asexually pro-
duced coral fragments (57). These frag-
ments are generally sourced from healthy
coral colonies that are still present either on
the disturbed reefs or on less damaged nearby
reefs, or represent “corals of opportunity”:

i.e., colonies dislodged through natural pro-
cesses or coral fragments produced through
natural processes and collected from the
substratum (58). In the early days of coral
reef restoration, fragments were directly
explanted into the reef environment. How-
ever, a two-step protocol in which fragments
are first grown in in situ or ex situ nurser-
ies (“gardening”), followed by explanting
them onto denuded reefs, has proven far
more successful, in particular when float-
ing in situ nurseries are used (59). The
primary purpose of coral nurseries is to
grow coral colonies to a size that reduces
mortality after transplantation onto dam-
aged or degraded reefs. Coral transplants
have a greater chance of survival the larger
they are (60). The nurseries offer the advan-
tage of decreased competition for resources
(space, light), decreased predation, and sus-
pension above sea-floor sediments. Coral
nurseries can also be used to capture and
harvest coral larvae, as genetic repositories
(61), or to grow mature breeding corals
for larval production and seeding of
surrounding reefs (62). Explanting of
nursery-grown gravid colonies is another
possibility but has received little attention
so far (63).
The midwater floating nurseries have

proven a successful tool for coral reef resto-
ration, with close to 90 coral species success-
fully farmed around the world showing en-
hanced growth rates and low mortalities
(59). In all of these efforts, natural, mostly
local, coral stocks are used. The use of local
stocks preserves the preexisting genetic iden-
tity and restores prior patterns of genetic
variation (64). However, when an environ-
ment is severely altered or expected to change
rapidly in the near future (as is the case under
climate change scenarios), the original stock
may be ill-suited for restoration (65). As
a consequence, use of the original stock will
likely result in high levels of mortality and
a loss of ecosystem function.

Assisted Evolution Approaches to Build
Coral Reef Resilience
The management and conservation of coral
reefs has focused exclusively on the preser-
vation of natural biodiversity, and any pro-
posals to use corals enhanced via assisted
evolution to promote resilience is a radical
departure from this approach and thus likely
to be controversial and stimulate heated de-
bate. This debate may, however, be somewhat
tempered by the broad acknowledgment that
reefs are continuing to decline at an alarming
rate in the face of intensifying climate change
and increasing direct human impacts, a tra-
jectory that infers that traditional methods
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are insufficient to secure a future for coral
reefs. In this context, we advocate that ap-
proaches for trait enhancement analogous
to those listed above should be seriously
considered for keystone organisms of coral
reef systems, such as the reef-building corals.
Four approaches that accelerate the rate of
naturally occurring evolutionary processes
warrant detailed research focus (Fig. 2): (i)
stress exposure of natural stock to induce
preconditioning acclimatization (i.e., within
generations) and transgenerational acclima-
tization (i.e., between generations) through
epigenetic mechanisms sensu stricto (66–69);
(ii) the active modification of the com-
munity composition of coral-associated mi-
crobes (eukaryotic and prokaryotic); (iii)
selective breeding to generate certain geno-
types exhibiting desirable phenotypic traits;
and (iv) laboratory evolution of the algal
endosymbionts (Symbiodinium spp.) of cor-
als through mutagenesis (70) and/or se-
lection (i.e., evolution after the generation
of variability) (71). In the next several para-
graphs, we discuss these approaches, as well
as the range of life-history traits that make
corals amenable to assisted-evolution manip-
ulations. The four approaches are incremental
in the level of human intervention involved.
Exposure to nonlethal light or temperature

stress is common on reefs; in natural pop-
ulations and experimental settings, such con-
ditions have sometimes resulted in enhanced
tolerance to coral bleaching (the breakdown
of the obligate coral-Symbiodinium symbiosis
in response to stress) during subsequent
thermal stress events (69, 72). This process of
within-generation acclimatization is achieved
by changes in the taxonomic composition of
the algal endosymbiont communities found in
corals (67) and/or processes likely involving
epigenetic modification (73). Transgenera-
tional acclimatization can occur over shorter

periods of time compared with genetic ad-
aptation and may last for several generations.
For instance, the tropical damselfish, Acan-
thochromis polyacanthus, shows a significant
decline in aerobic activity after acute exposure
to increased temperature; however, when both
parents and F1 offspring are reared at the
higher temperatures, a complete restoration of
aerobic activity occurs in the F2 offspring
(66). In corals, the importance of trans-
generational acclimatization is largely un-
studied; however, early work suggests that
transgenerational inheritance may play an
important role in the stress tolerance of
brooding corals (74).
Reef-building corals form obligate, mutu-

ally beneficial symbioses with dinoflagellates
in the genus Symbiodinium. These relation-
ships are fundamental to the productivity
and high rates of calcification that create reef
structures. Symbiodinium is divided into nine
major groups, clades A–I (75), and each clade
encompasses many genetic types, many of
which have different physiological optima. The
presence of specific types of Symbiodinium
makes an individual host more or less
susceptible to environmental disturbances
(67, 76). More than one Symbiodinium type
can exist in the same host at the same time
(21, 77, 78), and some corals show changes
in the relative abundances of Symbiodinium
types over time (21). Further, inoculation
of conspecific and genetically similar host
individuals, with distinct Symbiodinium
types or populations of the same type but
from distinct thermal environments, results
in different thermal tolerance limits of the
coral holobionts (79, 80). These observa-
tions suggest that manipulations to obtain
changes in the Symbiodinium communities
of corals, especially through introduction of
resistant strains that are absent in local
populations, may assist in enhancing their

stress tolerance. This avenue deserves ex-
ploration given the gains resulting from the
manipulation of fungi and bacteria in the
rhizosphere of terrestrial plants. Such manip-
ulations will likely have to be restricted to early
life stages because no compelling evidence
exists that adult corals are able to establish
a stable symbiosis with novel Symbiodinium
types (81). Most coral species produce eggs
and larvae that lack Symbiodinium, making
these early life stages amenable for inoculation
with stress-tolerant Symbiodinium types to
explore the phenotypic benefits of such novel
symbioses. Additionally, larvae of maternally
transmitting species can be experimentally
bleached (82) and similarly exposed to novel
Symbiodinium types. A major challenge with
this approach will be to find a way for ma-
nipulated coral–Symbiodinium associations to
remain stable (83, 84).
Corals also harbor diverse prokaryotic

communities (20), consisting of hundreds to
thousands of putative species per colony.
These prokaryotes have known functions in
nitrogen fixation (85, 86), sulfur metabolism
(87), and immunity via the production of
antimicrobials and the disruption of patho-
gen virulence (19). Therefore, these sym-
bionts play important roles in the nutrition
and health of corals. Whether prokaryotic
communities of corals can be manipulated
and stabilized to enhance stress tolerance and
growth, as in plants, is unknown, but we see
the manipulation of prokaryotic communi-
ties as another area at which research efforts
should be directed.
Selective breeding has received virtually no

attention in coral reef conservation (88) de-
spite its clear relevance. Mixing gene pools
from the same or different, closely related
species can lead to offspring with novel
genotypes producing novel phenotypes. A
range of coral species are known to hybridize
with other species in the wild (89). An in-
terspecific Acropora hybrid in the Caribbean,
where coral reefs have shown alarming
declines, has similar and sometimes
higher fitness compared with the parental
species (90), suggesting that hybrid vigor
can occur in disturbed and altered reef
environments. One approach with low en-
vironmental risk is to rear interspecific
hybrids in the laboratory and subject these
hybrids to simulated ambient or predicted
near future conditions (e.g., slightly ele-
vated temperature and pCO2) so that se-
lection can act to identify the genotypes
that are fittest in those environments. Such
genotypes can subsequently be used for
further breeding. Additionally, transloca-
tion of adult corals from a warm reef to
a cooler reef within its natural distribution

3. Selective Breeding2. Modification of Microbial

     Symbiont Communities

1. Induce Acclimatization 4. Evolution of

     Symbiodinium

Explant to Reef Environment

Approaches

Actions

Applications

Pre-condition ≥1 Generations

of Natural Stocks to Various

Environmental Conditions 

Inoculate Early Coral Life

Stages with Stress-tolerant

Microbial Symbionts

Mutagenesis and Selection 

through Experimental Evolution;

Inoculate Coral Early Life Stages 

Select Phenotypes

Assess Feasibility and Risk of Above Approaches

Intensity of Intervention

Select Stocks Using Ambient

Environment, Genetic Markers 

or Species ID; Cross Stocks

Initiate Debate with Stakeholders

Obtain Regulatory Approval for Field Trials

Fig. 2. Diagram summarizing the rationale behind, and steps involved in, the four assisted evolution approaches
proposed here for corals.
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range or seeding the cool reef with recruits
from the warmer reef may be considered as
strategies for accelerated enhancement of
upper thermal tolerance limits (88). For
coral reef ecosystems, assisted migration
has recently been considered in terms of
translocating corals from the warmest reef
areas of the Arabian Gulf to other Indo-
Pacific locations (91). The scale of such
translocations would be challenging in
terms of cost and the need for extensive in-
ternational coordination (91). Further, it is
possible that Gulf populations have diverged
to the extent that they are unable to survive
seasonal extremes at the transplant location
(92, 93) or are no longer able to interbreed
with other Indo-Pacific conspecifics. This
management strategy should not be confused
with the translocation of species beyond
their current distribution range, which has
spawned an active debate in terrestrial
systems (94–99), but far less so in the coral
reef arena (91, 99, 100).
For selective breeding approaches to be

successful, the trait under selection needs
to exhibit significant heritability: i.e.,
phenotypic variation in the trait needs to
have a genetic basis. Although evidence
for genotype-dependent responses to tem-
perature exists in corals (101, 102), trait
heritabilities are largely unknown for the
majority of coral species and other environ-
mental conditions; only two studies have
been published so far, with one suggesting
considerable heritability for thermal tolerance
in the Acropora millepora holobiont (103) and
the other showing limited heritability for
thermal tolerance traits in the coral host, but
considerable heritability in the Symbiodinium
symbionts (104). These results are promising
and indicate that, in addition to heritability
studies, a focus on measuring the response to
selection directly (as proposed in this Per-
spective) is warranted.
Another approach is to attempt to facilitate

genetic adaption of existing Symbiodinium
strains. Symbiodinium can be subjected to
environmental stress in the laboratory with
the goal of eliciting an adaptive response
through selection on random somatic muta-
tions, as has been demonstrated for a range
of other unicellular, asexually reproducing
algae (71). The rate of somatic mutations can
be increased by exposing the culture to
a mutagen (e.g., certain chemicals or irradi-
ation with UV light or X-rays), an approach
that is widely used for strain improvement in
other organisms (70). Selected Symbiodinium
strains are able to establish symbiosis with
the aposymbiotic early life stages of coral
(M.J.H.v.O., personal observation), and, in
this manner, corals with new phenotypes

may be generated. Those with enhanced stress
tolerance may be targeted for reef restoration.
This approach takes advantage of both natu-
rally occurring (random mutations) and ar-
tificial (i.e., the use of a mutagen) processes
followed by selection of certain phenotypes
under controlled laboratory conditions.

Coral Life History Traits and Evolutionary
Potential
Corals possess a range of attributes that
promote evolvability, including (i) the com-
mon occurrence of asexual reproduction in
addition to sexual reproduction—some corals
brood larvae asexually and others reproduce
asexually through fragmentation or colony
fission (105, 106); (ii) a lack of segregation of
the germ cell from the somatic cell line (107);
(iii) the existence of symbiosis with a range of
potentially fast-evolving microbes (22); and
(iv) naturally occurring high levels of genetic
diversity and the occurrence of interspecific
hybridization in some taxa (107). Most of
these life-history traits are shared with land
plants, which, even when strictly asexual, have
a documented ability to keep an evolutionary
pace with their sexually reproducing pest
species (108) and are also most commonly
reported to show transgenerational acclimati-
zation. The high potential for transgenera-
tional acclimatization is due to the fact that
plants and corals commonly show asexual
and sexual reproduction and that, in both
groups, germ-line cells develop from totipo-
tent somatic cells, which have been exposed
to developmental and environmental cues
throughout the individual’s life. These life-
history traits are believed to have evolved in
response to their sessile lifestyle, which re-
quires a constant adjustment to environ-
mental conditions because the organism is
unable to relocate to a more suitable envi-
ronment. Such characteristics provide not
only greater scope for environmentally in-
duced epigenetic changes but also somatic
mutations to be passed on from one genera-
tion to the next compared with strictly sexu-
ally reproducing organisms that have segre-
gated germ and somatic cell lines and show
DNA methylation resetting during gamete/
embryo development. Therefore, corals pos-
sess a variety of characteristics that make
them likely candidate organisms for assisted
evolution initiatives.

Conclusions
Evidence for wide-spread adaptation or ac-
climatization of reef corals to the effects of
climate change does not currently exist, ei-
ther due to a lack of observations or to
a scarceness of events that would drive rapid
adaptation, but there are a few glimmers of

hope. For example, an increase in thermal
tolerance in the most bleaching-sensitive coral
taxa over successive bleaching events has been
documented at a small number of localities in
the Indo-Pacific (91, 109–112), suggesting
that these taxa have acclimatized or adapted
to high temperature stress. We propose that
assisted evolution initiatives may provide
coral reefs with the critical capacity to adapt
at a pace closer to that of current climate
change trajectories. The economic value of
coral reefs through commercial and recrea-
tional fisheries, tourism, drug discovery,
and coastal protection is incalculable, with
peoples’ livelihoods dependent on them. It is
therefore our responsibility to find solutions
to restore severely degraded reefs, with
assisted evolution being one possibility that
has not yet been explored.
There is a suite of key activities and

questions that the coral scientific community
can address in the near future. These activi-
ties include an assessment of the feasibility of
the manipulations listed above, a quantitative
review of the risks associated with each, the
generation of data to feed ecological/evolu-
tionary models that allow the risks, benefits,
and feasibility to be more accurately pre-
dicted (e.g., quantitative requirements for reef
reseeding, time frame for reef recolonization,
assessment of reef connectivity and larval
dispersal, etc.), and an evaluation of added
benefits of assisted evolution. The capacity to
develop and maintain enhanced coral stocks
is likely to have value beyond coral reef res-
toration. The coral aquarium trade, for in-
stance, would benefit tremendously from the
availability of corals bred to cope with greater
environmental ranges. Such stocks would
also provide an alternate source of animals
for the industry, which would in turn reduce
collection pressure on natural populations.
Although we suggest that experimental lab-
oratory research should commence now, on
a no-regrets basis, development of major
field trials should be done only once there
has been a robust and inclusive consider-
ation of the costs and benefits of this in-
tervention taking into account ecological,
economic, and social perspectives.
As the research progresses, an active dis-

cussion should be initiated by relevant sci-
entific bodies that combines an exploration
of the ecological risks with a consideration of
the ethical and socioeconomic implications of
the various approaches outlined here. This
dialogue will help to ensure that the social
and experimental feasibility of assisted evo-
lution develops in step and that appropriate
solutions can be provided without major
delays caused by public controversy.
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The research advocated in our article
is extremely novel in conservation and res-
toration science generally and is relevant to
all organisms whose persistence, like corals,
frames services that are important to human
well-being (64, 113, 114). Although ongoing
research and social actions to address the

root causes of climate change are essential,
we advocate that it is also critical to build
a biological tool box now that can be used
to enhance resilience and mitigate the
impacts of disturbance, with the goal of
sustaining human services and biodiversity
in the rapidly changing ocean of the future.
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