SECTION 260502 - BASIC ELECTRICAL REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This section supplements all sections of this Division and shall apply to all phases of work hereinafter specified, or required to provide a complete installation of electrical systems for the Project. The intent of the Specifications is to provide a complete electrical system that includes all documents that are a part of the Contract.
 - 1. Work Included: Furnish all labor, material, services and skilled supervision necessary for the construction, erection, installation, connections, testing, and adjustment of all circuits and electrical equipment specified herein.
- B. Equipment or Fixtures: Equipment and fixtures shall be connected to provide circuit continuity in accordance with the Specifications, whether or not each piece of conductor, conduit, or protective device is shown between such items of equipment or fixtures, and the point of circuit origin.
- C. Work Installed but Furnished under Other Sections: The Electrical Work includes the installation or connection of certain materials and equipment furnished under other sections. Verify installation details. Foundations for apparatus and equipment will be furnished under other sections unless otherwise noted or detailed.

1.3 GENERAL REQUIREMENTS

- A. Equipment Safety: All electrical materials and equipment shall be new and shall be listed by Underwriter's Laboratories and bear their label, or listed. Custom made equipment must have complete test data submitted by the manufacturer attesting to its safety.
- B. Codes and Regulations:
 - 1. Design, manufacture, testing and method of installation of all apparatus and materials furnished under the requirements of these specifications shall conform to the latest publications or standard rules of the following:
 - a. Institute of Electrical and Electronic Designers IEEE
 - b. National Electrical Manufacturers' Association NEMA
 - c. Underwriters' Laboratories, Inc. UL

- e. National Fire Protection Association NFPA
- e. American Society for Testing and Materials ASTM
- f. American National Standards Institute ANSI
- g. American Standard Association ASA
- h. National Electrical Code NEC, as modified by the City
- i. Insulated Power Cable Designers Association IPCEA
- j. International Electrical Testing Association NETA
- C. The term "Code", when used within the specifications.
- D. Requirements of Regulatory Agencies:
 - 1. Codes, Permits and Fees: Where the Contract Documents exceed minimum requirements, the Contract Documents take precedence. Where provisions differ in regard to code application, size, quality, quantity or type of equipment, Contractor shall include in the bid, costs for the most costly provision either denoted in the specifications or on the drawings. This provision shall apply as an amendment to the Public Contracts Code.
 - a. Comply with all requirements for permits, licenses, fees and Code. Permits, licenses, fees, inspections and arrangements required for the Work shall be obtained by the Contractor at his expense, unless otherwise specified.
 - b. Comply with the requirements of the applicable utility companies serving the Project. Make all arrangements with the utility companies for proper coordination of the Work.
- E. Shop Drawings and Submittals: Submittals on all material prior to installation.
 - 1. Shop drawings shall be submitted on, but not limited to, the following:
 - 2. Low Voltage Electrical Power Conductors and Cables
 - 3. Grounding and Bonding for Electrical Systems
 - 4. Lighting Control Devices
- F. Cutting and Patching:
 - 1. Obtain written permission from the Owner before core drilling or cutting any structural members. Exact method and location of conduit penetrations and/or openings in concrete walls, floors, or ceilings shall be as approved by the Owner.
 - 2. Use care in piercing waterproofing. After the part piercing the waterproofing has been set in place, seal openings and make absolutely watertight.
 - 3. Seal all openings to meet the fire rating of the particular wall floor or ceiling.

1.3 JOB CONDITIONS

A. Existing Conditions:

BASIC ELECTRICAL REQUIREMENTS

- 1. The contractor shall visit the site and verify existing conditions.
- 2. Electrical circuits affecting work shall be de energized while working on or near them.

1.4 TESTING AND ADJUSTMENT

- A. Upon completion of all Electrical Work, the contractor shall provide all testing as follows:
 - 1. Operational Test: Test all circuit breakers, receptacles and all other electrical equipment. Replace all faulty devices and equipment discovered during testing with new devices and equipment at no additional cost, and that part of the system (or devices or equipment) shall then be retested.

1.5 FINAL INSPECTION AND ACCEPTANCE

A. After all requirements of the specifications and/or the drawings have been fully completed, representatives of the Owner will inspect the Work. The Contractor shall provide competent personnel to demonstrate the operation of any item of system, to the full satisfaction of each representative. The Contractor shall provide 8 hours of minimum scheduled operation and maintenance training to staff to be trained on each system indicated above. See specific sections for additional training/operation hours required.

1.6 WARRANTIES

A. Guarantee all materials, equipments, apparatus and workmanship to be free of defective material and faulty workmanship for period of one year unless extended guarantee periods are specified in individual sections.

END OF SECTION 260502

SECTION 260503 - EQUIPMENT WIRING CONNECTIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes electrical connections to equipment.

1.3 REFERENCES

- A. National Electrical Manufacturers Association:
 - 1. NEMA WD 1 General Requirements for Wiring Devices.
 - 2. NEMA WD 6 Wiring Devices-Dimensional Requirements.

1.4 SUBMITTALS

- A. Product Data: Submit wiring device manufacturer's catalog information showing dimensions, configurations, and construction.
- B. Manufacturer's installation instructions.

1.5 CLOSEOUT SUBMITTALS

A. Project Record Documents: Record actual locations, sizes, and configurations of equipment connections.

1.6 COORDINATION

- A. Obtain and review shop drawings, product data, manufacturer's wiring diagrams, and manufacturer's instructions for equipment furnished under other sections.
- B. Determine connection locations and requirements.
- C. Sequence rough-in of electrical connections to coordinate with installation of equipment.
- D. Sequence electrical connections to coordinate with start-up of equipment.

EQUIPMENT WIRING CONNECTIONS

PART 2 - PRODUCTS

2.1 CORD AND PLUGS

- A. Manufacturers:
 - 1. Hubbell.
 - 2. Leviton.
 - 3. Pass & Seymour.
- B. Attachment Plug Construction: Conform to NEMA WD 1.
- C. Configuration: NEMA WD 6; match receptacle configuration at outlet furnished for equipment.
- D. Cord Construction: Type SO or SJO multiconductor flexible cord with identified equipment grounding conductor, suitable for use in damp locations.
- E. Size: Suitable for connected load of equipment, length of cord, and rating of branch circuit overcurrent protection.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify equipment is ready for electrical connection, for wiring, and to be energized.

3.2 EXISTING WORK

- A. Remove exposed abandoned equipment wiring connections, including abandoned connections above accessible ceiling finishes.
- B. Disconnect abandoned utilization equipment and remove wiring connections. Remove abandoned components when connected raceway is abandoned and removed. Install blank cover for abandoned boxes and enclosures not removed.
- C. Extend existing equipment connections using materials and methods compatible with existing electrical installations, or as specified.

3.3 INSTALLATION

- A. Make electrical connections.
- B. Make conduit connections to equipment using flexible conduit. Use liquidtight flexible conduit with watertight connectors in damp or wet locations.

EQUIPMENT WIRING CONNECTIONS

- C. Connect heat producing equipment using wire and cable with insulation suitable for temperatures encountered.
- D. Install receptacle outlet to accommodate connection with attachment plug.
- E. Install cord and cap for field-supplied attachment plug.
- F. Install suitable strain-relief clamps and fittings for cord connections at outlet boxes and equipment connection boxes.
- G. Install disconnect switches, controllers, control stations, and control devices to complete equipment wiring requirements.
- H. Install terminal block jumpers to complete equipment wiring requirements.
- I. Install interconnecting conduit and wiring between devices and equipment to complete equipment wiring requirements.

3.4 ADJUSTING

A. Cooperate with utilization equipment installers and field service personnel during checkout and starting of equipment to allow testing and balancing and other startup operations. Provide personnel to operate electrical system and checkout wiring connection components and configurations.

END OF SECTION 260503

SECTION 260513 - MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Medium voltage cable.
 - 2. Cable terminations.
 - 3. Fireproofing tape.
 - 4. Underground cable markers.
 - 5. Bedding and cover materials.

1.3 REFERENCES

- A. International Electrical Testing Association:
 - 1. NETA ATS Acceptance Testing Specifications for Electrical Power Distribution Equipment and Systems.
- B. Institute of Electrical and Electronics Engineers.
 - 1. IEEE 48 Standard Test Procedures and Requirements for Alternating Current Cable Terminations 2.5 kV thru 765 kV
 - 2. IEEE C2 National Electrical Safety Code.
- C. National Electrical Manufacturers Association
 - 1. NEMA WC 70 Non-shielded Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
 - 2. NEMA WC 71 Non-shielded Power Cables Rated 2001-5000 Volts for the Distribution of Electric Energy
 - 3. NEMA WC 74 5-46 kV Shielded Power Cable for Use in the Transmission and Distribution of Electric Energy

1.4 SUBMITTALS

- A. Product Data: Submit for cable, terminations, and accessories.
- B. Test Reports: Indicate results of cable test in tabular form and in plots of current versus voltage for incremental voltage steps, and current versus time at 30 second intervals at maximum voltage.

1.5 CLOSEOUT SUBMITTALS

- A. Project Record Documents: Record actual sizes and locations of cables.
- B. Operation and Maintenance Data: Submit instructions for testing and cleaning cable and accessories.

1.6 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years of experience, and with service facilities within 100 miles of Project.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect cable ends from entrance of moisture.

PART 2 - PRODUCTS

2.1 MEDIUM VOLTAGE CABLE

- A. Manufacturers:
 - 1. The Okonite Company
 - 2. General Cable
 - 3. Southwire
- B. Voltage: 5kV, 8kV, 15kV, 35kV.
- C. Insulation Level: 133 percent of operating voltage.
- D. Cable Continuous Operating Temperature Rating: MV-105.
- E. Configuration: Single conductor.

- F. Conductor: Copper, compact stranded
- G. Conductor Shield: Metal tape insulation shielding
- H. Insulation: Ethylene Propylene Rubber EPR
- I. Cable Jacket: Sunlight-resistant PVC or Chlorosulfonated polyethylene, CPE.

2.2 CABLE TERMINATIONS

- A. Manufacturers:
 - 1. 3M Electrical Products Division.
 - 2. Raychem.
 - 3. Thomas & Betts.
- B. Location: Indoor or Outdoor
- C. Conductor Quantity: Single core
- D. Type: Dual extrusion thick wall heat shrink

2.3 FIREPROOFING TAPE

- A. Manufacturers:
 - 1. 3M Electrical Products Division
 - 2. Plymouth Rubber Co.
- B. Product Description: Flexible, conformable fabric, coated on one side with flame retardant, flexible polymeric or chlorinated elastomer. Non-corrosive to and compatible with cable sheaths jackets. It does not support combustion.
- C. Width: Approximately 3 inches
- D. Thickness: Not less than 0.03 inch
- E. Weight: Not less than 2.5 pounds per square yard

2.4 UNDERGROUND CABLE MARKERS

A. Trace Wire: Magnetic detectable conductor, red colored plastic covering, imprinted with "Medium Voltage Cable" in large letters.

2.5 CABLE IDENTIFICATION

- A. Colored Conductor Tape for Phases: Yellow colored, self-adhesive vinyl tape not less than 3 mils thick by 1 inch wide. 1 stripe for the A phase conductor, 2 stripes for the B phase conductor, 3 stripes for the C phase conductor. Tape shall be located at all terminations, splices and pull boxes.
- B. B. Metal Tags: Brass with 1/4 inch embossed legend, punched for use with self-locking nylon tie fastener. Tags shall be located at all terminations, splices and pull boxes. Legend shall include the feeder circuit breaker identifier and phase.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify excavations are to required grade, dry, and not over-excavated.
- B. Verify conduit, duct, trench, and manholes are ready to receive cable.
- C. Verify routing and termination locations of cable prior to rough-in.

3.2 PREPARATION

A. Use swab to clean conduits and ducts before pulling cables.

3.3 EXISTING WORK

- A. Remove abandoned medium-voltage cable.
- B. Maintain access to existing medium-voltage cable and other installations remaining active and requiring access. Modify installation or provide access panel.
- C. Extend existing medium-voltage cable installations using materials and methods as specified.
- D. Clean and repair existing medium-voltage cable to remain or to be reinstalled.

3.4 INSTALLATION

- A. Avoid abrasion and other damage to cables during installation.
- B. Use suitable manufacturer approved lubricants and pulling equipment.

C. Sustain cable pulling tensions and bending radii below manufacturer's recommended MEDIUM-VOLTAGE CABLES 260513 - 4

limits.

- D. Ground cable shield at each termination and splice.
- E. Install cables in manholes along wall providing longest route.
- F. Arrange cable in manholes to avoid interference with duct entrances.

3.5 FIREPROOFING

- A. Apply fireproofing tape to cables when installed in manholes, cable rooms, pull boxes, or other enclosures.
- B. Smooth out irregularities, at splices or other locations, with insulation putty before applying fireproofing tape.
- C. Apply fireproofing tape tightly around cables spirally in half-lapped wrapping or in butt jointed wrapping with second wrapping covering joints first.
- D. Extend fireproofing 1 inch into conduit or duct.
- E. Install tape with coated side toward cable.
- F. Install random wrappings of plastic tape around fireproofing tape to prevent unraveling.
- G. Install fireproofing to withstand a 200 Ampere arc for 30 seconds.

3.6 FIELD QUALITY CONTROL

- A. Inspect exposed cable sections for physical damage.
- B. Inspect cable for proper connections.
- C. Inspect shield grounding, cable supports, and terminations for proper installation.
- D. Tests as per applicable NETA standards.

3.7 PROTECTION OF INSTALLED CONSTRUCTION

A. Protect installed cables from entrance of moisture.

END OF SECTION 260513

MEDIUM-VOLTAGE CABLES

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes building wire and cable; nonmetallic-sheathed cable; direct burial cable; service entrance cable; armored cable; metal clad cable; and wiring connectors and connections.

1.3 REFERENCES

- A. International Electrical Testing Association:
 - 1. NETA ATS Acceptance Testing Specifications for Electrical Power Distribution Equipment and Systems.
- B. National Fire Protection Association:
 - 1. NFPA 70 National Electrical Code.
 - 2. NFPA 262 Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
- C. Underwriters Laboratories, Inc.:
 - 1. UL 1277 Standard for Safety for Electrical Power and Control Tray Cables with Optional Optical-Fiber Members.

1.4 SYSTEM DESCRIPTION

- A. Product Requirements: Provide products as follows:
 - 1. Solid conductor for feeders and branch circuits 12 AWG.
 - 2. Stranded conductors for control circuits.
 - 3. Conductor not smaller than 12 AWG for power and lighting circuits.
 - 4. Conductor not smaller than 14 AWG for control circuits.
 - 5. Increase wire size in branch circuits to limit voltage drop to a maximum of 3 percent. B.

Wiring Methods: Provide the following wiring methods:

1. Concealed Dry Interior Locations: Use only building wire, Type THHN/THWN insulation, in raceway.

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES 260519 - 1

- 2. Exposed Dry Interior Locations: Use only building wire, Type THHN/THWN insulation, in raceway.
- 3. Above Accessible Ceilings: Use only building wire, Type THHN/THWN insulation, in raceway.
- 4. Wet or Damp Interior Locations: Use only building wire, Type THHN/THWN insulation, in raceway.
- 5. Exterior Locations: Use only building wire, Type THHN/THWN insulation, in raceway.
- 6. Underground Locations: Use only building wire, Type THHN/THWN insulation, in raceway.
- 7. Other Locations: Use only building wire, Type THHN/THWN insulation, in raceway.

1.5 CLOSEOUT SUBMITTALS

A. Project Record Documents: Record actual locations of components and circuits.

1.6 QUALITY ASSURANCE

A. Provide wiring materials located in plenums with peak optical density not greater than 0.5, average optical density not greater than 0.15, and flame spread not greater than 5 feet (1.5 m) when tested in accordance with NFPA 262.

PART 2 - PRODUCTS

2.1 BUILDING WIRE

- A. Manufacturers:
 - 1. General Cable Co.
 - 2. Southwire Co.
 - 3. Rome Cable Co.
- B. Product Description: Single conductor insulated wire.
- C. Conductor: Copper.
- D. Insulation Voltage Rating: 600 volts.
- E. Insulation Temperature Rating: 75 degrees C.
- F. Insulation Material: Thermoplastic.

2.2 ARMORED CABLE

A. Manufacturers:

- 1. General Cable.
- 2. Southwire Cable.
- 3. Rome Cable.

2.3 TERMINATIONS

- A. Terminal Lugs for Wires 6 AWG and Smaller: Solderless, compression type copper.
- B. Lugs for Wires 4 AWG and Larger: Color keyed, compression type copper, with insulating sealing collars.

PART 3 - EXECUTION

3.1 PREPARATION

A. Completely and thoroughly swab raceway before installing wire.

3.2 INSTALLATION

- A. Neatly train and lace wiring inside boxes, equipment, and panelboards.
- B. Identify and color code wire and cable as described herein. Identify each conductor with its circuit number or other designation indicated.
- C. Special Techniques--Building Wire in Raceway:
 - 1. Pull conductors into raceway at same time.
 - 2. Install building wire 4 AWG and larger with pulling equipment.
- D. Special Techniques Cable:
 - 1. Protect exposed cable from damage.
 - 2. Support cables above accessible ceiling, using spring metal clips or metal plastic cable ties to support cables from structure or ceiling suspension system. Do not rest cable on ceiling panels.
- E. Special Techniques Wiring Connections:
 - 1. Clean conductor surfaces before installing lugs and connectors.
 - 2. Make splices, taps, and terminations to carry full ampacity of conductors with no perceptible temperature rise.

- 3. Tape uninsulated conductors and connectors with electrical tape to 150 percent of insulation rating of conductor.
- 4. Install split bolt connectors for copper conductor splices and taps, 6 AWG and larger.
- 5. Install solderless pressure connectors with insulating covers for copper conductor splices and taps, 8 AWG and smaller.
- 6. Install insulated spring wire connectors with plastic caps for copper conductor splices and taps, 10 AWG and smaller.
- F. Install solid conductors for branch circuits 10 AWG and smaller. Do not place bare stranded conductors directly under screws.
- G. Install terminal lugs on ends of 600 volt wires unless lugs are furnished on connected device, such as circuit breakers.
- H. Size lugs in accordance with manufacturer's recommendations terminating wire sizes. Install 2-hole type lugs to connect wires 4 AWG and larger to copper bus bars.
- I. For terminal lugs fastened together such as on motors, transformers, and other apparatus, or when space between studs is small enough that lugs can turn and touch each other, insulate for dielectric strength of 2-1/2 times normal potential of circuit.

3.3 WIRE COLOR

- A. General: All power and branch circuit conductors shall be provided with color-coded insulation or color-coded self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide. Vinyl tape shall be used in vaults, pull and junction boxes, manholes and handholes. Identify the source and circuit number of each set of conductors with write-on tags.
- B. Colors: Color coding shall be as follows:

Phase	208Y/120V	480Y/277V
А	Black	Brown
В	Red	Orange
С	Blue	Yellow
Neutral	White	White with Black Stripe
Ground	Green	Green

3.4 FIELD QUALITY CONTROL

- A. Inspect and test in accordance with NETA ATS, except Section 4.
- B. Perform inspections and tests listed in NETA ATS, Section 7.3.1.

END OF SECTION 260519

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES 260519 - 4

Page 5084 of 6215

SECTION 260523 - CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.
- B. Related Requirements:
 - 1. Section 260513 "Medium-Voltage Cables" for single-conductor and multiconductor cables, cable splices, and terminations for electrical distribution systems with 2001 to 35,000 V.
 - 2. Section 260523 "Control-Voltage Electrical Power Cables" for control systems communications cables and Classes 1, 2 and 3 control cables.
 - 3. Section 271500 "Communications Horizontal Cabling" for cabling used for voice and data circuits.

1.3 DEFINITIONS

A. VFC: Variable frequency controller.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

- A. Aluminum and Copper Conductors: Comply with NEMA WC 70/ICEA.
- B. Conductor Insulation: Comply with NEMA WC 70/ICEA for Type UF, Type USE and Type SO.
- C. Multiconductor Cable: Comply with NEMA WC 70/ICEA for armored cable, Type AC, metalclad cable, Type MC, mineral-insulated, metal-sheathed cable, Type MI nonmetallic-sheathed cable, Type NM, Type SO and Type USE with ground wire.

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper: Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN, THWN, single conductors in raceway, Type XHHW single conductors in raceway, Mineral-insulated, metal-sheathed cable, Type MI or Type SE or Type USE multiconductor cable.

- B. Exposed Feeders: Type THHN, THWN, single conductors in raceway, Type XHHW single conductors in raceway, Armored cable, Type AC, Metal-clad cable, Type MC, Mineral-insulated, metal-sheathed cable, Type MI or Nonmetallic-sheathed cable, Type NM.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN, THWN single conductors in raceway, Armored cable, Type AC, Metal-clad cable, Type MC], Mineral-insulated, metal-sheathed cable, Type MI or Nonmetallic-sheathed cable, Type NM.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN, THWN single conductors in raceway, Type XHHW-2, single conductors in raceway or Underground feeder cable, Type UF.
- E. Feeders Installed below Raised Flooring: Type THHN, THWN single conductors in raceway, Armored cable, Type AC, Metal-clad cable, Type MC or Mineral-insulated, metal-sheathed cable, Type MI.
- F. Feeders in Cable Tray: Type THHN, THWN single conductors in raceway, Type XHHW single conductors larger than No. 1/0 AWG, Armored cable, Type AC, Metal-clad cable, Type MC, Mineral-insulated, metal-sheathed cable, Type MI or Nonmetallic-sheathed cable, Type NM.
- G. Exposed Branch Circuits, Including in Crawlspaces: Type THHN, THWN single conductors in raceway, Armored cable, Type AC, Metal-clad cable, Type MC, Mineral-insulated, metal-sheathed cable, Type MI or Nonmetallic-sheathed cable, Type NM.
- H. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN, THWN single conductors in raceway, Armored cable, Type AC, Metal-clad cable, Type MC, Mineral-insulated, metal-sheathed cable, Type MI or Nonmetallic-sheathed cable, Type NM.
- I. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN, THWN single conductors in raceway, Type XHHW single conductors in raceway or Underground branch-circuit cable, Type UF.
- J. Branch Circuits Installed below Raised Flooring: Type THHN, THWN single conductors in raceway, Armored cable, Type AC, Metal-clad cable, Type MC or Mineral-insulated, metal-sheathed cable, Type MI.
- K. Branch Circuits in Cable Tray: Type THHN, THWN single conductors in raceway, Type XHHW single conductors larger than No. 1/0 AWG, Armored cable, Type AC, Metalclad cable, Type MC, Mineral-insulated, metal-sheathed cable, Type MI or Nonmetallicsheathed cable, Type NM.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceway and Boxes for Electrical Systems" prior to pulling conductors and cables.

- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."
- G. Complete cable tray systems installation according to Section 260536 "Cable Trays for Electrical Systems" prior to installing conductors and cables.

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 076413 "Penetration Firestopping".

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors and conductors feeding the following critical equipment and services for compliance with requirements.

- 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- D. Test and Inspection Reports: Prepare a written report to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- E. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260523

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes: Grounding systems and equipment.
- B. Section includes grounding systems and equipment, plus the following special applications:
 - 1. Overhead-line grounding.
 - 2. Underground distribution grounding.
 - 3. Ground bonding common with lightning protection system.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1. Ground rods.
 - 2. Ground rings.
 - 3. Grounding arrangements and connections for separately derived systems.
 - 4. Grounding for sensitive electronic equipment.
- B. Qualification Data: For qualified testing agency and testing agency's field supervisor.
- C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

- 1. Instructions for periodic testing and inspection of grounding features at test wells, ground rings or grounding connections for separately derived systems based on NETA MTS or NFPA 70B.
 - a. Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 - b. Include recommended testing intervals.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
 - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
- C. Bare Grounding Conductor and Conductor Protector for Wood Poles:
 - 1. No. 4 AWG minimum, soft-drawn copper.
 - 2. Conductor Protector: Half-round PVC or wood molding; if wood, use pressure-treated fir, cypress, or cedar.

2.2 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- D. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless compression or exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.3 GROUNDING ELECTRODES

- A. Ground Rods: Copper-clad or Zinc-coated; 3/4 inch by 10 feet or 5/8 by 96 inches in diameter.
- B. Chemical-Enhanced Grounding Electrodes: Copper tube, straight or L-shaped, charged with nonhazardous electrolytic chemical salts.
 - 1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches long.
 - 2. Backfill Material: Electrode manufacturer's recommended material.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 - 1. Bury at least 24 inches below grade.
 - 2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.
- C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

- D. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down to specified height above floor; connect to horizontal bus.
- E. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING OVERHEAD LINES

- A. Comply with IEEE C2 grounding requirements.
- B. Install two parallel ground rods if resistance to ground by a single, ground-rod electrode exceeds 25 ohms.
- C. Drive ground rods until tops are 12 inches below finished grade in undisturbed earth.
- D. Ground-Rod Connections: Install bolted connectors for underground connections and connections to rods.
- E. Lightning Arrester Grounding Conductors: Separate from other grounding conductors.
- F. Secondary Neutral and Transformer Enclosure: Interconnect and connect to grounding conductor.
- G. Protect grounding conductors running on surface of wood poles with molding extended from grade level up to and through communication service and transformer spaces.

3.3 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Comply with IEEE C2 grounding requirements.
- B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.

- C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.
- D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.4 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.
 - 4. Single-phase motor and appliance branch circuits.
 - 5. Three-phase motor and appliance branch circuits.
 - 6. Flexible raceway runs.
 - 7. Armored and metal-clad cable runs.
 - 8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.
 - 9. Computer and Rack-Mounted Electronic Equipment Circuits: Install insulated equipment grounding conductor in branch-circuit runs from equipment-area power panels and power-distribution units.
 - 10. X-Ray Equipment Circuits: Install insulated equipment grounding conductor in circuits supplying x-ray equipment.
- C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to ductmounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

- F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
- G. Signal and Communication Equipment: In addition to grounding and bonding required by NFPA 70, provide a separate grounding system complying with requirements in TIA/ATIS J-STD-607-A.
 - 1. For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 - 2. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-4-by-12-inch grounding bus.
 - 3. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.
- H. Metal and Wood Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.5 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
- C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 - 2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

- D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 260543 "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches deep, with cover.
 - 1. Test Wells: Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.
- E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
- F. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- G. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install [tinned]bonding jumper to bond across flexible duct connections to achieve continuity.
- H. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.
- I. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each steel column, extending around the perimeter of area or item indicated.
 - 1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.
 - 2. Bury ground ring not less than 24 inches from building's foundation.

- J. Under Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.
 - 1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
 - 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
 - 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

- E. Grounding system will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.
- G. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 - 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 - 4. Substations and Pad-Mounted Equipment: 5 ohms.
 - 5. Manhole Grounds: 10 ohms.
- H. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526

SECTION 260530 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. IMC: Intermediate metal conduit.
- C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
- C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.-

1.5 ACTION SUBMITTALS

A. Product Data: For the following:

- 1. Steel slotted support systems.
- 2. Nonmetallic slotted support systems.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze hangers. Include Product Data for components.
 - 2. Steel slotted channel systems. Include Product Data for components.
 - 3. Nonmetallic slotted channel systems. Include Product Data for components.
 - 4. Equipment supports.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Comply with NFPA 70.

1.8 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified together with concrete Specifications.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 07720 "Roof Accessories."

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 2. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 - 3. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 - 4. Channel Dimensions: Selected for applicable load criteria.

- B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- C. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
 - 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
 - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 - 6. Toggle Bolts: All-steel springhead type.
 - 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 05500 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with single-bolt conduit clamps using spring friction action for retention in support channel.
- D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 - 6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 05500 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 03300 "Cast-in-Place Concrete." or Section 03301 "Miscellaneous Cast-in-Place Concrete."
- C. Anchor equipment to concrete base.
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260530

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits, tubing, and fittings.
 - 2. Nonmetal conduits, tubing, and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Nonmetal wireways and auxiliary gutters.
 - 5. Surface raceways.
 - 6. Boxes, enclosures, and cabinets.
 - 7. Handholes and boxes for exterior underground cabling.

1.3 DEFINITIONS

- A. ARC: Aluminum rigid conduit.
- B. GRC: Galvanized rigid steel conduit.
- C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. LEED Submittals:
 - 1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
 - 2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

- C. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.
- D. Samples: For wireways, nonmetallic wireways and surface raceways and for each color and texture specified, 12 inches long.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 - 1. Structural members in paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
- B. Qualification Data: For professional engineer.
- C. Seismic Qualification Certificates: For enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 - 4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.
- D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. GRC: Comply with ANSI C80.1 and UL 6.
- C. ARC: Comply with ANSI C80.5 and UL 6A.
- D. IMC: Comply with ANSI C80.6 and UL 1242.
- E. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch, minimum.

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

- F. EMT: Comply with ANSI C80.3 and UL 797.
- G. FMC: Comply with UL 1; zinc-coated steel or aluminum.
- H. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- I. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 - 2. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: Setscrew or compression.
 - 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 - 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.
- J. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

- A. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ENT: Comply with NEMA TC 13 and UL 1653.
- C. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- D. LFNC: Comply with UL 1660.
- E. Rigid HDPE: Comply with UL 651A.
- F. Continuous HDPE: Comply with UL 651B.
- G. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D 3485.
- H. RTRC: Comply with UL 1684A and NEMA TC 14.
- I. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

- J. Fittings for LFNC: Comply with UL 514B.
- K. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- L. Solvent cements and adhesive primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1, Type 3R, Type 4 or Type 12 unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- C. Wireway Covers: Hinged type, Screw-cover type or Flanged-and-gasketed type unless otherwise indicated.
- D. Finish: Manufacturer's standard enamel finish.

2.4 NONMETALLIC WIREWAYS AND AUXILIARY GUTTERS

- A. Listing and Labeling: Nonmetallic wireways and auxiliary gutters shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Description: Fiberglass polyester, extruded and fabricated to required size and shape, without holes or knockouts. Cover shall be gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections shall be flanged and have stainless-steel screws and oil-resistant gaskets.
- C. Description: PVC, extruded and fabricated to required size and shape, and having snap-on cover, mechanically coupled connections, and plastic fasteners.
- D. Fittings and Accessories: Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.

- E. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- F. Solvent cements and adhesive primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.5 SURFACE RACEWAYS

- A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5.
- C. Surface Nonmetallic Raceways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC. Product shall comply with UL 94 V-0 requirements for self-extinguishing characteristics.
- D. Tele-Power Poles:
 - 1. Material: Galvanized steel with ivory baked-enamel finish or Aluminum with clear anodized finish.
 - 2. Fittings and Accessories: Dividers, end caps, covers, cutouts, wiring harnesses, devices, mounting materials, and other fittings shall match and mate with tele-power pole as required for complete system.

2.6 BOXES, ENCLOSURES, AND CABINETS

- A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- D. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
- E. Metal Floor Boxes:
 - 1. Material: Cast metal or sheet metal.
 - 2. Shape: Rectangular.
 - 3. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- F. Nonmetallic Floor Boxes: Nonadjustable, round or rectangular.
 - 1. Listing and Labeling: Nonmetallic floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- G. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- H. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb.
 - 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- I. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- J. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.
- K. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- L. Device Box Dimensions: 4 inches square by 2-1/8 inches deep or 4 inches by 2-1/8 inches by 2-1/8 inches deep.
- M. Gangable boxes are allowed.
- N. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1, Type 3R, Type 4 or Type 12 with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Plastic or Fiberglass.
 - 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
- O. Cabinets:
 - 1. NEMA 250, Type 1, Type 3R or Type 12 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.
 - 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC, IMC, RNC, Type EPC-40-PVC or RNC, Type EPC-80-PVC.
 - 2. Concealed Conduit, Aboveground: GRC, IMC, EMT or RNC, Type EPC-40-PVC.
 - 3. Underground Conduit: RNC, Type EPC-40-PVC, Type EPC-80-PVC, direct buried or concrete encased.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC or LFNC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R or Type 4.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT, ENT or RNC.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT or RNC identified for such use.
 - 3. Exposed and Subject to Severe Physical Damage: GRC or IMC. Raceway locations include the following:
 - a. Loading dock.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c. Mechanical rooms.
 - d. Gymnasiums.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT, ENT or RNC, Type EPC-40-PVC.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 6. Damp or Wet Locations: GRC or IMC.
 - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel or nonmetallic in institutional and commercial kitchens and damp or wet locations.
- C. Minimum Raceway Size: 1/2-inch or 3/4-inch trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 - 3. EMT: Use setscrew or compression, steel or cast-metal fittings. Comply with NEMA FB 2.10.
 - 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

- E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.
- F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
- G. Install surface raceways only where indicated on Drawings.
- H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation.
- D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- E. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- H. Support conduit within 12 inches of enclosures to which attached.
- I. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of 1 inch or 2 inches of concrete cover in all directions.
 - 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 - 5. Change from ENT to RNC, Type EPC-40-PVC, GRC or IMC before rising above floor.

- J. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
- M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- N. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- O. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- P. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- Q. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- S. Surface Raceways:
 - 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 - 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- T. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

- U. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - 3. Where otherwise required by NFPA 70.
- V. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- W. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 - c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 - d. Attics: 135 deg F temperature change.
 - 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
 - 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 - 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- X. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- Y. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to bottom of box unless otherwise indicated.

- Z. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- AA. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- BB. Locate boxes so that cover or plate will not span different building finishes.
- CC. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- DD. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- EE. Set metal floor boxes level and flush with finished floor surface.
- FF. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

- A. Direct-Buried Conduit:
 - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.
 - 2. Install backfill as specified in Section 312000 "Earth Moving."
 - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
 - 4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 - 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 - b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.

- 6. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits but a minimum of 6 inches below grade. Align planks along centerline of conduit.
- 7. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies.

3.5 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533

SECTION 260536 - CABLE TRAYS FOR ELECTRICAL

SYSTEMS PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Ladder cable trays.
 - 2. Trough cable trays.
- B. Related Requirements:
 - 1. Section 270536 "Cable Trays for Communications Systems" for cable trays and accessories serving communications systems.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include data indicating dimensions and finishes for each type of cable tray indicated.
- B. Shop Drawings: For each type of cable tray.
 - 1. Show fabrication and installation details of cable trays, including plans, elevations, and sections of components and attachments to other construction elements. Designate components and accessories, including clamps, brackets, hanger rods, splice-plate connectors, expansion-joint assemblies, straight lengths, and fittings.
- C. Delegated-Design Submittal: For seismic restraints.
 - 1. Seismic-Restraint Details: Signed and sealed by a qualified professional engineer, licensed in the state where Project is located, who is responsible for their preparation.
 - 2. Design Calculations: Calculate requirements for selecting seismic restraints.
 - 3. Detail fabrication, including anchorages and attachments to structure and to supported cable trays.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans and sections, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:.
 - 1. Include scaled cable tray layout and relationships between components and adjacent structural, electrical, and mechanical elements.
 - 2. Vertical and horizontal offsets and transitions.
 - 3. Clearances for access above and to side of cable trays.
 - 4. Vertical elevation of cable trays above the floor or below bottom of ceiling structure.
- B. Seismic Qualification Certificates: For cable trays, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cable tray supports and seismic bracing.
- B. Seismic Performance: Cable trays and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "cable trays will remain in place without separation of any parts when subjected to the seismic forces specified."
 - 2. Component Importance Factor: 1.5.
- C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes in cable tray installed outdoors.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 GENERAL REQUIREMENTS FOR CABLE TRAYS

A. Cable Trays and Accessories: Identified as defined in NFPA 70 and marked for intended location, application, and grounding.

- 1. Source Limitations: Obtain cable trays and components from single manufacturer.
- B. Sizes and Configurations: See the Cable Tray Schedule on Drawings for specific requirements for types, materials, sizes, and configurations.
- C. Structural Performance: See articles on individual cable tray types for specific values for the following parameters:
 - 1. Uniform Load Distribution: Capable of supporting a uniformly distributed load on the indicated support span when supported as a simple span and tested according to NEMA VE 1.
 - 2. Concentrated Load: A load applied at midpoint of span and centerline of tray.
 - 3. Load and Safety Factors: Applicable to both side rails and rung capacities.

2.3 LADDER CABLE TRAYS

- A. Description:
 - 1. Configuration: Two I-beam side rails with transverse rungs welded to side rails.
 - 2. Rung Spacing: 4 inches, 6 inches, 9 inches, 12 inches or 18 inches o.c.
 - 3. Radius-Fitting Rung Spacing: 9 inches at center of tray's width.
 - 4. Minimum Cable-Bearing Surface for Rungs: 7/8-inch width with radius edges.
 - 5. No portion of the rungs shall protrude below the bottom plane of side rails.
 - 6. Structural Performance of Each Rung: Capable of supporting a maximum cable load, with a safety factor of 1.5, plus a 200-lb concentrated load, when tested according to NEMA VE 1.
 - 7. Minimum Usable Load Depth: 3 inches, 4 inches, 5 inches or 6 inches.
 - 8. Straight Section Lengths: 10 feet, 12 feet, 20 feet or 24 feet except where shorter lengths are required to facilitate tray assembly.
 - 9. Width: 6 inches, 9 inches, 12 inches, 18 inches, 24 inches, 30 inches or 36 inches unless otherwise indicated on Drawings.
 - 10. Fitting Minimum Radius: 12 inches, 24 inches, 36 inches or 48 inches.
 - 11. Class Designation: Comply with NEMA VE 1, Class 12B, Class 12C, Class 20B or Class 20C.
 - 12. Splicing Assemblies: Bolted type using serrated flange locknuts.
 - 13. Hardware and Fasteners: ASTM F 593 and ASTM F 594 stainless steel, Type 316 or Steel, zinc plated according to ASTM B 633.
 - 14. Splice Plate Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.

2.4 SINGLE-RAIL CABLE TRAYS

- A. Description:
 - 1. Configuration: Center rail with extruded-aluminum rungs arranged symmetrically about the center rail.
 - 2. Construction: Aluminum rungs mechanically connected to aluminum center rail in at least two places, with ends finished to protect installers and cables.

- 3. Rung Spacing: 6 inches, 9 inches or 12 inches o.c.
- 4. Radius-Fitting Rung Spacing: 9 inches at center of tray's width.
- 5. Straight Section Lengths: 10 feet or 12 feet except where shorter lengths are required to facilitate tray assembly.
- 6. Width: 6 inches, 9 inches, 12 inches, 18 inches or 24 inches unless otherwise indicated on Drawings.
- 7. Support Point: Splice fittings shall be hanger support point.
- 8. Support Spacing: Support each section at midpoint. Support wall-mounted sections a maximum of one-sixth of the section length from each end.
- 9. Loading Depth: 3 inches, 4 inches or 6 inches.
- 10. Maximum Loads: 25 lb/ft. or 50 lb/ft.
- 11. Unbalanced Loads: Maintain cable tray rungs within six degrees of horizontal under all loading conditions.
- 12. Splicing Assemblies: Bolted type using serrated flange locknuts.
- 13. Splicing Assembly Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.
- 14. Hardware and Fasteners: ASTM F 593 and ASTM F 594 stainless steel, Type 316 or Steel, zinc plated according to ASTM B 633.
- 15. Splices and Connectors: Protect cables from edges of center rail and do not intrude into cable fill area.

2.5 TROUGH CABLE TRAYS

- A. Description:
 - 1. Configuration: Two longitudinal members (side rails) with a solid sheet over rungs exposed on the interior of the trough, or corrugated sheet with both edges welded to the side rails.
 - 2. Rung Spacing: Rungs or corrugations shall be spaced a maximum of 6 inches o.c. and have a minimum flat bearing surface of 2 inches.
 - 3. Radius-Fitting Rung Spacing: 9 inches at center of tray's width.
 - 4. Structural Performance: Capable of supporting a maximum cable load, with a safety factor of 1.5, plus a 200-lb concentrated load, when tested according to NEMA VE 1.
 - 5. Minimum Usable Load Depth: 3 inches, 4 inches, 5 inches or 6 inches.
 - 6. Straight Section Lengths: 10 feet, 12 feet, 20 feet or 24 feet except where shorter lengths are required to facilitate tray assembly.
 - 7. Width: 6 inches, 9 inches, 12 inches, 18 inches, 24 inches, 30 inches or 36 inches unless otherwise indicated on Drawings.
 - 8. Fitting Minimum Radius: 12 inches, 24 inches, 36 inches or 48 inches.
 - 9. Class Designation: Comply with NEMA VE 1, Class 12B, Class 12C, Class 20B or Class 20C.
 - 10. Splicing Assemblies: Bolted type using serrated flange locknuts.
 - 11. Splicing Assembly Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.
 - 12. Hardware and Fasteners: ASTM F 593 and ASTM F 594 stainless steel, Type 316 or Steel, zinc plated according to ASTM B 633.

2.6 MATERIALS AND FINISHES

- A. Steel:
 - 1. Straight Section and Fitting Side Rails and Rungs: Steel complies with the minimum mechanical properties of ASTM A 1011/A 1011M, SS, Grade 33 or ASTM A 1008/A 1008M, Grade 33, Type 2.
 - 2. Steel Tray Splice Plates: ASTM A 1011/A 1011M, HSLAS, Grade 50, Class 1.
 - 3. Fasteners: Steel complies with the minimum mechanical properties of ASTM A 510/A 510M, Grade 1008.
 - 4. Finish: Mill galvanized before fabrication.
 - a. Standard: Comply with ASTM A 653/A 653M, G90.
 - b. Hardware: Galvanized, ASTM B 633 or Chromium-zinc plated, ASTM F 1136.
 - 5. Finish: Electrogalvanized before fabrication.
 - a. Standard: Comply with ASTM B 633.
 - b. Hardware: Galvanized, ASTM B 633.
 - 6. Finish: Hot-dip galvanized after fabrication.
 - a. Standard: Comply with ASTM A123/A123 M, Class B2.
 - b. Hardware: Chromium-zinc plated, ASTM F 1136.
 - 7. Finish: Epoxy-resin or Powder-coat enamel paint.
 - a. Powder-Coat Enamel: Cable tray manufacturer's recommended primer and corrosion-inhibiting treatment, with factory-applied powder-coat paint.
 - b. Epoxy-Resin Prime Coat: Cold-curing epoxy primer, MPI# 101.
 - c. Epoxy-Resin Topcoat: Epoxy, cold-cured, gloss, MPI# 77.
 - d. Hardware: Chromium-zinc plated. ASTM F 1136, Stainless steel, Type 316, ASTM F 593 and ASTM F 594.
 - 8. Finish: Factory-standard primer, ready for field painting, with chromium-zinc-plated hardware according to ASTM F 1136.
 - 9. Finish: Black oxide finish for support accessories and miscellaneous hardware according to ASTM D 769.
- B. Aluminum:
 - 1. Materials: Alloy 6063-T6 according to ANSI H35.1/H 35.1M for extruded components, and Alloy 5052-H32 or Alloy 6061-T6 according to ANSI H35.1/H 35.1M for fabricated parts.
 - 2. Hardware: Chromium-zinc-plated steel, ASTM F 1136, ASTM F 593 and ASTM F 594.
 - 3. Hardware for Aluminum Cable Tray Used Outdoors: Stainless steel, Type 316, ASTM F 593 and ASTM F 594.

2.7 CABLE TRAY ACCESSORIES

- A. Fittings: Tees, crosses, risers, elbows, and other fittings as indicated, of same materials and finishes as cable tray.
- B. Covers: Solid, Louvered or Ventilated-hat type made of same materials and with same finishes as cable tray.
- C. Barrier Strips: Same materials and finishes as for cable tray.
- D. Cable tray supports and connectors, including bonding jumpers, as recommended by cable tray manufacturer.

2.8 WARNING SIGNS

- A. Lettering: 1-1/2-inch high, black letters on yellow background with legend "Warning! Not To Be Used as Walkway, Ladder, or Support for Ladders or Personnel."
- B. Comply with requirements for fasteners in Section 260553 "Identification for Electrical Systems."
- 2.9 SOURCE QUALITY CONTROL
 - A. Testing: Test and inspect cable trays according to NEMA VE 1.

PART 3 - EXECUTION

3.1 CABLE TRAY INSTALLATION

- A. Install cable trays according to NEMA VE 2.
- B. Install cable trays as a complete system, including fasteners, hold-down clips, support systems, barrier strips, adjustable horizontal and vertical splice plates, elbows, reducers, tees, crosses, cable dropouts, adapters, covers, and bonding.
- C. Install cable trays so that the tray is accessible for cable installation and all splices are accessible for inspection and adjustment.
- D. Remove burrs and sharp edges from cable trays.
- E. Join aluminum cable tray with splice plates; use four square-neck carriage bolts and locknuts.
- F. Fasten cable tray supports to building structure and install seismic restraints.

- G. Design fasteners and supports to carry cable tray, the cables, and a concentrated load of 200 lb. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems." Comply with seismic-restraint details according to Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- H. Place supports so that spans do not exceed maximum spans on schedules and provide clearances shown on Drawings. Install intermediate supports when cable weight exceeds the load-carrying capacity of the tray rungs.
- I. Construct supports from channel members, threaded rods, and other appurtenances furnished by cable tray manufacturer. Arrange supports in trapeze or wall-bracket form as required by application.
- J. Support bus assembly to prevent twisting from eccentric loading.
- K. Install center-hung supports for single-rail trays designed for 60 versus 40 percent eccentric loading condition, with a safety factor of 3.
- L. Locate and install supports according to NEMA VE 2. Do not install more than one cable tray splice between supports.
- M. Make connections to equipment with flanged fittings fastened to cable trays and to equipment. Support cable trays independent of fittings. Do not carry weight of cable trays on equipment enclosure.
- N. Install expansion connectors where cable trays cross building expansion joints and in cable tray runs that exceed dimensions recommended in NEMA VE 2. Space connectors and set gaps according to applicable standard.
- O. Make changes in direction and elevation using manufacturer's recommended fittings.
- P. Make cable tray connections using manufacturer's recommended fittings.
- Q. Seal penetrations through fire and smoke barriers. Comply with requirements in Section 078413 "Penetration Firestopping".
- R. Install capped metal sleeves for future cables through firestop-sealed cable tray penetrations of fire and smoke barriers.
- S. Install cable trays with enough workspace to permit access for installing cables.
- T. Install barriers to separate cables of different systems, such as power, communications, and data processing; or of different insulation levels, such as 600, 5000, and 15 000 V.
- U. Install permanent covers, if used, after installing cable. Install cover clamps according to NEMA VE 2.
- V. Clamp covers on cable trays installed outdoors with heavy-duty clamps.
- W. Install warning signs in visible locations on or near cable trays after cable tray installation.

3.2 CABLE TRAY GROUNDING

- A. Ground cable trays according to NFPA 70 unless additional grounding is specified. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Cable trays with electrical power conductors shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.
- C. Cable trays with single-conductor power conductors shall be bonded together with a grounding conductor run in the tray along with the power conductors and bonded to the tray at 72-inch intervals. The grounding conductor shall be sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors," and Article 392, "Cable Trays."
- D. When using epoxy- or powder-coat painted cable trays as a grounding conductor, completely remove coating at all splice contact points or ground connector attachment. After completing splice-to-grounding-bolt attachment, repair the coated surfaces with coating materials recommended by cable tray manufacturer.
- E. Bond cable trays to power source for cables contained within with bonding conductors sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors."

3.3 CABLE INSTALLATION

- A. Install cables only when each cable tray run has been completed and inspected.
- B. Fasten cables on horizontal runs with cable clamps or cable ties according to NEMA VE 2. Tighten clamps only enough to secure the cable, without indenting the cable jacket. Install cable ties with a tool that includes an automatic pressure-limiting device.
- C. Fasten cables on vertical runs to cable trays every 18 inches.
- D. Fasten and support cables that pass from one cable tray to another or drop from cable trays to equipment enclosures. Fasten cables to the cable tray at the point of exit and support cables independent of the enclosure. The cable length between cable trays or between cable tray and enclosure shall be no more than 72 inches.
- E. Tie MI cables down every 36 inches where required to provide a 2-hour fire rating and every 72 inches elsewhere.
- F. In existing construction, remove inactive or dead cables from cable trays.

3.4 CONNECTIONS

- A. Remove paint from all connection points before making connections. Repair paint after the connections are completed.
- B. Connect raceways to cable trays according to requirements in NEMA VE 2 and NEMA FG 1.

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. After installing cable trays and after electrical circuitry has been energized, survey for compliance with requirements.
 - 2. Visually inspect cable insulation for damage. Correct sharp corners, protuberances in cable trays, vibrations, and thermal expansion and contraction conditions, which may cause or have caused damage.
 - 3. Verify that the number, size, and voltage of cables in cable trays do not exceed that permitted by NFPA 70. Verify that communications or data-processing circuits are separated from power circuits by barriers or are installed in separate cable trays.
 - 4. Verify that there are no intruding items such as pipes, hangers, or other equipment in the cable tray.
 - 5. Remove dust deposits, industrial process materials, trash of any description, and any blockage of tray ventilation.
 - 6. Visually inspect each cable tray joint and each ground connection for mechanical continuity. Check bolted connections between sections for corrosion. Clean and retorque in suspect areas.
 - 7. Check for improperly sized or installed bonding jumpers.
 - 8. Check for missing, incorrect, or damaged bolts, bolt heads, or nuts. When found, replace with specified hardware.
 - 9. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that all takeoff raceways are bonded to cable trays. Test entire cable tray system for continuity. Maximum allowable resistance is 1 ohm.
- B. Prepare test and inspection reports.

3.6 PROTECTION

- A. Protect installed cable trays and cables.
 - 1. Install temporary protection for cables in open trays to safeguard exposed cables against falling objects or debris during construction. Temporary protection for cables and cable tray can be constructed of wood or metal materials and shall remain in place until the risk of damage is over.
 - 2. Repair damage to galvanized finishes with zinc-rich paint recommended by cable tray manufacturer.
 - 3. Repair damage to paint finishes with matching touchup coating recommended by cable tray manufacturer.

END OF SECTION 260536

SECTION 260543 – UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUBMITTALS

A. Submit the following in accordance with specified procedures:

Shop Drawings

Detail Drawings

As-Built Drawings

Drawings as specified

1.3 QUALITY ASSURANCE

- A. Detail Drawings:
 - 1. Submit detail drawings consisting of equipment drawings, illustrations, schedules, instructions, diagrams, manufacturer's standard installation drawings and other information necessary to define the installation and enable the Owner to check conformity with the requirements of the Contract Drawings.
 - a. If departures from the contract drawings are deemed necessary by the Contractor, complete details of such departures shall be included with the detail drawings. Approved departures shall be made at no additional cost.
 - b. Detail drawings shall show how components are assembled, function together and how they will be installed on the project. Data and drawings for component parts of an item or system shall be coordinated and submitted as a unit. Data and drawings shall be coordinate and included in a single submission. Multiple submissions for the same equipment or system are not acceptable except where prior approval has been obtained from the Contracting Officer. In such cases, a list of data to be submitted later shall be included with the first submission. Detail drawings shall consist of the following:
 - 1) Detail drawings showing physical arrangement, construction details, connections, finishes, materials used in fabrication, provisions for conduit or busway entrance, access requirements for installation and maintenance,

physical size, electrical characteristics, foundation and support details, and equipment weight. Drawings shall be drawn to scale and/or dimensioned. All optional items shall be clearly identified as included or excluded.

- B. As-Built Drawings
 - 1. The As-built drawings shall be a record of the construction as installed. The drawings shall include the information shown on the Contract drawings as well as deviations, modifications, and changes from the Contract drawings, however minor. The As-built drawings shall be a full sized set of prints marked to reflect deviations, modifications and changes. The As-built drawings shall be complete and show the location, size, dimensions, part identification, and other information. Additional sheets may be added. The As-built drawings shall be joints inspected for accuracy and completeness by the Contractor's quality control representative and by the Owner's representative prior to the submission. Upon completion of the Work, provide three full sized sets of the marked prints to the Owner's representative for approval. If upon review, the As-built drawings are found to contain errors and/or omissions, they will be returned to the Contractor for approval within 10 calendar days from the time the drawings are returned to the Contractor.

1.4 DELIVERY, STORAGE AND HANDLING

A. Visually inspect devices and equipment when received and prior to acceptance from conveyance. Protect stored items from the environment in accordance with the manufacturer's published instructions. Damaged items shall be replaced.

PART 2 - PRODUCTS

2.1 CONDUIT AND DUCTS

- A. Ducts shall be single, round-bore type, with wall thickness and fittings suitable for the application, concrete-encased thin-wall type or non-encased direct-burial thick wall type.
 - 1. Metallic Conduit Intermediate metal conduit shall comply with UL 1242. rigid galvanized steel conduit shall comply with UL 514A and ANSI/NENA FB1.
 - 2. Non-Metallic Ducts
 - a. Concrete Encased Ducts UL 651 Schedule 40 or NEMA TC 6 and TC 8 Type EB
 - 3. Direct Burial
 - a. UL 651 Schedule 40 and Schedule 80, as indicate d or NEMA TC 6 and TC8 Type DB.

- 4. Conduit Sealing Compound
 - a. Compounds for sealing ducts and conduit shall have a putty-like consistency workable with the hands at temperatures as low as 2 degrees C 35 degrees F, shall neither slump at a temperature of 150 degrees C 300 degrees F, nor harden materially when exposed to the air. Compounds shall adhere to clean surfaces of fiber or plastic ducts; metallic conduits or conduit coatings; concrete, masonry or lead; any cable sheaths, jackets, covers or insulation materials; and the common metals. Compounds shall form a seal without dissolving, noticeably changing characteristics, or removing any of the ingredients. Compounds shall have no injurious effect upon the hands of workmen or upon materials.

2.2 MANHOLES, HANDHOLES AND PULLBOXES

A. Manholes, handholes and pullboxes shall be as indicated. Strength of manholes, handholes and pullboxes and their frames and covers shall conform to the requirements of IEEE C2. Precast concrete manholes shall have the required strength established by ASTM C478, ASTM C478M. Frames and covers shall be made of gray cast iron and a ma chine finished seat shall be provided to ensure a matching joint between frame and cover. Cast iron shall comply with ASTM A48/A 48M, Class 30B, minimum. Handholes for low voltage cables installed in parking lots, sidewalks, and turfed areas shall be fabricated from an aggregate consisting of sand and with continuous woven glass strands having an overall compressive strength of at least 10,000 psi and a flexural strength of at least 5,000 psi. Pullbox and handhole covers in sidewalks, and turfed areas shall be of the same material as the box. Concrete pullboxes shall consist of precast reinforced concrete boxes, extensions, bases, and covers.

2.3 CONCRETE AND REINFORCEMENT

A. Concrete work shall have a minimum 3,000 psi compressive strength and conform to the requirements of CAST-IN-PLACE CONCRETE. Concrete reinforcing shall be as specified in CONCRETE REINFORCING.

PART 3 - EXECUTION

3.1 EXAMINATION

A. After becoming familiar with details of the Work, verify dimensions in the field, and advise the Owner of any discrepancy before performing any work.

3.2 INSTALLATION REQUIREMENTS

A. Steel conduits installed underground shall be installed and protected from corrosion in conformance with the requirements of INTERIOR DISTRIBUTION SYSTEM. Except as covered herein, excavation, trenching and backfilling shall conform to the requirements of

Section 02300 EARTHWORK. Concrete work shall have a minimum 3,000 psi compressive strength and conform to the requirements of CAST-IN-PLACE CONCRETE.

1. Conformance to Codes

The installation shall comply with the requirements and recommendations of NFPA 70 and IEEE C2 as applicable.

3.3 DUCT BANK INSTALLATION

- A. Duct Cleaning
 - 1. Duct shall be cleaned with an assembly that consists of a flexible mandrel (manufacturer's standard product in lengths recommended for the specific size and type of duct) that is 1/4 inch less than inside diameter of duct, 2 wire brushes, and a rag. The cleaning assembly shall be pulled through the conduit a minimum of 2 times or until less than a volume of 131 cubic centimeters 8 cubic inches of debris is expelled from the duct.
- B. Trenching
 - 1. Trenches shall be excavated to depths required to provide the minimum necessary cable cover. Bottoms of trenches shall be smooth and free of stones and sharp objects. Where bottoms of trenches comprise materials other than sand, a 3 inch layer of sand shall be laid first and compacted to approximate densities of surrounding firm soil.
- C. Cable Markers
 - 1. Markers shall be located as indicated. In addition to the markers, a 5 mil, brightly colored plastic tape not less than 3 inches in width and suitable inscribed at not more than 10 feet on centers, or other approved dig-in warning indication, shall be placed approximately 12 inches below finished grade levels of trenches.
- D. Electric Manholes
 - 1. Cables shall be routed around the interior walls and securely supported from the walls on cable racks. Cable routing shall minimize cable crossover, provide access space for maintenance and installation of additional cables, and maintain cable separation in accordance with IEEE C2.

3.4 DUCT LINES

- A. Requirements
 - 1. Numbers and sizes of ducts shall be as indicated. Duct lines shall be laid with a minimum slope of 4 inches per 100 feet. Depending on the contour of the finished grade, the high point may be at a terminal, a manhole, a handhole, or between manholes or handholes. Short radius manufactured 90 degree duct bends may be used only for pole or equipment risers, unless specifically indicated as acceptable. The minimum

manufactured bend radius shall be 18 inches for ducts of less than 3 inch diameter, and 36 inches for ducts 3 inches or greater in diameter. Otherwise, long sweep bends having a minimum radius of 25 feet shall be used for a change of direction of more than 5 degrees, either horizontally or vertically. Both curved and straight sections may be used to form long sweep bends, but the maximum curve used shall be 30 degrees and manufactured bends shall be used. Ducts shall be provided with end bells whenever duct lines terminate in manholes or handholes.

B. Treatment

1. Ducts shall be kept clean of concrete, dirt, or foreign substances during construction. Field cuts requiring tapers shall be made with proper tools and match factory tapers. A coupling recommended by the duct manufacturer shall be used whenever an existing duct is connected to a duct of different material or shape. Ducts shall be stored to avoid warping and deterioration with ends sufficiently plugged to prevent entry of any water or solid substances. Ducts shall be thoroughly cleaned before being laid. Plastic ducts shall be stored on a flat surface and protected from the direct rays of the sun.

C. Concrete Encasement

- 1. Ducts requiring concrete encasements shall comply with NFPA 70, except that electrical duct bank configurations for ducts 6 inches in diameter shall be determined by calculation and as shown on the drawings. The separate ion between adjacent electric power and communication ducts shall conform to IEEE C2. Duct line encasements shall be monolithic construction. Where a connection is made to a previously poured encasement, the new encasement shall be well bonded or doweled to the existing encasement. Submit proposed bonding method for approval in accordance with the detail drawing portion of paragraph SUBMITTALS. At any point, except railroad and airfield crossings, tops of concrete encasements shall be not less than the cove requirements listed in NFPA 70. At railroad and airfield crossings, duct lines shall be encased with concrete and reinforced as indicated to withstand specified surface loadings. Tops of concrete encasements shall be not less than 5 feet below tops of rails or airfield paving unless otherwise indicated. Where ducts are jacked under existing pavement, rigid steel conduit will be installed because of its strength. To protect the corrosion-resistant conduit coating, predrilling or installing conduit inside a larger iron pipe sleeve (jack-and-sleeve) is required. For crossing of existing railroads and airfield pavements greater than 50 feet in length, the predrilling method or the jack-and-sleeve method will be used. Separators or spacing blocks shall be made of steel, concrete, plastic, or a combination of these materials placed not farther apart than 4 feet of centers. Ducts shall be securely anchored to prevent movement during the placement of concrete and joints shall be staggered at least 6 inches vertically.
- D. Installation of Couplings
 - 1. Joints in each type of duct shall be made up in accordance with the manufacturer's recommendations for the particular type of duct and coupling selected and as approved.

E. Plastic Duct

- 1. Duct joints shall be made by brushing a plastic solvent cement on insides of plastic coupling fittings and on outsides of duct ends. Each duct and fitting shall then be slipped together with a quick 1/4 turn twist to set the joint tightly.
- F. Duct Line Markers
 - Duct line markers shall be provide as indicated at the ends of long duct line stubouts or for other ducts whose locations are indeterminate because of duct curvature or terminations at completely below grade structures. In addition to markers, a 5 mil brightly colored plastic tape, not less than 3 inches in width and suitable inscribed at not more than 10 feet on centers with a continuous metallic backing and a corrosion resistant 1 mil metallic foil core to permit easy location of the duct line, shall be placed approximately 12 inches below finished grade levels of such lines.

3.5 MANHOLES, HANDHOLES AND PULLBOXES

- A. General
 - Manholes shall be constructed approximately where shown. The exact location of each 1. manhole shall be determined after careful consideration has been given to the location of other utilities, grading and paving. The location of each manhole shall be approved by the Contracting Officer before construction of the manhole is started. Manholes shall be the type noted on the drawings and shall be constructed in accordance with the applicable details as indicated. Top, walls and bottom shall consist of reinforced concrete. Walls and bottom shall be of monolithic concrete construction. The Contractor may, as an option, utilize monolithically constructed precast-concrete manholes having the required strength and inside dimensions as required by the drawings or specifications. In paved areas, frames and covers for manhole and handhole entrances in vehicular traffic areas shall be flush with the finished surface of the paving. In unpaved areas, the top of the manhole covers shall be approximately 1/2 inch above the finished grade. Where existing grades that are higher than finished grades are encountered, concrete assemblies designed for the purpose shall be installed to elevate temporarily the manhole cover to existing grade level. All duct lines entering manholes must be installed on compact soil or otherwise supported when entering a manhole to prevent shear stress on the duct at the point of entrance to the manhole. Duct lines entering cast-in-place concrete manholes shall be cast-in-place with the manhole. Duct lines entering precast concrete manholes through a precast knockout penetration shall be grouted tight with Portland cement mortar. PVD duct lines entering precast manholes through a PVC endbell shall be solvent welded to the endbell. A cast metal grilled-type sump frame and cover shall be installed over the manhole sump. A cable-pulling iron shall be installed in the wall opposite each duct line entrance.
- B. Electrical Manholes
 - 1. Cables shall be securely supported from walls by hot-dip galvanized cable racks with a plastic coating over the galvanizing and equipped with adjustable hooks and insulators. The number of cable racks indicated shall be installed in each manhole and not less than

2 spare hooks shall be installed on each cable rack. Insulators shall be made of high-glazed porcelain. Insulators will not be required on spare hooks.

- C. Communication Methods
 - 1. The number of hot-dip galvanized cable racks with a plastic coating over the galvanizing indicated shall be installed in each telephone manhole. Each cable rack shall be provided with 2 cable hooks. Cables for the telephone and communication systems will be installed by others.
- D. Handholes
 - 1. Handholes shall be located approximately as shown. Handholes shall be of the type noted on the drawings and shall be constructed in accordance with the details shown.
- E. Pullboxes
 - 1. Pullbox tops shall be flush with sidewalks or curbs or placed 1/2 inch above surrounding grades when remote from crushed roadways or sidewalks. Covers shall be marked "Low-Voltage" and provided with 2 lifting eyes and 2 hold-down bolts. Each box shall have a suitable opening for a ground rod. Conduit, cable, ground rod entrances, and unused openings shall be sealed with mortar.
- F. Ground Rods
 - 1. A ground rod shall be installed at the manholes, handholes and pullboxes. Ground rods shall be driven into the earth before the manhole floor is poured so that approximately 4 inches of the ground rod will extend above the manhole floor. When precast concrete manholes are used, the top of the ground rod may be below the manhole floor and a No. 1/0 AWG ground conductor brought into the manhole through a watertight sleeve in the manhole wall.
- G. Manhole, Handhole or Concrete Pullbox Grounding
 - 1. Ground rods installed in manholes, handholes, or concrete pullboxes shall be connected to cable racks, cable-pulling irons, the cable shielding, metallic sheath, and armor at each cable joint or splice by means of a No. 4 AWG braided tinned copper wire. Connections to metallic cable sheaths shall be by means of tinned terminals soldered to ground wires and to cable sheaths. Care shall be taken in soldering not to damage metallic cable sheaths or shields. Ground rods shall be protected with a double wrapping of pressure-sensitive plastic tape for a distance of 2 inches above and 6 inches below concrete penetrations. Grounding electrode conductors shall be neatly and firmly attached to manhole or handhole walls and the amount of exposed bare wire shall be held to a minimum.

END OF SECTION 260543

SECTION 260913.20 - VOLTAGE MONITORING SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Related Sections:
 - 1. Section 262713 "Electricity Metering" for equipment to meter electricity consumption and demand for tenant submetering.

1.3 DEFINITIONS

- A. Ethernet: Local area network based on IEEE 802.3 standards.
- B. Firmware: Software (programs or data) that has been written onto read-only memory (ROM). Firmware is a combination of software and hardware. Storage media with ROMs that have data or programs recorded on them are firmware.
- C. HTML: Hypertext markup language.
- D. I/O: Input/output.
- E. KY Pulse: A term used by the metering industry to describe a method of measuring consumption of electricity that is based on a relay changing status in response to the rotation of the disk in the meter.
- F. LAN: Local area network; sometimes plural as "LANs."
- G. LCD: Liquid crystal display.
- H. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or remote-control, signaling and power-limited circuits.
- I. Modbus TCP/IP: An open protocol for exchange of process data.
- J. Monitoring: Acquisition, processing, communication, and display of equipment status data, metered electrical parameter values, power quality evaluation data, event and alarm signals, tabulated reports, and event logs.
- K. PC: Personal computer; sometimes plural as "PCs."

- L. rms: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.
- M. RS-232: A TIA standard for asynchronous serial data communications between terminal devices.
- N. RS-485: A TIA standard for multipoint communications using two twisted-pairs.
- O. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- P. THD: Total harmonic distortion.
- Q. UPS: Uninterruptible power supply; used both in singular and plural context.
- R. WAN: Wide area network.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. Attach copies of approved Product Data submittals for products (such as switchboards and switchgear) that describe power monitoring and control features to illustrate coordination among related equipment and power monitoring and control.
- B. Shop Drawings: For power monitoring and control equipment. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Outline Drawings: Indicate arrangement of components and clearance and access requirements.
 - 2. Block Diagram: Show interconnections between components specified in this Section and devices furnished with power distribution system components. Indicate data communication paths and identify networks, data buses, data gateways, concentrators, and other devices to be used. Describe characteristics of network and other data communication lines.
 - 3. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 4. Wiring Diagrams: For power, signal, and control wiring. Coordinate nomenclature and presentation with a block diagram.
 - 5. UPS sizing calculations for workstation.
 - 6. Surge Suppressors: Data for each device used and where applied.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer and manufacturer.
- B. Field quality-control reports.

- C. Other Informational Submittals:
 - 1. Manufacturer's system installation and setup guides, with data forms to plan and record options and setup decisions.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For power monitoring and control units, to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Operating and applications software documentation.
 - 2. Software licenses.
 - 3. Software service agreement.
 - 4. PC installation and operating documentation, manuals, and software for the PC and all installed peripherals. Software shall include system restore, emergency boot diskettes, and drivers for all installed hardware. Provide separately for each PC.
 - 5. Hard copies of manufacturer's specification sheets, operating specifications, design guides, user's guides for software and hardware, and PDF files on CD-ROM of the hard-copy submittal.
- B. Software and Firmware Operational Documentation:
 - 1. Self-study guide describing the process for setting equipment's network address; setting Owner's options; procedures to ensure data access from any PC on the network, using a standard Web browser; and recommended firewall setup.
 - 2. Software operating and upgrade manuals.
 - 3. Software Backup: On a magnetic media or compact disc, complete with Owner-selected options.
 - 4. Device address list and the set point of each device and operator option, as set in applications software.
 - 5. Graphic file and printout of graphic screens and related icons, with legend.
- C. Software Upgrade Kit: For Owner to use in modifying software to suit future power system revisions or power monitoring and control revisions.
- D. Software licenses and upgrades required by and installed for operating and programming digital and analog devices.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Addressable Relays: One for every 10 installed. Furnish at least one of each type.
 - 2. Data Line Surge Suppressors: One for every 10 of each type installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
- B. Manufacturer Qualifications: A firm experienced in manufacturing power monitoring and control equipment similar to that indicated for this Project and with a record of successful inservice performance.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.9 COORDINATION

- A. Coordinate features of distribution equipment and power monitoring and control components to form an integrated interconnection of compatible components.
 - 1. Match components and interconnections for optimum performance of specified functions.
- B. Coordinate Work of this Section with those in Sections specifying distribution components that are monitored or controlled by power monitoring and control equipment.

1.10 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning with Substantial Completion, provide software support for two years.
- B. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include the operating systems. Upgrade shall include new or revised licenses for use of software.
 - 1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

2.2 FUNCTIONAL DESCRIPTION

A. Instrumentation and Recording Devices: Monitor and record load profiles and chart energy consumption patterns.

- 1. Calculate and Record the Following:
 - a. Load factor.
 - b. Peak demand periods.
- 2. Measure and Record Metering Data for the Following:
 - a. Electricity.
 - b. Domestic water.
 - c. Natural gas.
- B. Power Quality Monitoring: Identify power system anomalies and measure, display, and record trends and alarms of the following power quality parameters:
 - 1. Voltage regulation and unbalance.
 - 2. Continuous three-phase rms voltage.
 - 3. Periodic max./min./avg. voltage samples.
 - 4. Harmonics.
 - 5. Voltage excursions.
- C. Emergency Load Shedding. Preserve critical loads or avoid total shutdown due to unforeseen loss of power sources according to the following logic:
 - 1. Determine system topology.
 - 2. Evaluate remaining loads and sources.
 - 3. Shed loads in less than 100 ms.
- D. Demand Management:
 - 1. Peaking or co-generator control.
 - 2. Load interlocking.
 - 3. Load shedding.
 - 4. Load trimming.
- E. System: Report equipment status and power system control.

2.3 SYSTEM REQUIREMENTS

- A. Monitoring and Control System: Include PC-based workstation, multiple PC-based workstations or multiple PC-based workstations with graphics capability and Web access with its operating system and application software, connected to data transmission network.
- B. Surge Protection: For external wiring of each conductor entry connection to components to protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads.
 - 1. Minimum Protection for Power Lines 120 V and More: Auxiliary panel suppressors complying with requirements in Section 264313 "Surge Protection for Low-Voltage Electrical Power Circuits."

- 2. Minimum Protection for Communication, Signal, Control, and Low-Voltage Power Lines: Comply with requirements as recommended by manufacturer for type of line being protected.
- C. Addressable Devices: All transmitters and receivers shall communicate unique device identification and status reports to monitoring and control clients.
- D. BAS Interface: Provide factory-installed hardware and software to enable the BAS to monitor, display, and record data for use in processing reports.
 - 1. Hardwired Monitoring Points: Electrical power demand (kilowatts), electrical power consumption (kilowatt-hours) or power factor.
 - 2. ASHRAE 135 (BACnet), LonTalk, Modbus or Industry-accepted, open-protocol communication interface with the BAS shall enable the BAS operator to remotely monitor meter information from a BAS operator workstation. Control features and monitoring points displayed locally at metering panel shall be available through the BAS.

2.4 OPERATING SYSTEM

- A. Software: Configured to run on a portable laptop computer, a single PC, or a palm computer, with capability for accessing a single meter at a time. System is not connected to a LAN. Modbus TCP/IP, RS-232, and RS-485 digital communications.
- B. Software: Configured to run on a single PC, with capability for accessing multiple devices simultaneously. Modbus TCP/IP, RS-232, and RS-485 digital communications.
- C. Software: Configured for a server and multiple client PCs, each with capability for accessing multiple devices simultaneously. Ethernet, Modbus TCP/IP, RS-232, and RS-485 digital communications.
- D. Software: Configured for a server and multiple client PCs, each with capability for accessing multiple devices simultaneously. Software shall include interactive graphics client and shall be Web enabled. Workstations and portable computers shall not require any software except for an Internet browser to provide connectivity and full functionality. Include a firewall recommended by manufacturer. 100 Base-T Ethernet, Modbus TCP/IP RS-232, and RS-485 digital communications.
- E. Operating System Software: Based on 32 -bit, Microsoft Windows workstation operating system. Software shall have the following features:
 - 1. Multiuser and multitasking to allow independent activities and monitoring to occur simultaneously at different workstations.
 - 2. Graphical user interface to show pull-down menus and a menu tree format.
 - 3. Capability for future additions within the indicated system size limits.
- F. Peer Computer Control Software: Shall detect a failure of workstation and associated server, and shall cause other workstation and associated server to assume control of all system functions without interruption of operation. Drivers shall be provided in both central computers to support this mode of operation.

2.5 APPLICATIONS SOFTWARE

- A. Basic Requirements:
 - 1. Fully compatible with and based on the approved operating system.
 - 2. Password-protected operator login and access; three levels, minimum.
 - 3. Password-protected setup functions.
 - 4. Context-sensitive online help.
 - 5. Capability of creating, deleting, and copying files; and automatically maintaining a directory of all files, including size and location of each sequential and random-ordered record.
 - 6. Capability for importing custom icons into graphic views to represent alarms and I/O devices.
 - 7. Automatic and encrypted backups for database and history; automatically stored at central control PC or selected workstation and encrypted with a nine-character alphanumeric password, which must be used to restore or read data contained in backup.
 - 8. Operator audit trail for recording and reporting all changes made to user-defined system options.
- B. Workstation Server Functions:
 - 1. Support other client PCs on the LAN and WAN.
 - 2. Maintain recorded data in databases accessible from other PCs on the LAN and WAN.
- C. Data Formats:
 - 1. User-programmable export and import of data to and from commonly used Microsoft Windows spreadsheet, database, billing, and other applications; using dynamic data exchange technology.
 - 2. Option to convert reports and graphics to HTML format.
 - 3. Interactive graphics.
 - 4. Option to send preprogrammed or operator designed e-mail reports.
- D. Metered Data: Display metered values in real time.
- E. Remote Control:
 - 1. Display circuit-breaker status and allow breaker control.
 - 2. User defined with load-shedding automatically initiated and executed schemes responding to programmed time schedules, set points of metered demands, utility contracted load shedding, or combinations of these.
- F. Equipment Documentation: Database for recording of equipment ratings and characteristics; with capability for graphic display on monitors.
- G. Graphics: Interactive color-graphics platform with pull-down menus and mouse-driven generation of power system graphics, in formats widely used for such drafting; to include the following:

- 1. Site plan.
- 2. Floor plans.
- 3. Equipment elevations.
- 4. Single-line diagrams.
- H. User-Defined Monitoring and Control Events: Display and record with date and time stamps accurate to 0.1 second, and including the following:
 - 1. Operator log on/off.
 - 2. Attempted operator log on/off.
 - 3. All alarms.
 - 4. Equipment operation counters.
 - 5. Out-of-limit, pickup, trip, and no-response events.
- I. Trending Reports: Display data acquired in real-time from different meters or devices, in historical format over user-defined time; unlimited as to interval, duration, or quantity of trends.
 - 1. Spreadsheet functions of sum, delta, percent, average, mean, standard deviation, and related functions applied to recorded data.
 - 2. Charting, statistical, and display functions of standard Windows-based spreadsheet.
- J. Alarms: Display and record alarm messages from discrete input and controls outputs, according to user programmable protocol.
 - 1. Functions requiring user acknowledgment shall run in background during computer use for other applications and override other presentations when they occur.
- K. Waveform Data: Display and record waveforms on demand or automatically on an alarm or programmed event. Include the graphic displays of the following, based on user-specified criteria:
 - 1. Phase voltages, phase currents, and residual current.
 - 2. Overlay of three-phase currents, and overlay each phase voltage and current.
 - 3. Waveforms ranging in length from 2 cycles to 5 minutes.
 - 4. Disturbance and steady-state waveforms up to 512 points per cycle.
 - 5. Transient waveforms up to 83,333 points per cycle on 60-Hz base.
 - 6. Calculated waveform, based on recorded data, on a minimum of four cycles of data of the following:
 - a. THD.
 - b. rms magnitudes.
 - c. Peak values.
 - d. Crest factors.
 - e. Magnitude of individual harmonics.
- L. Data Sharing: Allow export of recorded displays and tabular data to third-party applications software.
 - 1. Tabular data shall be in the comma-separated values.

- M. Activity Billing Software:
 - 1. Automatically compute and prepare activity demand and energy-use statements based on metering of energy use and peak demand integrated over user-defined interval.
 - 2. Intervals shall be same as used by electric utilities, including current vendor.
 - 3. Import metered data from saved records that were generated by metering and monitoring software.
 - 4. Maintain separate directory for each activity's historical billing information.
 - 5. Prepare summary reports in user-defined formats and time intervals.
- N. Reporting: User commands initiate the reporting of a list of current alarm, supervisory, and trouble conditions in system or a log of past events.
 - 1. Print a record of user-defined alarm, supervisory, and trouble events on workstation printer.
 - 2. Sort and report by device name and by function.
 - 3. Report type of signal (alarm, supervisory, or trouble), description, date, and time of occurrence.
 - 4. Differentiate alarm signals from other indications.
 - 5. When system is reset, report reset event with same information concerning device, location, date, and time.
- O. Display Monitor:
 - 1. Backlighted LCD to display metered data with touch-screen or touch-pad selecting device.
 - 2. Touch-screen display shall be a minimum 12-inch diagonal, resolution of 800 by 600 RGB pixels, 256 colors; NEMA 250, Type 1 display enclosure.
 - 3. Display four values on one screen at same time.

2.6 COMMUNICATION COMPONENTS AND NETWORKS

A. Network Configuration: High-speed, multi-access, open nonproprietary, industry standard communication protocol; LANs complying with EIA 485, 100 Base-T Ethernet, and Modbus TCP/IP.

2.7 POWER MONITORS

- A. Separately mounted, permanently installed instrument for power monitoring and control, complying with UL 1244.
 - 1. Enclosure: NEMA 250, Type 1 or 12.
- B. Environmental Conditions: System components shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:

- 1. Indoor installation in non-air-conditioned spaces that have environmental controls to maintain ambient conditions of 0 to 122 deg F dry bulb and 20 to 90 percent relative humidity, noncondensing.
- C. rms Real-Time Measurements:
 - 1. Current: Each phase, neutral, average of three phases, percent unbalance.
 - 2. Voltage: Line-to-line each phase, line-to-line average of three phases, line-to-neutral each phase, line-to-neutral average of three phases, line-to-neutral percent unbalance.
 - 3. Power: Per phase and three-phase total.
 - 4. Reactive Power: Per phase and three-phase total.
 - 5. Apparent Power: Per phase and three-phase total.
 - 6. Power Factor: Per phase and three-phase total.
 - 7. Displacement Power Factor: Per phase and three-phase total.
 - 8. Frequency.
 - 9. THD: Current and voltage.
 - 10. Accumulated Energy: Real kWh, reactive kVARh, apparent kVAh (signed/absolute).
 - 11. Incremental Energy: Real kWh, reactive kVARh, apparent kVAh (signed/absolute).
 - 12. Conditional Energy: Real kWh, reactive kVARh, apparent kVAh (signed/absolute).
- D. Demand Current Calculations, per Phase, Three-Phase Average and Neutral:
 - 1. Present.
 - 2. Running average.
 - 3. Last completed interval.
 - 4. Peak.
- E. Demand Real Power Calculations, Three-Phase Total:
 - 1. Present.
 - 2. Running average.
 - 3. Last completed interval.
 - 4. Predicted.
 - 5. Peak.
 - 6. Coincident with peak kVA demand.
 - 7. Coincident with kVAR demand.
- F. Demand Reactive Power Calculations, Three-Phase Total:
 - 1. Present.
 - 2. Running average.
 - 3. Last completed interval.
 - 4. Predicted.
 - 5. Peak.
 - 6. Coincident with peak kVA demand.
 - 7. Coincident with kVAR demand.

- G. Demand Apparent Power Calculations, Three-Phase Total:
 - 1. Present.
 - 2. Running average.
 - 3. Last completed interval.
 - 4. Predicted.
 - 5. Peak.
 - 6. Coincident with peak kVA demand.
 - 7. Coincident with kVAR demand.
- H. Average Power Factor Calculations, Demand Coincident, Three-Phase Total:
 - 1. Last completed interval.
 - 2. Coincident with kW peak.
 - 3. Coincident with kVAR peak.
 - 4. Coincident with kVA peak.
- I. Power Analysis Values:
 - 1. THD, Voltage and Current: Per phase, three phase, and neutral.
 - 2. Displacement Power Factor: Per phase, three phase.
 - 3. Fundamental Voltage, Magnitude and Angle: Per phase.
 - 4. Fundamental Currents, Magnitude and Angle: Per phase.
 - 5. Fundamental Real Power: Per phase, three phase.
 - 6. Fundamental Reactive Power: Per phase.
 - 7. Harmonic Power: Per phase, three phase.
 - 8. Phase rotation.
 - 9. Unbalance: Current and voltage.
 - 10. Harmonic Magnitudes and Angles for Current and Voltages: Per phase, up to 63rd harmonic.
- J. Power Demand Calculations: According to one of the following calculation methods, selectable by the user:
 - 1. Thermal Demand: Sliding window updated every second for the present demand and at end of the interval for the last interval. Adjustable window that can be set in 1-minute intervals, from 1 to 60 minutes.
 - 2. Block Interval with Optional Subintervals: Adjustable for 1-minute intervals, from 1 to 60 minutes. User-defined parameters for the following block intervals:
 - a. Sliding block that calculates demand every second, with intervals less than 15 minutes, and every 15 seconds with an interval between 15 and 60 minutes.
 - b. Fixed block that calculates demand at end of the interval.
 - c. Rolling block subinterval that calculates demand at end of each subinterval and displays it at end of the interval.

- 3. Demand Calculation Initiated by a Synchronization Signal:
 - a. Signal is a pulse from an external source. Demand period begins with every pulse. Calculation shall be configurable as either a block or rolling block calculation.
 - b. Signal is a communication signal. Calculation shall be configurable as either a block or rolling block calculation.
 - c. Demand can be synchronized with clock in the power meter.
- K. Sampling:
 - 1. Current and voltage shall be digitally sampled at a rate high enough to provide accuracy to 63rd harmonic of 60-Hz fundamental.
 - 2. Power monitor shall provide continuous sampling at a rate of 128 samples per cycle on all voltage and current channels in the meter.
- L. Minimum and Maximum Values: Record monthly minimum and maximum values, including date and time of record. For three-phase measurements, identify phase of recorded value. Record the following parameters:
 - 1. Line-to-line voltage.
 - 2. Line-to-neutral voltage.
 - 3. Current per phase.
 - 4. Line-to-line voltage unbalance.
 - 5. Line-to-neutral voltage unbalance.
 - 6. Power factor.
 - 7. Displacement power factor.
 - 8. Total power.
 - 9. Total reactive power.
 - 10. Total apparent power.
 - 11. THD voltage L-L.
 - 12. THD voltage L-N.
 - 13. THD current.
 - 14. Frequency.
- M. Harmonic Calculation: Display and record the following:
 - 1. Harmonic magnitudes and angles for each phase voltage and current through 63rd harmonic. Calculate for all three phases, current and voltage, and residual current. Current and voltage information for all phases shall be obtained simultaneously from same cycle.
 - 2. Harmonic magnitude reported as a percentage of the fundamental or as a percentage of rms values, as selected by user.
- N. Current and Voltage Ratings:
 - 1. Designed for use with current inputs from standard instrument current transformers with 5-A secondary and shall have a metering range of 0-10 A.

- 2. Withstand ratings shall not be less than 15 A, continuous; 50 A, lasting over 10 seconds, no more frequently than once per hour; 500 A, lasting 1 second, no more frequently than once per hour.
- 3. Designed for use with voltage inputs from standard instrument potential transformers with a 120-V secondary.
- O. Accuracy:
 - 1. Comply with ANSI C12.20, Class 0.5; and IEC 60687, Class 0.5 for revenue meters. Accuracy from Light to Full Rating shall meet the following criteria:
 - a. Power: Accurate to 0.25 percent of reading, plus 0.025 percent of full scale.
 - b. Voltage and Current: Accurate to 0.075 percent of reading, plus 0.025 percent of full scale.
 - c. Power Factor: Plus or minus 0.002, from 0.5 leading to 0.5 lagging.
 - d. Frequency: Plus or minus 0.01 Hz at 45 to 67 Hz.
 - 2. For meters that are circuit-breaker accessories, metering accuracy at full-scale shall not be less than the following:
 - a. Current: Plus or minus 2.5 percent.
 - b. Voltage: Plus or minus 1.5 percent.
 - c. Energy, Demand, and Power: Plus or minus 4.0 percent.
 - d. Frequency: Plus or minus 1 Hz.
- P. Waveform Capture:
 - 1. Capture and store steady-state waveforms of voltage and current channels; initiated manually. Each capture shall be for 3 cycles, 128 data points for each cycle, allowing resolution of harmonics to 31 harmonic of basic 60 Hz.
 - 2. Store captured waveforms in internal nonvolatile memory; available for PC display, archiving, and analysis.
- Q. Input: One digital input signal(s).
 - 1. Normal mode for on/off signal.
 - 2. Demand interval synchronization pulse, accepting a demand synchronization pulse from a utility demand meter.
 - 3. Conditional energy signal to control conditional energy accumulation.
- R. Outputs:
 - 1. Operated either by user command sent via communication link, or set to operate in response to user-defined alarm or event.
 - 2. Closed in either a momentary or latched mode as defined by user.
 - 3. Each output relay used in a momentary contact mode shall have an independent timer that can be set by user.

- 4. One digital KY pulse to a user-definable increment of energy measurement. Output ratings shall be up to 120-V ac, 300-V dc, 50 mA, and provide 3500-V rms isolation.
- 5. One relay output module(s), providing a load voltage range from 20- to 240-V ac or from 20- to 30-V dc, supporting a load current of 2 A.
- 6. Output Relay Control:
 - a. Relay outputs shall operate either by user command sent via communication link or in response to user-defined alarm or event.
 - b. Normally open and normally closed contacts, field configured to operate as follows:
 - 1) Normal contact closure where contacts change state for as long as signal exists.
 - 2) Latched mode when contacts change state on receipts of a pickup signal; changed state is held until a dropout signal is received.
 - 3) Timed mode when contacts change state on receipt of a pickup signal; changed state is held for a preprogrammed duration.
 - 4) End of power demand interval when relay operates as synchronization pulse for other devices.
 - 5) Energy Pulse Output: Relay pulses quantities used for absolute kWh, absolute kVARh, kVAh, kWh In, kVARh In, kWh Out, and kVARh Out.
 - 6) Output controlled by multiple alarms using Boolean-type logic.
- S. Onboard Data Logging:
 - 1. Store logged data, alarms, events, and waveforms in 800 KB of onboard nonvolatile memory.
 - 2. Stored Data:
 - a. Billing Log: User configurable; data shall be recorded every 15 minutes, identified by month, day, and 15-minute interval. Accumulate 24 months of monthly data, 32 days of daily data, and between 2 and 52 days of 15-minute interval data, depending on number of quantities selected.
 - b. Custom Data Logs: Three user-defined log(s) holding up to 96 parameters. Date and time stamp each entry to the second and include the following user definitions:
 - 1) Schedule interval.
 - 2) Event definition.
 - 3) Configured as "fill-and-hold" or "circular, first-in first-out."
 - c. Alarm Log: Include time, date, event information, and coincident information for each defined alarm or event.
 - d. Waveform Log: Store captured waveforms configured as "fill-and-hold" or "circular, first-in first-out."
 - 3. Default values for all logs shall be initially set at factory, with logging to begin on device power up.

T. Alarms.

- 1. User Options:
 - a. Define pickup, dropout, and delay.
 - b. Assign one of four severity levels to make it easier for user to respond to the most important events first.
 - c. Allow for combining up to four alarms using Boolean-type logic statements for outputting a single alarm.
- 2. Alarm Events:
 - a. Over/undercurrent.
 - b. Over/undervoltage.
 - c. Current imbalance.
 - d. Phase loss, current.
 - e. Phase loss, voltage.
 - f. Voltage imbalance.
 - g. Over kW demand.
 - h. Phase reversal.
 - i. Digital input off/on.
 - j. End of incremental energy interval.
 - k. End of demand interval.
- U. Control Power: 90- to 457-V ac or 100- to 300-V dc.
- V. Communications:
 - 1. Power monitor shall be permanently connected to communicate via Modbus TCP via a 100 Base-T Ethernet or RS-485 Modbus TCP/IP.
 - 2. Local plug-in connections shall be for RS-232 and 100 Base-T Ethernet.
- W. Display Monitor:
 - 1. Backlighted LCD to display metered data with touch-screen or touch pad selecting device.
 - 2. Touch-screen display shall be a minimum 12-inch diagonal, resolution of 800 by 600 RGB pixels, 256 colors; NEMA 250, Type 1 display enclosure.
 - 3. Display four values on one screen at same time.
 - a. Current, per phase rms, three-phase average and neutral.
 - b. Voltage, phase to phase, phase to neutral, and three-phase averages of phase to phase and phase to neutral.
 - c. Real power, per phase and three-phase total.
 - d. Reactive power, per phase and three-phase total.
 - e. Apparent power, per phase and three-phase total.
 - f. Power factor, per phase and three-phase total.
 - g. Frequency.

VOLTAGE MONITORING SYSTEMS

- h. Demand current, per phase and three-phase average.
- i. Demand real power, three-phase total.
- j. Demand apparent power, three-phase total.
- k. Accumulated energy (MWh and MVARh).
- 1. THD, current and voltage, per phase.
- 4. Reset: Allow reset of the following parameters at the display:
 - a. Peak demand current.
 - b. Peak demand power (kW) and peak demand apparent power (kVA).
 - c. Energy (MWh) and reactive energy (MVARh).

2.8 STANDALONE, WEB-ENABLED MONITORING AND CONTROL INSTRUMENT

- A. Separately mounted, permanently installed instrument for power monitoring and control.
 - 1. Enclosure: NEMA 250, Type 1 or 12.
- B. Environmental Conditions: System components shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability.
 - 1. Indoor installation in non-air-conditioned or nontemperature-controlled spaces that have environmental controls to maintain ambient conditions of 0 to 122 deg F dry bulb and 20 to 90 percent relative humidity, noncondensing.
- C. Power-Distribution Equipment Monitor: Web enabled, with integral network port and embedded Web server with factory-configured firmware and HTML-formatted Web pages for viewing of power monitoring and equipment status information from connected devices equipped with digital communication ports.
- D. LAN Connectivity: Multipoint, RS-485 Modbus serial communication network, interconnecting all breaker trip units, protective relays, drives, and metering devices equipped with communications. Serial communication network connected to Ethernet server that functions as a gateway and server, providing data access via 10 Base-T, 100 Base-T or 100 Base-FX LAN.
- E. Communication Devices within the Equipment: Addressed at factory and tested to verify reliable communication with network server.
- F. Server Configuration:
 - 1. Initial network parameters set using a standard Web browser. Connect via a local operator interface, or an RJ-45 port accessible from front of equipment.
 - 2. Network server shall be factory programmed with embedded HTML-formatted Web pages that are user configurable and that provide detailed communication diagnostic information for serial and Ethernet ports as status of RS-485 network; with internal memory management information pages for viewing using a standard Web browser.

- 3. Login: Password protected; password administration accessible from the LAN using a standard Web browser.
- 4. Operating Software: Suitable for local access; firewall protected.
- G. Data Access:
 - 1. Network server shall include embedded HTML pages providing real-time information from devices connected to RS-485 network ports via a standard Web browser.
- H. Equipment Monitoring Options: Login shall be followed by a main menu for selecting summary Web pages that follow.
- I. Summary Web pages shall be factory configured to display the following information for each communicating device within the power equipment lineup:
 - 1. User-Configured Custom Home Page: Provide for the lineup, showing status-at-a-glance of key operating values.
 - 2. Circuit Summary Page: Circuit name, three-phase average rms current, power (kW), power factor, and breaker status.
 - 3. Load Current Summary Page: Circuit name, Phase A, B, and C rms current values.
 - 4. Demand Current Summary Page: Circuit name, Phase A, B, and C average demand current values.
 - 5. Power Summary Page: Circuit name, present demand power (kW), peak demand power (kW), and recorded time and date.
 - 6. Energy Summary Page: Circuit name, energy (kWh), reactive energy (kVARh), and time/date of last reset.
 - 7. Transformer Status Page: Transformer tag, coil temperatures, and cooling fan status.
 - 8. Motor-Control Center Status Page: Circuit name, three-phase average rms current, thermal capacity (percentage), and drive output frequency (Hz) contactor status.
 - 9. Specific Device Pages: Each individual communicating device shall display detailed, real-time information, as appropriate for device type.
 - a. Display historical energy data that shall be logged automatically for each device, as appropriate for device type.
 - b. Display historical data logged from each device in graphical time-trend plots. Value to be displayed on time-trend plot shall be user selectable. Time interval to be displayed on scale shall be for previous day or week.
 - 10. Export historical energy data to a PC or workstation through network using FTP (File Transfer Protocol). Format exported data in a CSV (Comma Separated Variable) file format for importing into spreadsheet applications.
- J. Communications:
 - 1. Power monitor: Permanently connected to communicate via RS-485 Modbus TCP/IP or Modbus TCP via a 100 Base-T Ethernet.
 - 2. Local Plug-in Connections: RS-232 and 100 Base-T Ethernet.
 - 3. Monitor Display: Backlighted LCD to display metered data with touch-screen or touchpad selecting device.

2.9 WORKSTATION HARDWARE

- A. Environmental Conditions: System components shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - 1. Indoor installation in spaces that have environmental controls to maintain ambient conditions of 36 to 122 deg F dry bulb and 20 to 90 percent relative humidity, noncondensing.
- B. Computer: Standard unmodified PC of modular design, designed for the latest version of Windows operating system.
 - 1. Report Printer: Minimum resolution 600 dpi laser printer.
 - a. Connected to central station and designated workstations.
 - b. RAM: 2 MB, minimum.
 - c. Printing Speed: Minimum 12 pages per minute.
 - d. Paper Handling: Automatic sheet feeder with 250 sheet paper cassette and with automatic feed.
- C. Redundant Central Computer: Connected in a hot standby, peer configuration; automatically maintains copies of system software, application software, and data files. System transactions and other activities that alter system data files shall be updated to system files of redundant computer in near real-time. If central computer fails, redundant computer shall assume control immediately and automatically.
- D. UPS: Self-contained; complying with requirements in Section 16264 "Static Uninterruptible Power Supply."
 - 1. Size: Provide a minimum of 6 hours of operation of workstation station equipment, including 2 hours of alarm printer operation.
 - 2. Batteries: Sealed, valve regulated, recombinant, lead calcium.
 - 3. Accessories:
 - a. Transient voltage suppression.
 - b. Input-harmonics reduction.
 - c. Rectifier/charger.
 - d. Battery disconnect device.
 - e. Static bypass transfer switch.
 - f. Internal maintenance bypass/isolation switch.
 - g. External maintenance bypass/isolation switch.
 - h. Output isolation transformer.
 - i. Remote UPS monitoring.
 - j. Battery monitoring.
 - k. Remote battery monitoring.

2.10 RS-232 ASCII INTERFACE

- A. ASCII interface shall allow RS-232 connections to be made between a meter or circuit monitor operating as the host PC and any equipment that will accept RS-232 ASCII command strings.
- B. Pager System Interface: Alarms shall be able to activate a pager system with customized message for each input alarm.
 - 1. RS-232 output shall be capable of connection to a pager interface that can be used to call a paging system or service and send a signal to a portable pager. System shall allow an individual alphanumeric message per alarm input to be sent to paging system. This interface shall support both numeric and alphanumeric pagers.
- C. Alarm System Interface:
 - 1. **RS**-232 output shall be capable of transmitting alarms from other monitoring and alarm systems to workstation software.
- D. Cables:
 - 1. PVC-Jacketed, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; PVC jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - a. NFPA 70, Type CM.
 - b. Flame Resistance: UL 1581, Vertical Tray.
 - 2. Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - a. NFPA 70, Type CMP.
 - b. Flame Resistance: NFPA 262, Flame Test.

2.11 LAN CABLES

- A. Comply with Section 16717 "Communications Horizontal Cabling."
- B. RS-485 Cable:
 - 1. PVC-Jacketed, RS-485 Cable: Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, PVC insulation, unshielded, PVC jacket, and NFPA 70, Type CMG.
 - 2. Plenum-Type, RS-485 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and fluorinated-ethylene-propylene jacket, and NFPA 70, Type CMP.

C. Unshielded Twisted Pair Cables: Category 5e or 6 as specified for horizontal cable for data service in Section 16717 "Communications Horizontal Cabling."

2.12 LOW-VOLTAGE WIRING

- A. Comply with Section 16123 "Control-Voltage Electrical Power Cables."
- B. Low-Voltage Control Cable: Multiple conductor, color-coded, No. 20 AWG copper, minimum.
 - 1. Sheath: PVC; except in plenum-type spaces, use sheath listed for plenums.
 - 2. Ordinary Switching Circuits: Three conductors unless otherwise indicated.
 - 3. Switching Circuits with Pilot Lights or Locator Feature: Five conductors unless otherwise indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CABLING

- A. Comply with NECA 1.
- B. Install cables and wiring according to requirements in Section 271500 "Communications Horizontal Cabling."
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.
- D. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use NRTL-listed plenum cable in environmental air spaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.
- E. Install LAN cables using techniques, practices, and methods that are consistent with specified category rating of components and that ensure specified category performance of completed and linked signal paths, end to end.
- F. Install cables without damaging conductors, shield, or jacket.

3.3 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
- B. Label each power monitoring and control module with a unique designation.

3.4 GROUNDING

A. Comply with IEEE 1100, "Recommended Practice for Powering and Grounding Electronic Equipment."

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Tests and Inspections:
 - 1. Electrical Tests: Use caution when testing devices containing solid-state components.
 - 2. Continuity tests of circuits.
 - 3. Operational Tests: Set and operate controls at workstation and at monitored and controlled devices to demonstrate their functions and capabilities. Use a methodical sequence that cues and reproduces actual operating functions as recommended by manufacturer. Submit sequences for approval. Note response to each test command and operation. Note time intervals between initiation of alarm conditions and registration of alarms at central-processing workstation.
 - a. Coordinate testing required by this Section with that required by Sections specifying equipment being monitored and controlled.
 - b. Test LANs according to requirements in Section 271500 "Communications Horizontal Cabling."
 - c. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of calculated battery operating time.
 - d. Verify accuracy of graphic screens and icons.
 - e. Metering Test: Load feeders, measure loads on feeder conductor with an rms reading clamp-on ammeter, and simultaneously read indicated current on the same phase at central-processing workstation. Record and compare values measured at the two locations. Resolve discrepancies greater than 5 percent and record resolution method and results.

- f. Record metered values, control settings, operations, cues, time intervals, and functional observations and submit test reports printed by workstation printer.
- E. Power monitoring and control equipment will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.
- G. Correct deficiencies, make necessary adjustments, and retest. Verify that specified requirements are met.
- H. Test Labeling: After satisfactory completion of tests and inspections, apply a label to tested components indicating test results, date, and responsible agency and representative.
- I. Reports: Written reports of tests and observations. Record defective materials and workmanship and unsatisfactory test results. Record repairs and adjustments.
- J. Remove and replace malfunctioning devices and circuits and retest as specified above.

3.6 DEMONSTRATION

- A. Train Owner's maintenance personnel to adjust, operate, and maintain systems. See Section 01820 "Demonstration and Training."
 - 1. Train Owner's management and maintenance personnel in interpreting and using monitoring displays and in configuring and using software and reports. Include troubleshooting, servicing, adjusting, and maintaining equipment. Provide a minimum of 12 hours' training.
 - 2. Training Aid: Use approved final versions of software and maintenance manuals as training aids.

3.7 ON-SITE ASSISTANCE

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other-than-normal occupancy hours for this purpose.

END OF SECTION 260913.20

SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Time switches.
 - 2. Photoelectric switches.
 - 3. Standalone daylight-harvesting switching controls.
 - 4. Indoor occupancy sensors.
 - 5. Outdoor motion sensors.
 - 6. Lighting contactors.
- B. Related Requirements:
 - 1. Section 262726 "Wiring Devices" for wall-box dimmers, wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 - 1. Interconnection diagrams showing field-installed wiring.
 - 2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in emergency, operation, and maintenance manuals.

LIGHTING CONTROL DEVICES

PART 2 - PRODUCTS

2.1 TIME SWITCHES

- A. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Contact Configuration: SPST, DPST or DPDT.
 - 3. Contact Rating: 30-A inductive or resistive, 240-V ac or 20-A ballast load, 120-/240-V ac.
 - 4. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program on selected channels.
 - 5. Astronomic Time: Selected channels.
 - 6. Automatic daylight savings time changeover.
 - 7. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.
- B. Electromechanical-Dial Time Switches: Comply with UL 917.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Contact Configuration: SPST, DPST, SPDT or DPDT.
 - 3. Contact Rating: 30-A inductive or resistive, 240-V ac or 20-A ballast load, 120-/240-V ac.
 - 4. Circuitry: Allows connection of a photoelectric relay as a substitute for the on-off function of a program.
 - 5. Astronomic time dial.
 - 6. Eight-Day Program: Uniquely programmable for each weekday and holidays.
 - 7. Skip-a-day mode.
 - 8. Wound-spring reserve carryover mechanism to keep time during power failures, minimum of 16 hours.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Description: Solid state, with SPST or DPST dry contacts rated for 1800-VA tungsten or 1000-VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
 - 3. Time Delay: Fifteen second minimum, to prevent false operation.
 - 4. Surge Protection: Metal-oxide varistor.

- 5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.
- B. Description: Solid state, with SPST or DPST dry contacts rated for 1800 VA, to operate connected load, complying with UL 773.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range.
 - 3. Time Delay: Thirty-second minimum, to prevent false operation.
 - 4. Lightning Arrester: Air-gap type.
 - 5. Mounting: Twist lock complying with NEMA C136.10, with base.

2.3 DAYLIGHT-HARVESTING SWITCHING CONTROLS

- A. Ceiling-Mounted Switching Controls: Solid-state, light-level sensor unit, with separate power pack mounted on luminaire, to detect changes in indoor lighting levels that are perceived by the eye.
- B. Electrical Components, Devices, and Accessories:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
 - 3. Sensor Output: Contacts rated to operate the associated power pack, complying with UL 773A. Sensor is powered by the power pack.
 - 4. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 5. General Space Sensors Light-Level Monitoring Range: 10 to 200 fc, with an adjustment for turn-on and turn-off levels within that range.
 - 6. Atrium Space Sensors Light-Level Monitoring Range: 100 to 1000 fc, with an adjustment for turn-on and turn-off levels within that range.
 - 7. Skylight Sensors Light-Level Monitoring Range: 1000 to 10,000 fc, with an adjustment for turn-on and turn-off levels within that range.
 - 8. Time Delay: Adjustable from 5 to 300 seconds to prevent cycling.
 - 9. Set-Point Adjustment: Equip with deadband adjustment of 25, 50, and 75 percent above the "on" set point, or provide with separate adjustable "on" and "off" set points.
 - 10. Test Mode: User selectable, overriding programmed time delay to allow settings check.
 - 11. Control Load Status: User selectable to confirm that load wiring is correct.
 - 12. Indicator: Two digital displays to indicate the beginning of on-off cycles.

2.4 DAYLIGHT-HARVESTING DIMMING CONTROLS

- A. System Description: Sensing daylight and electrical lighting levels, the system adjusts the indoor electrical lighting levels. As daylight increases, the lights are dimmed.
 - 1. Lighting control set point is based on two lighting conditions:
 - a. When no daylight is present (target level).
 - b. When significant daylight is present.
 - 2. System programming is done with two hand-held, remote-control tools.
 - a. Initial setup tool.
 - b. Tool for occupants to adjust the target levels by increasing the set point up to 25 percent, or by minimizing the electric lighting level.
- B. Ceiling-Mounted Dimming Controls: Solid-state, light-level sensor unit, with separate controller unit, to detect changes in lighting levels that are perceived by the eye.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Sensor Output: 0- to 10-V dc to operate electronic dimming ballasts. Sensor is powered by controller unit.
 - 3. Power Pack: Sensor has 24-V dc, Class 2 power source, as defined by NFPA 70.
 - 4. Light-Level Sensor Set-Point Adjustment Range: 20 to 60 fc.

2.5 INDOOR OCCUPANCY SENSORS

- A. General Requirements for Sensors: Wall- or ceiling-mounted, solid-state indoor occupancy sensors with a separate power pack.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 3. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
 - 4. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 5. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.

- 6. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
- 7. Bypass Switch: Override the "on" function in case of sensor failure.
- 8. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.
- B. PIR Type: Ceiling mounted; detect occupants in coverage area by their heat and movement.
 - 1. Detector Sensitivity: Detect occurrences of 6-inch- minimum movement of any portion of a human body that presents a target of not less than 36 sq. in.
 - 2. Detection Coverage (Room): Detect occupancy anywhere in a circular area of 1000 sq. ft. when mounted on a 96-inch- high ceiling.
 - 3. Detection Coverage (Corridor): Detect occupancy within 90 feet when mounted on a 10foot- high ceiling.
- C. Ultrasonic Type: Ceiling mounted; detect occupants in coverage area through pattern changes of reflected ultrasonic energy.
 - 1. Detector Sensitivity: Detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 - 2. Detection Coverage (Small Room): Detect occupancy anywhere within a circular area of 600 sq. ft. when mounted on a 96-inch- high ceiling.
 - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch- high ceiling.
 - 4. Detection Coverage (Large Room): Detect occupancy anywhere within a circular area of 2000 sq. ft. when mounted on a 96-inch- high ceiling.
 - 5. Detection Coverage (Corridor): Detect occupancy anywhere within 90 feet when mounted on a 10-foot- high ceiling in a corridor not wider than 14 feet.
- D. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch- minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch- high ceiling.

2.6 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. General Requirements for Sensors: Automatic-wall-switch occupancy sensor, suitable for mounting in a single gang switchbox.

- 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application[, and shall comply with California Title 24].
- 2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
- 3. Switch Rating: Not less than 800-VA fluorescent at 120 V, 1200-VA fluorescent at 277 V, and 800-W incandescent.

2.7 HIGH-BAY OCCUPANCY SENSORS

- A. General Description: Solid-state unit. The unit is designed to operate with the lamp and ballasts indicated.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Operation: Turn lights on when coverage area is occupied, and to half-power when unoccupied; with a time delay for turning lights to half-power that is adjustable over a minimum range of 1 to 16 minutes.
 - 3. Continuous Lamp Monitoring: When lamps are dimmed continuously for 24 hours, automatically turn lamps on to full power for 15 minutes for every 24 hours of continuous dimming.
 - 4. Operating Ambient Conditions: 32 to 149 deg F.
 - 5. Mounting: Threaded pipe.
 - 6. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 7. Detector Technology: PIR.
 - 8. Power and dimming control from the lighting fixture ballast that has been modified to include the dimming capacitor and MyzerPORT option.
- B. Detector Coverage: User selectable by interchangeable PIR lenses, suitable for mounting heights from 12 to 50 feet.
- C. Accessories: Obtain manufacturer's installation and maintenance kit with laser alignment tool for sensor positioning and power port connectors.

2.8 EXTREME-TEMPERATURE OCCUPANCY SENSORS

- A. Description: Ceiling-mounted, solid-state, extreme-temperature occupancy sensors with a separate power pack.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended application in damp locations.
 - 2. Operation: Turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 30 minutes.
 - 3. Operating Ambient Conditions: From minus 40 to plus 125 deg F.
 - 4. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.

- 5. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
- 6. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind cover.
- 7. Bypass Switch: Override the "on" function in case of sensor failure.
- 8. Automatic Light-Level Sensor: Adjustable from 2 to 10 fc; keep lighting off when selected lighting level is present.
- B. Detector Technology: PIR. Ceiling mounted; detect occupants in coverage area by their heat and movement.
 - 1. Detector Sensitivity: Detect occurrences of 6-inch- minimum movement of any portion of a human body that presents a target of not less than 36 sq. in.
 - 2. Detection Coverage (Room): Detect occupancy anywhere in a circular area of 1500 sq. ft. when mounted on a 96-inch- high ceiling.
 - 3. Detection Coverage (High Bay): Detect occupancy within 25 feet when mounted on a 25-foot- high ceiling.

2.9 OUTDOOR MOTION SENSORS

- A. General Requirements for Sensors: Solid-state outdoor motion sensors.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application, and shall comply with California Title 24.
 - 2. PIR or Dual-technology (PIR and infrared) type, weatherproof. Detect occurrences of 6inch- minimum movement of any portion of a human body that presents a target of not less than 36 sq. in.. Comply with UL 773A.
 - 3. Switch Rating:
 - a. Lighting-Fixture-Mounted Sensor: 1000-W incandescent, 500-VA fluorescent.
 - Separately Mounted Sensor: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 4. Voltage: Match the circuit voltage type.
 - 5. Detector Coverage:
 - a. Standard Range: 210-degree field of view, with a minimum coverage area of 900 sq. ft..
 - b. Long Range: 180-degree field of view and 110-foot detection range.

- 6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
- 7. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
- 8. Concealed "off" time-delay selector at 30 seconds, and 5, 10, and 20 minutes.
- 9. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and help eliminate false "off" switching.
- 10. Operating Ambient Conditions: Suitable for operation in ambient temperatures ranging from minus 40 to plus 130 deg F, rated as "raintight" according to UL 773A.

2.10 LIGHTING CONTACTORS

- A. Description: Electrically operated and mechanically or electrically held, combination-type lighting contactors with fusible switch or nonfused disconnect, complying with NEMA ICS 2 and UL 508.
 - 1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
 - 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
 - 3. Enclosure: Comply with NEMA 250.
 - 4. Provide with control and pilot devices as indicated on Drawings or scheduled, matching the NEMA type specified for the enclosure.
- B. BAS Interface: Provide hardware interface to enable the BAS to monitor and control lighting contactors.
 - 1. Monitoring: On-off status.
 - 2. Control: On-off operation.

2.11 EMERGENCY SHUNT RELAY

- A. Description: Normally closed, electrically held relay, arranged for wiring in parallel with manual or automatic switching contacts; complying with UL 924.
 - 1. Coil Rating: 120 or 277 V.

2.12 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 22 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

- A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
- B. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.2 CONTACTOR INSTALLATION

A. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structureborne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.3 WIRING INSTALLATION

- A. Wiring Method: Comply with Section 260519 "Low Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.
- B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- C. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION

A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."

- 1. Identify controlled circuits in lighting contactors.
- 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.
- B. Label time switches and contactors with a unique designation.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate lighting control devices and perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Lighting control devices will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting sensors to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
 - 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
 - 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.
 - 3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.7 DEMONSTRATION

A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control systems specified in Section 260943.23 "Addressable-Fixture Lighting Controls" and Section 260943.23 "Relay-Based Lighting Controls." B. Train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923

SECTION 261200 - MEDIUM-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following types of transformers with medium-voltage primaries:
 - 1. Pad-mounted, liquid-filled transformers and oil-filled transformers.
 - 2. Pole-mounted, oil-filled transformers.

1.3 DEFINITIONS

A. NETA ATS: Acceptance Testing Specification

1.4 SUBMITTALS

- A. Product Data: Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, location of each field connection, and performance for each type and size of transformer indicated.
- B. Shop Drawings: Diagram power wiring.
- C. Manufacturer Seismic Qualification Certification: Submit certification that transformer assembly and components will withstand seismic forces.
 - 1. Dimensioned Outline Drawings and Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- D. Operation and Maintenance Data: For transformer and accessories to include in emergency, operation and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

- B. Comply with IEEE C2.
- C. Comply with ANSI C57.12.10, ANSI C57.12.28, IEEE C57.12.70 and IEEE C57.12.80.
- D. Comply with NFPA 70.

1.6 PROJECT CONDITIONS

- A. Service Conditions: IEEE C37.121, usual service conditions except for the following:
 - 1. Exposure to significant solar radiation.
 - 2. Exposure to hot and humid climate.

1.7 WARRANTY

A. Provide Manufacturer's two (2) year warranty.

PART 2 - PRODUCTS

2.1 PAD-MOUNTED, LIQUID-FILLED TRANSFORMERS

- A. Description: ANSI C57.12.13, IEEE C57.12.00, pad-mounted, 2-winding transformers. Stainless-steel tank base, cabinet, and sills.
- B. Insulating Liquid: less flammable, silicone-based dielectric, and UL listed as complying with NFPA 70 requirements for fire point of not less than 300 Deg C when tested according to ASTM D92. Liquid shall have low toxicity and be non-hazardous.
- C. Insulation Temperature Rise: 55 Deg C when operated at rated kVA output in a 40 deg C ambient temperature. Transformer shall be rated to operate at rated kilovolt ampere in an average ambient temperature of 30 Deg C over 24 hours with a maximum ambient temperature of 40 Deg C without loss of service life expectancy.
- D. Basic Impulse Level: 95 kV.
- E. KVA and Voltage: See attached Sketch.
- F. Full-Capacity Voltage Taps: four 2.5 percent taps, 2 above and 2 below rated high voltage; with externally operable tap changer for de-energized use and with position indicator and padlock hasp.
- G. High-Voltage Switch: 200 A, make-and-latch rating of 10 kA RMS, symmetrical, arranged for loop feed with 3-phase, 4-position, gang-operated, load-break switch that is oil immersed in transformer tank with hook-stick operating handle in primary compartment.

- H. Primary Fuses: 150 kV fuse assembly with fuses complying with IEEE C37.47. 1. Bay-O-Net liquid-immersed current-limiting fuses that are externally replaceable without opening transformer tank.
- I. Surge Arresters: Distribution class, one for each primary phase; complying with IEEE C62.11 and NEMA LA 1; support from tank wall within high-voltage compartment. Transformers shall have three arresters for loop-feet circuits.
- J. High-Voltage Terminations and Equipment: Live front with externally clamped porcelain bushings and cable connectors suitable for terminating primary cable and arresters.
- K. Finish: ANSI 61 Light Gray finish over rust-inhibiting primer on phosphatizing-treated metal surfaces.
- L. Accessories:
 - 1. Drain Valve: 1 inch, with sampling device.
 - 2. Dial-type thermometer.
 - 3. Liquid-level gage.
 - 4. Pressure-vacuum gage.
 - 5. Pressure Relief Device: Self-sealing with an indicator.
 - 6. Mounting provisions for low-voltage current transformers.
 - 7. Mounting provisions for low-voltage potential transformers.
- M. Cooling System: Class OA/FFA, self-cooled, and with provisions for future forced-air-cooled rating. Cooling systems shall include auxiliary cooling equipment, automatic controls, and status indicating lights.

2.2 SOURCE QUALITY CONTROL

- A. Factory Tests: Perform design and routine tests according to standards specified for components. Conduct transformer tests according to ANSI C57.12.50 and IEEE C57.12.90.
- B. Factory Tests: Perform the following factory-certified tests on each transformer:
 - 1. Resistance measurements of all windings on rated-voltage connection and on tap extreme connections.
 - 2. Ratios on rated-voltage connection and on tap extreme connections.
 - 3. Polarity and phase relation on rated-voltage connection.
 - 4. No-load loss at rated voltage on rated-voltage connection.
 - 5. Excitation current at rated voltage on rated-voltage connection.
 - 6. Impedance and load loss at rated current on rated-voltage connection and on tap extreme connections.
 - 7. Applied potential.
 - 8. Induced potential.

- 9. Temperature Test: If transformer is supplied with auxiliary cooling equipment to provide more than one rating, test at lowest kilovolt-ampere Class OA or Class AA rating and highest kilovolt-ampere Class OA/FA or Class AA/FA rating.
 - a. Temperature test is not required if record of temperature test on an essentially duplicate unit is available.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 261200

SECTION 261300 - SWITCHGEAR

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Service and distribution switchboards rated 2,000V to 35,000V.
- 2. Transient voltage suppression devices.
- 3. Disconnecting and overcurrent protective devices.
- 4. Instrumentation.
- 5. Control power.
- 6. Accessory components and features.
- 7. Identification.
- 8. Mimic bus.

1.3 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Medium Voltage Switchgear shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of Medium Voltage Switchgear, overcurrent protective device, transient voltage suppression device, ground-fault protector, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
- B. Shop Drawings: For each Medium Voltage Switchgear and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types for types other than NEMA 250, Type 1.

- 3. Detail bus configuration, current, and voltage ratings.
- 4. Detail short-circuit current rating of switchboards and overcurrent protective devices.
- 5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation.
- 6. Detail utility company's metering provisions with indication of approval by utility company.
- 7. Include evidence of NRTL listing for series rating of installed devices.
- 8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 9. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
- 10. Include diagram and details of proposed mimic bus.
- 11. Include schematic and wiring diagrams for power, signal, and control wiring.
- C. Samples: Representative portion of mimic bus with specified material and finish, for color selection.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Certificates: Submit certification that switchboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field Quality-Control Reports:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Routine maintenance requirements for Medium Voltage Switchgear and all installed components.

- 2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
- 3. Time-current coordination curves for each type and rating of overcurrent protective device included in Medium Voltage Switchgear. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Potential Transformer Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 2. Control-Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Fuses and Fusible Devices for Fused Circuit Breakers: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 4. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 5. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 6. Indicating Lights: Equal to 10 percent of quantity installed for each size and type, but no fewer than one of each size and type.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2 and trained in electrical safety as required by NFPA 71E.
- B. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- C. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
- D. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 71, by a qualified testing agency, and marked for intended location and application.
- F. Comply with NEMA PB 2.
- G. Comply with NFPA 70.

H. Comply with applicable UL Standards.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Deliver Medium Voltage Switchgear in sections or lengths that can be moved past obstructions in delivery path.
- B. Remove loose packing and flammable materials from inside Medium Voltage Switchgear and install temporary electric heating (250 W per section) to prevent condensation.
- C. Handle and prepare switchboards for installation according to NECA 430 and NEMA PB 2.

1.10 PROJECT CONDITIONS

- A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.
- B. Environmental Limitations:
 - 1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 104 deg F.
 - b. Altitude: Not exceeding 6600 feet.
- C. Service Conditions: NEMA PB 2, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet.
- D. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Architect, Construction Manager or Owner no fewer than seven days in advance of proposed interruption of electric service.
 - 2. Indicate method of providing temporary electric service.
 - 3. Do not proceed with interruption of electric service without Architect's, Construction Manager's or Owner's written permission.
 - 4. Comply with NFPA 70E.

1.11 COORDINATION

- A. Coordinate layout and installation of Medium Voltage Switchgear and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.12 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

- A. Front-Connected, Front-Accessible Medium Voltage Switchgear:
 - 1. Main Devices: Panel mounted.
 - 2. Branch Devices: Panel mounted.
 - 3. Sections front and rear aligned.
- B. Front- and Side-Accessible Medium Voltage Switchgear:
 - 1. Main Devices: Fixed, individually mounted.
 - 2. Branch Devices: Panel mounted.
 - 3. Sections front and rear aligned.
- C. Front- and Rear-Accessible Medium Voltage Switchgear:
 - 1. Main Devices: Drawout mounted.
 - 2. Branch Devices: Panel and fixed, individually mounted.
 - 3. Sections front and rear aligned.
- D. Nominal System Voltage: 4.86/8.25/15 kV.
- E. Main-Bus Continuous: 4000, 3000, 2500, 2000, 1600 or 1200.

- F. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Section 16074 "Vibration and Seismic Controls for Electrical Systems."
- G. Indoor Enclosures: Steel, NEMA 250, Type 1.
- H. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
 - 1. Finish: Factory-applied finish in manufacturer's standard or custom color; undersurfaces treated with corrosion-resistant undercoating.
 - 2. Enclosure: Flat or Downward, rearward sloping roof; bolt-on rear covers or rear hinged doors for each section, with provisions for padlocking.
 - 3. Doors: Personnel door at each end of aisle, minimum width of 30 inches; opening outwards; with panic hardware and provisions for padlocking or cylinder lock.
 - 4. Accessories: Fluorescent lighting fixtures, ceiling mounted; wired to a three-way light switch at each end of aisle; ground-fault circuit interrupter (GFCI) duplex receptacle; emergency battery pack lighting fixture installed on wall of aisle midway between personnel doors.
 - 5. Walk-in Aisle Heating and Ventilating:
 - a. Factory-installed electric unit heater(s), wall or ceiling mounted, with integral thermostat and disconnect and with capacities to maintain Medium Voltage Switchgear interior temperature of 40 deg F with outside design temperature of 104 deg F.
 - b. Factory-installed exhaust fan with capacities to maintain Medium Voltage Switchgear interior temperature of 100 deg F with outside design temperature of 23 deg F.
 - c. Thermostat: Single stage; wired to control heat and exhaust fan.
 - 6. Power for Space Heaters, Ventilation, Lighting, and Receptacle: Include a control-power transformer within the Medium Voltage Switchgear. Supply voltage shall be 120, 120/240 or 120/208 V ac.
 - 7. Power for space heaters, ventilation, lighting, and receptacle provided by a remote source.
- I. Barriers: Between adjacent Medium Voltage Switchgear sections.
- J. Insulation and isolation for main bus of main section and main and vertical buses of feeder sections.
- K. Bus Transition and Incoming Pull Sections: Matched and aligned with basic Medium Voltage Switchgear.
- L. Removable, Hinged Rear Doors and Compartment Covers: Secured by captive thumb screws or standard bolts, for access to rear interior of Medium Voltage Switchgear.
- M. Buses and Connections: Three phase, four wire unless otherwise indicated.

- 1. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity, with tin-plated aluminum or copper feeder circuit-breaker line connections.
- 2. Phase- and Neutral-Bus Material: Tin-plated, high-strength, electrical-grade aluminum alloy with tin-plated aluminum circuit-breaker line connections.
- 3. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity, or tinplated, high-strength, electrical-grade aluminum alloy.
- 4. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical or compression connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position.
- 5. Ground Bus: 1/4-by-2-inch, 1/4-by-1-inch or Minimum-size required by UL 891, harddrawn copper of 98 percent conductivity, equipped with mechanical or compression connectors for feeder and branch-circuit ground conductors. For busway feeders, extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.
- 6. Main Phase Buses and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
- 7. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical or compression] connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
- 8. Isolation Barrier Access Provisions: Permit checking of bus-bolt tightness.
- N. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.
- O. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Minimum insulation temperature rating of .

2.2 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker (MCCB): Comply with applicable UL Standards, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and I^2t response.

- 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
- 5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiterstyle fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.
- 6. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
- 7. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Compression style, suitable for number, size, trip ratings, and conductor material.
 - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - e. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
 - f. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at [55] [75] percent of rated voltage.
 - g. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
- B. Bolted-Pressure Contact Switch: Operating mechanism uses rotary-mechanical-bolting action to produce and maintain high clamping pressure on the switch blade after it engages the stationary contacts.
 - 1. Main-Contact Interrupting Capability: Minimum of 12 times the switch current rating.
 - 2. Operating Mechanism: Manual handle operation to close switch; stores energy in mechanism for opening and closing.
 - a. Electrical Trip: Operation of lever or push-button trip switch, or trip signal from ground-fault relay or remote-control device, causes switch to open.
 - b. Mechanical Trip: Operation of mechanical lever, push button, or other device causes switch to open.
 - 3. Auxiliary Switches: Factory installed, single pole, double throw, with leads connected to terminal block, and including one set more than quantity required for functional performance indicated.
 - 4. Service-Rated Switches: Labeled for use as service equipment.
 - 5. Ground-Fault Relay: Comply with applicable UL Standards; self-powered type with mechanical ground-fault indicator, test function, tripping relay with internal memory, and three-phase current transformer/sensor.
 - a. Configuration: Integrally mounted or Remote-mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.

- b. Internal Memory: Integrates the cumulative value of intermittent arcing ground-fault currents and uses the effect to initiate tripping.
- c. No-Trip Relay Test: Permits ground-fault simulation test without tripping switch.
- d. Test Control: Simulates ground fault to test relay and switch (or relay only if "notrip" mode is selected).
- 6. Open-Fuse Trip Device: Arranged to trip switch open if a phase fuse opens.
- C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
- D. Fuses are specified in Section 16491 "Fuses."

2.3 INSTRUMENTATION

- A. Ammeters, Voltmeters, and Power-Factor Meters: ANSI C39.1.
 - 1. Meters: 4-inch diameter or 6 inches square, flush or semiflush, with antiparallax 250degree scales and external zero adjustment.
 - 2. Voltmeters: Cover an expanded-scale range of nominal voltage plus 10 percent.
- B. Feeder Ammeters: 2-1/2-inch minimum size with 90- or 120-degree scale. Meter and transfer device with off position, located on overcurrent device door for indicated feeder circuits only.
- C. Watt-Hour Meters and Wattmeters:
 - 1. Comply with ANSI C12.1.
 - 2. Three-phase induction type with two stators, each with current and potential coil, rated 5 A, 120 V, 60 Hz.
 - 3. Suitable for connection to three- and four-wire circuits.
 - 4. Potential indicating lamps.
 - 5. Adjustments for light and full load, phase balance, and power factor.
 - 6. Four-dial clock register.
 - 7. Integral demand indicator.
 - 8. Contact devices to operate remote impulse-totalizing demand meter.
 - 9. Ratchets to prevent reverse rotation.
 - 10. Removable meter with drawout test plug.
 - 11. Semiflush mounted case with matching cover.
 - 12. Appropriate multiplier tag.

2.4 ACCESSORY COMPONENTS AND FEATURES

- A. Portable Test Set: For testing functions of solid-state trip devices without removing from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.
- B. Portable Circuit-Breaker Lifting Device: Floor-supported, roller-based, elevating carriage arranged for movement of circuit breakers in and out of compartments for present and future circuit breakers.

- C. Overhead Circuit-Breaker Lifting Device: Mounted at top front of switchboard, with hoist and lifting yokes matching each drawout circuit breaker.
- D. Spare-Fuse Cabinet: Suitably identified, wall-mounted, lockable, compartmented steel box or cabinet. Arrange for wall mounting.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Receive, inspect, handle, and store switchboards according to NECA 430 or NEMA PB 2.
- B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.
- C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install switchboards and accessories according to NECA 430 or NEMA PB 2.
- B. Equipment Mounting: Install switchboards on concrete base, 4-inch nominal thickness. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete." or Section 033053 "Miscellaneous Cast-in-Place Concrete."
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to switchboards.
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.
- D. Comply with mounting and anchoring requirements.
- E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.

- F. Install filler plates in unused spaces of panel-mounted sections.
- G. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation.
 - 1. Set field-adjustable switches and circuit-breaker trip ranges.
- H. Install spare-fuse cabinet.
- I. Comply with NECA 1.

3.3 CONNECTIONS

- A. Comply with requirements for terminating feeder bus specified in Section 262500 "Enclosed Bus Assemblies." Drawings indicate general arrangement of bus, fittings, and specialties.
- B. Comply with requirements for terminating cable trays specified in Section 260536"Cable Trays for Electrical Systems." Drawings indicate general arrangement of cable trays, fittings, and specialties.

3.4 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements.
- B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification.
- C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

- D. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- E. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front and rear panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchboard 11 months after date of Substantial Completion.
 - c. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- F. Switchboard will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as indicated.

3.7 PROTECTION

A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

END OF SECTION 261300

261300 - 13 Page 5181 of 6215

SECTION 262200 - LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 1000 kVA:
 - 1. Distribution transformers.
 - 2. Buck-boost transformers.

1.3 ACTION SUBMITTALS

- A. Product Data: Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer indicated.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- Manufacturer Seismic Qualification Certification: Submit certification that transformers, accessories, and components will withstand seismic forces defined in Section 260548
 "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

- 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Qualification Data: For testing agency.
- C. Source quality-control test reports.
- D. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the International Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the International Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
- B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7.
- C. Source Limitations: Obtain each transformer type through one source from a single manufacturer.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Comply with IEEE C57.12.91, "Test Code for Dry-Type Distribution and Power Transformers."

1.7 DELIVERY, STORAGE, AND HANDLING

A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

1.8 COORDINATION

- A. Coordinate size and location of concrete bases with actual transformer provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- B. Coordinate installation of wall-mounting and structure-hanging supports with actual transformer provided.

PART 2 - PRODUCTS

2.1 GENERAL TRANSFORMER REQUIREMENTS

- A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- B. Cores: Grain-oriented, non-aging silicon steel.
- C. Coils: Continuous windings without splices except for taps.
 - 1. Internal Coil Connections: Brazed or pressure type.
 - 2. Coil Material: Aluminum.

2.2 DISTRIBUTION TRANSFORMERS

- A. Comply with NEMA ST 20, and list and label as complying with UL 1561.
- B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- C. Cores: One leg per phase.
- D. Enclosure: Ventilated or Totally enclosed, nonventilated, NEMA 250, Type 2.
 - 1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air.
- E. Transformer Enclosure Finish: Comply with NEMA 250.
- F. Taps for Transformers Smaller than 3 kVA: One 5 percent tap above normal full capacity.
- G. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity or Two 5 percent taps below rated voltage.
- H. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity or Two 2.5 percent taps above and four 2.5 percent taps below normal full capacity.

- I. Insulation Class: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.
- J. Energy Efficiency for Transformers Rated 15 kVA and Larger:
 - 1. Complying with NEMA TP 1, Class 1 efficiency levels.
 - 2. Tested according to NEMA TP 2.
- K. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor.
 - 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
 - 2. Indicate value of K-factor on transformer nameplate.
- L. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 - 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 - 2. Include special terminal for grounding the shield.
 - 3. Shield Effectiveness:
 - a. Capacitance between Primary and Secondary Windings: Not to exceed 33 picofarads over a frequency range of 20 Hz to 1 MHz.
 - b. Common-Mode Noise Attenuation: Minimum of minus 120 dBA at 0.5 to 1.5 kHz; minimum of minus 65 dBA at 1.5 to 100 kHz.
 - c. Normal-Mode Noise Attenuation: Minimum of minus 52 dBA at 1.5 to 10 kHz.
- M. Wall Brackets: Manufacturer's standard brackets.
- N. Fungus Proofing: Permanent fungicidal treatment for coil and core.
- O. Low-Sound-Level Requirements: Minimum of 3 dBA less than NEMA ST 20 standard sound levels when factory tested according to IEEE C57.12.91.
- P. Low-Sound-Level Requirements: Maximum sound levels, when factory tested according to IEEE C57.12.91.

2.3 BUCK-BOOST TRANSFORMERS

- A. Description: Self-cooled, two-winding dry type, rated for continuous duty and with wiring terminals suitable for connection as autotransformer. Transformers shall comply with NEMA ST 1 and shall be listed and labeled as complying with UL 506 or UL 1561.
- B. Enclosure: Ventilated, NEMA 250, Type 2.

2.4 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution or buckboost transformer, mounted with corrosion-resistant screws.

2.5 SOURCE QUALITY CONTROL

- A. Test and inspect transformers according to IEEE C57.12.91.
- B. Factory Sound-Level Tests: Conduct sound-level tests on equipment for this Project.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
- C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
- D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall-mounting transformers level and plumb with wall brackets fabricated by transformer manufacturer.
 - 1. Brace wall-mounting transformers as specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- B. Construct concrete bases and anchor floor-mounting transformers according to manufacturer's written instructions, seismic codes applicable to Project, and requirements in Section 260529 "Hangers and Supports for Electrical Systems."

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

LOW-VOLTAGE TRANSFORMERS

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- C. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- E. Remove and replace units that do not pass tests or inspections and retest as specified above.
- F. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
 - 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 - 2. Perform 2 follow-up infrared scans of transformers, one at 4 months and the other at 11 months after Substantial Completion.
 - 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.
- G. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 10 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

- B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.
- C. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262200

SECTION 262413 - SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Service and distribution switchboards rated 600 V and less.
- 2. Transient voltage suppression devices.
- 3. Disconnecting and overcurrent protective devices.
- 4. Instrumentation.
- 5. Control power.
- 6. Accessory components and features.
- 7. Identification.
- 8. Mimic bus.

1.3 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Switchboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of switchboard, overcurrent protective device, transient voltage suppression device, ground-fault protector, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
- B. Shop Drawings: For each switchboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types for types other than NEMA 250, Type 1.

- 3. Detail bus configuration, current, and voltage ratings.
- 4. Detail short-circuit current rating of switchboards and overcurrent protective devices.
- 5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation.
- 6. Detail utility company's metering provisions with indication of approval by utility company.
- 7. Include evidence of NRTL listing for series rating of installed devices.
- 8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 9. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
- 10. Include diagram and details of proposed mimic bus.
- 11. Include schematic and wiring diagrams for power, signal, and control wiring.
- C. Samples: Representative portion of mimic bus with specified material and finish, for color selection.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Certificates: Submit certification that switchboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field Quality-Control Reports:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Routine maintenance requirements for switchboards and all installed components.

- 2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
- 3. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Potential Transformer Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 2. Control-Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Fuses and Fusible Devices for Fused Circuit Breakers: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 4. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 5. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 6. Indicating Lights: Equal to 10 percent of quantity installed for each size and type, but no fewer than one of each size and type.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.
- B. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- C. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
- D. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- F. Comply with NEMA PB 2.
- G. Comply with NFPA 70.

H. Comply with UL 891.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.
- B. Remove loose packing and flammable materials from inside switchboards and install temporary electric heating (250 W per section) to prevent condensation.
- C. Handle and prepare switchboards for installation according to NECA 400 and NEMA PB 2.1.

1.10 PROJECT CONDITIONS

- A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.
- B. Environmental Limitations:
 - 1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 104 deg F.
 - b. Altitude: Not exceeding 6600 feet.
- C. Service Conditions: NEMA PB 2, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet.
- D. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Architect, Construction Manager or Owner no fewer than seven days in advance of proposed interruption of electric service.
 - 2. Indicate method of providing temporary electric service.
 - 3. Do not proceed with interruption of electric service without Architect's, Construction Manager's or Owner's written permission.
 - 4. Comply with NFPA 70E.

1.11 COORDINATION

- A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.12 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

- A. Front-Connected, Front-Accessible Switchboards:
 - 1. Main Devices: Panel mounted.
 - 2. Branch Devices: Panel mounted.
 - 3. Sections front and rear aligned.
- B. Front- and Side-Accessible Switchboards:
 - 1. Main Devices: Fixed, individually mounted.
 - 2. Branch Devices: Panel mounted.
 - 3. Sections front and rear aligned.
- C. Front- and Rear-Accessible Switchboards:
 - 1. Main Devices: Drawout mounted.
 - 2. Branch Devices: Panel and fixed, individually mounted.
 - 3. Sections front and rear aligned.
- D. Nominal System Voltage: 480Y/277 V or 208Y/120 V.
- E. Main-Bus Continuous: 4000, 3000, 2500, 2000, 1600 or 1200.

- F. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- G. Indoor Enclosures: Steel, NEMA 250, Type 1.
- H. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
 - 1. Finish: Factory-applied finish in manufacturer's standard or custom color; undersurfaces treated with corrosion-resistant undercoating.
 - 2. Enclosure: Flat or Downward, rearward sloping roof; bolt-on rear covers or rear hinged doors for each section, with provisions for padlocking.
 - 3. Doors: Personnel door at each end of aisle, minimum width of 30 inches; opening outwards; with panic hardware and provisions for padlocking or cylinder lock.
 - 4. Accessories: Fluorescent lighting fixtures, ceiling mounted; wired to a three-way light switch at each end of aisle; ground-fault circuit interrupter (GFCI) duplex receptacle; emergency battery pack lighting fixture installed on wall of aisle midway between personnel doors.
 - 5. Walk-in Aisle Heating and Ventilating:
 - a. Factory-installed electric unit heater(s), wall or ceiling mounted, with integral thermostat and disconnect and with capacities to maintain switchboard interior temperature of 40 deg F with outside design temperature of 104 deg F.
 - b. Factory-installed exhaust fan with capacities to maintain switchboard interior temperature of 100 deg F with outside design temperature of 23 deg F.
 - c. Thermostat: Single stage; wired to control heat and exhaust fan.
 - 6. Power for Space Heaters, Ventilation, Lighting, and Receptacle: Include a control-power transformer within the switchboard. Supply voltage shall be 120, 120/240 or 120/208 V ac.
 - 7. Power for space heaters, ventilation, lighting, and receptacle provided by a remote source.
- I. Barriers: Between adjacent switchboard sections.
- J. Insulation and isolation for main bus of main section and main and vertical buses of feeder sections.
- K. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
- L. Removable, Hinged Rear Doors and Compartment Covers: Secured by captive thumb screws or standard bolts, for access to rear interior of switchboard.
- M. Buses and Connections: Three phase, four wire unless otherwise indicated.
 - 1. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity, with tin-plated aluminum or copper feeder circuit-breaker line connections.
 - 2. Phase- and Neutral-Bus Material: Tin-plated, high-strength, electrical-grade aluminum alloy with tin-plated aluminum circuit-breaker line connections.

- 3. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity, or tinplated, high-strength, electrical-grade aluminum alloy.
- 4. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical or compression connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position.
- 5. Ground Bus: 1/4-by-2-inch, 1/4-by-1-inch or Minimum-size required by UL 891, harddrawn copper of 98 percent conductivity, equipped with mechanical or compression connectors for feeder and branch-circuit ground conductors. For busway feeders, extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.
- 6. Main Phase Buses and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
- 7. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical or compression] connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
- 8. Isolation Barrier Access Provisions: Permit checking of bus-bolt tightness.
- N. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.
- O. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Minimum insulation temperature rating of .

2.2 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and I^2 t response.
 - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 - 5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiterstyle fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.

- 6. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
- 7. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Compression style, suitable for number, size, trip ratings, and conductor material.
 - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - e. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
 - f. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at [55] [75] percent of rated voltage.
 - g. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
- B. Bolted-Pressure Contact Switch: Operating mechanism uses rotary-mechanical-bolting action to produce and maintain high clamping pressure on the switch blade after it engages the stationary contacts.
 - 1. Main-Contact Interrupting Capability: Minimum of 12 times the switch current rating.
 - 2. Operating Mechanism: Manual handle operation to close switch; stores energy in mechanism for opening and closing.
 - a. Electrical Trip: Operation of lever or push-button trip switch, or trip signal from ground-fault relay or remote-control device, causes switch to open.
 - b. Mechanical Trip: Operation of mechanical lever, push button, or other device causes switch to open.
 - 3. Auxiliary Switches: Factory installed, single pole, double throw, with leads connected to terminal block, and including one set more than quantity required for functional performance indicated.
 - 4. Service-Rated Switches: Labeled for use as service equipment.
 - 5. Ground-Fault Relay: Comply with UL 1053; self-powered type with mechanical ground-fault indicator, test function, tripping relay with internal memory, and three-phase current transformer/sensor.
 - a. Configuration: Integrally mounted or Remote-mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - b. Internal Memory: Integrates the cumulative value of intermittent arcing ground-fault currents and uses the effect to initiate tripping.
 - c. No-Trip Relay Test: Permits ground-fault simulation test without tripping switch.
 - d. Test Control: Simulates ground fault to test relay and switch (or relay only if "no-trip" mode is selected).

- 6. Open-Fuse Trip Device: Arranged to trip switch open if a phase fuse opens.
- C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
- D. Fuses are specified in Section 262813 "Fuses."

2.3 INSTRUMENTATION

- A. Ammeters, Voltmeters, and Power-Factor Meters: ANSI C39.1.
 - 1. Meters: 4-inch diameter or 6 inches square, flush or semiflush, with antiparallax 250degree scales and external zero adjustment.
 - 2. Voltmeters: Cover an expanded-scale range of nominal voltage plus 10 percent.
- B. Feeder Ammeters: 2-1/2-inch minimum size with 90- or 120-degree scale. Meter and transfer device with off position, located on overcurrent device door for indicated feeder circuits only.
- C. Watt-Hour Meters and Wattmeters:
 - 1. Comply with ANSI C12.1.
 - 2. Three-phase induction type with two stators, each with current and potential coil, rated 5 A, 120 V, 60 Hz.
 - 3. Suitable for connection to three- and four-wire circuits.
 - 4. Potential indicating lamps.
 - 5. Adjustments for light and full load, phase balance, and power factor.
 - 6. Four-dial clock register.
 - 7. Integral demand indicator.
 - 8. Contact devices to operate remote impulse-totalizing demand meter.
 - 9. Ratchets to prevent reverse rotation.
 - 10. Removable meter with drawout test plug.
 - 11. Semiflush mounted case with matching cover.
 - 12. Appropriate multiplier tag.

2.4 ACCESSORY COMPONENTS AND FEATURES

- A. Portable Test Set: For testing functions of solid-state trip devices without removing from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.
- B. Portable Circuit-Breaker Lifting Device: Floor-supported, roller-based, elevating carriage arranged for movement of circuit breakers in and out of compartments for present and future circuit breakers.
- C. Overhead Circuit-Breaker Lifting Device: Mounted at top front of switchboard, with hoist and lifting yokes matching each drawout circuit breaker.
- D. Spare-Fuse Cabinet: Suitably identified, wall-mounted, lockable, compartmented steel box or cabinet. Arrange for wall mounting.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Receive, inspect, handle, and store switchboards according to NECA 400 or NEMA PB 2.1.
- B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.
- C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install switchboards and accessories according to NECA 400 or NEMA PB 2.1.
- B. Equipment Mounting: Install switchboards on concrete base, 4-inch nominal thickness. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete." or Section 033053 "Miscellaneous Cast-in-Place Concrete."
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to switchboards.
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.
- D. Comply with mounting and anchoring requirements.
- E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.
- F. Install filler plates in unused spaces of panel-mounted sections.
- G. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation.
 - 1. Set field-adjustable switches and circuit-breaker trip ranges.

- H. Install spare-fuse cabinet.
- I. Comply with NECA 1.

3.3 CONNECTIONS

- A. Comply with requirements for terminating feeder bus specified in Section 262500 "Enclosed Bus Assemblies." Drawings indicate general arrangement of bus, fittings, and specialties.
- B. Comply with requirements for terminating cable trays specified in Section 260536 "Cable Trays." Drawings indicate general arrangement of cable trays, fittings, and specialties.

3.4 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements.
- B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification.
- C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- E. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.

SWITCHBOARDS

262413 - 11 Page 5199 of 6215

- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front and rear panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchboard 11 months after date of Substantial Completion.
 - c. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- F. Switchboard will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as indicated.

3.7 PROTECTION

A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

END OF SECTION 262413

SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.
 - 3. Load centers.

1.3 DEFINITIONS

- A. SVR: Suppressed voltage rating.
- B. TVSS: Transient voltage surge suppressor.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 - 3. Detail bus configuration, current, and voltage ratings.

- 4. Short-circuit current rating of panelboards and overcurrent protective devices.
- 5. Include evidence of NRTL listing for series rating of installed devices.
- 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 7. Include wiring diagrams for power, signal, and control wiring.
- 8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Section 260548
 "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field Quality-Control Reports:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

- 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Comply with NEMA PB 1.
- F. Comply with NFPA 70.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NFPA 70 or NEMA PB 1.

1.10 PROJECT CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 23 deg F to plus 104 deg F.
 - b. Altitude: Not exceeding 6600 feet.
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet.
- C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

- 1. Notify Owner no fewer than two days in advance of proposed interruption of electric service.
- 2. Do not proceed with interruption of electric service without Architect's, Construction Manager's or Owner's written permission.
- 3. Comply with NFPA 70E.

1.11 COORDINATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.12 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces.
- B. Enclosures: Flush, Surface or Flush- and surface-mounted cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
 - 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.

- 4. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
- 5. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
- 6. Finishes:
 - a. Panels and Trim: Galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Same finish as panels and trim.
 - c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
- C. Incoming Mains Location: Top and bottom.
- D. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
- E. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Main and Neutral Lugs: Mechanical type.
 - 3. Ground Lugs and Bus-Configured Terminators: Mechanical type.
- F. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one or more main service disconnecting and overcurrent protective devices.
- G. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- H. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include size and type of allowable upstream and branch devices, listed and labeled for series-connected short-circuit rating by an NRTL.
- I. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals.

2.2 DISTRIBUTION PANELBOARDS

- A. Panelboards: NEMA PB 1, power and feeder distribution type.
- B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 1. For doors more than 36 inches high, provide two latches, keyed alike.

- C. Mains: Circuit breaker or Lugs only.
- D. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Plug-in or Bolt-on circuit breakers.
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.
- F. Branch Overcurrent Protective Devices: Fused switches.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- B. Mains: Circuit breaker or lugs only.
- C. Branch Overcurrent Protective Devices: Plug-in or Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- D. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.4 LOAD CENTERS

- A. Load Centers: Comply with UL 67.
- B. Mains: Circuit breaker or Lugs only.
- C. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.
- D. Conductor Connectors: Mechanical type for main, neutral, and ground lugs and buses.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Receive, inspect, handle, and store panelboards according to NFPA 70 or NEMA PB 1.1.
- B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.
- C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

PANELBOARDS

3.2 INSTALLATION

- A. Install panelboards and accessories according to NFPA 70 or NEMA PB 1.1.
- B. Equipment Mounting: Install panelboards on concrete bases, 4-inch nominal thickness. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete." or Section 033053 "Miscellaneous Cast-in-Place Concrete."
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of base.
 - 2. For panelboards, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to panelboards.
 - 5. Attach panelboard to the vertical finished or structural surface behind the panelboard.
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- D. Comply with mounting and anchoring requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- E. Mount top of trim 90 inches above finished floor unless otherwise indicated.
- F. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- G. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
- H. Install filler plates in unused spaces.
- I. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.
- J. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.
- K. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification.
- D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- E. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.

- b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
- c. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- F. Panelboards will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as indicated.
- C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
 - 1. Measure as directed during period of normal system loading.
 - 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
 - 4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

3.6 **PROTECTION**

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416

SECTION 262419 - MOTOR-CONTROL CENTERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes MCCs for use with ac circuits rated 600 V and less and having the following factory-installed components:
 - 1. Incoming main lugs and OCPDs.
 - 2. Full-voltage magnetic controllers.
 - 3. Reduced-voltage magnetic controllers.
 - 4. Auxiliary devices.

1.3 DEFINITIONS

- A. BAS: Building automation system.
- B. CE: Conformite Europeene (European Compliance).
- C. CPT: Control power transformer.
- D. EMI: Electromagnetic interference.
- E. GFCI: Ground fault circuit interrupting.
- F. IGBT: Insulated-gate bipolar transistor.
- G. LAN: Local area network.
- H. LED: Light-emitting diode.
- I. MCC: Motor-control center.
- J. MCCB: Molded-case circuit breaker.
- K. MCP: Motor-circuit protector.
- L. NC: Normally closed.
- M. NO: Normally open.

MOTOR-CONTROL CENTERS

- N. OCPD: Overcurrent protective device.
- O. PCC: Point of common coupling.
- P. PID: Control action, proportional plus integral plus derivative.
- Q. PT: Potential transformer.
- R. PWM: Pulse-width modulated.
- S. RFI: Radio-frequency interference.
- T. SCR: Silicon-controlled rectifier.
- U. TDD: Total demand (harmonic current) distortion.
- V. THD(V): Total harmonic voltage demand.
- W. TVSS: Transient voltage surge suppressor.
- X. VFC: Variable-frequency controller.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: MCCs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of controller and each type of MCC. Include shipping and operating weights, features, performance, electrical ratings, operating characteristics, and furnished specialties and accessories.
- B. LEED Submittals:
 - 1. Product Data for Credit EA 5: For continuous metering equipment for energy consumption.
- C. Shop Drawings: For each MCC, include dimensioned plans, elevations, and sections; and conduit entry locations and sizes, mounting arrangements, and details, including required clearances and service space around equipment.

- 1. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Each installed unit's type and details.
 - b. Factory-installed devices.
 - c. Enclosure types and details.
 - d. Nameplate legends.
 - e. Short-circuit current (withstand) rating of complete MCC, and for bus structure and each unit.
 - f. Features, characteristics, ratings, and factory settings of each installed controller and feeder device, and installed devices.
 - g. Specified optional features and accessories.
- 2. Wiring Diagrams: For power, signal, and control wiring for each installed controller.
- 3. Vertical and horizontal bus capacities.
- 4. Features, characteristics, ratings, and factory settings of each installed unit.

1.6 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around MCCs where pipe and ducts are prohibited. Show MCC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.
- B. Qualification Data: For qualified testing agency.
- C. Product Certificates: For each MCC, from manufacturer.
- D. Warranty: Sample of special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For MCCs, all installed devices, and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data,".

1.8 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

- B. Source Limitations: Obtain MCCs and controllers of a single type from single source from single manufacturer.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NFPA 70.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Deliver MCCs in shipping splits of lengths that can be moved past obstructions in delivery paths.
- B. Handle MCCs according to the following:
 - 1. NEMA ICS 2.3, "Instructions for the Handling, Installation, Operation, and Maintenance of Motor Control Centers Rated Not More Than 600 Volts."
 - 2. NECA 402, "Recommended Practice for Installing and Maintaining Motor Control Centers."
- C. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside MCCs; install temporary electric heating, with at least 250 W per vertical section.

1.10 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Less than 0 deg F or exceeding 104 deg F, with an average value exceeding 95 deg F over a 24-hour period.
 - 2. Ambient Storage Temperature: Not less than minus 4 deg F and not exceeding 140 deg F.
 - 3. Humidity: Less than 95 percent (noncondensing).
 - 4. Altitude: Exceeding 6600 feet, or 3300 feet if MCC includes solid-state devices.
- B. Interruption of Existing Electrical Service or Distribution Systems: Do not interrupt electrical service to, or distribution systems within, a facility occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of electrical service.
 - 2. Indicate method of providing temporary electrical service.
 - 3. Do not proceed with interruption of electrical service without Architect's, Construction Manager's or Owner's written permission.
 - 4. Comply with NFPA 70E.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for MCCs, including clearances between MCCs and adjacent surfaces and other items.

1.11 COORDINATION

- A. Coordinate sizes and locations of concrete bases. Cast anchor-bolt inserts into bases.
- B. Coordinate features of MCCs, installed units, and accessory devices with remote pilot devices and control circuits to which they connect.
- C. Coordinate features, accessories, and functions of each MCC, each controller, and each installed unit with ratings and characteristics of supply circuits, motors, required control sequences, and duty cycle of motors and loads.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

A. General Requirements for MCCs: Comply with NEMA ICS 18 and UL 845.

2.2 FUNCTIONAL FEATURES

- A. Description: Modular arrangement of main units, controller units, control devices, feeder-tap units, instruments, metering, auxiliary devices, and other items mounted in vertical sections of MCC.
- B. Controller Units: Combination controller units.
 - 1. Install units up to and including Size 3 on drawout mountings with connectors that automatically line up and connect with vertical-section buses while being racked into their normal, energized positions.
 - 2. Equip units in Type B and Type C MCCs with pull-apart terminal strips for external control connections.
- C. Feeder-Tap Units: Through 225-A rating shall have drawout mountings with connectors that automatically line up and connect with vertical-section buses while being racked into their normal, energized positions.
- D. Future Units: Compartments fully bused and equipped with guide rails or equivalent, ready for insertion of drawout units.
- E. Spare Units: Installed in compartments indicated "spare."

2.3 INCOMING MAINS

- A. Incoming Mains Location: Top and bottom.
- B. Main Lugs Only: Conductor connectors suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Main and Neutral Lugs: Mechanical type.
- C. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and I²t response.
 - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 - 5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiterstyle fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.
 - 6. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 - c. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 75 percent of rated voltage.
 - d. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.

2.4 COMBINATION CONTROLLERS

- A. Full-Voltage Controllers:
 - 1. General Requirements for Full-Voltage Enclosed Controllers: Comply with NEMA ICS 2, general purpose, Class A.
 - 2. Magnetic Controllers: Full voltage, across the line, electrically held.
 - a. Configuration: Nonreversing and reversing.

- B. Reduced-Voltage Magnetic Controllers:
 - 1. General Requirements for Reduced-Voltage Magnetic Controllers: Comply with NEMA ICS 2, general purpose, Class A; closed transition; adjustable time delay on transition.
 - 2. Reduced-Voltage Magnetic Controllers: Reduced voltage, electrically held.
 - a. Configuration:
 - b. Wye-Delta Controller: Four contactors, with a three-phase starting resistor/reactor bank.
 - c. Part-Winding Controller: Separate START and RUN contactors, field-selectable for one-half or two-thirds winding start mode, with either six- or nine-lead motors; with separate overload relays for starting and running sequences.
 - d. Autotransformer Reduced-Voltage Controller: Medium-duty service, with integral overtemperature protection; taps for starting at 50, 65, and 80 percent of line voltage; two START and one RUN contactors.

2.5 FEEDER-TAP UNITS

- A. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and I^2t response.
 - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 - 5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiterstyle fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.
 - 6. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 - c. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at55 percent of rated voltage.
 - d. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.

- B. Fusible Switch: NEMA KS 1, Type HD, clips to accommodate specified fuses with lockable handle.
- C. Fuses are specified in Section 262813 "Fuses."

2.6 MCC CONTROL POWER

- A. Control Circuits: 120-V ac, supplied through secondary disconnecting devices from CPT.
- B. Control Circuits: 120-V ac, supplied from remote branch circuit.
- C. Electrically Interlocked Main and Tie Circuit Breakers: Two CPTs in separate compartments, with interlocking relays, connected to the primary side of each CPT at the line side of the associated main circuit breaker. 120-V secondaries connected through automatic transfer relays to ensure a fail-safe automatic transfer scheme.
- D. Control Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.
- E. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.

2.7 ENCLOSURES

- A. Indoor Enclosures: Freestanding steel cabinets unless otherwise indicated. NEMA 250, Type 1 unless otherwise indicated to comply with environmental conditions at installed location.
- B. Space Heaters: Factory-installed electric space heaters of sufficient wattage in each vertical section to maintain enclosure temperature above expected dew point.
- C. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
- D. Outdoor Enclosures: NEMA 250, Type 3R.
 - 1. Finish: Factory-applied finish in manufacturer's standard custom color; undersurfaces treated with corrosion-resistant undercoating.
- E. Compartments: Modular; individual doors with concealed hinges and quick-captive screw fasteners. Interlocks on units requiring disconnecting means in off position before door can be opened or closed, except by operating a permissive release device.
- F. Interchangeability: Compartments constructed to allow for removal of units without opening adjacent doors, disconnecting adjacent compartments, or disturbing operation of other units in MCC; same size compartments to permit interchangeability and ready rearrangement of units, such as replacing three single units with a unit requiring three spaces, without cutting or welding.

- G. Wiring Spaces:
 - 1. Vertical wireways in each vertical section for vertical wiring to each unit compartment; supports to hold wiring in place.
 - 2. Horizontal wireways in bottom, top, bottom and top of each vertical section for horizontal wiring between vertical sections; supports to hold wiring in place.

2.8 AUXILIARY DEVICES

A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.

2.9 SOURCE QUALITY CONTROL

- A. MCC Testing: Inspect and test MCCs according to requirements in NEMA ICS 18.
- B. MCCs will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and surfaces to receive MCCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance of the Work.
- B. Examine enclosed controllers before installation. Reject enclosed controllers that are wet, moisture damaged, or mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate layout and installation of MCCs with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Floor-Mounting Controllers: Install MCCs on 4-inch nominal thickness concrete base. Comply with requirements for concrete base specified in 0 03300 "Cast-in-Place Concrete." or Section 033053 "Miscellaneous Cast-in-Place Concrete."

- 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
- 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
- 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
- C. Seismic Bracing: Comply with requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- D. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- E. Install fuses in each fusible switch.
- F. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."
- G. Install heaters in thermal-overload relays. Select heaters based on actual nameplate full-load amperes after motors have been installed.
- H. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.
- I. Install power factor correction capacitors. Connect to the line side of overload relays. If connected to the load side of overload relays, adjust overload heater sizes to accommodate the reduced motor full-load currents.
- J. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for identification of MCC, MCC components, and control wiring.
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label MCC and each cubicle with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.
 - 4. Mark up a set of manufacturer's connection wiring diagrams with field-assigned wiring identifications and return to manufacturer for inclusion in Record Drawings.
- B. Operating Instructions: Frame printed operating instructions for MCCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of MCCs.

3.4 CONTROL WIRING INSTALLATION

- A. Install wiring between enclosed controllers and remote devices. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect selector switches and other automatic-control selection devices where applicable.
 - 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switch is in manual-control position.
 - 2. Connect selector switches within enclosed controller circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.5 CONNECTIONS

- A. Comply with requirements for installation of conduit in Section 260533 "Raceways and Boxes for Electrical Systems." Drawings indicate general arrangement of conduit, fittings, and specialties.
- B. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems"

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- E. Tests and Inspections:
 - 1. Inspect controllers, wiring, components, connections, and equipment installation.
 - 2. Test insulation resistance for each enclosed controller element, component, connecting motor supply, feeder, and control circuits.
 - 3. Test continuity of each circuit.

- 4. Verify that voltages at controller locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Architect, Construction Manager or Owner before starting the motor(s).
- 5. Test each motor for proper phase rotation.
- 6. Perform each electrical test and visual and mechanical inspection stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 8. Perform the following infrared (thermographic) scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each multipole enclosed controller. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each multipole enclosed controller 11 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- 10. Mark up a set of manufacturer's drawings with all field modifications incorporated during construction and return to manufacturer for inclusion in Record Drawings.
- F. Enclosed controllers will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports, including a certified report that identifies enclosed controllers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.7 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.8 ADJUSTING

- A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- B. Adjust overload relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.

- C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to six times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Architect, Construction Manager or Owner before increasing settings.
- D. Set the taps on reduced-voltage autotransformer controllers at 65 percent.
- E. Set field-adjustable switches and program microprocessors for required start and stop sequences in reduced-voltage, solid-state controllers.
- F. Program microprocessors in VFCs for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
- G. Set field-adjustable circuit-breaker trip ranges.

3.9 **PROTECTION**

- A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until enclosed controllers are ready to be energized and placed into service.
- B. Replace controllers whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.10 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers, and to use and reprogram microprocessor-based, reduced-voltage, solid-state controllers.

END OF SECTION 262419

SECTION 262500 - ENCLOSED BUS ASSEMBLIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Feeder-bus assemblies.
 - 2. Plug-in bus assemblies.
 - 3. Bus plug-in devices.

1.3 DEFINITIONS

A. TVSS: Transient voltage surge suppressor.

1.4 ACTION SUBMITTALS

- A. Shop Drawings: For each type of bus assembly and plug-in device.
 - 1. Show fabrication and installation details for enclosed bus assemblies. Include plans, elevations, and sections of components. Designate components and accessories, including clamps, brackets, hanger rods, connectors, straight lengths, and fittings.
 - 2. Show fittings, materials, fabrication, and installation methods for fire-stop barriers and weather barriers.
 - 3. Indicate required clearances, method of field assembly, and location and size of each field connection.
 - 4. Detail connections to switchgear, switchboards, transformers, and panelboards.
 - 5. Seismic-Restraint Details: Signed and sealed by a qualified professional engineer.
 - a. Design Calculations: Calculate requirements for selecting seismic restraints.
 - b. Detail fabrication, including anchorages and attachments to structure and to supported equipment.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and sections, drawn to scale. Include scaled bus-assembly layouts and relationships between components and adjacent structural, mechanical, and electrical elements. Show the following:

- 1. Vertical and horizontal enclosed bus-assembly runs, offsets, and transitions.
- 2. Clearances for access above and to the side of enclosed bus assemblies.
- 3. Vertical elevation of enclosed bus assemblies above the floor or bottom of structure.
- 4. Support locations, type of support, and weight on each support.
- B. Location of adjacent construction elements including light fixtures, HVAC and plumbing equipment, fire sprinklers and piping, signal and control devices, and other equipment.
- C. Qualification Data: For professional engineer and testing agency.
- D. Product Certificates: For each type of enclosed bus assembly, signed by product manufacturer.
- E. Manufacturer Seismic Qualification Certification: Submit certification that enclosed bus assemblies, plug-in devices, accessories, and components will withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- F. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed bus assemblies to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

- B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
- C. Source Limitations: Obtain enclosed bus assemblies and plug-in devices through one source from a single manufacturer.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Comply with NEMA BU 1, "Busways."
- F. Comply with NFPA 70.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle enclosed bus assemblies according to NEMA BU 1.1, "General Instructions for Proper Handling, Installation, Operation and Maintenance of Busway Rated 600 Volts or Less."

1.9 PROJECT CONDITIONS

A. Derate enclosed bus assemblies for continuous operation at indicated ampere ratings for ambient temperature not exceeding 122 deg F or 140 deg F.

1.10 COORDINATION

- A. Coordinate layout and installation of enclosed bus assemblies and suspension system with other construction that penetrates ceilings or floors or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.
- B. Coordinate size and location of concrete curbs around openings for vertical bus. Concrete, reinforcement, and formwork requirements are specified with concrete.

PART 2 - PRODUCTS

2.1 ENCLOSED BUS ASSEMBLIES

- A. Feeder-Bus Assemblies: NEMA BU 1, low-impedance bus assemblies in nonventilated housing; single-bolt joints; ratings as indicated.
 - 1. Seismic Fabrication Requirements: Fabricate mounting provisions and attachments for feeder-bus assemblies with reinforcement strong enough to withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems" when mounting provisions and attachments are anchored to building structure.

- 2. Voltage: 120/208, 240, 480, 277/480V; 3 phase; 100 percent neutral capacity.
- 3. Temperature Rise: 55 deg C above 40 deg C ambient maximum for continuous rated current.
- 4. Bus Materials: Current-carrying copper or aluminum conductors, fully insulated with Class 130C insulation except at joints; plated surface at joints.
- 5. Ground:
 - a. 50 percent capacity integral with housing.
 - b. 50 percent capacity internal bus bars of material matching bus material.
 - c. 50 percent capacity isolated, internal bus bar of material matching bus material.
- 6. Enclosure: Weatherproof, steel or aluminum with manufacturer's standard finish.
- 7. Fittings and Accessories: Manufacturer's standard.
- 8. Mounting: Arranged flat, edgewise, or vertically without derating.
- B. Plug-in Bus Assemblies: NEMA BU 1, low-impedance bus assemblies in nonventilated housing; single-bolt joints; ratings as indicated.
 - 1. Seismic Fabrication Requirements: Fabricate mounting provisions and attachments for switchboards with reinforcement strong enough to withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems" when mounting provisions and attachments are anchored to building structure.
 - 2. Voltage: 240, 480, 277/480 V; 3 phase; 100 percent neutral capacity.
 - 3. Temperature Rise: 55 deg C above 40 deg C ambient maximum for continuous rated current.
 - 4. Bus Materials: Current-carrying copper or aluminum conductors, fully insulated with Class 130C insulation except at stabs and joints; plated surface at stabs and joints.
 - 5. Ground:
 - a. 50 percent capacity integral with housing.
 - b. 50 percent capacity internal bus bar of material matching bus material.
 - c. 50 percent capacity isolated, internal bus bar of material matching bus material.
 - 6. Enclosure: Steel, with manufacturer's standard finish, plug-in openings 24 inches o.c., and hinged covers over unused openings.
 - 7. Fittings and Accessories: Manufacturer's standard.
 - 8. Mounting: Arranged flat, edgewise, or vertically without derating.

2.2 PLUG-IN DEVICES

- A. Fusible Switches: NEMA KS 1, heavy duty; with fuse clips to accommodate specified fuses; hookstick-operated handle, lockable with two padlocks, and interlocked with cover in closed position. See Section 262813 "Fuses" for fuses and fuse installation requirements.
- B. Molded-Case Circuit Breakers: NEMA AB 1; hookstick-operated handle, lockable with two padlocks, and interlocked with cover in closed position.
- C. Motor Controllers: NEMA ICS 2, Class A, full voltage, nonreversing, across the line, unless otherwise indicated.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Support bus assemblies independent of supports for other elements such as equipment enclosures at connections to panelboards and switchboards, pipes, conduits, ceilings, and ducts.
 - 1. Design each fastener and support to carry load indicated by seismic requirements.
 - 2. Design each fastener and support to carry 200 lb or 4 times the weight of bus assembly, whichever is greater.
 - 3. Support bus assembly to prevent twisting from eccentric loading.
 - 4. Support bus assembly with not less than 3/8-inch steel rods. Install side bracing to prevent swaying or movement of bus assembly. Modify supports after completion to eliminate strains and stresses on bus bars and housings.
 - 5. Fasten supports securely to building structure according to Section 260529 "Hangers and Supports for Electrical Systems."
- B. Install expansion fittings at locations where bus assemblies cross building expansion joints. Install at other locations so distance between expansion fittings does not exceed manufacturer's recommended distance between fittings.
- C. Construct rated fire-stop assemblies where bus assemblies penetrate fire-rated elements such as walls, floors, and ceilings. Seal around penetrations according to Section 078413 "Penetration Firestopping."
- D. Install weatherseal fittings and flanges where bus assemblies penetrate exterior elements such as walls or roofs. Seal around openings to make weathertight. See Section 079200 "Joint Sealants" for materials and application.
- E. Install a concrete curb at least 4 inches high around bus-assembly floor penetrations.
- F. Coordinate bus-assembly terminations to equipment enclosures to ensure proper phasing, connection, and closure.
- G. Tighten bus-assembly joints with torque wrench or similar tool recommended by bus-assembly manufacturer. Tighten joints again after bus assemblies have been energized for 30 days.
- H. Install bus-assembly, plug-in units. Support connecting conduit independent of plug-in unit.

3.2 CONNECTIONS

- A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

ENCLOSED BUS ASSEMBLIES

262500 - 5 Page 5227 of 6215

3.3 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- C. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- E. Remove and replace units that do not pass tests and inspections and retest as specified above.
- F. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of bus assembly including joints and plug-in units.
 - 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 - 2. Perform 2 follow-up infrared scans of bus assembly, one at 4 months and the other at 11 months after Substantial Completion.
 - 3. Prepare a certified report identifying bus assembly checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.
- G. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.4 ADJUSTING

A. Set field-adjustable, circuit-breaker trip ranges and overload relay trip settings as indicated.

3.5 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

3.6 **PROTECTION**

A. Provide final protection to ensure that moisture does not enter bus assembly.

END OF SECTION 262500

SECTION 262713 - ELECTRICITY METERING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes equipment for electricity metering by utility company and electricity metering by Owner.

1.3 DEFINITIONS

- A. KY Pulse: Term used by the metering industry to describe a method of measuring consumption of electricity that is based on a relay opening and closing in response to the rotation of the disk in the meter.
- B. PC: Personal computer.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For electricity-metering equipment.
 - 1. Dimensioned plans and sections or elevation layouts.
 - 2. Wiring Diagrams: For power, signal, and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

- 1. Application and operating software documentation.
- 2. Software licenses.
- 3. Software service agreement.
- 4. Hard copies of manufacturer's operating specifications, design user's guides for software and hardware, and PDF files on CD-ROM of the hard-copy Submittal.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Receive, store, and handle modular meter center according to NECA 400.

1.9 PROJECT CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Architect, Construction Manager or Owner] no fewer than two days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Architect's, Construction Manager's or Owner's written permission.

1.10 COORDINATION

- A. Electrical Service Connections: Coordinate with utility companies and components they furnish as follows:
 - 1. Comply with requirements of utilities providing electrical power services.
 - 2. Coordinate installation and connection of utilities and services, including provision for electricity-metering components.

1.11 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning with Substantial Completion, provide software support for two years.
- B. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.

1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade his computer equipment if necessary.

PART 2 - PRODUCTS

2.1 EQUIPMENT FOR ELECTRICITY METERING BY UTILITY COMPANY

- A. Meters will be furnished by utility company.
- B. Current-Transformer Cabinets: Comply with requirements of electrical-power utility company.
- C. Meter Sockets: Comply with requirements of electrical-power utility company.
- D. Meter Sockets: Steady-state and short-circuit current ratings shall meet indicated circuit ratings.
- E. Modular Meter Center: Factory-coordinated assembly of a main service terminal box with lugs only, disconnect device, wireways, tenant meter socket modules, and tenant feeder circuit breakers arranged in adjacent vertical sections. Assembly shall be complete with interconnecting buses and other features as specified below.
 - 1. Comply with requirements of utility company for meter center.
 - 2. Housing: NEMA 250, Type 1 or Type 3R enclosure.
 - 3. Minimum Short-Circuit Rating: 22,000. A symmetrical at rated voltage.
 - 4. Main Disconnect Device: Circuit breaker, series-combination rated for use with downstream feeder and branch circuit breakers.
 - 5. Main Disconnect Device: Fusible switch, series-combination rated by circuit-breaker manufacturer to protect downstream feeder and branch circuit breakers.
 - 6. Tenant Feeder Circuit Breakers: Series-combination-rated molded-case units, rated to protect circuit breakers in downstream tenant and to house loadcenters and panelboards that have 10,000-A interrupting capacity.
 - a. Identification: Complying with requirements in Section 260553 "Identification for Electrical Systems" with legend identifying tenant's address.
 - b. Physical Protection: Tamper resistant, with hasp for padlock.
 - 7. Meter Socket: Rating coordinated with indicated tenant feeder circuit rating.
 - 8. Surge Protection: For main disconnect device, comply with requirements in Section 264313 "Surge Protection for Low-Voltage Electrical Power Circuits."

2.2 EQUIPMENT FOR ELECTRICITY METERING BY OWNER

- A. General Requirements for Owner's Meters:
 - 1. Comply with UL 1244.
 - 2. Meters used for billing shall have an accuracy of 0.2 percent of reading, complying with requirements in ANSI C12.20.

- 3. Meters shall be certified by California Type Evaluation Program as complying with Title 4, California Code of Regulations, Article 2.2.
- 4. Enclosure: NEMA 250, Type 1 or Type 3R minimum, with hasp for padlocking or sealing.
- 5. Identification: Comply with requirements in Section 260553 "Identification for Electrical Systems."
- 6. Memory Backup: Self-contained to maintain memory throughout power outages of 72 hours, minimum.
- 7. Sensors: Current-sensing type, with current or voltage output, selected for optimum range and accuracy for meters indicated for this application.
 - a. Type: Split and solid core.
- 8. Current-Transformer Cabinet: Listed or recommended by metering equipment manufacturer for use with sensors indicated.
- B. Kilowatt-hour Meter: Electronic single, three or single and three phase meters, measuring electricity used.
 - 1. Voltage and Phase Configuration: Meter shall be designed for use on circuits with voltage rating and phase configuration indicated for its application.
 - 2. Display: LCD with characters not less than 0.25 inch high, indicating accumulative kilowatt-hours and current kilowatt load. Retain accumulated kilowatt-hour in a nonvolatile memory, until reset.
 - 3. Display: Digital electromechanical counter, indicating accumulative kilowatt-hours.
- C. Kilowatt-hour/Demand Meter: Electronic single, three or single and three phase meters, measuring electricity use and demand. Demand shall be integrated over a 15-minute interval.
 - 1. Voltage and Phase Configuration: Meter shall be designed for use on circuits with voltage rating and phase configuration indicated for its application.
 - 2. Display: LCD with characters not less than 0.25 inch high, indicating accumulative kilowatt-hours, current time and date, current demand and historic peak demand, and time and date of historic peak demand. Retain accumulated kilowatt-hour and historic peak demand in a nonvolatile memory, until reset.
- D. Data Transmission Cable: Transmit KY pulse data over Class 1 control-circuit conductors in raceway. Comply with Section 260523 "Control-Voltage Electrical Power Cables."
- E. Software: PC based, a product of meter manufacturer, suitable for calculation of utility cost allocation and building.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with equipment installation requirements in NECA 1.
- B. Install meters furnished by utility company. Install raceways and equipment according to utility company's written requirements. Provide empty conduits for metering leads and extend grounding connections as required by utility company.
- C. Install modular meter center according to NECA 400 switchboard installation requirements.

3.2 IDENTIFICATION

- A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Series Combination Warning Label: Self-adhesive type, with text as required by NFPA 70.
 - 2. Equipment Identification Labels: Adhesive film labels with clear protective overlay. For residential meters, provide an additional card holder suitable for printed, weather-resistant card with occupant's name.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Connect a load of known kilowatt rating, 1.5 kW minimum, to a circuit supplied by metered feeder.
 - 2. Turn off circuits supplied by metered feeder and secure them in off condition.
 - 3. Run test load continuously for eight hours minimum, or longer, to obtain a measurable meter indication. Use test-load placement and setting that ensures continuous, safe operation.
 - 4. Check and record meter reading at end of test period and compare with actual electricity used, based on test-load rating, duration of test, and sample measurements of supply voltage at test-load connection. Record test results.

- C. Electricity metering will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

END OF SECTION 262713

SECTION 262716 - ELECTRICAL CABINETS AND ENCLOSURES

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes hinged cover enclosures, cabinets, terminal blocks, and accessories.

1.3 REFERENCES

- A. National Electrical Manufacturers Association:
 - 1. NEMA 250 Enclosures for Electrical Equipment (1000 Volts Maximum).
 - 2. NEMA ICS 4 Industrial Control and Systems: Terminal Blocks.

1.4 SUBMITTALS

- A. Product Data: Submit manufacturer's standard data for enclosures, cabinets, and terminal blocks.
- B. Manufacturer's Installation Instructions: Submit application conditions and limitations of use stipulated by product testing agency specified under Regulatory Requirements. Include instructions for storage, handling, protection, examination, preparation, and installation of product.

1.5 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing Products specified in this section with minimum three years documented experience.

1.6 EXTRA MATERIALS

A. Furnish two of each key.

262716 - 1

PART 2 - PRODUCTS

2.1 HINGED COVER ENCLOSURES

- A. Manufacturers:
 - 1. Hoffman Electrical Products.
 - 2. Square D
 - 3. General Electric
- B. Construction: NEMA 250, Type 1 for indoors or 4X stainless steel enclosure for outdoor installations.
- C. Covers: Continuous hinge, held closed by flush latch operable by key.
- D. Furnish interior plywood panel for mounting terminal blocks and electrical components; finish with white enamel.
- E. Enclosure Finish: Manufacturer's standard enamel.

2.2 CABINETS

- A. Manufacturers:
 - 1. Hoffman Electrical Products.
 - 2. Square D.
 - 3. General Electric.
- B. Boxes: Galvanized steel with removable end walls.
- C. Backboard: Furnish 3/4 inch thick plywood backboard for mounting terminal blocks. Paint matte white.
- D. Fronts: Steel, flush or surface type with screw cover front, door with concealed hinge. Finish with gray baked enamel.
- E. Knockouts: as required for conduit entry.
- F. Furnish metal barriers to form separate compartments wiring of different systems and voltages.
- G. Furnish accessory feet for free-standing equipment.

262716 - 2

2.3 TERMINAL BLOCKS

- A. Terminal Blocks: NEMA ICS 4.
- B. Power Terminals: Unit construction type with closed back and tubular pressure screw connectors, rated 600 volts.
- C. Signal and Control Terminals: Modular construction type, suitable for channel mounting, with tubular pressure screw connectors, rated 300 volts.
- D. Furnish ground bus terminal block, with each connector bonded to enclosure.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install enclosures and boxes plumb. Anchor securely to wall and structural supports at each corner.
- B. Install cabinet fronts plumb.

3.2 CLEANING

- A. Clean electrical parts to remove conductive and harmful materials.
- B. Remove dirt and debris from enclosure.
- C. Clean finishes and touch up damage.

END OF SECTION 262716

262716 - 3

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Receptacles, receptacles with integral GFCI, and associated device plates.
- 2. Twist-locking receptacles.
- 3. Receptacles with integral surge-suppression units.
- 4. Isolated-ground receptacles.
- 5. Hospital-grade receptacles.
- 6. Weather-resistant receptacles.
- 7. Snap switches and wall-box dimmers.
- 8. Solid-state fan speed controls.
- 9. Wall-switch.
- 10. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- D. RFI: Radio-frequency interference.
- E. TVSS: Transient voltage surge suppressor.
- F. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordination:
 - 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.

WIRING DEVICES

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
- C. Samples: One for each type of device and wall plate specified, in each color specified.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packinglabel warnings and instruction manuals that include labeling conditions.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Service/Power Poles: One for every 10 but no fewer than one.
 - 2. Floor Service-Outlet Assemblies: One for every 10, but no fewer than one.
 - 3. Poke-Through, Fire-Rated Closure Plugs: One for every five floor service outlets installed, but no fewer than two.
 - 4. TVSS Receptacles: One for every 10 of each type installed, but no fewer than two of each type.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.
- C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 - 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 - 2. Devices shall comply with the requirements in this Section.

2.2 STRAIGHT-BLADE RECEPTACLES

- A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
- B. Hospital-Grade, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.
 - 1. Description: Single-piece, rivetless, nickel-plated, all-brass grounding system. Nickelplated, brass mounting strap.
- C. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 - 1. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.
- D. Tamper-Resistant Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.
 - 1. Description: Labeled shall comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.3 GFCI RECEPTACLES

- A. General Description:
 - 1. Straight blade, feed or non-feed-through type.
 - 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
 - 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
- B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
- C. Tamper-Resistant GFCI Convenience Receptacles, 125 V, 20 A:
- D. Hospital-Grade, Duplex GFCI Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.

2.4 TVSS RECEPTACLES

A. General Description: Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 1449, and FS W-C-596, with integral TVSS in line to ground, line to neutral, and neutral to ground.

- 1. TVSS Components: Multiple metal-oxide varistors; with a nominal clamp-level rating of 400 V and minimum single transient pulse energy dissipation of 240 J, according to IEEE C62.41.2 and IEEE C62.45.
- 2. Active TVSS Indication: Visual and audible, with light visible in face of device to indicate device is "active" or "no longer in service."
- B. Duplex TVSS Convenience Receptacles:
 - 1. Description: Straight blade, 125 V, 20 A; NEMA WD 6 Configuration 5-20R.
- C. Isolated-Ground, Duplex Convenience Receptacles:
 - 1. Description:
 - a. Straight blade, 125 V, 20 A; NEMA WD 6 Configuration 5-20R.
 - b. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.
- D. Hospital-Grade, Duplex Convenience Receptacles: Comply with UL 498 Supplement sd.
 - 1. Description: Straight blade, 125 V, 20 A; NEMA WD 6 Configuration 5-20R.
 - 2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. Comply with NFPA 70.
- E. Isolated-Ground, Hospital-Grade, Duplex Convenience Receptacles:
 - 1. Description:
 - a. Straight blade, 125 V, 20 A; NEMA WD 6 Configuration 5-20R.
 - b. Comply with UL 498 Supplement sd.
 - c. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.5 HAZARDOUS (CLASSIFIED) LOCATION RECEPTACLES

A. Wiring Devices for Hazardous (Classified) Locations: Comply with NEMA FB 11 and UL 1010.

2.6 TWIST-LOCKING RECEPTACLES

A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.

- B. Isolated-Ground, Single Convenience Receptacles, 125 V, 20 A:
 - 1. Description:
 - a. Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
 - b. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.7 TOGGLE SWITCHES

- A. Comply with NEMA WD 1, UL 20, and FS W-S-896.
- B. Switches, 120/277 V, 20 A:
- C. Pilot-Light Switches, 20 A:
 - 1. Description: Single pole, with neon-lighted handle, illuminated when switch is "off."
- D. Key-Operated Switches, 120/277 V, 20 A:
 - 1. Description: Single pole, with factory-supplied key in lieu of switch handle.
- E. Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches: 120/277 V, 20 A; for use with mechanically held lighting contactors.
- F. Key-Operated, Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches: 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.

2.8 DECORATOR-STYLE DEVICES

- A. Convenience Receptacles: Square face, 125 V, 15 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-15R, and UL 498.
- B. GFCI, Feed or Non-Feed-Through Type, Convenience Receptacles: Square face, 125 V, 15 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-15R, UL 498, and UL 943 Class A.
- C. Toggle Switches, Square Face, 120/277 V, 15 A: Comply with NEMA WD 1, UL 20, and FS W-S-896.
- D. Lighted Toggle Switches, Square Face, 120 V, 15 A: Comply with NEMA WD 1 and UL 20.
 - 1. Description: With neon-lighted handle, illuminated when switch is "off."

2.9 RESIDENTIAL DEVICES

- A. Residential-Grade 125 V, 15 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, and UL 498.
- B. Weather-Resistant Receptacles, 125 V, 15 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, and UL 498.
 - 1. Description: Labeled to comply with NFPA 70, "Receptacles, Cord Connectors, and Attachment Plugs (Caps)" Article, "Tamper-Resistant Receptacles in Dwelling Units" Section, when installed in wet and damp locations.

2.10 WALL-BOX DIMMERS

- A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
- B. Control: Continuously adjustable slider, toggle switch or rotary knob; with single-pole or three-way switching. Comply with UL 1472.
- C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 - 1. 600 W; dimmers shall require no derating when ganged with other devices. Illuminated when "off."
- D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.11 WALL PLATES

- A. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: Steel with white baked enamel, suitable for field painting, Smooth, high-impact thermoplastic, 0.035-inch thick, satin-finished, Type 302 stainless steel, 0.04-inch thick, brushed brass with factory polymer finish, 0.05-inch thick, anodized aluminum or 0.04-inch thick steel with chrome-plated finish.
 - 3. Material for Unfinished Spaces: Galvanized steel or Smooth, high-impact thermoplastic.
 - 4. Material for Damp Locations: Thermoplastic or Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weatherresistant, die-cast aluminum or thermoplastic with lockable cover.

2.12 FLOOR SERVICE FITTINGS

- A. Type: Modular, flush-type, flap-type or above-floor, dual-service units suitable for wiring method used.
- B. Compartments: Barrier separates power from voice and data communication cabling.
- C. Service Plate: Rectangular, Round, die-cast aluminum or solid brass with satin finish.
- D. Power Receptacle: NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.
- E. Voice and Data Communication Outlet: Blank cover with bushed cable opening, Two modular, keyed, color-coded, RJ-45 jacks for UTP cable complying with requirements in Section 271500 "Communications Horizontal Cabling."

2.13 POKE-THROUGH ASSEMBLIES

- A. Description:
 - 1. Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service-outlet assembly.
 - 2. Comply with UL 514 scrub water exclusion requirements.
 - 3. Service-Outlet Assembly: Pedestal type with services indicated complying with requirements in Section 271500 "Communications Horizontal Cabling."
 - 4. Size: Selected to fit nominal 3 inch or 4 inch cored holes in floor and matched to floor thickness.
 - 5. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
 - 6. Closure Plug: Arranged to close unused 3 inch or 4 inch cored openings and reestablish fire rating of floor.
 - 7. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of two, four-pair cables that comply with requirements in Section 271500 "Communications Horizontal Cabling."

2.14 PREFABRICATED MULTIOUTLET ASSEMBLIES

- A. Description:
 - 1. Two-piece surface metal raceway, with factory-wired multioutlet harness.
 - 2. Components shall be products from single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.
- B. Raceway Material: Metal, with manufacturer's standard finish.
- C. Multioutlet Harness:
 - 1. Receptacles: 15-A, 125-V, NEMA WD 6 Configuration 5-15R receptacles complying with NEMA WD 1, UL 498, and FS W-C-596.

- 2. Receptacle Spacing: 6 inches, 9 inches, 12 inches or 18 inches.
- 3. Wiring: No. 12 AWG solid, Type THHN copper, single circuit, two circuit, connecting, or alternating receptacles.

2.15 SERVICE POLES

A. Description:

- 1. Factory-assembled and -wired units to extend power and voice and data communication from distribution wiring concealed in ceiling to devices or outlets in pole near floor.
- 2. Poles: Nominal 2.5-inch- square cross section, with height adequate to extend from floor to at least 6 inches above ceiling, and with separate channels for power wiring and voice and data communication cabling.
- 3. Mounting: Ceiling trim flange with concealed bracing arranged for positive connection to ceiling supports; with pole foot and carpet pad attachment.
- 4. Finishes: Manufacturer's standard painted finish and trim combination.
- 5. Wiring: Sized for minimum of five No. 12 AWG power and ground conductors and a minimum of four, four-pair, Category 3 or Category 5 voice and data communication cables.
- 6. Power Receptacles: Two duplex, 20-A, straight-blade receptacles complying with requirements in this Section.
- Voice and Data Communication Outlets: Blank insert with bushed cable opening, Two RJ-45 jacks or Four RJ-45 jacks complying with requirements in Section 271500 "Communications Horizontal Cabling."

2.16 FINISHES

- A. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: Almond, Black, Brown, Gray, Ivory, White or As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Emergency Power System: Red.
 - 3. TVSS Devices: Blue.
 - 4. Isolated-Ground Receptacles: As specified above, with orange triangle on face.
- B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

- B. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 - 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
 - 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 - 8. Tighten unused terminal screws on the device.
 - 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.

- 2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Dimmers:
 - 1. Install dimmers within terms of their listing.
 - 2. Verify that dimmers used for fan speed control are listed for that application.
 - 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
 - 2. Test Instruments: Use instruments that comply with UL 1436.
 - 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- B. Tests for Convenience Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

- C. Test straight-blade convenience outlets in patient-care areas or hospital-grade convenience outlets for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz. (115 g).
- D. Wiring device will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION 262726

SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cartridge fuses rated 600-V ac and less for use in control circuits, enclosed switches, panelboards, switchboards, enclosed controllers and motor-control centers.
 - 2. Plug fuses rated 125-V ac and less for use in plug-fuse-type enclosed switches, fuseholders and panelboards.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 - 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 - a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 - b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 - 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 3. Current-limitation curves for fuses with current-limiting characteristics.
 - 4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse.
 - 5. Coordination charts and tables and related data.
 - 6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

- 1. Ambient temperature adjustment information.
- 2. Current-limitation curves for fuses with current-limiting characteristics.
- 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse.
- 4. Coordination charts and tables and related data.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA FU 1 for cartridge fuses.
- D. Comply with NFPA 70.
- E. Comply with UL 248-11 for plug fuses.

1.6 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.7 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 2 - PRODUCTS

2.1 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

2.2 PLUG FUSES

A. Characteristics: UL 248-11, nonrenewable plug fuses; 125-V ac.

2.3 PLUG-FUSE ADAPTERS

A. Characteristics: Adapters for using Type S, rejection-base plug fuses in Edison-base fuseholders or sockets; ampere ratings matching fuse ratings; irremovable once installed.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

- A. Cartridge Fuses:
 - 1. Service Entrance: Class L, fast acting, Class L, time delay, Class RK1, fast acting, Class RK1, time delay, Class J, fast acting or Class J, time delay.
 - 2. Feeders: Class L, fast acting, Class L, time delay, Class RK1, fast acting, Class RK1, time delay, Class J, fast acting or Class J, time delay.
 - 3. Motor Branch Circuits: Class RK1, time delay.
 - 4. Other Branch Circuits: Class RK1, time delay, Class J, fast acting or Class J, time delay.
- B. Plug Fuses:
 - 1. Motor Branch Circuits: Edison-base type, dual, Edison-base type, single, Type S, dual or Type S, single-element time delay.
 - 2. Other Branch Circuits: Edison-base type, single-element fast acting, Edison-base type, dual-element time delay, Edison-base type, single-element time delay, Type S, dual-element time delay or Type S, single-element time delay.

3.3 INSTALLATION

- A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
- B. Install plug-fuse adapters in fuseholders and sockets. Ensure that adapters are irremovable once installed.
- C. Install spare-fuse cabinet(s).

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Fusible switches.
- 2. Nonfusible switches.
- 3. Receptacle switches.
- 4. Shunt trip switches.
- 5. Molded-case circuit breakers (MCCBs).
- 6. Molded-case switches.
- 7. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

- 1. Enclosure types and details for types other than NEMA 250, Type 1.
- 2. Current and voltage ratings.
- 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
- 4. Include evidence of NRTL listing for series rating of installed devices.
- 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
- 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.
- B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- D. Manufacturer's field service report.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Fuse Pullers: Two for each size and type.

1.9 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Comply with NFPA 70.

1.10 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2010 m).
- B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

- 1. Notify Architect, Construction Manager or Owner no fewer than seven days in advance of proposed interruption of electric service.
- 2. Indicate method of providing temporary electric service.
- 3. Do not proceed with interruption of electric service without Architect's, Construction Manager's or Owner's written permission.
- 4. Comply with NFPA 70E.

1.11 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements.
- B. Basis-of-Design Product: Subject to compliance with requirements.
- C. Type GD, General Duty, Single Throw, 240-V ac, 800 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with cartridge or plug fuse interiors to accommodate specified or indicated fuses, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- D. Type HD, Heavy Duty, Single Throw, 240 or 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified or indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- E. Type HD, Heavy Duty, Six Pole, Single Throw, 240 or 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified or indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- F. Type HD, Heavy Duty, Double Throw, 240 or 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified or indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- G. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.

- 3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 5. Auxiliary Contact Kit: One or Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
- 6. Hookstick Handle: Allows use of a hookstick to operate the handle.
- 7. Lugs: Mechanical or Compression type, suitable for number, size, and conductor material.
- 8. Service-Rated Switches: Labeled for use as service equipment.
- 9. Accessory Control Power Voltage: Remote mounted and powered; 24-V ac, 120-V ac, 208-V ac, 240-V ac, 6-V dc, 12-V dc or 24-V dc.

2.2 NONFUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements.
- B. Basis-of-Design Product: Subject to compliance with requirements.
- C. Type GD, General Duty, Single Throw, 600 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- D. Type HD, Heavy Duty, Single Throw, 240 or 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- E. Type HD, Heavy Duty, Six Pole, Single Throw, 240 or 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- F. Type HD, Heavy Duty, Double Throw, 240 or 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- G. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 4. Auxiliary Contact Kit: One or Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 - 5. Hookstick Handle: Allows use of a hookstick to operate the handle.
 - 6. Lugs: Mechanical or Compression type, suitable for number, size, and conductor material.

7. Accessory Control Power Voltage: Remote mounted and powered; 24-V ac, 120-V ac, 208-V ac, 240-V ac, 6-V dc, 12-V dc, 24-V dc.

2.3 RECEPTACLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements.
- B. Basis-of-Design Product: Subject to compliance with requirements.
- C. Type HD, Heavy-Duty, Single-Throw Fusible Switch: 240 or 600-V ac, 30, 60 or 100 A; UL 98 and NEMA KS 1; horsepower rated, with clips or bolt pads to accommodate specified or indicated fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
- D. Type HD, Heavy-Duty, Single-Throw Nonfusible Switch: 240 or 600-V ac, 30, 60 or 100 A; UL 98 and NEMA KS 1; horsepower rated, lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
- E. Interlocking Linkage: Provided between the receptacle and switch mechanism to prevent inserting or removing plug while switch is in the on position, inserting any plug other than specified, and turning switch on if an incorrect plug is inserted or correct plug has not been fully inserted into the receptacle.
- F. Receptacle: Polarized, three-phase, four-wire receptacle (fourth wire connected to enclosure ground lug).

2.4 SHUNT TRIP SWITCHES

- A. Manufacturers: Subject to compliance with requirements.
- B. Basis-of-Design Product: Subject to compliance with requirements.
- C. General Requirements: Comply with ASME A17.1, UL 50, and UL 98, with 200-kA interrupting and short-circuit current rating when fitted with Class J fuses.
- D. Switches: Three-pole, horsepower rated, with integral shunt trip mechanism and Class J fuse block; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
- E. Control Circuit: 120-V ac; obtained from integral control power transformer or source, with primary and secondary fuses, with a control power transformer of enough capacity to operate shunt trip, connected pilot, and indicating and control devices.
- F. Accessories:
 - 1. Oiltight key switch for key-to-test function.
 - 2. Oiltight red, green, white or yellow ON pilot light.
 - 3. Isolated neutral lug; 100 or 200 percent rating.

- 4. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.
- 5. Form C alarm contacts that change state when switch is tripped.
- 6. Three-pole, double-throw, fire-safety and alarm relay; 120-V ac or 24-V dc coil voltage.
- 7. Three-pole, double-throw, fire-alarm voltage monitoring relay complying with NFPA 72.

2.5 MOLDED-CASE CIRCUIT BREAKERS

- A. Manufacturers: Subject to compliance with requirements.
- B. Basis-of-Design Product: Subject to compliance with requirements.
- C. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.
- D. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- E. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.
- F. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 - 1. Instantaneous trip.
 - 2. Long- and short-time pickup levels.
 - 3. Long- and short-time time adjustments.
 - 4. Ground-fault pickup level, time delay, and I^2t response.
- G. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.
- H. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.
- I. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
- J. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).
- K. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Mechanical or Compression type, suitable for number, size, trip ratings, and conductor material.

- 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
- 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered or remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
- 5. Communication Capability: Circuit-breaker-mounted, Universal-mounted, Integral, or Din-rail-mounted communication module with functions and features compatible with power monitoring and control system, specified in Section 260913 "Electrical Power Monitoring and Control."
- 6. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
- 7. Under voltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
- 8. Auxiliary Contacts: One SPDT switch or Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
- 9. Alarm Switch: One NO or NC contact that operates only when circuit breaker has tripped.
- 10. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
- 11. Zone-Selective Interlocking: Integral with electronic or ground-fault trip unit; for interlocking ground-fault protection function.
- 12. Electrical Operator: Provide remote control for on, off, and reset operations.
- 13. Accessory Control Power Voltage: Integrally mounted, self-powered or Remote mounted and powered; 24-V ac, 120-V ac, 208-V ac, 240-V ac, 6-V dc, 12-V dc, 24-V dc.

2.6 MOLDED-CASE SWITCHES

- A. Manufacturers: Subject to compliance with requirements.
- B. Basis-of-Design Product: Subject to compliance with requirements.
- C. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.
- D. Features and Accessories:
 - 1. Standard frame sizes and number of poles.
 - 2. Lugs: Mechanical or Compression type, suitable for number, size, trip ratings, and conductor material.
 - 3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 - 4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 - 5. Under voltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.

- 6. Auxiliary Contacts: One SPDT switch or Two SPDT switches with "a" and "b" contacts; "a" contacts mimic switch contacts, "b" contacts operate in reverse of switch contacts.
- 7. Alarm Switch: One NO or NC contact that operates only when switch has tripped.
- 8. Key Interlock Kit: Externally mounted to prohibit switch operation; key shall be removable only when switch is in off position.
- 9. Zone-Selective Interlocking: Integral with ground-fault shunt trip unit; for interlocking ground-fault protection function.
- 10. Electrical Operator: Provide remote control for on, off, and reset operations.
- 11. Accessory Control Power Voltage: Integrally mounted, self-powered or Remote mounted and powered; 24-V ac, 120-V ac, 208-V ac, 240-V ac, 6-V dc, 12-V dc or 24-V dc.

2.7 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Kitchen or Wash-Down Areas: NEMA 250, Type 4X stainless steel material.
 - 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 - 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 - 6. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7 or Type 9.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Comply with mounting and anchoring requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in fusible devices.

E. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- E. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

- 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 "Overcurrent Protective Device Coordination Study".

END OF SECTION 262816

SECTION 262826 - TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes transfer switches rated 600 V and less, including the following:
 - 1. Automatic transfer switches.
 - 2. Nonautomatic transfer switches.
- B. Related Sections include the following:
 - 1. Section 213113 "Electric-Drive, Centrifugal Fire Pumps" for automatic transfer switches for fire pumps.
 - 2. Section 213213 "Electric-Drive, Vertical-Turbine Fire Pumps" for automatic transfer switches for fire pumps.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, weights, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Dimensioned plans, elevations, sections, and details showing minimum clearances, conductor entry provisions, gutter space, installed features and devices, and material lists for each switch specified.
 - 1. Single-Line Diagram: Show connections between transfer switch, bypass/isolation switch, power sources, and load; and show interlocking provisions for each combined transfer switch and bypass/isolation switch.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer and testing agency.
- B. Manufacturer Seismic Qualification Certification: Submit certification that transfer switches accessories, and components will withstand seismic forces defined in Section 16074 "Vibration and Seismic Controls for Electrical Systems." Include the following:

262826 - 1 Page 5265 of 6215

- 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
- 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01782 "Operation and Maintenance Data," include the following:
 - 1. Features and operating sequences, both automatic and manual.
 - 2. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Maintain a service center capable of providing training, parts, and emergency maintenance repairs within a response period of less than eight hours from time of notification.
- B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
- C. Source Limitations: Obtain automatic transfer switches and nonautomatic transfer switches through one source from a single manufacturer.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

- E. Comply with NEMA ICS 1.
- F. Comply with NFPA 70.
- G. Comply with NFPA 99.
- H. Comply with NFPA 110.
- I. Comply with UL 1008 unless requirements of these Specifications are stricter.

1.7 PROJECT CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service:
 - 1. Notify Architect, Construction Manager or Owner] no fewer than two days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Architect's, Construction Manager's or Owner's written permission.

1.8 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Section 03300 "Cast-in-Place Concrete."

PART 2 - PRODUCTS

2.1 GENERAL TRANSFER-SWITCH PRODUCT REQUIREMENTS

- A. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.
- B. Tested Fault-Current Closing and Withstand Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.
 - 1. Where transfer switch includes internal fault-current protection, rating of switch and trip unit combination shall exceed indicated fault-current value at installation location.
- C. Solid-State Controls: Repetitive accuracy of all settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.

- D. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.41. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.
- E. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electricmotor-operated mechanism, mechanically and electrically interlocked in both directions.
- F. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.
 - 1. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are not acceptable.
 - 2. Switch Action: Double throw; mechanically held in both directions.
 - 3. Contacts: Silver composition or silver alloy for load-current switching. Conventional automatic transfer-switch units, rated 225 A and higher, shall have separate arcing contacts.
- G. Neutral Terminal: Solid and fully rated, unless otherwise indicated.
- H. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.2 AUTOMATIC TRANSFER SWITCHES

- A. Comply with Level 1 equipment according to NFPA 110.
- B. Switching Arrangement: Double-throw type, incapable of pauses or intermediate position stops during normal functioning, unless otherwise indicated.
- C. Manual Switch Operation: Under load, with door closed and with either or both sources energized. Transfer time is same as for electrical operation. Control circuit automatically disconnects from electrical operator during manual operation.
- D. Manual Switch Operation: Unloaded. Control circuit automatically disconnects from electrical operator during manual operation.
- E. Signal-Before-Transfer Contacts: A set of normally open/normally closed dry contacts operates in advance of retransfer to normal source. Interval is adjustable from 1 to 30 seconds.
- F. Digital Communication Interface: Matched to capability of remote annunciator or annunciator and control panel.
- G. Transfer Switches Based on Molded-Case-Switch Components: Comply with NEMA AB 1, UL 489, and UL 869A.
- H. Automatic Closed-Transition Transfer Switches: Include the following functions and characteristics:
 - 1. Fully automatic make-before-break operation.

TRANSFER SWITCHES

262826 - 4 Page 5268 of 6215

- 2. Load transfer without interruption, through momentary interconnection of both power sources not exceeding 100 ms.
- 3. Initiation of No-Interruption Transfer: Controlled by in-phase monitor and sensors confirming both sources are present and acceptable.
 - a. Initiation occurs without active control of generator.
 - b. Controls ensure that closed-transition load transfer closure occurs only when the 2 sources are within plus or minus 5 electrical degrees maximum, and plus or minus 5 percent maximum voltage difference.
- 4. Failure of power source serving load initiates automatic break-before-make transfer.
- I. In-Phase Monitor: Factory-wired, internal relay controls transfer so it occurs only when the two sources are synchronized in phase. Relay compares phase relationship and frequency difference between normal and emergency sources and initiates transfer when both sources are within 15 electrical degrees, and only if transfer can be completed within 60 electrical degrees. Transfer is initiated only if both sources are within 2 Hz of nominal frequency and 70 percent or more of nominal voltage.
- J. Motor Disconnect and Timing Relay: Controls designate starters so they disconnect motors before transfer and reconnect them selectively at an adjustable time interval after transfer. Control connection to motor starters is through wiring external to automatic transfer switch. Time delay for reconnecting individual motor loads is adjustable between 1 and 60 seconds, and settings are as indicated. Relay contacts handling motor-control circuit inrush and seal currents are rated for actual currents to be encountered.
- K. Programmed Neutral Switch Position: Switch operator has a programmed neutral position arranged to provide a midpoint between the two working switch positions, with an intentional, time-controlled pause at midpoint during transfer. Pause is adjustable from 0.5 to 30 seconds minimum and factory set for 0.5 second, unless otherwise indicated. Time delay occurs for both transfer directions. Pause is disabled unless both sources are live.
- L. Automatic Transfer-Switch Features:
 - 1. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage is adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.
 - 2. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second.
 - 3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.
 - 4. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.
 - 5. Test Switch: Simulate normal-source failure.
 - 6. Switch-Position Pilot Lights: Indicate source to which load is connected.

- 7. Source-Available Indicating Lights: Supervise sources via transfer-switch normal- and emergency-source sensing circuits.
 - a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."
 - b. Emergency Power Supervision: Red light with nameplate engraved "Emergency Source Available."
- 8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.
- 9. Transfer Override Switch: Overrides automatic retransfer control so automatic transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.
- 10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.
- 11. Engine Shutdown Contacts: Instantaneous; shall initiate shutdown sequence at remote engine-generator controls after retransfer of load to normal source.
- 12. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.
- 13. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods are adjustable from 10 to 30 minutes. Factory settings are for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:
 - a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
 - b. Push-button programming control with digital display of settings.
 - c. Integral battery operation of time switch when normal control power is not available.

2.3 NONAUTOMATIC TRANSFER SWITCHES

- A. Operation: Electrically actuated by push buttons designated "Normal Source" and "Alternate Source." Switch shall be capable of transferring load in either direction with either or both sources energized.
- B. Operation: Electrically actuated by push buttons designated "Normal Source" and "Alternate Source." In addition, removable manual handle provides quick-make, quick-break manual-switching action. Switch shall be capable of electrically or manually transferring load in either direction with either or both sources energized. Control circuit disconnects from electrical operator during manual operation.
- C. Double-Throw Switching Arrangement: Incapable of pauses or intermediate position stops during switching sequence.
- D. Nonautomatic Transfer-Switch Accessories:

- 1. Pilot Lights: Indicate source to which load is connected.
- 2. Source-Available Indicating Lights: Supervise sources via transfer-switch normal- and alternate-source sensing circuits.
 - a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."
 - b. Emergency Power Supervision: Red light with nameplate engraved "Alternate Source Available."
- 3. Unassigned Auxiliary Contacts: One set of normally closed contacts for each switch position, rated 10 A at 240-V ac.

2.4 SOURCE QUALITY CONTROL

A. Factory test and inspect components, assembled switches, and associated equipment. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Design each fastener and support to carry load indicated by seismic requirements and according to seismic-restraint details. See Section 16074 "Vibration and Seismic Controls for Electrical Systems."
- B. Floor-Mounting Switch: Anchor to floor by bolting.
 - 1. Concrete Bases: 4 inches high, reinforced, with chamfered edges. Extend base no more than 4 inches in all directions beyond the maximum dimensions of switch, unless otherwise indicated or unless required for seismic support. Construct concrete bases according to Section 16073 "Hangers and Supports for Electrical Systems."
- C. Annunciator and Control Panel Mounting: Flush in wall, unless otherwise indicated.
- D. Identify components according to Section 16075 "Electrical Identification."
- E. Set field-adjustable intervals and delays, relays, and engine exerciser clock.

3.2 CONNECTIONS

A. Wiring to Remote Components: Match type and number of cables and conductors to control and communication requirements of transfer switches as recommended by manufacturer. Increase raceway sizes at no additional cost to Owner if necessary to accommodate required wiring.

262826 - 7 Page 5271 of 6215

- B. Ground equipment according to Section 16060 "Grounding and Bonding."
- C. Connect wiring according to Section 16120 "Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified independent testing and inspecting agency to perform tests and inspections and prepare test reports.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- C. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installation, including connections, and to assist in testing.
 - 2. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.
 - 3. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 4. Measure insulation resistance phase-to-phase and phase-to-ground with insulationresistance tester. Include external annunciation and control circuits. Use test voltages and procedure recommended by manufacturer. Comply with manufacturer's specified minimum resistance.
 - a. Check for electrical continuity of circuits and for short circuits.
 - b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 - c. Verify that manual transfer warnings are properly placed.
 - d. Perform manual transfer operation.
 - 5. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.
 - a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 - b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 - c. Verify time-delay settings.
 - d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 - e. Test bypass/isolation unit functional modes and related automatic transfer-switch operations.
 - f. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for 1 pole deviating by more than 50 percent from other poles.

- g. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cooldown and shutdown.
- 6. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
 - a. Verify grounding connections and locations and ratings of sensors.
- D. Testing Agency's Tests and Inspections:
 - 1. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 3. Measure insulation resistance phase-to-phase and phase-to-ground with insulationresistance tester. Include external annunciation and control circuits. Use test voltages and procedure recommended by manufacturer. Comply with manufacturer's specified minimum resistance.
 - a. Check for electrical continuity of circuits and for short circuits.
 - b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 - c. Verify that manual transfer warnings are properly placed.
 - d. Perform manual transfer operation.
 - 4. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.
 - a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 - b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 - c. Verify time-delay settings.
 - d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 - e. Test bypass/isolation unit functional modes and related automatic transfer-switch operations.
 - f. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for 1 pole deviating by more than 50 percent from other poles.
 - g. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cooldown and shutdown.
 - 5. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
 - a. Verify grounding connections and locations and ratings of sensors.

- E. Coordinate tests with tests of generator and run them concurrently.
- F. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- G. Remove and replace malfunctioning units and retest as specified above.
- H. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner.
 - 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.
 - 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 3. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.4 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment as specified below. Refer to Section 01820 "Demonstration and Training."
- B. Coordinate this training with that for generator equipment.

END OF SECTION 262826

SECTION 262913 - ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following enclosed controllers rated 600 V and less:
 - 1. Full-voltage manual.
 - 2. Full-voltage magnetic.
- B. Related Section:
 - 1. Section 262923 "Variable-Frequency Motor Controllers" for general-purpose, ac, adjustable-frequency, pulse-width-modulated controllers for use on variable torque loads in ranges up to 200 hp.

1.3 DEFINITIONS

- A. CPT: Control power transformer.
- B. MCCB: Molded-case circuit breaker.
- C. MCP: Motor circuit protector.
- D. N.C.: Normally closed.
- E. N.O.: Normally open.
- F. OCPD: Overcurrent protective device.
- G. SCR: Silicon-controlled rectifier.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed controllers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified"

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed controller. Include manufacturer's technical data on features, performance, electrical characteristics, ratings, and enclosure types and finishes.
- B. Shop Drawings: For each enclosed controller. Include dimensioned plans, elevations, sections, details, and required clearances and service spaces around controller enclosures.
 - 1. Show tabulations of the following:
 - a. Each installed unit's type and details.
 - b. Factory-installed devices.
 - c. Nameplate legends.
 - d. Short-circuit current rating of integrated unit.
 - e. Listed and labeled for integrated short-circuit current (withstand) rating of OCPDs in combination controllers by an NRTL acceptable to authorities having jurisdiction.
 - f. Features, characteristics, ratings, and factory settings of individual OCPDs in combination controllers.
 - 2. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Certificates: For enclosed controllers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.
- D. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.
- E. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor running overload protection suit actual motors to be protected.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Routine maintenance requirements for enclosed controllers and installed components.
 - 2. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
 - 3. Manufacturer's written instructions for setting field-adjustable overload relays.
 - 4. Manufacturer's written instructions for testing, adjusting, and reprogramming reduced-voltage solid-state controllers.

1.8 MATERIALS MAINTENANCE SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Indicating Lights: Two of each type and color installed.
 - 4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
 - 5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.9 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NFPA 70.
- D. IEEE Compliance: Fabricate and test enclosed controllers according to IEEE 344 to withstand seismic forces."

1.10 COORDINATION

- A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- C. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

PART 2 - PRODUCTS

2.1 FULL-VOLTAGE CONTROLLERS

- A. General Requirements for Full-Voltage Controllers: Comply with NEMA ICS 2, general purpose, Class A.
- B. Motor-Starting Switches: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.
 - 1. Configuration: Nonreversing or Reversing.
- C. Fractional Horsepower Manual Controllers: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.
 - 1. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button.
- D. Integral Horsepower Manual Controllers: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.
 - 1. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters and sensors in each phase, matched to nameplate full-load current of actual protected motor and having appropriate adjustment for duty cycle; external reset push button.
- E. Magnetic Controllers: Full voltage, across the line, electrically held.
 - 1. Contactor Coils: Pressure-encapsulated type[with coil transient suppressors.
 - a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 - 2. Power Contacts: Totally enclosed, double-break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.

- 3. Control Circuits: 24 or 120 V ac; obtained from integral CPT, with primary and secondary fuses, with CPT or control power source of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 - a. CPT Spare Capacity: 50, 100 or 200 VA.
- F. Combination Magnetic Controller: Factory-assembled combination of magnetic controller, OCPD, and disconnecting means.
 - 1. Fusible Disconnecting Means:
 - a. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate Class J or Class R fuses.
 - b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
 - 2. Auxiliary Contacts: N.O./N.C., arranged to activate before switch blades open.
 - 3. Nonfusible Disconnecting Means:
 - a. NEMA KS 1, heavy-duty, horsepower-rated, nonfusible switch.
 - b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
 - c. Auxiliary Contacts: N.O./N.C., arranged to activate before switch blades open.
 - 4. MCP Disconnecting Means:
 - a. UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents, instantaneous-only circuit breaker with front-mounted, field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
 - b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
 - c. Auxiliary contacts "a" and "b" arranged to activate with MCP handle.
 - d. N.C. or N.O. alarm contact that operates only when MCP has tripped.
 - e. Current-limiting module to increase controller short-circuit current (withstand) rating to 100 kA.
 - 5. MCCB Disconnecting Means:
 - a. UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents; thermal-magnetic MCCB, with inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits.
 - b. Front-mounted, adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

- c. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
- d. Auxiliary contacts "a" and "b" arranged to activate with MCCB handle.
- e. N.C. or N.O. alarm contact that operates only when MCCB has tripped.

2.2 ENCLOSURES

A. Enclosed Controllers: NEMA ICS 6, to comply with environmental conditions at installed location.

2.3 ACCESSORIES

- A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 - 1. Push Buttons, Pilot Lights, and Selector Switches: Heavy or Standard-duty, oiltight type.
- B. N.C. or N.O. auxiliary contact(s).
- C. Control Relays: Auxiliary and adjustable pneumatic or solid-state time-delay relays.
- D. Phase-Failure, Phase-Reversal, and Undervoltage and Overvoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connections. Provide adjustable undervoltage, overvoltage, and time-delay settings.
- E. Enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.
- F. Sun shields installed on fronts, sides, and tops of enclosures installed outdoors and subject to direct and extended sun exposure.
- G. Cover gaskets for Type 1 enclosures.
- H. Terminals for connecting power factor correction capacitors to the line side of overload relays.
- I. Spare control wiring terminal blocks, quantity as indicated; wired.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and surfaces to receive enclosed controllers, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

- B. Examine enclosed controllers before installation. Reject enclosed controllers that are wet, moisture damaged, or mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Wall-Mounted Controllers: Install enclosed controllers on walls with tops at uniform height unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."
- B. Floor-Mounted Controllers: Install enclosed controllers on 4-inch nominal-thickness concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete." or Section 033053 "Miscellaneous Cast-in-Place Concrete."
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
- C. Seismic Bracing: Comply with requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- D. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- E. Install fuses in each fusible-switch enclosed controller.
- F. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."
- G. Install heaters in thermal overload relays. Select heaters based on actual nameplate full-load amperes after motors have been installed.
- H. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.
- I. Install power factor correction capacitors. Connect to the line side of overload relays. If connected to the load side of overload relays, adjust overload heater sizes to accommodate the reduced motor full-load currents.
- J. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Identify enclosed controllers, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.

3.4 CONTROL WIRING INSTALLATION

- A. Install wiring between enclosed controllers and remote devices and facility's central control system. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect selector switches and other automatic-control selection devices where applicable.
 - 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switch is in manual-control position.
 - 2. Connect selector switches with enclosed-controller circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.

E. Tests and Inspections:

- 1. Inspect controllers, wiring, components, connections, and equipment installation.
- 2. Test insulation resistance for each enclosed-controller element, component, connecting motor supply, feeder, and control circuits.
- 3. Test continuity of each circuit.
- 4. Verify that voltages at controller locations are within plus or minus 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Architect, Construction Manager or Owner before starting the motor(s).
- 5. Test each motor for proper phase rotation.
- 6. Perform each electrical test and visual and mechanical inspection stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 8. Perform the following infrared (thermographic) scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each multi-pole enclosed controller. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each multi-pole enclosed controller 11 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- F. Enclosed controllers will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports including a certified report that identifies enclosed controllers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

- A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- B. Adjust overload-relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.

- C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable instantaneous trip elements. Initially adjust to six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Architect, Construction Manager or Owner before increasing settings.
- D. Set the taps on reduced-voltage autotransformer controllers at 65 percent.
- E. Set field-adjustable switches and program microprocessors for required start and stop sequences in reduced-voltage solid-state controllers.
- F. Set field-adjustable circuit-breaker trip ranges.

3.7 **PROTECTION**

- A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until enclosed controllers are ready to be energized and placed into service.
- B. Replace controllers whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers, and to use and reprogram microprocessor-based, reduced-voltage solid-state controllers.

END OF SECTION 262913

SECTION 262923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes separately enclosed, pre-assembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.
- B. Related Sections:
 - 1. Section 262419 "Motor-Control Centers" for VFCs installed in motor-control centers.

1.3 DEFINITIONS

- A. BAS: Building automation system.
- B. CE: Conformite Europeene (European Compliance).
- C. CPT: Control power transformer.
- D. EMI: Electromagnetic interference.
- E. IGBT: Insulated-gate bipolar transistor.
- F. LAN: Local area network.
- G. LED: Light-emitting diode.
- H. MCP: Motor-circuit protector.
- I. NC: Normally closed.
- J. NO: Normally open.
- K. OCPD: Overcurrent protective device.
- L. PCC: Point of common coupling.
- M. PID: Control action, proportional plus integral plus derivative.

- N. PWM: Pulse-width modulated.
- O. RFI: Radio-frequency interference.
- P. TDD: Total demand (harmonic current) distortion.
- Q. THD(V): Total harmonic voltage demand.
- R. VFC: Variable-frequency motor controller.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: VFCs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 ACTION SUBMITTALS

- A. Product Data: For each type and rating of VFC indicated. Include features, performance, electrical ratings, operating characteristics, shipping and operating weights, and furnished specialties and accessories.
- B. LEED Submittals:
 - 1. Product Data for Credit EA 5: For continuous metering equipment for energy consumption.
- C. Shop Drawings: For each VFC indicated. Include dimensioned plans, elevations, and sections; and conduit entry locations and sizes, mounting arrangements, and details, including required clearances and service space around equipment.
 - 1. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Each installed unit's type and details.
 - b. Factory-installed devices.
 - c. Enclosure types and details.
 - d. Nameplate legends.
 - e. Short-circuit current (withstand) rating of enclosed unit.
 - f. Features, characteristics, ratings, and factory settings of each VFC and installed devices.
 - g. Specified modifications.

2. Schematic and Connection Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around VFCs. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.
- B. Qualification Data: For qualified testing agency.
- C. Seismic Qualification Certificates: For VFCs, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based, and their installation requirements.
- D. Product Certificates: For each VFC, from manufacturer.
- E. Harmonic Analysis Study and Report: Comply with IEEE 399 and NETA Acceptance Testing Specification; identify the effects of nonlinear loads and their associated harmonic contributions on the voltages and currents throughout the electrical system. Analyze designated operating scenarios, including recommendations for VFC input filtering to limit TDD and THD(V) at each VFC to specified levels.
- F. Source quality-control reports.
- G. Field quality-control reports.
- H. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate, full-load currents.
- I. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting thermal-magnetic circuit breaker and MCP trip settings.

- 2. Manufacturer's written instructions for setting field-adjustable overload relays.
- 3. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
- 4. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Indicating Lights: Two of each type and color installed.
 - 4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
 - 5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.9 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NFPA 70.
- D. IEEE Compliance: Fabricate and test VFC according to IEEE 344 to withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

1.10 DELIVERY, STORAGE, AND HANDLING

A. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside controllers and connect factory-installed space heaters to temporary electrical service.

1.11 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation, capable of driving full load without derating, under the following conditions unless otherwise indicated:

- 1. Ambient Temperature: Not less than 14 deg F and not exceeding 104 deg F.
- 2. Ambient Storage Temperature: Not less than minus 4 deg F and not exceeding 140 deg F
- 3. Humidity: Less than 95 percent (noncondensing).
- 4. Altitude: Not exceeding 3300 feet.
- B. Interruption of Existing Electrical Systems: Do not interrupt electrical systems in facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Architect, Construction Manager or Owner] no fewer than two days in advance of proposed interruption of electrical systems.
 - 2. Indicate method of providing temporary electrical service.
 - 3. Do not proceed with interruption of electrical systems without Architect's, Construction Manager's or Owner's written permission.
 - 4. Comply with NFPA 70E.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items.

1.12 COORDINATION

- A. Coordinate features of motors, load characteristics, installed units, and accessory devices to be compatible with the following:
 - 1. Torque, speed, and horsepower requirements of the load.
 - 2. Ratings and characteristics of supply circuit and required control sequence.
 - 3. Ambient and environmental conditions of installation location.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases.
- C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.13 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

- A. General Requirements for VFCs: Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508C.
- B. Application: Variable torque.
- C. VFC Description: Variable-frequency power converter (rectifier, dc bus, and IGBT, PWM inverter) factory packaged in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.
 - 1. Units suitable for operation of NEMA MG 1, Design A and Design B motors as defined by NEMA MG 1, Section IV, Part 30, "Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both."
 - 2. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
 - 3. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.
- D. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.
- E. Output Rating: Three-phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.
- F. Unit Operating Requirements:
 - 1. Input AC Voltage Tolerance: Plus 10 and minus 15 percent of VFC input voltage rating.
 - 2. Input AC Voltage Unbalance: Not exceeding 5 percent.
 - 3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
 - 4. Minimum Efficiency: 96 percent at 60 Hz, full load.
 - 5. Minimum Displacement Primary-Side Power Factor: 96 percent under any load or speed condition.
 - 6. Minimum Short-Circuit Current (Withstand) Rating: 22 kA.
 - 7. Ambient Temperature Rating: Not less than 14 deg F and not exceeding 104 deg F.
 - 8. Ambient Storage Temperature Rating: Not less than minus 4 deg F and not exceeding 140 deg F
 - 9. Humidity Rating: Less than 95 percent (noncondensing).
 - 10. Altitude Rating: Not exceeding 3300 feet.
 - 11. Vibration Withstand: Comply with IEC 60068-2-6.

- 12. Overload Capability: 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
- 13. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
- 14. Speed Regulation: Plus or minus 10 percent.
- 15. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
- 16. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.
- G. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.
- H. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.
 - 1. Signal: Electrical.
 - 2. Signal: Pneumatic.
- I. Internal Adjustability Capabilities:
 - 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 - 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 - 3. Acceleration: 0.1 to 999.9 seconds.
 - 4. Deceleration: 0.1 to 999.9 seconds.
 - 5. Current Limit: 30 to minimum of 150 percent of maximum rating.
- J. Self-Protection and Reliability Features:
 - 1. Input transient protection by means of surge suppressors to provide three-phase protection against damage from supply voltage surges 10 percent or more above nominal line voltage.
 - 2. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
 - 3. Under- and overvoltage trips.
 - 4. Inverter overcurrent trips.
 - 5. VFC and Motor Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor overload alarm and trip; settings selectable via the keypad; NRTL approved.
 - 6. Critical frequency rejection, with three selectable, adjustable deadbands.
 - 7. Instantaneous line-to-line and line-to-ground overcurrent trips.
 - 8. Loss-of-phase protection.
 - 9. Reverse-phase protection.
 - 10. Short-circuit protection.
 - 11. Motor overtemperature fault.
- K. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.
- L. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.

- M. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.
- N. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.
- O. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

2.2 CONTROLS AND INDICATION

- A. Status Lights: Door-mounted LED indicators displaying the following conditions:
 - 1. Power on.
 - 2. Run.
 - 3. Overvoltage.
 - 4. Line fault.
 - 5. Overcurrent.
 - 6. External fault.
- B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.
 - 1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
 - 2. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.
 - a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.
- C. Historical Logging Information and Displays:
 - 1. Real-time clock with current time and date.
 - 2. Running log of total power versus time.
 - 3. Total run time.
 - 4. Fault log, maintaining last four faults with time and date stamp for each.
- D. Indicating Devices: Digital display mounted flush in VFC door and connected to display VFC parameters including, but not limited to:
 - 1. Output frequency (Hz).
 - 2. Motor speed (rpm).
 - 3. Motor status (running, stop, fault).

- 4. Motor current (amperes).
- 5. Motor torque (percent).
- 6. Fault or alarming status (code).
- 7. PID feedback signal (percent).
- 8. DC-link voltage (V dc).
- 9. Set point frequency (Hz).
- 10. Motor output voltage (V ac).
- E. Control Signal Interfaces:
 - 1. Electric Input Signal Interface:
 - a. A minimum of two programmable analog inputs: 0- to 10-V dc or 4- to 20-mA dc.
 - b. A minimum of six multifunction programmable digital inputs.
 - 2. Pneumatic Input Signal Interface: 3 to 15 psig.
 - 3. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the BAS or other control systems:
 - a. 0- to 10-V dc.
 - b. 4- to 20-mA dc.
 - c. Potentiometer using up/down digital inputs.
 - d. Fixed frequencies using digital inputs.
 - 4. Output Signal Interface: A minimum of one programmable analog output signal(s) 0- to 10-V dc or 4- to 20-mA dc which can be configured for any of the following:
 - a. Output frequency (Hz).
 - b. Output current (load).
 - c. DC-link voltage (V dc).
 - d. Motor torque (percent).
 - e. Motor speed (rpm).
 - f. Set point frequency (Hz).
 - 5. Remote Indication Interface: A minimum of two programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 - a. Motor running.
 - b. Set point speed reached.
 - c. Fault and warning indication (overtemperature or overcurrent).
 - d. PID high- or low-speed limits reached.
- F. PID Control Interface: Provides closed-loop set point, differential feedback control in response to dual feedback signals. Allows for closed-loop control of fans and pumps for pressure, flow, or temperature regulation.
 - 1. Number of Loops: One or Two.

- G. BAS Interface: Factory-installed hardware and software to enable the BAS to monitor, control, and display VFC status and alarms and energy usage. Allows VFC to be used with an external system within a multidrop LAN configuration; settings retained within VFC's nonvolatile memory.
 - 1. Network Communications Ports: Ethernet and RS-422/485.
 - 2. Embedded BAS Protocols for Network Communications: ASHRAE 135 BACnet, Echelon LonWorks, Johnson Metasys N2, Modbus/Memobus or Siemens System 600 APOGEE; protocols accessible via the communications ports.

2.3 LINE CONDITIONING AND FILTERING

- A. Input Line Conditioning: Based on the harmonic analysis study and report, provide input filtering, as required, to limit TDD at input terminals of VFCs to less than 5 percent and THD(V) to 3 percent.
- B. Input Line Conditioning: Based on the harmonic analysis study and report, provide input filtering, as required, to limit TDD and THD(V) at the defined PCC per IEEE 519.
- C. EMI/RFI Filtering: CE marked; certify compliance with IEC 61800-3 for Category C2.

2.4 BYPASS SYSTEMS

- A. Bypass Operation: Safely transfers motor between power converter output and bypass circuit, manually, automatically, or both. Selector switches set modes and indicator lights indicate mode selected. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.
- B. Bypass Mode: Manual operation only; requires local operator selection at VFC. Transfer between power converter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
- C. Bypass Mode: Field-selectable automatic or manual, allows local and remote transfer between power converter and bypass contactor and retransfer, either via manual operator interface or automatic control system feedback.
- D. Bypass Controller: Two-contactor-style bypass allows motor operation via the power converter or the bypass controller; with input isolating switch and barrier arranged to isolate the power converter and permit safe troubleshooting and testing, both energized and de-energized, while motor is operating in bypass mode].
 - 1. Bypass Contactor: Load-break, NEMA-rated contactor.
 - 2. Output Isolating Contactor: Non-load-break, NEMA-rated contactor.
 - 3. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.

- E. Bypass Controller: Three-contactor-style bypass allows motor operation via the power converter or the bypass controller; with input isolating switch and barrier arranged to isolate the power converter input and output and permit safe testing and troubleshooting of the power converter, both energized and de-energized, while motor is operating in bypass mode.
 - 1. Bypass Contactor: Load-break, NEMA-rated contactor.
 - 2. Input and Output Isolating Contactors: Non-load-break, NEMA-rated contactors.
 - 3. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.
- F. Bypass Contactor Configuration: Full-voltage (across-the-line) or Reduced-voltage (autotransformer) type.
 - 1. NORMAL/BYPASS selector switch.
 - 2. HAND/OFF/AUTO selector switch.
 - 3. NORMAL/TEST Selector Switch: Allows testing and adjusting of VFC while the motor is running in the bypass mode.
 - 4. Contactor Coils: Pressure-encapsulated type with coil transient suppressors.
 - a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 - b. Power Contacts: Totally enclosed, double break, and silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
 - 5. Control Circuits: 120V ac; obtained from integral CPT, with primary and secondary fuses, with CPT or control power source of sufficient capacity to operate all integral devices and remotely located pilot, indicating, and control devices.
 - a. CPT Spare Capacity: 50, 100 or 200 VA.
 - 6. Overload Relays: NEMA ICS 2.
 - a. Melting-Alloy Overload Relays:
 - 1) Inverse-time-current characteristic.
 - 2) Class 10, Class 20 or Class 30 tripping characteristic.
 - 3) Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - b. Bimetallic Overload Relays:
 - 1) Inverse-time-current characteristic.
 - 2) Class 10, Class 20, Class 30 tripping characteristic.
 - 3) Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - 4) Ambient compensated.
 - 5) Automatic resetting.

- c. Solid-State Overload Relays:
 - 1) Switch or dial selectable for motor-running overload protection.
 - 2) Sensors in each phase.
 - 3) Class 10, Class 20 or Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 - 4) Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
 - 5) Analog communication module.
- d. NC or NO isolated overload alarm contact.
- e. External overload reset push button.

2.5 ENCLOSURES

- A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.
 - 1. Dry and Clean Indoor Locations: Type 1.
 - 2. Outdoor Locations: Type 3R or Type 4X.
 - 3. Kitchen or Wash-Down Areas: Type 4X.
 - 4. Other Wet or Damp Indoor Locations: Type 4.
 - 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.
- B. Plenum Rating: UL 1995; NRTL certification label on enclosure, clearly identifying VFC as "Plenum Rated."

2.6 ACCESSORIES

- A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.
- B. Bypass contactor auxiliary contact(s).
- C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.
- D. Phase-Failure, Phase-Reversal, and Undervoltage and Overvoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connections. Provide adjustable undervoltage, overvoltage, and time-delay settings.
 - 1. Current Transformers: Continuous current rating, basic impulse insulating level (BIL) rating, burden, and accuracy class suitable for connected circuitry. Comply with IEEE C57.13.

- E. Supplemental Digital Meters:
 - 1. Elapsed-time meter.
 - 2. Kilowatt meter.
 - 3. Kilowatt-hour meter.
- F. Breather and drain assemblies, to maintain interior pressure and release condensation in NEMA 250, Type 4, Type 4X or Type 12 enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.
- G. Space heaters, with NC auxiliary contacts, to mitigate condensation in NEMA 250, Type 3R, Type 4X or Type 12 enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.

2.7 SOURCE QUALITY CONTROL

- A. Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.
 - 1. Test each VFC while connected to a motor that is comparable to that for which the VFC is rated.
 - 2. Verification of Performance: Rate VFCs according to operation of functions and features specified.
- B. VFCs will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance.
- B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 HARMONIC ANALYSIS STUDY

- A. Perform a harmonic analysis study to identify the effects of nonlinear loads and their associated harmonic contributions on the voltages and currents throughout the electrical system. Analyze possible operating scenarios, including recommendations for VFC input filtering to limit TDD and THD(V) at the defined PCC to specified levels.
- B. Prepare a harmonic analysis study and report complying with IEEE 399 and NETA Acceptance Testing Specification.

3.3 INSTALLATION

- A. Coordinate layout and installation of VFCs with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Wall-Mounting Controllers: Install VFCs on walls with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished floor unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."
- C. Floor-Mounting Controllers: Install VFCs on 4-inch nominal thickness concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete." or Section 033053 "Miscellaneous Cast-in-Place Concrete."
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
- D. Roof-Mounting Controllers: Install VFC on roofs with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished roof surface unless otherwise indicated, and by bolting units to curbs or mounting on freestanding, lightweight, structural-steel channels bolted to curbs. Seal roof penetrations after raceways are installed.
 - 1. Curbs and roof penetrations are specified in Section 077200 "Roof Accessories."
 - 2. Structural-steel channels are specified in Section 260529 "Hangers and Supports for Electrical Systems."
- E. Seismic Bracing: Comply with requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

- F. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- G. Install fuses in each fusible-switch VFC.
- H. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."
- I. Install heaters in thermal-overload relays. Select heaters based on actual nameplate full-load amperes after motors have been installed.
- J. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.
- K. Comply with NECA 1.

3.4 IDENTIFICATION

- A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each VFC with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.
- B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.5 CONTROL WIRING INSTALLATION

- A. Install wiring between VFCs and remote devices. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect selector switches and other automatic control devices where applicable.
 - 1. Connect selector switches to bypass only those manual- and automatic control devices that have no safety functions when switches are in manual-control position.
 - 2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- E. Tests and Inspections:
 - 1. Inspect VFC, wiring, components, connections, and equipment installation.
 - 2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
 - 3. Test continuity of each circuit.
 - 4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Architect, Construction Manager or Owner before starting the motor(s).
 - 5. Test each motor for proper phase rotation.
 - 6. Perform each electrical test and visual and mechanical inspection stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 8. Perform the following infrared (thermographic) scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each VFC. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each VFC 11 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

- F. VFCs will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.7 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.8 ADJUSTING

- A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
- B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to six times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Architect, Construction Manager or Owner before increasing settings.
- D. Set the taps on reduced-voltage autotransformer controllers.
- E. Set field-adjustable circuit-breaker trip ranges.
- F. Set field-adjustable pressure switches.

3.9 **PROTECTION**

- A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.
- B. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.10 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION 262923

SECTION 263100 - PHOTOVOLTAIC ENERGY EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. PV laminates (cells laminated into rigid sheets, with connecting cables).
 - 2. PV modules (laminates in mounting frames).
 - 3. Charge controllers.
 - 4. Inverters.
 - 5. Mounting structures.

1.3 DEFINITIONS

- A. CEC: California Energy Commission.
- B. ETFE: Ethylene tetrafluoroethylene.
- C. FEP: Fluorinated ethylene propylene.
- D. IP Code: Required ingress protection to comply with IEC 60529.
- E. MPPT: Maximum power point tracking.
- F. PTC: USA standard conditions for PV.
- G. PV: Photovoltaic.
- H. STC: Standard Test Conditions defined in IEC 61215.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for PV panels.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

- B. Shop Drawings: For PV modules.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Detail fabrication and assembly.
 - 4. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Sample Warranty: For manufacturer's special materials and workmanship warranty and minimum power output warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For PV modules to include in operation and maintenance manuals.

1.7 WARRANTY

- A. Manufacturer's Special Materials and Workmanship Warranty: Manufacturer agrees to repair or replace components of PV modules that fail in materials or workmanship within specified warranty period.
 - 1. Manufacturer's materials and workmanship warranties include, but are not limited to, the following:
 - a. Faulty operation of PV modules.
 - 2. Warranty Period: Two or Five years from date of Substantial Completion.
- B. Manufacturer's Special Minimum Power Output Warranty: Manufacturer agrees to repair or replace components of PV modules that fail to exhibit the minimum power output within specified warranty period. Special warranty, applying to modules only, applies to materials only, on a prorated basis, for period specified.
 - 1. Manufacturer's minimum power output warranties include, but are not limited to, the following warranty periods, from date of Substantial Completion:
 - a. Specified minimum power output to 80 percent or more, for a period of 25 years.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

A. Manufacturers: Comply with Requirements.

2.2 PERFORMANCE REQUIREMENTS

- A. NRTL (Nationally Recognized Testing Laboratory) Listing: Entire assembly shall be listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for electrical and fire safety, Class A or Class C, according to UL 1703.
- B. FM approved for NFPA 70, Class 1, Division 2, Group C and Group D hazardous locations.

2.3 SYSTEM DESCRIPTION

- A. Grid-Tied PV System:
 - 1. Connected via a utility meter to the electrical utility.
 - 2. An array of six modules to generate a total nominal 1000 rated W or as required.
 - 3. System Components:
 - a. Cell materials.
 - b. PV modules.
 - c. Array frame.
 - d. Charge controller.
 - e. Inverter.
 - f. Overcurrent protection/combiner box.
 - g. Mounting structure.
 - h. Utility meter.
- B. Battery-Storage PV System:
 - 1. Connected to a battery bank to provide electricity to Project.
 - 2. An array of six modules to generate a total nominal 1000 rated W or as required.
 - 3. System Components:
 - a. Cell materials.
 - b. PV modules.
 - c. Array frame.
 - d. Charge controller.
 - e. Inverter.
 - f. Overcurrent protection/combiner box.
 - g. Mounting structure.
 - h. Battery charge controller(s).
 - i. Batteries.
 - j. Battery-storage structure.

2.4 MANUFACTURED UNITS

- A. Cell Materials: Amorphous silicon (a-Si).
- B. Cell Materials: Copper indium (di)selenide (CIS).
- C. Cell Materials: Copper indium gallium (di)selenide (CIGS).
- D. Cell Materials: Cadmium telluride (CdTe).
- E. Cell Materials: Cadmium sulfide.
- F. Cell Materials: Polycrystalline or Monocrystalline.
 - 1. c-Si.
 - 2. Gallium arsenide (GaAs).
- G. Module Construction:
 - 1. Nominal Size: 32 inches wide by 64 inches long.
 - 2. Weight: 42.8 lb.
- H. Insulating Substrate Film: Flexible or Rigid, polyester or polyimide.
- I. Conducting Substrate Film: Flexible or Rigid, Fluoropolymer, ETFE or FEP.
- J. Encapsulant: Ethyl vinyl acetate.
- K. Front Panel: Fully tempered glass.
- L. Front Panel: 0.125-inch- thick glass.
- M. Front Panel: Low iron glass.
- N. Front Panel: Antireflective coating glass.
- O. Front Panel: Laminating film.
- P. Front Panel: Laminating material.
- Q. Backing Material: Tempered glass.
- R. Backing Material: 0.125-inch- thick glass.
- S. Backing Material: Polyester film.
 - 1. Layers: As required
 - 2. Color: White.

- T. Backing Material: PVC film.
 - 1. Layers: As required.
 - 2. Color: White.
- U. Bypass Diode Protection: Internal.
- V. Junction Box:
 - 1. Size: 1.56 by 3.96 by 0.52 inch.
 - 2. Fully potted, vandal resistant.
 - 3. IP Code: IP65, IP66 or IP67.
 - 4. Flammability: UL 1703.
- W. Output Cabling:
 - 1. 0.158 inch
 - 2. Quick, multiconnect, polarized connectors.
 - 3. Two-Conductor Harness: No traditional return wire is needed from the end of a row back to the source combiner.
- X. Series Fuse Rating:

2.5 CAPACITIES AND CHARACTERISTICS

- A. Minimum Electrical Characteristics:
 - 1. Rated Open Circuit Voltage (V_{oc}): As required or manufacturer's standard.
 - 2. Maximum System Voltage: As required or manufacturer's standard.
 - 3. Maximum Power at Voltage (V_{pm}) : As required or manufacturer's standard.
 - 4. Short-Circuit Temperature Coefficient: As required or manufacturer's standard.
 - 5. Rated Short-Circuit Current (Isc): As required or manufacturer's standard.
 - 6. Maximum System: As required or manufacturer's standard.
 - 7. Rated Operation Current (I_{mp}): As required or manufacturer's standard.
 - 8. Maximum Power at STC (P_{max}): As required or manufacturer's standard.
- B. Additional Electrical Characteristics:
 - 1. PTC Rating: As required or manufacturer's standard.
 - 2. Peak Power per Unit Area: As required or manufacturer's standard.
 - 3. Tolerance of Pmax: As required or manufacturer's standard.
 - 4. Minimum Peak Power: As required or manufacturer's standard.
 - 5. Series Fuse Rating: As required or manufacturer's standard.
 - 6. Module Efficiency: As required or manufacturer's standard.
 - 7. Temperature Cycling Range: As required or manufacturer's standard.
 - 8. Humidity, Freeze, Damp Heat Condition: As required or manufacturer's standard.
 - 9. Wind Loading or Surface Pressure: As required or manufacturer's standard.

- 10. Maximum Distortion Angle: As required or manufacturer's standard.
- 11. Hailstone Impact Withstand: As required or manufacturer's standard.
- 12. Series Fuse Rating: As required or manufacturer's standard.
- C. Normal Operating Temperature Characteristics (NOTC):
 - 1. Temperature at Nominal Operating Cell Temperature: As required or manufacturer's standard.
 - 2. Temperature Coefficient (NOTC P_{max}): As required or manufacturer's standard.
 - 3. Temperature Coefficient (NOTC V_{oc}): As required or manufacturer's standard.
 - 4. Temperature Coefficient (NOTC lsc): As required or manufacturer's standard.
 - 5. Temperature Coefficient (NOTC V_{mp}): As required or manufacturer's standard.
 - 6. Temperature Coefficient (NOTC I_{mp}): As required or manufacturer's standard.

2.6 MODULE FRAMING

- A. PV laminates mounted in anodized extruded-aluminum frames.
 - 1. Entire assembly UL listed for electrical and fire safety, Class A or Class C, according to UL 1703, complying with IEC 61215.
 - 2. Frame strength exceeding requirements of certifying agencies in subparagraph above.
 - 3. Finish: Anodized aluminum.
 - a. Alloy and temper recommended by framing manufacturer for strength, corrosion resistance, and application of required finish.
 - b. Color: As indicated by manufacturer's designations.
 - 4. Finish: High-performance organic finish.
 - a. Fluoropolymer Two-Coat System: Manufacturer's standard two-coat, thermocured system consisting of specially formulated inhibitive primer and fluoropolymer color topcoat containing not less than 70 percent PVC resin by weight.
 - b. Color: As indicated by manufacturer's designations.
 - 5. Finish: Baked-enamel finish.
 - a. Color: As indicated by manufacturer's designations.

2.7 ARRAY CONSTRUCTION

- A. Framing:
 - 1. Material: Extruded aluminum, Galvanized steel or Coated steel.
 - 2. Maximum System Weight: Less than 4 lb/sq. ft.
 - 3. Minimum Distance to Connectors: Manufacturer's standard
 - 4. Raceway Cover Plates: Plastic, Aluminum or Galvanized steel.

- B. Flat-Roof Mounting:
 - 1. No roof penetrations.
 - 2. Self-ballasting.
 - 3. Wind-tunnel tested to 110-mph wind.
 - 4. Service Life: 25 years.
 - 5. Freestanding system.

2.8 CHARGE CONTROLLER

- A. Charge Controller Electrical Characteristics:
 - 1. Output Current Rating: As required or manufacturer's standard.
 - 2. Nominal Battery Voltage: As required or manufacturer's standard.
 - 3. PV Maximum Open Circuit Voltage: As required or manufacturer's standard.
 - 4. Equalization Voltage: As required or manufacturer's standard.
 - 5. Voltage Step-Down Capability: As required or manufacturer's standard.
 - 6. Power Conversion Efficiency: As required or manufacturer's standard.
- B. Charge controllers shall have the following:
 - 1. Digital display.
 - 2. Data logging.
 - 3. Remote interface.
 - 4. External sensors.
 - 5. Temperature compensation.

2.9 INVERTER

- A. Control Type: Pulse width modulation control.
- B. Control Type: Maximum power point tracker control.
- C. Inverter Electrical Characteristics:
 - 1. Maximum Recommended PV Input Power: As required or manufacturer's standard.
 - 2. Maximum Voc: As required or manufacturer's standard.
 - 3. PV Start Voltage: As required or manufacturer's standard.
 - 4. MPPT Voltage Range: As required or manufacturer's standard.
 - 5. Maximum Input Current: As required or manufacturer's standard.
 - 6. Number of String Inputs: As required or manufacturer's standard.
 - 7. Number of Independent MPPT Circuits: As required or manufacturer's standard.
 - 8. Nominal Output Voltage: As required or manufacturer's standard.
 - 9. CEC Rated Power: As required or manufacturer's standard.
 - 10. Nominal Output Voltage: As required or manufacturer's standard.
 - 11. Maximum Output Current: As required or manufacturer's standard.
 - 12. Peak Efficiency: As required or manufacturer's standard.

- 13. CEC Weighted Efficiency: As required or manufacturer's standard.
- 14. CEC Night Tare Loss: As required or manufacturer's standard.
- 15. DC/AC Terminal Range (AWG): As required or manufacturer's standard.
- 16. NEMA 250 Enclosure Rating: As required or manufacturer's standard.
- D. Operating Conditions:
 - 1. Operating Ambient Temperatures: Minus 4 to plus 122 deg F.
 - 2. Storage Temperature: Minus 40 to plus 122 deg F.
 - 3. Relative Humidity: 0 to 95 percent, noncondensing.
- E. Charge controllers shall have the following:
 - 1. Overcurrent protection.
 - 2. Generator input breaker box.
 - 3. Automatic transfer relay.
 - 4. Digital display.
 - 5. Transformer.
 - 6. Disconnect switch.
 - 7. Shunt controller.
 - 8. Shunt regulator.
 - 9. Surge overload protection.
- F. Enclosure:
 - 1. NEMA 250, Type 3R.
 - 2. Enclosure Material: Galvanized steel or Steel
 - 3. Cooling Methods:
 - a. Fan convection cooling.
 - b. Passive cooling.
 - 4. Protective Functions:
 - a. AC over/under voltage.
 - b. AC over/under frequency.
 - c. Ground over current.
 - d. Overtemperature.
 - e. AC and dc overcurrent.
 - f. DC over voltage.
 - 5. Standard liquid crystal display, four lines, 20 characters, with user display and on/off toggle switch.
 - 6. Weight: 260 lb.
 - 7. Dimensions: 54 by 36 by 19 inches.
- G. Disconnects:
 - 1. Low-voltage disconnect.
 - 2. Low-voltage reconnect.

- 3. High-temperature disconnect.
- 4. High-temperature reconnect.
- H. Regulatory Approvals:
 - 1. IEEE 1547.1.
 - 2. IEEE 1547.3.
 - 3. UL 1741.

I. Characteristics:

- 1. Inverter Dimensions: As required or manufacturer's standard.
- 2. Inverter Weight: As required or manufacturer's standard..

2.10 SYSTEM OVERCURRENT PROTECTION

- A. Combiner Box:
 - 1. Fuses: As required or manufacturer's standard.
 - 2. Circuit Breakers: As required or manufacturer's standard.

2.11 MOUNTING STRUCTURES

- A. Roof Mount: Extruded aluminum, two or four rails, tilt legs, and roof standoffs.
- B. Pole Mount: Top, Panel tops or Side.
- C. Tracking Mounts: One or Two axis.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrate areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Do not begin installation until mounting surfaces have been properly prepared.
- C. If preparation of mounting surfaces is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.
- D. Examine modules and array frame before installation. Reject modules and arrays that are wet, moisture damaged, or mold damaged.

- E. Examine roofs, supports, and supporting structures for suitable conditions where PV system will be installed.
- F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. PV module will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

END OF SECTION 263100

SECTION 263213 - ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes packaged engine-generator sets for emergency or standby power supply with the following features:
 - 1. Gas or Diesel engine.
 - 2. Performance requirements for sensitive loads.
- B. Related Sections include the following:
 - 1. Section 263600 "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine-generator sets.

1.3 DEFINITIONS

- A. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.
- B. LP: Liquid petroleum.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of packaged engine generator indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. In addition, include the following:
 - 1. Thermal damage curve for generator.
 - 2. Time-current characteristic curves for generator protective device.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

- 1. Dimensioned outline plan and elevation drawings of engine-generator set and other components specified.
- 2. Design Calculations: Signed and sealed by a qualified professional engineer. Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
- 3. Vibration Isolation Base Details: Signed and sealed by a qualified professional engineer. Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include base weights.
- 4. Wiring Diagrams: Power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Manufacturer Seismic Qualification Certification: Submit certification that day tank enginegenerator set, batteries, battery racks, accessories, and components will withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Qualification Data: For installer, manufacturer and testing agency.
- C. Source quality-control test reports.
 - 1. Certified summary of prototype-unit test report.
 - 2. Certified Test Reports: For components and accessories that are equivalent, but not identical, to those tested on prototype unit.
 - 3. Certified Summary of Performance Tests: Certify compliance with specified requirement to meet performance criteria for sensitive loads.
 - 4. Report of factory test on units to be shipped for this Project, showing evidence of compliance with specified requirements.
 - 5. Report of sound generation.
 - 6. Report of exhaust emissions showing compliance with applicable regulations.
 - 7. Certified Torsional Vibration Compatibility: Comply with NFPA 110.
- D. Field quality-control test reports.
- E. Warranty: Special warranty specified in this Section.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.
 - 2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.
 - 3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
 - 1. Maintenance Proximity: Not more than four hours' normal travel time from Installer's place of business to Project site.
 - 2. Engineering Responsibility: Preparation of data for vibration isolators and seismic restraints of engine skid mounts, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.
- B. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 200 miles of Project site, a service center capable of providing training, parts, and emergency maintenance repairs.
- C. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL), and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the International Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
- D. Source Limitations: Obtain packaged generator sets and auxiliary components through one source from a single manufacturer.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

- F. Comply with ASME B15.1.
- G. Comply with NFPA 37.
- H. Comply with NFPA 70.
- I. Comply with NFPA 99.
- J. Comply with NFPA 110 requirements for Level 1 or 2 emergency power supply system.
- K. Comply with UL 2200.
- L. Engine Exhaust Emissions: Comply with applicable state and local government requirements.
- M. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries due to sound emitted by generator set including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

1.9 PROJECT CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Architect, Construction Manager or Owner no fewer than two days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Architect's, Construction Manager's or Owner's written permission.
- B. Environmental Conditions: Engine-generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 - 1. Ambient Temperature: 5 to 40 deg C or Minus 15 to plus 40 deg C.
 - 2. Relative Humidity: 0 to 95 percent.
 - 3. Altitude: Sea level to 1000.
- C. Unusual Service Conditions: Engine-generator equipment and installation are required to operate under the following conditions:
 - 1. High salt-dust content in the air due to sea-spray evaporation.

1.10 COORDINATION

A. Coordinate size and location of concrete bases for package engine generators and remote radiators mounted on grade. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

B. Coordinate size and location of roof curbs, equipment supports, and roof penetrations for remote radiators. These items are specified in Section 077200 "Roof Accessories."

1.11 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

1.12 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, provide 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include quarterly exercising to check for proper starting, load transfer, and running under load. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Provide parts and supplies same as those used in the manufacture and installation of original equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2.2 ENGINE-GENERATOR SET

- A. Factory-assembled and -tested, engine-generator set.
- B. Mounting Frame: Maintain alignment of mounted components without depending on concrete foundation; and have lifting attachments.
 - 1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and generator-set center of gravity.
- C. Capacities and Characteristics:
 - 1. Power Output Ratings: Nominal ratings as indicated, with capacity as required to operate as a unit as evidenced by records of prototype testing.
 - 2. Output Connections: Three-phase, four wire.
 - 3. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.

- D. Generator-Set Performance:
 - 1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
 - 2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent stepload increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
 - 3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
 - 4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 - 5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
 - 6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
 - 7. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
 - 8. Start Time: Comply with NFPA 110, Type 10, system requirements.
- E. Generator-Set Performance for Sensitive Loads:
 - 1. Oversizing generator compared with the rated power output of the engine is permissible to meet specified performance.
 - a. Nameplate Data for Oversized Generator: Show ratings required by the Contract Documents rather than ratings that would normally be applied to generator size installed.
 - 2. Steady-State Voltage Operational Bandwidth: 1 percent of rated output voltage from no load to full load.
 - 3. Transient Voltage Performance: Not more than 10 percent variation for 50 percent stepload increase or decrease. Voltage shall recover and remain within the steady-state operating band within 0.5 second.
 - 4. Steady-State Frequency Operational Bandwidth: Plus or minus 0.25 percent of rated frequency from no load to full load.
 - 5. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 - 6. Transient Frequency Performance: Less than 2-Hz variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within three seconds.
 - 7. Output Waveform: At no load, harmonic content measured line to neutral shall not exceed 2 percent total with no slot ripple. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.

- 8. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 300 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to winding insulation or other generator system components.
- 9. Excitation System: Performance shall be unaffected by voltage distortion caused by nonlinear load.
 - a. Provide permanent magnet excitation for power source to voltage regulator.
- 10. Start Time: Comply with NFPA 110, Type 10, system requirements.

2.3 ENGINE

- A. Fuel: Fuel oil, Grade DF-2, Natural gas with automatic LP-gas standby or Natural gas.
- B. Rated Engine Speed: 1800 rpm.
- C. Maximum Piston Speed for Four-Cycle Engines: 2250 fpm.
- D. Lubrication System: The following items are mounted on engine or skid:
 - 1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
 - 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
 - 3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.
- E. Engine Fuel System:
 - 1. Main Fuel Pump: Mounted on engine. Pump ensures adequate primary fuel flow under starting and load conditions.
 - 2. Relief-Bypass Valve: Automatically regulates pressure in fuel line and returns excess fuel to source.
 - 3. Dual Natural Gas with LP-Gas Backup (Vapor-Withdrawal) System:
 - a. Carburetor.
 - b. Secondary Gas Regulators: One for each fuel type.
 - c. Fuel-Shutoff Solenoid Valves: One for each fuel source.
 - d. Flexible Fuel Connectors: One for each fuel source.
- F. Coolant Jacket Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity.
- G. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on enginegenerator-set mounting frame and integral engine-driven coolant pump.

- 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
- 2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
- 3. Expansion Tank: Constructed of welded steel plate and rated to withstand maximum closed-loop coolant system pressure for engine used. Equip with gage glass and petcock.
- 4. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
- 5. Coolant Hose: Flexible assembly with inside surface of nonporous rubber and outer covering of aging-, ultraviolet-, and abrasion-resistant fabric.
 - a. Rating: 50-psig maximum working pressure with coolant at 180 deg F, and noncollapsible under vacuum.
 - b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.
- H. Cooling System: Closed loop, liquid cooled, with remote radiator and integral engine-driven coolant pump.
 - 1. Configuration: Vertical or Horizontal air discharge.
 - 2. Radiator Core Tubes: Aluminum or Nonferrous-metal construction other than aluminum.
 - 3. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
 - 4. Expansion Tank: Constructed of welded steel plate and rated to withstand maximum closed-loop coolant system pressure for engine used. Equip with gage glass and petcock.
 - 5. Fan: Driven by multiple belts from engine shaft or totally enclosed electric motor with sealed bearings.
 - 6. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 - 7. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
- I. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 - 1. Minimum sound attenuation of 25 dB at 500 Hz.
 - 2. Sound level measured at a distance of 10 feet from exhaust discharge after installation is complete shall be 85 dBA or less.
- J. Muffler/Silencer: Residential type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 - 1. Minimum sound attenuation of 18 dB at 500 Hz.
 - 2. Sound level measured at a distance of 10 feet from exhaust discharge after installation is complete shall be 95 dBA or less.

- K. Muffler/Silencer: Industrial type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 - 1. Minimum sound attenuation of 12 dB at 500 Hz.
 - 2. Sound level measured at a distance of 25 feet from exhaust discharge after installation is complete shall be 87 dBA or less.
- L. Air-Intake Filter: Standard or Heavy-duty, engine-mounted air cleaner with replaceable dryfilter element and "blocked filter" indicator.
- M. Starting System: 12 or 24-V electric, with negative ground.
 - 1. Components: Sized so they will not be damaged during a full engine-cranking cycle with ambient temperature at maximum specified in Part 1 "Project Conditions" Article.
 - 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
 - 3. Cranking Cycle: As required by NFPA 110 for system level specified.
 - 4. Battery: Adequate capacity within ambient temperature range specified in Part 1 "Project Conditions" Article to provide specified cranking cycle at least twice or three times without recharging.
 - 5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
 - 6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 10 deg C regardless of external ambient temperature within range specified in Part 1 "Project Conditions" Article. Include accessories required to support and fasten batteries in place.
 - 7. Battery-Charging Alternator: Factory mounted on engine with solid-state voltage regulation and 35-A minimum continuous rating.
 - 8. Battery Charger: Current-limiting, automatic-equalizing and float-charging type. Unit shall comply with UL 1236 and include the following features:
 - a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 - b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 deg C to plus 60 deg C to prevent overcharging at high temperatures and undercharging at low temperatures.
 - c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
 - d. Ammeter and Voltmeter: Flush mounted in door. Meters shall indicate charging rates.
 - e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
 - f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

2.4 FUEL OIL STORAGE

- A. Comply with NFPA 30.
- B. Day Tank: Comply with UL 142, freestanding, factory-fabricated fuel tank assembly, with integral, float-controlled transfer pump and the following features:
 - 1. Containment: Integral rupture basin with a capacity of 150 percent of nominal capacity of day tank.
 - a. Leak Detector: Locate in rupture basin and connect to provide audible and visual alarm in the event of day-tank leak.
 - 2. Tank Capacity: As recommended by engine manufacturer for an uninterrupted period of 4 hours' operation at 100 percent of rated power output of engine-generator system without being refilled.
 - 3. Pump Capacity: Exceeds maximum flow of fuel drawn by engine-mounted fuel supply pump at 110 percent of rated capacity, including fuel returned from engine.
 - 4. Low-Level Alarm Sensor: Liquid-level device operates alarm contacts at 25 percent of normal fuel level.
 - 5. High-Level Alarm Sensor: Liquid-level device operates alarm and redundant fuel shutoff contacts at midpoint between overflow level and 100 percent of normal fuel level.
 - 6. Piping Connections: Factory-installed fuel supply and return lines from tank to engine; local fuel fill, vent line, overflow line; and tank drain line with shutoff valve.
 - 7. Redundant High-Level Fuel Shutoff: Actuated by high-level alarm sensor in day tank to operate a separate motor device that disconnects day-tank pump motor. Sensor shall signal solenoid valve, located in fuel suction line between fuel storage tank and day tank, to close. Both actions shall remain in shutoff state until manually reset. Shutoff action shall initiate an alarm signal to control panel but shall not shut down engine-generator set.
- C. Base-Mounted Fuel Oil Tank: Factory installed and piped, complying with UL 142 fuel oil tank. Features include the following:
 - 1. Tank level indicator.
 - 2. Capacity: Fuel for eight hours' continuous operation at 100 percent rated power output.
 - 3. Vandal-resistant fill cap.
 - 4. Containment Provisions: Comply with requirements of authorities having jurisdiction.

2.5 CONTROL AND MONITORING

A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When mode-selector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of a remote emergency-stop switch also shuts down generator set.

- B. Manual Starting System Sequence of Operation: Switching on-off switch on the generator control panel to the on position starts generator set. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of a remote emergency-stop switch also shuts down generator set.
- C. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the generator set. Mounting method shall isolate the control panel from generator-set vibration.
- D. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common wall-mounted control and monitoring panel.
- E. Configuration: Operating and safety indications, protective devices, basic system controls, engine gages, instrument transformers, generator disconnect switch or circuit breaker, and other indicated components shall be grouped in a combination control and power panel. Control and monitoring section of panel shall be isolated from power sections by steel barriers. Panel features shall include the following:
 - 1. Wall-Mounting Cabinet Construction: Rigid, self-supporting steel unit complying with NEMA ICS 6. Power bus shall be copper. Bus, bus supports, control wiring, and temperature rise shall comply with UL 891.
 - 2. Switchboard Construction: Freestanding unit complying with Section 262413 "Switchboards."
 - 3. Switchgear Construction: Freestanding unit complying with Section 262300 "Low Voltage Switchgear."
 - 4. Current and Potential Transformers: Instrument accuracy class.
- F. Indicating and Protective Devices and Controls: As required by NFPA 110 for Level 1 or 2 system, and the following:
 - 1. AC voltmeter.
 - 2. AC ammeter.
 - 3. AC frequency meter.
 - 4. DC voltmeter (alternator battery charging).
 - 5. Engine-coolant temperature gage.
 - 6. Engine lubricating-oil pressure gage.
 - 7. Running-time meter.
 - 8. Ammeter-voltmeter, phase-selector switch(es).
 - 9. Generator-voltage adjusting rheostat.
 - 10. Fuel tank derangement alarm.
 - 11. Fuel tank high-level shutdown of fuel supply alarm.
 - 12. Generator overload.
- G. Indicating and Protective Devices and Controls:
 - 1. AC voltmeter.
 - 2. AC ammeter.
 - 3. AC frequency meter.
 - 4. DC voltmeter (alternator battery charging).

- 5. Engine-coolant temperature gage.
- 6. Engine lubricating-oil pressure gage.
- 7. Running-time meter.
- 8. Ammeter-voltmeter, phase-selector switch(es).
- 9. Generator-voltage adjusting rheostat.
- 10. Start-stop switch.
- 11. Overspeed shutdown device.
- 12. Coolant high-temperature shutdown device.
- 13. Coolant low-level shutdown device.
- 14. Oil low-pressure shutdown device.
- 15. Fuel tank derangement alarm.
- 16. Fuel tank high-level shutdown of fuel supply alarm.
- 17. Generator overload.
- H. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.
- I. Connection to Data Link: A separate terminal block, factory wired to Form C dry contacts, for each alarm and status indication is reserved for connections for data-link transmission of indications to remote data terminals. Data system connections to terminals are covered in Section 260913 "Electrical Power Monitoring and Control."
- J. Common Remote Audible Alarm: Comply with NFPA 110 requirements for Level 1 systems. Include necessary contacts and terminals in control and monitoring panel.
 - 1. Overcrank shutdown.
 - 2. Coolant low-temperature alarm.
 - 3. Control switch not in auto position.
 - 4. Battery-charger malfunction alarm.
 - 5. Battery low-voltage alarm.
- K. Common Remote Audible Alarm: Signal the occurrence of any events listed below without differentiating between event types. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset.
 - 1. Engine high-temperature shutdown.
 - 2. Lube-oil, low-pressure shutdown.
 - 3. Overspeed shutdown.
 - 4. Remote emergency-stop shutdown.
 - 5. Engine high-temperature prealarm.
 - 6. Lube-oil, low-pressure prealarm.
 - 7. Fuel tank, low-fuel level.
 - 8. Low coolant level.

- L. Remote Alarm Annunciator: Comply with NFPA 99. An LED labeled with proper alarm conditions shall identify each alarm event and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-mounting type to suit mounting conditions indicated.
- M. Remote Emergency-Stop Switch: Flush; wall mounted, unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.6 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Generator Circuit Breaker: Molded-case, thermal-magnetic type; 100 percent rated; complying with NEMA AB 1 and UL 489.
 - 1. Tripping Characteristic: Designed specifically for generator protection.
 - 2. Trip Rating: Matched to generator rating.
 - 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 - 4. Mounting: Adjacent to or integrated with control and monitoring panel.
- B. Generator Circuit Breaker: Molded-case, electronic-trip type; 100 percent rated; complying with UL 489.
 - 1. Tripping Characteristics: Adjustable long-time and short-time delay and instantaneous.
 - 2. Trip Settings: Selected to coordinate with generator thermal damage curve.
 - 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 - 4. Mounting: Adjacent to or integrated with control and monitoring panel.
- C. Generator Circuit Breaker: Insulated-case, electronic-trip type; 100 percent rated; complying with UL 489.
 - 1. Tripping Characteristics: Adjustable long-time and short-time delay and instantaneous.
 - 2. Trip Settings: Selected to coordinate with generator thermal damage curve.
 - 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 - 4. Mounting: Adjacent to or integrated with control and monitoring panel.
- D. Generator Disconnect Switch: Molded-case type, 100 percent rated.
 - 1. Rating: Matched to generator output rating.
 - 2. Shunt Trip: Connected to trip switch when signaled by generator protector or by other protective devices.

- E. Generator Protector: Microprocessor-based unit shall continuously monitor current level in each phase of generator output, integrate generator heating effect over time, and predict when thermal damage of alternator will occur. When signaled by generator protector or other generator-set protective devices, a shunt-trip device in the generator disconnect switch shall open the switch to disconnect the generator from load circuits. Protector shall perform the following functions:
 - 1. Initiates a generator overload alarm when generator has operated at an overload equivalent to 110 percent of full-rated load for 60 seconds. Indication for this alarm is integrated with other generator-set malfunction alarms.
 - 2. Under single or three-phase fault conditions, regulates generator to 300 percent of rated full-load current for up to 10 seconds.
 - 3. As overcurrent heating effect on the generator approaches the thermal damage point of the unit, protector switches the excitation system off, opens the generator disconnect device, and shuts down the generator set.
 - 4. Senses clearing of a fault by other overcurrent devices and controls recovery of rated voltage to avoid overshoot.
- F. Ground-Fault Indication: Comply with NFPA 70, "Emergency System" signals for ground-fault. Integrate ground-fault alarm indication with other generator-set alarm indications.

2.7 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

- A. Comply with NEMA MG 1.
- B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.
- C. Electrical Insulation: Class H or Class F.
- D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required.
- E. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.
- F. Enclosure: Dripproof.
- G. Instrument Transformers: Mounted within generator enclosure.
- H. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 - 1. Adjusting rheostat on control and monitoring panel shall provide plus or minus 5 percent adjustment of output-voltage operating band.

- I. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.
- J. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.
- K. Subtransient Reactance: 12 percent, maximum.

2.8 MOTORS

- A. General requirements for motors are specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in electrical Sections.

2.9 VIBRATION ISOLATION DEVICES

- A. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a nonslip pattern and galvanized-steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.
 - 1. Material: Standard neoprene, Natural rubber or Bridge-bearing neoprene, complying with AASHTO M 251.
 - 2. Durometer Rating: 30, 40, 45, 50, 60, 65, 70 or as directed.
 - 3. Number of Layers: One, Two, Three or Four or as directed.
- B. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic restraint.
 - 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to wind loads or if weight is removed; factory-drilled baseplate bonded to 1/4-inch- thick, elastomeric isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 - 2. Outside Spring Diameter: Not less than 80 percent of compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.10 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.11 SOURCE QUALITY CONTROL

- A. Prototype Testing: Factory test engine-generator set using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.
 - 1. Tests: Comply with NFPA 110, Level 1 Energy Converters and with IEEE 115.
- B. Project-Specific Equipment Tests: Before shipment, factory test engine-generator set and other system components and accessories manufactured specifically for this Project. Perform tests at rated load and power factor. Include the following tests:
 - 1. Test components and accessories furnished with installed unit that are not identical to those on tested prototype to demonstrate compatibility and reliability.
 - 2. Full load run.
 - 3. Maximum power.
 - 4. Voltage regulation.
 - 5. Transient and steady-state governing.
 - 6. Single-step load pickup.
 - 7. Safety shutdown.
 - 8. Provide 14 days' advance notice of tests and opportunity for observation of tests by Owner's representative.
 - 9. Report factory test results within 10 days of completion of test.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine-generator performance.
- B. Examine roughing-in of piping systems and electrical connections. Verify actual locations of connections before packaged engine-generator installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with packaged engine-generator manufacturers' written installation and alignment instructions and with NFPA 110.
- B. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.

- C. Install packaged engine generator with elastomeric isolator pads or restrained spring isolators having a minimum deflection of 1 inch on 4-inch- high concrete base. Secure sets to anchor bolts installed in concrete bases. Concrete base construction is specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- D. Install remote radiator with elastomeric isolator pads or restrained spring isolators having a minimum deflection of 1 inch on concrete base on grade or roof equipment supports on roof.
- E. Install Schedule 40, black steel piping with welded joints for cooling water piping between engine-generator set and heat exchanger or remote radiator. Piping materials and installation requirements are specified in Section 232113 "Hydronic Piping."
- F. Install Schedule 40, black steel piping with welded joints and connect to engine muffler. Install thimble at wall. Piping shall be same diameter as muffler outlet. Flexible connectors and steel piping materials and installation requirements are specified in Section 232113 "Hydronic Piping."
 - 1. Install condensate drain piping to muffler drain outlet full size of drain connection with a shutoff valve, stainless-steel flexible connector, and Schedule 40, black steel pipe with welded joints. Flexible connectors and piping materials and installation requirements are specified in Section 232113 "Hydronic Piping."
- G. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping and specialties.
- B. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged engine generator to allow service and maintenance.
- C. Connect cooling-system water piping to engine-generator set and remote radiator or heat exchanger with flexible connectors.
- D. Connect engine exhaust pipe to engine with flexible connector.
- E. Connect fuel piping to engines with a gate valve and union and flexible connector.
 - 1. Diesel storage tanks, tank accessories, piping, valves, and specialties for fuel systems are specified in Section 231113 "Facility Fuel-Oil Piping."
 - 2. Natural-gas piping, valves, and specialties for gas distribution are specified in Section 231123 "Facility Natural-Gas Piping."
 - 3. LP-gas piping, valves, and specialties for gas piping are specified in Section 231126 "Facility Liquefied-Petroleum Gas Piping."

263231 Page 5329 of 6215

- F. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- G. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 IDENTIFICATION

A. Identify system components according to Section 230553 "Identification for HVAC Piping and Equipment" and Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- C. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Tests and Inspections:
 - 1. Perform tests recommended by manufacturer and each electrical test and visual and mechanical inspection (except those indicated to be optional) for "AC Generators and for Emergency Systems" specified in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here including, but not limited to, single-step full-load pickup test.
 - 3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 - a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 - b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 - c. Verify acceptance of charge for each element of the battery after discharge.
 - d. Verify that measurements are within manufacturer's specifications.

- 4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and floatcharging conditions.
- 5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.
- 6. Exhaust-System Back-Pressure Test: Use a manometer with a scale exceeding 40-inch wg. Connect to exhaust line close to engine exhaust manifold. Verify that back pressure at full-rated load is within manufacturer's written allowable limits for the engine.
- 7. Exhaust Emissions Test: Comply with applicable government test criteria.
- 8. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.
- 9. Harmonic-Content Tests: Measure harmonic content of output voltage under 25 percent and at 100 percent of rated linear load. Verify that harmonic content is within specified limits.
- 10. Noise Level Tests: Measure A-weighted level of noise emanating from generator-set installation, including engine exhaust and cooling-air intake and discharge, at four locations on the property line, and compare measured levels with required values.
- E. Coordinate tests with tests for transfer switches and run them concurrently.
- F. Test instruments shall have been calibrated within the last 12 months, traceable to standards of NIST, and adequate for making positive observation of test results. Make calibration records available for examination on request.
- G. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- H. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- I. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- J. Remove and replace malfunctioning units and retest as specified above.
- K. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.
- L. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- M. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each power wiring termination and each bus connection. Remove all access panels so terminations and connections are accessible to portable scanner.

- 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan 11 months after date of Substantial Completion.
- 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 3. Record of Infrared Scanning: Prepare a certified report that identifies terminations and connections checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators. Refer to Section 017900 "Demonstration and Training."

END OF SECTION 263231

263231 Page 5332 of 6215

SECTION 263353 - STATIC UNINTERRUPTIBLE POWER SUPPLY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Three-phase, on-line, double-conversion, static-type, UPS units with the following features:
 - a. Surge suppression.
 - b. Input harmonics reduction.
 - c. Rectifier-charger.
 - d. Inverter.
 - e. Static bypass transfer switch.
 - f. Battery and battery disconnect device.
 - g. Internal or External] maintenance bypass/isolation switch.
 - h. Output isolation transformer.
 - i. Remote UPS monitoring provisions.
 - j. Battery monitoring.
 - k. Remote monitoring.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. LCD: Liquid-crystal display.
- C. LED: Light-emitting diode.
- D. PC: Personal computer.
- E. THD: Total harmonic distortion.
- F. UPS: Uninterruptible power supply.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: UPS shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include data on features, components, ratings, and performance.
- B. Shop Drawings: For UPS. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, components, and location and identification of each field connection. Show access, workspace, and clearance requirements; details of control panels; and battery arrangement.
 - 2. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified power quality specialist or testing agency.
- B. Seismic Qualification Certificates: For UPS equipment, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Manufacturer Certificates: For each product, from manufacturer.
- D. Factory Test Reports: Comply with specified requirements.
- E. Field quality-control reports.
- F. Performance Test Reports: Indicate test results compared with specified performance requirements, and provide justification and resolution of differences if values do not agree.
- G. Warranties: Sample of special warranties.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For UPS units to include in emergency, operation, and maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.
 - 2. Cabinet Ventilation Filters: One complete set(s).

1.9 QUALITY ASSURANCE

- A. Power Quality Specialist Qualifications: A registered professional electrical engineer or engineering technician, currently certified by the National Institute for Certification in Engineering Technologies, NICET Level 4, minimum, experienced in performance testing UPS installations and in performing power quality surveys similar to that required in "Performance Testing" Article.
- B. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. UL Compliance: Listed and labeled under UL 1778 by an NRTL.
- E. NFPA Compliance: Mark UPS components as suitable for installation in computer rooms according to NFPA 75.

1.10 WARRANTY

- A. Special Battery Warranties: Specified form in which manufacturer and Installer agree to repair or replace UPS system storage batteries that fail in materials or workmanship within specified warranty period.
 - 1. Warranted Cycle Life for Valve-Regulated, Lead-Calcium Batteries: Equal to or greater than that represented in manufacturer's published table, including figures corresponding to the following, based on annual average battery temperature of 77 deg F (25 deg C):

Discharge Rate	Discharge Duration	Discharge End	Cycle Life
		Voltage	
8 hours	8 hours	1.67	6 cycles
30 minutes	30 minutes	1.67	20 cycles
15 minutes	45 seconds	1.67	120 cycles

2. Warranted Cycle Life for Premium Valve-Regulated, Lead-calcium Batteries: Equal to or greater than that represented in manufacturer's published table, including figures corresponding to the following, based on annual average battery temperature of 77 deg F (25 deg C):

Discharge Rate	Discharge Duration	Discharge End Voltage	Cycle Life
8 hours	8 hours	1.67	40 cycles
30 minutes	30 minutes	1.67	125 cycles
15 minutes	1.5 minutes	1.67	750 cycles

3. Warranted Cycle Life for Flooded Batteries: Equal to or greater than that represented in manufacturer's published table, including figures corresponding to the following, based on annual average battery temperature of 77 deg F (25 deg C):

Discharge Rate	Discharge Duration	Discharge End Voltage	Cycle Life
8 hours	8 hours	1.75	40 cycles
1 hour	1 hour	1.75	80 cycles
15 minutes	45 seconds	1.67	2700 cycles

- B. Special UPS Warranties: Specified form in which manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within special warranty period.
 - 1. Special Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 OPERATIONAL REQUIREMENTS

- A. Automatic operation includes the following:
 - 1. Normal Conditions: Load is supplied with power flowing from the normal power input terminals, through the rectifier-charger and inverter, with the battery connected in parallel with the rectifier-charger output.

- 2. Abnormal Supply Conditions: If normal supply deviates from specified and adjustable voltage, voltage waveform, or frequency limits, the battery supplies energy to maintain constant, regulated inverter power output to the load without switching or disturbance.
- 3. If normal power fails, energy supplied by the battery through the inverter continues supply-regulated power to the load without switching or disturbance.
- 4. When power is restored at the normal supply terminals of the system, controls automatically synchronize the inverter with the external source before transferring the load. The rectifier-charger then supplies power to the load through the inverter and simultaneously recharges the battery.
- 5. If the battery becomes discharged and normal supply is available, the rectifier-charger charges the battery. On reaching full charge, the rectifier-charger automatically shifts to float-charge mode.
- 6. If any element of the UPS system fails and power is available at the normal supply terminals of the system, the static bypass transfer switch switches the load to the normal ac supply circuit without disturbance or interruption.
- 7. If a fault occurs in the system supplied by the UPS, and current flows in excess of the overload rating of the UPS system, the static bypass transfer switch operates to bypass the fault current to the normal ac supply circuit for fault clearing.
- 8. When the fault has cleared, the static bypass transfer switch returns the load to the UPS system.
- 9. If the battery is disconnected, the UPS continues to supply power to the load with no degradation of its regulation of voltage and frequency of the output bus.
- B. Manual operation includes the following:
 - 1. Turning the inverter off causes the static bypass transfer switch to transfer the load directly to the normal ac supply circuit without disturbance or interruption.
 - 2. Turning the inverter on causes the static bypass transfer switch to transfer the load to the inverter.
- C. Maintenance Bypass/Isolation Switch Operation: Switch is interlocked so it cannot be operated unless the static bypass transfer switch is in the bypass mode. Device provides manual selection among the three conditions in subparagraphs below without interrupting supply to the load during switching:
 - 1. Full Isolation: Load is supplied, bypassing the UPS. Normal UPS ac input circuit, static bypass transfer switch, and UPS load terminals are completely disconnected from external circuits.
 - 2. Maintenance Bypass: Load is supplied, bypassing the UPS. UPS ac supply terminals are energized to permit operational checking, but system load terminals are isolated from the load.
 - 3. Normal: Normal UPS ac supply terminals are energized and the load is supplied through either the static bypass transfer switch and the UPS rectifier-charger and inverter, or the battery and the inverter.
- D. Environmental Conditions: The UPS shall be capable of operating continuously in the following environmental conditions without mechanical or electrical damage or degradation of operating capability, except battery performance.
 - 1. Ambient Temperature for Electronic Components: 32 to 104 deg F (0 to 40 deg C).

- 2. Ambient Temperature for Battery: 41 to 95 deg F (5 to 35 deg C).
- 3. Relative Humidity: 0 to 95 percent, noncondensing.
- 4. Altitude: Sea level to 4000 feet (1220 m).

2.2 PERFORMANCE REQUIREMENTS

- A. The UPS shall perform as specified in this article while supplying rated full-load current, composed of any combination of linear and nonlinear load, up to 100 percent nonlinear load with a load crest factor of 3.0, under the following conditions or combinations of the following conditions:
 - 1. Inverter is switched to battery source.
 - 2. Steady-state ac input voltage deviates up to plus or minus 10 percent from nominal voltage.
 - 3. Steady-state input frequency deviates up to plus or minus 5 percent from nominal frequency.
 - 4. THD of input voltage is 15 percent or more with a minimum crest factor of 3.0, and the largest single harmonic component is a minimum of 5 percent of the fundamental value.
 - 5. Load is 30, 50 or 100 percent unbalanced continuously.
- B. Minimum Duration of Supply: If battery is sole energy source supplying rated full UPS load current at 80 percent power factor, duration of supply is five, 10 or 15 minutes.
- C. Input Voltage Tolerance: System steady-state and transient output performance remains within specified tolerances when steady-state ac input voltage varies plus 10, minus 15, 20 or 30 percent from nominal voltage.
- D. Overall UPS Efficiency: Equal to or greater than <Insert number> percent at 100 percent load, <Insert number> percent at 75 percent load, and <Insert number> percent at 50 percent load.
- E. Maximum Acoustical Noise: <Insert value>, "A" weighting, emanating from any UPS component under any condition of normal operation, measured <Insert distance> from nearest surface of component enclosure.
- F. Maximum Energizing Inrush Current: Six or Eight times the full-load current.
- G. Maximum AC Output-Voltage Regulation for Loads up to 50 Percent Unbalanced: Plus or minus 2 percent over the full range of battery voltage.
- H. Output Frequency: 60 Hz, plus or minus 0.5 percent over the full range of input voltage, load, and battery voltage.
- I. Limitation of harmonic distortion of input current to the UPS shall be as follows:
 - 1. Description: Either a tuned harmonic filter or an arrangement of rectifier-charger circuits shall limit THD to 5 or 10 percent, maximum, at rated full UPS load current, for power sources with X/R ratio between 2 and 30.

- 2. Description: THD is limited to a maximum of 32 percent, at rated full UPS load current, for power sources with X/R ratio between 2 and 30.
- J. Maximum Harmonic Content of Output-Voltage Waveform: 5 percent rms total and 3 percent rms for any single harmonic, for 100 percent rated nonlinear load current with a load crest factor of 3.0.
- K. Maximum Harmonic Content of Output-Voltage Waveform: 5 percent rms total and 3 percent rms for any single harmonic, for rated full load with THD up to 50 percent, with a load crest factor of 3.0.
- L. Minimum Overload Capacity of UPS at Rated Voltage: 125 percent of rated full load for 10 minutes, and 150 percent for 30 seconds in all operating modes.
- M. Maximum Output-Voltage Transient Excursions from Rated Value: For the following instantaneous load changes, stated as percentages of rated full UPS load, voltage shall remain within stated percentages of rated value and recover to, and remain within, plus or minus 2 percent of that value within 100 ms:
 - 1. 50 Percent: Plus or minus 5 percent.
 - 2. 100 Percent: Plus or minus 5 percent.
 - 3. Loss of AC Input Power: Plus or minus 1 percent.
 - 4. Restoration of AC Input Power: Plus or minus 1 percent.
- N. Input Power Factor: A minimum of [0.70] [0.85] lagging when supply voltage and current are at nominal rated values and the UPS is supplying rated full-load current.
- O. EMI Emissions: Comply with FCC Rules and Regulations and with 47 CFR 15 for Class A equipment.

2.3 UPS SYSTEMS

- A. Electronic Equipment: Solid-state devices using hermetically sealed, semiconductor elements. Devices include rectifier-charger, inverter, static bypass transfer switch, and system controls.
- B. Enclosures: Comply with NEMA 250, Type 1, unless otherwise indicated.
- C. Control Assemblies: Mount on modular plug-ins, readily accessible for maintenance.
- D. Surge Suppression: Protect internal UPS components from surges that enter at each ac power input connection including main disconnect switch, static bypass transfer switch, and maintenance bypass/isolation switch. Protect rectifier-charger, inverter, controls, and output components.
 - 1. Use factory-installed surge suppressors tested according to IEEE C62.41.1 and IEEE C62.41.2, Category B or Category C.

- 2. Additional Surge Protection: Protect internal UPS components from low-frequency, high-energy voltage surges described in IEEE C62.41.1 and IEEE C62.41.2. Design the circuits connecting with external power sources and select circuit elements, conductors, conventional surge suppressors, and rectifier components and controls so input assemblies will have adequate mechanical strength and thermal and current-carrying capacity to withstand stresses imposed by 40-Hz, 180 percent voltage surges described in IEEE C62.41.1 and IEEE C62.41.1.
- E. Maintainability Features: Mount rectifier-charger and inverter sections and the static bypass transfer switch on modular plug-ins, readily accessible for maintenance.
- F. Capacity Upgrade Capability: Arrange wiring, controls, and modular component plug-in provisions to permit future 25 percent increase in UPS capacity.
- G. Seismic-Restraint Design: UPS assemblies, subassemblies, and components (and fastenings and supports, mounting, and anchorage devices for them) shall be designed and fabricated to withstand static and seismic forces.
- H. UPS Cabinet Ventilation: Redundant fans or blowers draw in ambient air near the bottom of cabinet and discharge it near the top rear.
- I. Output Circuit Neutral Bus, Conductor, and Terminal Ampacity: Rated phase current times a multiple of 1.73, minimum.

2.4 RECTIFIER-CHARGER

- A. Capacity: Adequate to supply the inverter during rated full output load conditions and simultaneously recharge the battery from fully discharged condition to 95 percent of full charge within 10 times the rated discharge time for duration of supply under battery power at full load.
- B. Output Ripple: Limited by output filtration to less than 0.5 percent of rated current, peak to peak.
- C. Control Circuits: Immune to frequency variations within rated frequency ranges of normal and emergency power sources.
 - 1. Response Time: Field adjustable for maximum compatibility with local generator-set power source.
- D. Battery Float-Charging Conditions: Comply with battery manufacturer's written instructions for battery terminal voltage and charging current required for maximum battery life.

2.5 INVERTER

A. Description: Pulse-width modulated, with sinusoidal output.

B. Description: Pulse-width modulated, with sinusoidal output. Include a bypass phase synchronization window adjustment to optimize compatibility with local engine-generator-set power source.

2.6 STATIC BYPASS TRANSFER SWITCH

- A. Description: Solid-state switching device providing uninterrupted transfer. A contactor or electrically operated circuit breaker automatically provides electrical isolation for the switch.
- B. Switch Rating: Continuous duty at the rated full UPS load current, minimum.

2.7 BATTERY

- A. Description: Valve-regulated, recombinant, lead-calcium units, factory assembled in an isolated compartment of UPS cabinet, complete with battery disconnect switch.
 - 1. Arrange for drawout removal of battery assembly from cabinet for testing and inspecting.
- B. Description: Valve-regulated, premium, heavy-duty, recombinant, lead-calcium units; factory assembled in an isolated compartment or in a separate matching cabinet, complete with battery disconnect switch.
 - 1. Arrange for drawout removal of battery assembly from cabinet for testing and inspecting.
- C. Description: Flooded, lead-calcium, heavy-duty industrial units in styrene acrylonitrile containers mounted on three-tier, acid-resistant, painted steel racks. Assembly includes battery disconnect switch, intercell connectors, hydrometer syringe, and thermometer with specific gravity-correction scales.
- D. Seismic-Restraint Design: Battery racks, cabinets, assemblies, subassemblies, and components (and fastenings and supports, mounting, and anchorage devices for them) shall be designed and fabricated to withstand static and seismic forces.

2.8 CONTROLS AND INDICATIONS

- A. Description: Group displays, indications, and basic system controls on a common control panel on front of UPS enclosure.
- B. Minimum displays, indicating devices, and controls include those in lists below. Provide sensors, transducers, terminals, relays, and wiring required to support listed items. Alarms include audible signals and visual displays.
- C. Indications: Labeled LED or Plain-language messages on a digital LCD or LED.
 - 1. Quantitative indications shall include the following:
 - a. Input voltage, each phase, line to line.
 - b. Input current, each phase, line to line.

STATIC UNINTERRUPTIBLE POWER SUPPLY

- c. Bypass input voltage, each phase, line to line.
- d. Bypass input frequency.
- e. System output voltage, each phase, line to line.
- f. System output current, each phase.
- g. System output frequency.
- h. DC bus voltage.
- i. Battery current and direction (charge/discharge).
- j. Elapsed time discharging battery.
- 2. Basic status condition indications shall include the following:
 - a. Normal operation.
 - b. Load-on bypass.
 - c. Load-on battery.
 - d. Inverter off.
 - e. Alarm condition.
- 3. Alarm indications shall include the following:
 - a. Bypass ac input overvoltage or undervoltage.
 - b. Bypass ac input overfrequency or underfrequency.
 - c. Bypass ac input and inverter out of synchronization.
 - d. Bypass ac input wrong-phase rotation.
 - e. Bypass ac input single-phase condition.
 - f. Bypass ac input filter fuse blown.
 - g. Internal frequency standard in use.
 - h. Battery system alarm.
 - i. Control power failure.
 - j. Fan failure.
 - k. UPS overload.
 - 1. Battery-charging control faulty.
 - m. Input overvoltage or undervoltage.
 - n. Input transformer overtemperature.
 - o. Input circuit breaker tripped.
 - p. Input wrong-phase rotation.
 - q. Input single-phase condition.
 - r. Approaching end of battery operation.
 - s. Battery undervoltage shutdown.
 - t. Maximum battery voltage.
 - u. Inverter fuse blown.
 - v. Inverter transformer overtemperature.
 - w. Inverter overtemperature.
 - x. Static bypass transfer switch overtemperature.
 - y. Inverter power supply fault.
 - z. Inverter transistors out of saturation.

- aa. Identification of faulty inverter section/leg.
- bb. Inverter output overvoltage or undervoltage.
- cc. UPS overload shutdown.
- dd. Inverter current sensor fault.
- ee. Inverter output contactor open.
- ff. Inverter current limit.
- 4. Controls shall include the following:
 - a. Inverter on-off.
 - b. UPS start.
 - c. Battery test.
 - d. Alarm silence/reset.
 - e. Output-voltage adjustment.
- D. Dry-form "C" contacts shall be available for remote indication of the following conditions:
 - 1. UPS on battery.
 - 2. UPS on-line.
 - 3. UPS load-on bypass.
 - 4. UPS in alarm condition.
 - 5. UPS off (maintenance bypass closed).
- E. Emergency Power Off Switch: Capable of local operation and operation by means of activation by external dry contacts.

2.9 MAINTENANCE BYPASS/ISOLATION SWITCH

- A. Description: Manually operated switch or arrangement of switching devices with mechanically actuated contact mechanism arranged to route the flow of power to the load around the rectifier-charger, inverter, and static bypass transfer switch.
 - 1. Switch shall be electrically and mechanically interlocked to prevent interrupting power to the load when switching to bypass mode.
 - 2. Switch shall electrically isolate other UPS components to permit safe servicing.
- B. Comply with NEMA PB 2 and UL 891.
- C. Switch Rating: Continuous duty at rated full UPS load current.
- D. Mounting Provisions: Internal to system cabinet or Separate wall or floor-mounted unit.
- E. Key interlock requires unlocking maintenance bypass/isolation switch before switching from normal position with key that is released only when the UPS is bypassed by the static bypass transfer switch. Lock is designed specifically for mechanical and electrical component interlocking.

2.10 OUTPUT ISOLATION TRANSFORMER

- A. Description: Shielded unit or Unit with low forward transfer impedance up to 3 kHz, minimum. Include the following features:
 - 1. Comply with applicable portions of UL 1561, including requirements for nonlinear load current-handling capability for a K-factor of approximately 4, 9, 13 or 20.
 - 2. Output Impedance at Fundamental Frequency: Between 3 and 4 percent.
 - 3. Regulation: 5 percent, maximum, at rated nonlinear load current.
 - 4. Full-Load Efficiency at Rated Nonlinear Load Current: 96 percent, minimum.
 - 5. Electrostatic Shielding of Windings: Independent for each winding.
 - 6. Coil Leads: Physically arranged for minimum interlead capacitance.
 - 7. Shield Grounding Terminal: Separately mounted; labeled "Shield Ground."
 - 8. Capacitive Coupling between Primary and Secondary: 33 picofarads, maximum, over a frequency range of 20 Hz to 1 MHz.

2.11 OUTPUT DISTRIBUTION SECTION

A. Panelboards: Comply with Section 262416 "Panelboards" except provide assembly integral to UPS cabinet.

2.12 MONITORING BY REMOTE STATUS AND ALARM PANEL

- A. Description: Labeled LEDs on panel faceplate indicate five basic status conditions. Audible signal indicates alarm conditions. Silencing switch in face of panel silences signal without altering visual indication.
 - 1. Cabinet and Faceplate: Surface or flush mounted to suit mounting conditions indicated.

2.13 MONITORING BY REMOTE COMPUTER

- A. Description: Communication module in unit control panel provides capability for remote monitoring of status, parameters, and alarms specified in "Controls and Indications" Article. The remote computer and the connecting signal wiring are not included in this Section. Include the following features:
 - 1. Connectors and network interface units or modems for data transmission via RS-232 link.
 - 2. Software designed for control and monitoring of UPS functions and to provide on-screen explanations, interpretations, diagnosis, action guidance, and instructions for use of monitoring indications and development of meaningful reports. Permit storage and analysis of power-line transient records. Designs for Windows applications, software, and computer are not included in this Section.
 - 3. Software and Hardware: Compatible with that specified in Section 260913 "Electrical Power Monitoring and Control."

2.14 BASIC BATTERY MONITORING

- A. Battery Ground-Fault Detector: Initiates alarm when resistance to ground of positive or negative bus of battery is less than 5000 ohms.
- B. Battery compartment smoke/high-temperature detector initiates an alarm when smoke or a temperature greater than 75 deg C occurs within the compartment.
- C. Annunciation of Alarms: At UPS control panel.

2.15 ADDITIONAL BATTERY MONITORING

- A. Monitoring features and components shall include the following:
 - 1. Factory-wired sensing leads to cell and battery terminals and cell temperature sensors.
 - 2. Connections for data transmission via RS-232 link, network interface and modem, and external signal wiring to computer or electrical power monitoring and control equipment. External signal wiring and computer are not specified in this Section.
 - 3. PC-based software designed to store and analyze battery data. Software compiles reports on individual-cell parameters and total battery performance trends, and provides data for scheduling and prioritizing battery maintenance.
- B. Performance: Automatically measures and electronically records the following parameters on a routine schedule and during battery discharge events. During discharge events, records measurements timed to nearest second; includes measurements of the following parameters:
 - 1. Total battery voltage and ambient temperature.
 - 2. Individual-cell voltage, impedance, and temperature. During battery-discharging events such as utility outages, measures battery and cell voltages timed to nearest second.
 - 3. Individual-cell electrolyte levels.

2.16 BATTERY-CYCLE WARRANTY MONITORING

- A. Description: Electronic device, acceptable to battery manufacturer as a basis for warranty action, for monitoring of charge-discharge cycle history of batteries covered by cycle-life warranties.
- B. Performance: Automatically measures and records each discharge event, classifies it according to duration category, and totals discharges according to warranty criteria, displaying remaining warranted battery life on front panel display.
- C. Additional monitoring functions and features shall include the following:
 - 1. Measuring and Recording: Total voltage at battery terminals; initiates alarm for excursions outside the proper float-voltage level.
 - 2. Monitors: Ambient temperature at battery; initiates alarm if temperature deviates from normally acceptable range.

- 3. Keypad on Device Front Panel: Provides access to monitored data using front panel display.
- 4. Alarm Contacts: Arranged to initiate local or remote alarm for battery discharge events, abnormal temperature or abnormal battery voltage or temperature.
- 5. Memory: Stores recorded data in nonvolatile electronic memory.
- 6. RS-232 Port: Permits downloading of data to a portable PC.
- 7. Modem: Makes measurements and recorded data accessible to a remote PC via telephone line. Computer is not specified in this Section.

2.17 SOURCE QUALITY CONTROL

- A. Factory test complete UPS system before shipment. Use actual batteries that are part of final installation or simulated battery testing. Include the following:
 - 1. Test and demonstration of all functions, controls, indicators, sensors, and protective devices.
 - 2. Full-load test.
 - 3. Transient-load response test.
 - 4. Overload test.
 - 5. Power failure test.
- B. Observation of Test: Give 14 days' advance notice of tests and provide opportunity for Owner's representative to observe tests at Owner's choice.
- C. Report test results. Include the following data:
 - 1. Description of input source and output loads used. Describe actions required to simulate source load variation and various operating conditions and malfunctions.
 - 2. List of indications, parameter values, and system responses considered satisfactory for each test action. Include tabulation of actual observations during test.
 - 3. List of instruments and equipment used in factory tests.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for conditions affecting performance of the UPS.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Equipment Mounting: Install UPS on concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete." or Section 033053 "Miscellaneous Cast-in-Place Concrete."

- 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
- 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
- 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
- B. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.
- C. Connections: Interconnect system components. Make connections to supply and load circuits according to manufacturer's wiring diagrams unless otherwise indicated.

3.3 GROUNDING

A. Separately Derived Systems: If not part of a listed power supply for a data-processing room, comply with NFPA 70 requirements for connecting to grounding electrodes and for bonding to metallic piping near isolation transformer.

3.4 IDENTIFICATION

- A. Identify components and wiring according to Section 260553 "Identification for Electrical Systems."
 - 1. Identify each battery cell individually.

3.5 BATTERY EQUALIZATION

A. Equalize charging of battery cells according to manufacturer's written instructions. Record individual-cell voltages.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

- D. Tests and Inspections:
 - 1. Comply with manufacturer's written instructions.
 - 2. Inspect interiors of enclosures, including the following:
 - a. Integrity of mechanical and electrical connections.
 - b. Component type and labeling verification.
 - c. Ratings of installed components.
 - 3. Inspect batteries and chargers according to requirements in NETA Acceptance Testing Specifications.
 - 4. Test manual and automatic operational features and system protective and alarm functions.
 - 5. Test communication of status and alarms to remote monitoring equipment.
 - 6. Load the system using a variable-load bank to simulate kilovolt amperes, kilowatts, and power factor of loads for unit's rating. Use instruments calibrated within the previous six months according to NIST standards.
 - a. Simulate malfunctions to verify protective device operation.
 - b. Test duration of supply on emergency, low-battery voltage shutdown, and transfers and restoration due to normal source failure.
 - c. Test harmonic content of input and output current less than 25, 50, and 100 percent of rated loads.
 - d. Test output voltage under specified transient-load conditions.
 - e. Test efficiency at 50, 75, and 100 percent of rated loads.
 - f. Test remote status and alarm panel functions.
 - g. Test battery-monitoring system functions.
- E. Seismic-restraint tests and inspections shall include the following:
 - 1. Inspect type, size, quantity, arrangement, and proper installation of mounting or anchorage devices.
 - 2. Test mounting and anchorage devices according to requirements in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- F. The UPS system will be considered defective if it does not pass tests and inspections.
- G. Record of Tests and Inspections: Maintain and submit documentation of tests and inspections, including references to manufacturers' written instructions and other test and inspection criteria. Include results of tests, inspections, and retests.
- H. Prepare test and inspection reports.

3.7 PERFORMANCE TESTING

- A. Engage the services of a qualified power quality specialist to perform tests and activities indicated for each UPS system.
- B. Monitoring and Testing Schedule: Perform monitoring and testing in a single 10-day period or four 10-day periods, each in a different season of the year.
 - 1. Schedule monitoring and testing activity with Owner, through Architect, with at least 14 days' advance notice.
 - 2. Schedule monitoring and testing after Substantial Completion, when the UPS is supplying power to its intended load.
- C. Monitoring and Testing Instruments: Three-phase, recording, power monitors. Instruments shall provide continuous simultaneous monitoring of electrical parameters at UPS input terminals and at input terminals of loads served by the UPS. Instruments shall monitor, measure, and graph voltage current and frequency simultaneously and provide full-graphic recordings of the values of those parameters before and during power-line disturbances that cause the values to deviate from normal beyond the adjustable threshold values. Instruments shall be capable of recording either on paper or on magnetic media and have a minimum accuracy of plus or minus 2 percent for electrical parameters. Parameters to be monitored include the following:
 - 1. Current: Each phase and neutral and grounding conductors.
 - 2. Voltage: Phase to phase, phase to neutral, phase to ground, and neutral to ground.
 - 3. Frequency transients.
 - 4. Voltage swells and sags.
 - 5. Voltage Impulses: Phase to phase, phase to neutral, phase to ground, and neutral to ground.
 - 6. High-frequency noise.
 - 7. Radio-frequency interference.
 - 8. THD of the above currents and voltages.
 - 9. Harmonic content of currents and voltages above.
- D. Monitoring and Testing Procedures for Each Test Period
 - 1. Exploratory Period: For the first two days of the first scheduled monitoring and testing period, make recordings at various circuit locations and with various parameter-threshold and sampling-interval settings. Make these measurements with the objective of identifying optimum UPS, power system, load, and instrumentation setup conditions for subsequent test and monitoring operations.
 - 2. Remainder of Test Period: Perform continuous monitoring of at least two circuit locations selected on the basis of data obtained during exploratory period.
 - a. Set thresholds and sampling intervals for recording data at values selected to optimize data on performance of the UPS for values indicated, and to highlight the need to adjust, repair, or modify the UPS, distribution system, or load component that may influence its performance or that may require better power quality.

- b. Perform load and UPS power source switching and operate the UPS on generator power during portions of test period according to directions of Owner's power quality specialist.
- c. Operate the UPS and its loads in each mode of operation permitted by UPS controls and by the power distribution system design.
- d. Using loads and devices available as part of the facility's installed systems and equipment and a temporarily connected portable generator set, create and simulate unusual operating conditions, including outages, voltage swells and sags, and voltage, current, and frequency transients. Maintain normal operating loads in operation on system to maximum extent possible during tests.
- e. Using temporarily connected resistive/inductive load banks and a temporarily connected portable generator set, create and simulate unusual operating conditions, including outages, voltage swells and sags, and voltage, current, and frequency transients. Maintain normal operating loads in operation on system to maximum extent possible during tests.
- f. Make adjustments and repairs to UPS, distribution, and load equipment to correct deficiencies disclosed by monitoring and testing and repeat appropriate monitoring and testing to verify success of corrective action.
- E. Coordination with Specified UPS Monitoring Functions: Obtain printouts of built-in monitoring functions specified for the UPS and its components in this Section that are simultaneously recorded with portable instruments in this article.
 - 1. Provide the temporary use of an appropriate PC and printer equipped with required connections and software for recording and printing if such units are not available on-site.
 - 2. Coordinate printouts with recordings for monitoring performed according to this article, and resolve and report any anomalies in and discrepancies between the two sets of records.
- F. Monitoring and Testing Assistance by Contractor:
 - 1. Open UPS and electrical distribution and load equipment and wiring enclosures to make monitoring and testing points accessible for temporary monitoring probe and sensor placement and removal as requested.
 - 2. Observe monitoring and testing operations; ensure that UPS and distribution and load equipment warranties are not compromised.
 - 3. Perform switching and control of various UPS units, electrical distribution systems, and load components as directed by power quality specialist. Specialist shall design this portion of monitoring and testing operations to expose the UPS to various operating environments, conditions, and events while response is observed, electrical parameters are monitored, and system and equipment deficiencies are identified.
 - 4. Make repairs and adjustments to the UPS and to electrical distribution system and load components, and retest and repeat monitoring as needed to verify validity of results and correction of deficiencies.
 - 5. Engage the services of the UPS manufacturer's factory-authorized service representative periodically during performance testing operations for repairs, adjustments, and consultations.

- G. Documentation: Record test point and sensor locations, instrument settings, and circuit and load conditions for each monitoring summary and power disturbance recording. Coordinate simultaneous recordings made on UPS input and load circuits.
- H. Analysis of Recorded Data and Report: Review and analyze test observations and recorded data and submit a detailed written report. Include the following in [each]report:
 - 1. Description of corrective actions performed during monitoring and survey work and their results.
 - 2. Recommendations for further action to provide optimum performance by the UPS and appropriate power quality for non-UPS loads. Include a statement of priority ranking and a cost estimate for each recommendation that involves system or equipment revisions.
 - 3. Copies of monitoring summary graphics and graphics illustrating harmonic content of significant voltages and currents.
 - 4. Copies of graphics of power disturbance recordings that illustrate findings, conclusions, and recommendations.
 - 5. Recommendations for operating, adjusting, or revising UPS controls.
 - 6. Recommendation for alterations to the UPS installation.
 - 7. Recommendations for adjusting or revising generator-set or automatic transfer switch installations or their controls.
 - 8. Recommendations for power distribution system revisions.
 - 9. Recommendations for adjusting or revising electrical loads, their connections, or controls.
- I. Interim and Final Reports: Provide an interim report at the end of each test period and a final comprehensive report at the end of final test and analysis period.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain the UPS.

END OF SECTION 263353

SECTION 263553 - VOLTAGE REGULATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This sections incorporates installation of items such as, but not limited to:
 - 1. Automatic Voltage Regulators
 - 2. Capacitors Indoor
 - 3. Transient Suppressor/Voltage Regulator
 - 4. Transient Voltage Suppressor Transformer

1.3 DEFINITIONS

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. Attach copies of approved Product Data submittals for products (such as switchboards and switchgear) that describe power monitoring and control features to illustrate coordination among related equipment and power monitoring and control.
- B. Shop Drawings: For voltage monitoring and control equipment. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Outline Drawings: Indicate arrangement of components and clearance and access requirements.
 - 2. Block Diagram: Show interconnections between components specified in this Section and devices furnished with power distribution system components. Indicate data communication paths and identify networks, data buses, data gateways, concentrators, and other devices to be used. Describe characteristics of network and other data communication lines.
 - 3. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 4. Wiring Diagrams: For power, signal, and control wiring. Coordinate nomenclature and presentation with a block diagram.
 - 5. UPS sizing calculations for workstation.

6. Surge Suppressors: Data for each device used and where applied.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer and manufacturer.
- B. Field quality-control reports.
- C. Other Informational Submittals:
 - 1. Manufacturer's system installation and setup guides, with data forms to plan and record options and setup decisions.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
- B. Manufacturer Qualifications: A firm experienced in manufacturing power monitoring and control equipment similar to that indicated for this Project and with a record of successful inservice performance.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.7 COORDINATION

- A. Coordinate features of distribution equipment and power monitoring and control components to form an integrated interconnection of compatible components.
 - 1. Match components and interconnections for optimum performance of specified functions.
- B. Coordinate Work of this Section with those in Sections specifying distribution components that are monitored or controlled by power monitoring and control equipment.

PART 2 - PRODUCTS

- 2.1 Automatic Voltage Regulators
 - A. Provide a three phase sensed Automatic Voltage Regulator (AVR). The AVR senses the voltage in the main generator winding and controls the excitation to maintain the generator output voltage within the specified limits, compensating for load, speed, temperature and power factor of the generator.

2.2 Capacitors Indoor

A. Provide an indoor capacitor. The capacitor supplies reactive power to correct poor power factors and reduce kVA demand thus off-loading transformers, switchgear and other equipment. Provide Type 1/12 enclosure.

2.3 Transient Suppressor/Voltage Regulator

- A. Provide a transient suppressor/voltage regulator. The transient suppressor/voltage regulator provides overvoltage circuit protection and protection from voltage transients caused by ESD, lightning, NEMP, inductive switching, etc.
- 2.4 Transient Voltage Suppressor Transformer
 - A. The Transient Voltage Suppressor Transformer is a protective device with a modular thermally protected transient voltage surge suppressor. The Transient Volt Surge Suppressor shall be located on the primary of the isolation transformer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CABLING

- A. Comply with NECA 1.
- B. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use NRTL-listed plenum cable in environmental air spaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.
- D. Install cables without damaging conductors, shield, or jacket.

3.3 IDENTIFICATION

A. Identify components and power wiring according to Section 260554 "Electrical Identification."

3.4 GROUNDING

A. Comply with IEEE 1100, "Recommended Practice for Powering and Grounding Electronic Equipment."

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Tests and Inspections:
 - 1. Electrical Tests: Use caution when testing devices containing solid-state components.
 - 2. Continuity tests of circuits.
- E. Equipment will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.
- G. Correct deficiencies, make necessary adjustments, and retest. Verify that specified requirements are met.
- H. Test Labeling: After satisfactory completion of tests and inspections, apply a label to tested components indicating test results, date, and responsible agency and representative.
- I. Reports: Written reports of tests and observations. Record defective materials and workmanship and unsatisfactory test results. Record repairs and adjustments.
- J. Remove and replace malfunctioning devices and circuits and retest as specified above.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain systems.

3.7 ON-SITE ASSISTANCE

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other-than-normal occupancy hours for this purpose.

END OF SECTION 263553

SECTION 263600 - TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes transfer switches rated 600 V and less, including the following:
 - 1. Automatic transfer switches.
 - 2. Nonautomatic transfer switches.
- B. Related Sections include the following:
 - 1. Section 13921 "Electric-Drive, Centrifugal Fire Pumps" for automatic transfer switches for fire pumps.
 - 2. Section 13926 "Electric-Drive, Vertical-Turbine Fire Pumps" for automatic transfer switches for fire pumps.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, weights, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Dimensioned plans, elevations, sections, and details showing minimum clearances, conductor entry provisions, gutter space, installed features and devices, and material lists for each switch specified.
 - 1. Single-Line Diagram: Show connections between transfer switch, bypass/isolation switch, power sources, and load; and show interlocking provisions for each combined transfer switch and bypass/isolation switch.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer and testing agency.
- B. Manufacturer Seismic Qualification Certification: Submit certification that transfer switches accessories, and components will withstand seismic forces defined in Section 260548
 "Vibration and Seismic Controls for Electrical Systems." Include the following:

263600 - 1 Page 5357 of 6215

- 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
- 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Features and operating sequences, both automatic and manual.
 - 2. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Maintain a service center capable of providing training, parts, and emergency maintenance repairs within a response period of less than eight hours from time of notification.
- B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
- C. Source Limitations: Obtain automatic transfer switches and nonautomatic transfer switches through one source from a single manufacturer.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

- E. Comply with NEMA ICS 1.
- F. Comply with NFPA 70.
- G. Comply with NFPA 99.
- H. Comply with NFPA 110.
- I. Comply with UL 1008 unless requirements of these Specifications are stricter.

1.7 PROJECT CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service:
 - 1. Notify Architect, Construction Manager or Owner] no fewer than two days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Architect's, Construction Manager's or Owner's written permission.

1.8 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Section 033000 "Cast-in-Place Concrete."

PART 2 - PRODUCTS

2.1 GENERAL TRANSFER-SWITCH PRODUCT REQUIREMENTS

- A. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.
- B. Tested Fault-Current Closing and Withstand Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.
 - 1. Where transfer switch includes internal fault-current protection, rating of switch and trip unit combination shall exceed indicated fault-current value at installation location.
- C. Solid-State Controls: Repetitive accuracy of all settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.

- D. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.41. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.
- E. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electricmotor-operated mechanism, mechanically and electrically interlocked in both directions.
- F. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.
 - 1. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are not acceptable.
 - 2. Switch Action: Double throw; mechanically held in both directions.
 - 3. Contacts: Silver composition or silver alloy for load-current switching. Conventional automatic transfer-switch units, rated 225 A and higher, shall have separate arcing contacts.
- G. Neutral Terminal: Solid and fully rated, unless otherwise indicated.
- H. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.2 AUTOMATIC TRANSFER SWITCHES

- A. Comply with Level 1 equipment according to NFPA 110.
- B. Switching Arrangement: Double-throw type, incapable of pauses or intermediate position stops during normal functioning, unless otherwise indicated.
- C. Manual Switch Operation: Under load, with door closed and with either or both sources energized. Transfer time is same as for electrical operation. Control circuit automatically disconnects from electrical operator during manual operation.
- D. Manual Switch Operation: Unloaded. Control circuit automatically disconnects from electrical operator during manual operation.
- E. Signal-Before-Transfer Contacts: A set of normally open/normally closed dry contacts operates in advance of retransfer to normal source. Interval is adjustable from 1 to 30 seconds.
- F. Digital Communication Interface: Matched to capability of remote annunciator or annunciator and control panel.
- G. Transfer Switches Based on Molded-Case-Switch Components: Comply with NEMA AB 1, UL 489, and UL 869A.
- H. Automatic Closed-Transition Transfer Switches: Include the following functions and characteristics:
 - 1. Fully automatic make-before-break operation.

TRANSFER SWITCHES

263600 - 4 Page 5360 of 6215

- 2. Load transfer without interruption, through momentary interconnection of both power sources not exceeding 100 ms.
- 3. Initiation of No-Interruption Transfer: Controlled by in-phase monitor and sensors confirming both sources are present and acceptable.
 - a. Initiation occurs without active control of generator.
 - b. Controls ensure that closed-transition load transfer closure occurs only when the 2 sources are within plus or minus 5 electrical degrees maximum, and plus or minus 5 percent maximum voltage difference.
- 4. Failure of power source serving load initiates automatic break-before-make transfer.
- I. In-Phase Monitor: Factory-wired, internal relay controls transfer so it occurs only when the two sources are synchronized in phase. Relay compares phase relationship and frequency difference between normal and emergency sources and initiates transfer when both sources are within 15 electrical degrees, and only if transfer can be completed within 60 electrical degrees. Transfer is initiated only if both sources are within 2 Hz of nominal frequency and 70 percent or more of nominal voltage.
- J. Motor Disconnect and Timing Relay: Controls designate starters so they disconnect motors before transfer and reconnect them selectively at an adjustable time interval after transfer. Control connection to motor starters is through wiring external to automatic transfer switch. Time delay for reconnecting individual motor loads is adjustable between 1 and 60 seconds, and settings are as indicated. Relay contacts handling motor-control circuit inrush and seal currents are rated for actual currents to be encountered.
- K. Programmed Neutral Switch Position: Switch operator has a programmed neutral position arranged to provide a midpoint between the two working switch positions, with an intentional, time-controlled pause at midpoint during transfer. Pause is adjustable from 0.5 to 30 seconds minimum and factory set for 0.5 second, unless otherwise indicated. Time delay occurs for both transfer directions. Pause is disabled unless both sources are live.
- L. Automatic Transfer-Switch Features:
 - 1. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage is adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.
 - 2. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second.
 - 3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.
 - 4. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.

- 5. Test Switch: Simulate normal-source failure.
- 6. Switch-Position Pilot Lights: Indicate source to which load is connected.
- 7. Source-Available Indicating Lights: Supervise sources via transfer-switch normal- and emergency-source sensing circuits.
 - a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."
 - b. Emergency Power Supervision: Red light with nameplate engraved "Emergency Source Available."
- 8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.
- 9. Transfer Override Switch: Overrides automatic retransfer control so automatic transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.
- 10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.
- 11. Engine Shutdown Contacts: Instantaneous; shall initiate shutdown sequence at remote engine-generator controls after retransfer of load to normal source.
- 12. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.
- 13. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods are adjustable from 10 to 30 minutes. Factory settings are for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:
 - a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
 - b. Push-button programming control with digital display of settings.
 - c. Integral battery operation of time switch when normal control power is not available.

2.3 NONAUTOMATIC TRANSFER SWITCHES

- A. Operation: Electrically actuated by push buttons designated "Normal Source" and "Alternate Source." Switch shall be capable of transferring load in either direction with either or both sources energized.
- B. Operation: Electrically actuated by push buttons designated "Normal Source" and "Alternate Source." In addition, removable manual handle provides quick-make, quick-break manual-switching action. Switch shall be capable of electrically or manually transferring load in either direction with either or both sources energized. Control circuit disconnects from electrical operator during manual operation.

- C. Double-Throw Switching Arrangement: Incapable of pauses or intermediate position stops during switching sequence.
- D. Nonautomatic Transfer-Switch Accessories:
 - 1. Pilot Lights: Indicate source to which load is connected.
 - 2. Source-Available Indicating Lights: Supervise sources via transfer-switch normal- and alternate-source sensing circuits.
 - a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."
 - b. Emergency Power Supervision: Red light with nameplate engraved "Alternate Source Available."
 - 3. Unassigned Auxiliary Contacts: One set of normally closed contacts for each switch position, rated 10 A at 240-V ac.

2.4 SOURCE QUALITY CONTROL

A. Factory test and inspect components, assembled switches, and associated equipment. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Design each fastener and support to carry load indicated by seismic requirements and according to seismic-restraint details. See Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- B. Floor-Mounting Switch: Anchor to floor by bolting.
 - 1. Concrete Bases: 4 inches high, reinforced, with chamfered edges. Extend base no more than 4 inches in all directions beyond the maximum dimensions of switch, unless otherwise indicated or unless required for seismic support. Construct concrete bases according to Section 260529 "Hangers and Supports for Electrical Systems."
- C. Annunciator and Control Panel Mounting: Flush in wall, unless otherwise indicated.
- D. Identify components according to Section 260553 "Identification for Electrical Systems."
- E. Set field-adjustable intervals and delays, relays, and engine exerciser clock.

3.2 CONNECTIONS

- A. Wiring to Remote Components: Match type and number of cables and conductors to control and communication requirements of transfer switches as recommended by manufacturer. Increase raceway sizes at no additional cost to Owner if necessary to accommodate required wiring.
- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Connect wiring according to Section 260519 "Low-Voltage Electrical Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified independent testing and inspecting agency to perform tests and inspections and prepare test reports.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- C. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installation, including connections, and to assist in testing.
 - 2. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.
 - 3. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 4. Measure insulation resistance phase-to-phase and phase-to-ground with insulationresistance tester. Include external annunciation and control circuits. Use test voltages and procedure recommended by manufacturer. Comply with manufacturer's specified minimum resistance.
 - a. Check for electrical continuity of circuits and for short circuits.
 - b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 - c. Verify that manual transfer warnings are properly placed.
 - d. Perform manual transfer operation.
 - 5. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.
 - a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 - b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 - c. Verify time-delay settings.

- d. Verify pickup and dropout voltages by data readout or inspection of control settings.
- e. Test bypass/isolation unit functional modes and related automatic transfer-switch operations.
- f. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for 1 pole deviating by more than 50 percent from other poles.
- g. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cooldown and shutdown.
- 6. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
 - a. Verify grounding connections and locations and ratings of sensors.
- D. Testing Agency's Tests and Inspections:
 - 1. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 3. Measure insulation resistance phase-to-phase and phase-to-ground with insulationresistance tester. Include external annunciation and control circuits. Use test voltages and procedure recommended by manufacturer. Comply with manufacturer's specified minimum resistance.
 - a. Check for electrical continuity of circuits and for short circuits.
 - b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 - c. Verify that manual transfer warnings are properly placed.
 - d. Perform manual transfer operation.
 - 4. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.
 - a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 - b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 - c. Verify time-delay settings.
 - d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 - e. Test bypass/isolation unit functional modes and related automatic transfer-switch operations.
 - f. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for 1 pole deviating by more than 50 percent from other poles.
 - g. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cooldown and shutdown.

- 5. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
 - a. Verify grounding connections and locations and ratings of sensors.
- E. Coordinate tests with tests of generator and run them concurrently.
- F. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- G. Remove and replace malfunctioning units and retest as specified above.
- H. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner.
 - 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.
 - 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 3. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.4 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment as specified below. Refer to Section 017900 "Demonstration and Training."
- B. Coordinate this training with that for generator equipment.

END OF SECTION 263600

SECTION 264100 - LIGHTNING PROTECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes lightning protection for structures, structure elements and building site components.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For air terminals and mounting accessories.
 - 1. Layout of the lightning protection system, along with details of the components to be used in the installation.
 - 2. Include indications for use of raceway, data on how concealment requirements will be met, and calculations required by NFPA 780 for bonding of grounded and isolated metal bodies.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer and manufacturer. Include data on listing or certification by UL.
- B. Certification, signed by Contractor, that roof adhesive is approved by manufacturer of roofing material.
- C. Field quality-control reports.
- D. Comply with recommendations in NFPA 780, Annex D, "Inspection and Maintenance of Lightning Protection Systems," for maintenance of the lightning protection system.
- E. Other Informational Submittals: Plans showing dimensioned as-built locations of grounding features, including the following:
 - 1. Ground rods.
 - 2. Ground loop conductor.

LIGHTNING PROTECTION

264100 - 1 Page 5367 of 6215

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Certified by UL or LPI as a Master Installer/Designer, trained and approved for installation of units required for this Project.
- B. System Certificate:
 - 1. UL Master Label.
 - 2. LPI System Certificate.
 - 3. UL Master Label Recertification.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 780, "Definitions" Article.

1.6 COORDINATION

- A. Coordinate installation of lightning protection with installation of other building systems and components, including electrical wiring, supporting structures and building materials, metal bodies requiring bonding to lightning protection components, and building finishes.
- B. Coordinate installation of air terminals attached to roof systems with roofing manufacturer and Installer.
- C. Flashings of through-roof assemblies shall comply with roofing manufacturers' specifications.

PART 2 - PRODUCTS

2.1 LIGHTNING PROTECTION SYSTEM COMPONENTS

- A. Comply with UL 96 and NFPA 780.
- B. Roof-Mounted Air Terminals: NFPA 780, Class I, Class II, aluminum, or copper unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements.
 - 2. Air Terminals More than 24 Inches Long: With brace attached to the terminal at not less than half the height of the terminal.
 - 3. Single-Membrane, Roof-Mounted Air Terminals: Designed specifically for singlemembrane roof system materials. Comply with requirements in roofing Sections.
- C. Main and Bonding Conductors: Copper or Aluminum as specified
- D. Ground Loop Conductor: The same size and type as the main conductor except tinned.
- E. Ground Rods: Copper-clad, Zinc-coated, Stainless steel, sectional type; 3/4 inch in diameter by 10 feet or 5/8 inch in diameter by 96 inches long.

F. Heavy-Duty, Stack-Mounted, Lightning Protection Components: Stainless steel, Solid copper, Monel metal or Lead sheathed.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install lightning protection components and systems according to UL 96A and NFPA 780.
- B. Install conductors with direct paths from air terminals to ground connections. Avoid sharp bends.
- C. Conceal the following conductors:
 - 1. System conductors.
 - 2. Down conductors.
 - 3. Interior conductors.
 - 4. Conductors within normal view of exterior locations at grade within 200 feet of building.
- D. Cable Connections: Use crimped or bolted connections for all conductor splices and connections between conductors and other components. Use exothermic-welded connections in underground portions of the system.
- E. Cable Connections: Use exothermic-welded connections for all conductor splices and connections between conductors and other components.
 - 1. Exception: In single-ply membrane roofing, exothermic-welded connections may be used only below the roof level.
- F. Air Terminals on Single-Ply Membrane Roofing: Comply with roofing membrane and adhesive manufacturer's written instructions.
- G. Bond extremities of vertical metal bodies exceeding 60 feet in length to lightning protection components.
- H. Ground Loop: Install ground-level, potential equalization conductor and extend around the perimeter of structure or area or item indicated.
 - 1. Bury ground ring not less than 24 inches from building foundation.
 - 2. Bond ground terminals to the ground loop.
 - 3. Bond grounded building systems to the ground loop conductor within 12 feet of grade level.
- I. Bond lightning protection components with intermediate-level interconnection loop conductors to grounded metal bodies of building at 60-foot intervals.

3.2 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.3 CORROSION PROTECTION

- A. Do not combine materials that can form an electrolytic couple that will accelerate corrosion in the presence of moisture unless moisture is permanently excluded from junction of such materials.
- B. Use conductors with protective coatings where conditions cause deterioration or corrosion of conductors.

3.4 FIELD QUALITY CONTROL

- A. Notify Architect at least 48 hours in advance of inspection before concealing lightning protection components.
- B. UL Inspection: Meet requirements to obtain a UL Master Label for system.
- C. LPI System Inspection: Meet requirements to obtain an LPI System Certificate.

END OF SECTION 264100

SECTION 264200 - CATHODIC PROTECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENT SUMMARY

- A. This Section includes specifications for materials used for the cathodic protection of buried ferrous pipe and accessories as follows:
 - 1. Magnesium anodes
 - 2. Rectifiers

1.2 SUBMITTALS

A. Technical Manual Submittals for anodes and rectifiers are required in accordance with Section 0132419.

PART 2 - PRODUCTS

- 2.1 MANUFACTURER
 - A. MANUFACTURER: Comply with project requirements.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Corrosion Test Stations and Cable Connections
 - 1. Corrosion test stations shall consist of conduit outlets, aluminum tubing and cover outlets or meter box outlets where test leads connected to the pipeline are terminated. The type of outlet and location shall be as indicated on the Drawings or located by the Engineer at the time of installation.
 - 2. The test lead cables shall be Type TW No. 8 and no splicing will be allowed. The Contractor shall provide enough slack in the cables near the main so that backfill will not bread the connection. Cables may be run in the same trench with pipe, and 30 inches of cover must be maintained in horizontal runs. Twelve (12) inches of slack shall be provided at outlets to permit withdrawing ends for test purposes.

- 3. Cable connections shall be made to steel pipe by gas brazing or by Cadweld Type TB-3 connections. Connections to cast iron pipe shall be made by means of Cadweld Type HB connections. In all cases, wires and the surface to which they connect shall be cleaned and prepared in accordance with the manufacturer's recommendations, and only 100% welds, free of defects, will be accepted. After connection and approval by the Engineer, bare wire and pipe shall be primed and coated with tape.
- B. Protection Along Steel Pipe Sections
 - 1. Near the termination of steel pipe sections, jumper wire shall be cadwelded to the steel pipe on one end, with the other end to be pulled into a test station that is to be set as indicated on the Drawings.
 - 2. Where steel pipe sections surround an insulated piece of equipment or insulated section of pipe less than 3 ft. in length, a continuity wire shall be cadwelded to each steel pipe section for continuity of cathodic protection across the insulated area.
- C. Protection of Couplings
 - 1. Where flexible couplings and transition couplings are installed, a jumper wire shall be cadwelded to the body of the coupling on one end and tied into another bonding jumper wire that is already part of the cathodic protection system at the other end as indicated on the Drawings.
- D. Protection of Metallic Fittings on Plastic Pipelines
 - 1. Near the termination of all PVC and plastic pipe sections grater than 3 ft. in length, tracer wire shall be pulled into a test station that is to be set as indicated on the Drawings. Tracer wire shall be laid parallel to all PVC and plastic pipelines. Split-bolt connections shall be installed along the tracer wire where another tracer wire shall be run from the split-bolt connection and cadwelded to any metallic fittings (saddles, mech. joint fittings) installed along the PVC/plastic pipeline.
- E. Anode Placement
 - 1. Anode shall be buried approximately 2 ft. away from the pipeline. Anode may be installed vertically in an augured hole with native backfill tamped carefully to afford good soil contact. Copper lead wire shall be pulled into a test station location set as indicated on the Drawings.
 - 2. Provide slack in all wires used in cathodic protection so that wires are not broken during backfill.

3.2 TESTING AND INSPECTION

- A. Contractor shall set utility box(es) and/or aluminum tubing as indicated on the Contract drawings.
- B. Upon installation of anodes, continuity, bonding and jumper wires, Contractor shall pull leads into test station location and notify District for testing.

END OF SECTION 264200

SECTION 265100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Interior lighting fixtures, lamps, and ballasts.
 - 2. Emergency lighting units.
 - 3. Exit signs.
 - 4. Lighting fixture supports.
 - 5. Retrofit kits for fluorescent lighting fixtures.
- B. Related Sections:
 - 1. Section 262726 "Wiring Devices" for manual wall-box dimmers for incandescent lamps.
 - 2. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

- A. BF: Ballast factor.
- B. CCT: Correlated color temperature.
- C. CRI: Color-rendering index.
- D. HID: High-intensity discharge.
- E. LER: Luminaire efficacy rating.
- F. Lumen: Measured output of lamp and luminaire, or both.
- G. Luminaire: Complete lighting fixture, including ballast housing if provided.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of lighting fixture including dimensions.
 - 2. Emergency lighting units including battery and charger.
 - 3. Ballast, including BF.
 - 4. Energy-efficiency data.
 - 5. Air and Thermal Performance Data: For air-handling lighting fixtures. Furnish data required in "Action Submittals" Article in Section 233713 "Diffusers, Registers, and Grilles."
 - 6. Sound Performance Data: For air-handling lighting fixtures. Indicate sound power level and sound transmission class in test reports certified according to standards specified in Section 233713 "Diffusers, Registers, and Grilles."
 - 7. Life, output (lumens, CCT, and CRI), and energy-efficiency data for lamps.
 - 8. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.
 - a. Testing Agency Certified Data: For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining fixtures shall be certified by manufacturer.
 - b. Manufacturer Certified Data: Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Shop Drawings: For nonstandard or custom lighting fixtures. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.
- C. Samples: For each lighting fixture indicated in the Interior Lighting Fixture Schedule. Each Sample shall include the following:
 - 1. Lamps and ballasts, installed.
 - 2. Cords and plugs.
 - 3. Pendant support system.
- D. Installation instructions.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Lighting fixtures.
 - 2. Suspended ceiling components.
 - 3. Partitions and millwork that penetrate the ceiling or extends to within 12 inches of the plane of the luminaires.
 - 4. Ceiling-mounted projectors.
 - 5. Structural members to which suspension systems for lighting fixtures will be attached.
 - 6. Other items in finished ceiling including the following:
 - a. Air outlets and inlets.
 - b. Speakers.
 - c. Sprinklers.
 - d. Smoke and fire detectors.
 - e. Occupancy sensors.
 - f. Access panels.
 - 7. Perimeter moldings.
- B. Qualification Data: For qualified agencies providing photometric data for lighting fixtures.
- C. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, from manufacturer.
- D. Field quality-control reports.
- E. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Plastic Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.

- 3. Fluorescent-fixture-mounted, emergency battery pack: One for every 20 emergency lighting unit.
- 4. Ballasts: One for every 100 of each type and rating installed. Furnish at least one of each type.
- 5. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910, complying with the IESNA Lighting Measurements Testing & Calculation Guides.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NFPA 70.
- E. FM Global Compliance: Lighting fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
- F. Mockups: Provide interior lighting fixtures for room or module mockups, complete with power and control connections.
 - 1. Obtain Architect's approval of fixtures for mockups before starting installations.
 - 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - 3. Approved fixtures in mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.10 WARRANTY

A. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

- 1. Warranty Period for Emergency Lighting Unit Batteries: 10 years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining nine years.
- 2. Warranty Period for Emergency Fluorescent Ballast and Self-Powered Exit Sign Batteries: Seven years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining six years.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR LIGHTING FIXTURES AND COMPONENTS

- A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.
- B. Incandescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5A.
- C. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
- D. HID Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5B.
- E. Metal Parts: Free of burrs and sharp corners and edges.
- F. Sheet Metal Components: Steel unless otherwise indicated. Form and support to prevent warping and sagging.
- G. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- H. Diffusers and Globes:
 - 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - a. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
 - b. UV stabilized.
 - 2. Glass: Annealed crystal glass unless otherwise indicated.
- I. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

- 1. Label shall include the following lamp and ballast characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter code (T-4, T-5, T-8, T-12, etc.), tube configuration (twin, quad, triple, etc.), base type, and nominal wattage for fluorescent and compact fluorescent luminaires.
 - c. Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires.
 - d. Start type (preheat, rapid start, instant start, etc.) for fluorescent and compact fluorescent luminaires.
 - e. ANSI ballast type (M98, M57, etc.) for HID luminaires.
 - f. CCT and CRI for all luminaires.
- J. Electromagnetic-Interference Filters: Factory installed to suppress conducted electromagnetic interference as required by MIL-STD-461E. Fabricate lighting fixtures with one filter on each ballast indicated to require a filter.
- K. Air-Handling Fluorescent Fixtures: For use with plenum ceiling for air return and heat extraction and for attaching an air-diffuser-boot assembly specified in Section 233713 "Diffusers, Registers, and Grilles."
 - 1. Air-Supply Units: Slots in one or both side trims join with air-diffuser-boot assemblies.
 - 2. Heat-Removal Units: Air path leads through lamp cavity.
 - 3. Combination Heat-Removal and Air-Supply Unit: Heat is removed through lamp cavity at both ends of the fixture door with air supply same as for air-supply units.
 - 4. Dampers: Operable from outside fixture for control of return-air volume.
 - 5. Static Fixture: Air-supply slots are blanked off, and fixture appearance matches active units.

2.2 BALLASTS FOR LINEAR FLUORESCENT LAMPS

- A. General Requirements for Electronic Ballasts:
 - 1. Comply with UL 935 and with ANSI C82.11.
 - 2. Designed for type and quantity of lamps served.
 - 3. Ballasts shall be designed for full light output unless another BF, dimmer, or bi-level control is indicated.
 - 4. Sound Rating: Class A or Class A except Class B for T12/HO and T12/Slimline lamp ballasts.
 - 5. Total Harmonic Distortion Rating: Less than 10 percent.
 - 6. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 7. Operating Frequency: 42 kHz or higher.
 - 8. Lamp Current Crest Factor: 1.7 or less.
 - 9. BF: 0.88 or higher.
 - 10. Power Factor: 0.95 or higher.
 - 11. Parallel Lamp Circuits: Multiple lamp ballasts shall comply with ANSI C82.11 and shall be connected to maintain full light output on surviving lamps if one or more lamps fail.

- B. Luminaires controlled by occupancy sensors shall have programmed-start ballasts.
- C. Electronic Programmed-Start Ballasts for T5, T8, T5HO or T5 and T5HO Lamps: Comply with ANSI C82.11 and the following:
 - 1. Lamp end-of-life detection and shutdown circuit for T5 diameter lamps.
 - 2. Automatic lamp starting after lamp replacement.
- D. Electromagnetic Ballasts: Comply with ANSI C82.1; energy saving, high-power factor, Class P, and having automatic-reset thermal protection.
 - 1. Ballast Manufacturer Certification: Indicated by label.
- E. Single Ballasts for Multiple Lighting Fixtures: Factory wired with ballast arrangements and bundled extension wiring to suit final installation conditions without modification or rewiring in the field.
- F. Ballasts for Low-Temperature Environments:
 - 1. Temperatures 0 Deg F and Higher: Electronic or electromagnetic type rated for 0 deg F starting and operating temperature with indicated lamp types.
 - 2. Temperatures Minus 20 Deg F and Higher: Electromagnetic type designed for use with indicated lamp types.
- G. Ballasts for Residential Applications: Fixtures designated as "Residential" may use low-powerfactor electronic ballasts having a Class B sound rating and total harmonic distortion of approximately 30 percent.
- H. Ballasts for Low Electromagnetic-Interference Environments: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for consumer equipment.
- I. Ballasts for Dimmer-Controlled Lighting Fixtures: Electronic type.
 - 1. Dimming Range: 100 to 5 percent of rated lamp lumens.
 - 2. Ballast Input Watts: Can be reduced to 20 percent of normal.
 - 3. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.
 - 4. Control: Coordinate wiring from ballast to control device to ensure that the ballast, controller, and connecting wiring are compatible.
- J. Ballasts for Bi-Level Controlled Lighting Fixtures: Electronic type.
 - 1. Operating Modes: Ballast circuit and leads provide for remote control of the light output of the associated lamp between high- and low-level and off.
 - a. High-Level Operation: 100 percent of rated lamp lumens.
 - b. Low-Level Operation: 30 percent of rated lamp lumens.

- 2. Ballast shall provide equal current to each lamp in each operating mode.
- 3. Compatibility: Certified by manufacturer for use with specific bi-level control system and lamp type indicated.

2.3 BALLASTS FOR COMPACT FLUORESCENT LAMPS

- A. Description: Electronic-programmed rapid-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated:
 - 1. Lamp end-of-life detection and shutdown circuit.
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: Class A.
 - 4. Total Harmonic Distortion Rating: Less than 20 percent.
 - 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. BF: 0.95 or higher unless otherwise indicated.
 - 9. Power Factor: 0.95, except fixtures designated as "Residential" may use low-powerfactor electronic ballasts or higher.
 - 10. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.

2.4 EMERGENCY FLUORESCENT POWER UNIT

- A. Internal Type: Self-contained, modular, battery-inverter unit, factory mounted within lighting fixture body and compatible with ballast. Comply with UL 924.
 - 1. Emergency Connection: Operate one fluorescent lamp(s) continuously at an output of 1100 lumens each. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
 - 2. Nightlight Connection: Operate one fluorescent lamp continuously.
 - 3. Test Push Button and Indicator Light: Visible and accessible without opening fixture or entering ceiling space.
 - a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - 4. Battery: Sealed, maintenance-free, nickel-cadmium type.
 - 5. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
 - 6. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.

- 7. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.
- B. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more fluorescent lamps, remote mounted from lighting fixture. Comply with UL 924.
 - 1. Emergency Connection: Operate one fluorescent lamp continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
 - 2. Nightlight Connection: Operate one fluorescent lamp in a remote fixture continuously.
 - 3. Battery: Sealed, maintenance-free, nickel-cadmium type.
 - 4. Charger: Fully automatic, solid-state, constant-current type.
 - 5. Housing: NEMA 250, Type 1 enclosure.
 - 6. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - 7. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - 8. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 - 9. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.5 BALLASTS FOR HID LAMPS

- A. Electromagnetic Ballast for Metal-Halide Lamps: Comply with ANSI C82.4 and UL 1029. Include the following features unless otherwise indicated:
 - 1. Ballast Circuit: Constant-wattage autotransformer or regulating high-power-factor type.
 - 2. Minimum Starting Temperature: Minus 22 deg F for single-lamp ballasts.
 - 3. Rated Ambient Operating Temperature: 104 deg F.
 - 4. Open-circuit operation that will not reduce average life.
 - 5. Low-Noise Ballasts: Manufacturers' standard epoxy-encapsulated models designed to minimize audible fixture noise.
- B. Electronic Ballast for Metal-Halide Lamps: Include the following features unless otherwise indicated:
 - 1. Minimum Starting Temperature: Minus 20 deg F for single-lamp ballasts.
 - 2. Rated Ambient Operating Temperature: 130 deg F.
 - 3. Lamp end-of-life detection and shutdown circuit.
 - 4. Sound Rating: Class A.
 - 5. Total Harmonic Distortion Rating: Less than 20 percent.
 - 6. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 7. Lamp Current Crest Factor: 1.5 or less.
 - 8. Power Factor: 0.90 or higher.

- 9. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.
- 10. Protection: Class P thermal cutout.
- 11. Bi-Level Dimming Ballast: Ballast circuit and leads provide for remote control of the light output of the associated fixture between high- and low-level and off.
 - a. High-Level Operation: 100 percent of rated lamp lumens.
 - b. Low-Level Operation: 50 percent of rated lamp lumens.
 - c. Compatibility: Certified by ballast manufacturer for use with specific bi-level control system and lamp type indicated. Certified by lamp manufacturer that ballast operating modes are free from negative effect on lamp life and color-rendering capability.
- 12. Continuous Dimming Ballast: Dimming range shall be from 100 to 35 percent of rated lamp lumens without flicker.
 - a. Ballast Input Watts: Reduced to a maximum of 50 percent of normal at lowest dimming setting.
- C. High-Pressure Sodium Ballasts: Electromagnetic type, with solid-state igniter/starter. Igniter/starter shall have an average life in pulsing mode of 10,000 hours at an igniter/starter-case temperature of 90 deg C.
 - 1. Instant-Restrike Device: Integral with ballast, or solid-state potted module, factory installed within fixture and compatible with lamps, ballasts, and mogul sockets up to 150 W.
 - 2. Minimum Starting Temperature: Minus 40 deg F.

2.6 QUARTZ LAMP LIGHTING CONTROLLER

- A. General Requirements for Controllers: Factory installed by lighting fixture manufacturer. Comply with UL 1598.
- B. Standby (Quartz Restrike): Automatically switches quartz lamp on when a HID lamp in the fixture is initially energized and during the HID lamp restrike period after brief power outages.
- C. Connections: Designed for a single branch -circuit connection.
- D. Switching Off: Automatically switches quartz lamp off when HID lamp strikes.
- E. Switching Off: Automatically switches quartz lamp off when HID lamp reaches approximately 60 percent light output.

2.7 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

- B. Internally Lighted Signs:
 - 1. Lamps for AC Operation: Fluorescent, two for each fixture, 20,000 hours of rated lamp life.
 - 2. Lamps for AC Operation: LEDs, 50,000 hours minimum rated lamp life.
 - 3. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 - a. Battery: Sealed, maintenance-free, nickel-cadmium type.
 - b. Charger: Fully automatic, solid-state type with sealed transfer relay.
 - c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 - d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - f. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 - g. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.
 - 4. Master/Remote Sign Configurations:
 - a. Master Unit: Comply with requirements above for self-powered exit signs, and provide additional capacity in LED power supply, ballast or battery for power connection to remote unit.
 - b. Remote Unit: Comply with requirements above for self-powered exit signs, except omit power supply, battery, and test features. Arrange to receive full power requirements from master unit. Connect for testing concurrently with master unit as a unified system.
- C. Self-Luminous Signs: Powered by tritium gas, with universal bracket for flush-ceiling, wall, or end mounting. Signs shall be guaranteed by manufacturer to maintain the minimum brightness requirements in UL 924 for 10 years.
- D. Self-Luminous Signs: Using strontium oxide aluminate compound to store ambient light and release the stored energy when the light is removed. Provide with universal bracket for flush-ceiling, wall, or end mounting.

2.8 EMERGENCY LIGHTING UNITS

- A. General Requirements for Emergency Lighting Units: Self-contained units complying with UL 924.
 - 1. Battery: Sealed, maintenance-free, lead-acid type.
 - 2. Charger: Fully automatic, solid-state type with sealed transfer relay.
 - 3. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 - 4. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - 5. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - 6. Wire Guard: Heavy-chrome-plated wire guard protects lamp heads or fixtures.
 - 7. Integral Time-Delay Relay: Holds unit on for fixed interval of 15 minutes when power is restored after an outage.
 - 8. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 - 9. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.9 FLUORESCENT LAMPS

- A. T8 rapid-start lamps, rated 32 W maximum, nominal length of 48 inches, 2800 initial lumens (minimum), CRI 75 (minimum), color temperature 3500 K, and average rated life 20,000 hours unless otherwise indicated.
- B. T8 rapid-start lamps, rated 17 W maximum, nominal length of 24 inches, 1300 initial lumens (minimum), CRI 75 (minimum), color temperature 3500 K, and average rated life of 20,000 hours unless otherwise indicated.
- C. T5 rapid-start lamps, rated 28 W maximum, nominal length of 45.2 inches, 2900 initial lumens (minimum), CRI 85 (minimum), color temperature 3000 K, and average rated life of 20,000 hours unless otherwise indicated.
- D. T5HO rapid-start, high-output lamps, rated 54 W maximum, nominal length of 45.2 inches, 5000 initial lumens (minimum), CRI 85 (minimum), color temperature 4100 K, and average rated life of 20,000 hours unless otherwise indicated.

- E. Compact Fluorescent Lamps: 4-Pin, CRI 80 (minimum), color temperature 3500 K, average rated life of 10,000 hours at three hours operation per start, and suitable for use with dimming ballasts unless otherwise indicated.
 - 1. 13 W: T4, double or triple tube, rated 900 initial lumens (minimum).
 - 2. 18 W: T4, double or triple tube, rated 1200 initial lumens (minimum).
 - 3. 26 W: T4, double or triple tube, rated 1800 initial lumens (minimum).
 - 4. 32 W: T4, triple tube, rated 2400 initial lumens (minimum).
 - 5. 42 W: T4, triple tube, rated 3200 initial lumens (minimum).
 - 6. 57 W: T4, triple tube, rated 4300 initial lumens (minimum).
 - 7. 70 W: T4, triple tube, rated 5200 initial lumens (minimum).

2.10 HID LAMPS

- A. High-Pressure Sodium Lamps: ANSI C78.42, CRI 21 (minimum), color temperature 1900 K, and average rated life of 24,000 hours, minimum.
 - 1. Dual-Arc Tube Lamps: Arranged so only one of two arc tubes is lighted at one time and, when power is restored after an outage, the cooler arc tube, with lower internal pressure, lights instantly, providing an immediate 8 to 15 percent of normal light output.
- B. Metal-Halide Lamps: ANSI C78.43, with minimum CRI 65, and color temperature 4000 K.
- C. Pulse-Start, Metal-Halide Lamps: Minimum CRI 65, and color temperature 4000 K.
- D. Ceramic, Pulse-Start, Metal-Halide Lamps: Minimum CRI 80, and color temperature 4000 K.
- E. Low-Pressure Sodium Lamps: ANSI 78.41, CRI 0, and color temperature 1800 K.

2.11 LIGHTING FIXTURE SUPPORT COMPONENTS

- A. Comply with Section 260529 "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.
- C. Twin-Stem Hangers: Two, 1/2-inch steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.
- D. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage.
- E. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage.
- F. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

G. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.

2.12 RETROFIT KITS FOR FLUORESCENT LIGHTING FIXTURES

- A. Reflector Kit: UL 1598, Type I. Suitable for two- to four-lamp, surface-mounted or recessed lighting fixtures by improving reflectivity of fixture surfaces.
- B. Ballast and Lamp Change Kit: UL 1598, Type II. Suitable for changing existing ballast, lamps, and sockets.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Lighting fixtures:
 - 1. Set level, plumb, and square with ceilings and walls unless otherwise indicated.
 - 2. Install lamps in each luminaire.
- B. Temporary Lighting: If it is necessary, and approved by Architect, to use permanent luminaires for temporary lighting, install and energize the minimum number of luminaires necessary. When construction is sufficiently complete, remove the temporary luminaires, disassemble, clean thoroughly, install new lamps, and reinstall.
- C. Remote Mounting of Ballasts: Distance between the ballast and fixture shall not exceed that recommended by ballast manufacturer. Verify, with ballast manufacturers, maximum distance between ballast and luminaire.
- D. Lay-in Ceiling Lighting Fixtures Supports: Use grid as a support element.
 - 1. Install ceiling support system rods or wires, independent of the ceiling suspension devices, for each fixture. Locate not more than 6 inches from lighting fixture corners.
 - 2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
 - 3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch metal channels spanning and secured to ceiling tees.
 - 4. Install at least one independent support rod or wire from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.
- E. Suspended Lighting Fixture Support:
 - 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 - 2. Stem-Mounted, Single-Unit Fixtures: Suspend with twin-stem hangers.

- 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
- 4. Do not use grid as support for pendant luminaires. Connect support wires or rods to building structure.
- F. Air-Handling Lighting Fixtures: Install with dampers closed and ready for adjustment.
- G. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.2 IDENTIFICATION

A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

- A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.
- B. Verify that self-luminous exit signs are installed according to their listing and the requirements in NFPA 101.
- C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.4 STARTUP SERVICE

A. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Owner. Burn-in fluorescent and compact fluorescent lamps intended to be dimmed, for at least 100 hours at full voltage.

3.5 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting aimable luminaires to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose. Some of this work may be required after dark.
 - 1. Adjust aimable luminaires in the presence of Architect.

END OF SECTION 265100

SECTION 265600 - EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Exterior luminaires with lamps and ballasts.
 - 2. Luminaire-mounted photoelectric relays.
 - 3. Poles and accessories.
- B. Related Sections:
 - 1. Section 16511 "Interior Lighting" for exterior luminaires normally mounted on exterior surfaces of buildings.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color-rendering index.
- C. HID: High-intensity discharge.
- D. LER: Luminaire efficacy rating.
- E. Luminaire: Complete lighting fixture, including ballast housing if provided.
- F. Pole: Luminaire support structure, including tower used for large area illumination.
- G. Standard: Same definition as "Pole" above.

1.4 STRUCTURAL ANALYSIS CRITERIA FOR POLE SELECTION

A. Dead Load: Weight of luminaire and its horizontal and vertical supports, lowering devices, and supporting structure, applied as stated in AASHTO LTS-4-M.

- B. Live Load: Single load of 500 lbf (2224 N), distributed as stated in AASHTO LTS-4-M.
- C. Ice Load: Load of 3 lbf/sq. ft., applied as stated in AASHTO LTS-4-M Ice Load Map.
- D. Wind Load: Pressure of wind on pole and luminaire and banners and banner arms, calculated and applied as stated in AASHTO LTS-4-M.
 - 1. Basic wind speed for calculating wind load for poles exceeding 49.2 feet in height is 100 mph per AASHTO LTS-4-M for this Project.
 - a. Wind Importance Factor: 1.0.
 - b. Minimum Design Life: 50 years.
 - c. Velocity Conversion Factors: 1.0.
 - 2. Basic wind speed for calculating wind load for poles 50 feet high or less is 100 mph per AASHTO LTS-4-M for this Project.
 - a. Wind Importance Factor: 1.0.
 - b. Minimum Design Life: 25 years.
 - c. Velocity Conversion Factors: 1.0.

1.5 ACTION SUBMITTALS

- A. Product Data: For each luminaire, pole, and support component, arranged in order of lighting unit designation. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of luminaire, including materials, dimensions, effective projected area, and verification of indicated parameters.
 - 2. Details of attaching luminaires and accessories.
 - 3. Details of installation and construction.
 - 4. Luminaire materials.
 - 5. Photometric data based on laboratory tests of each luminaire type, complete with indicated lamps, ballasts, and accessories.
 - a. Testing Agency Certified Data: For indicated luminaires, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
 - b. Manufacturer Certified Data: Photometric data shall be certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
 - 6. Photoelectric relays.
 - 7. Ballasts, including energy-efficiency data.
 - 8. Lamps, including life, output, CCT, CRI, lumens, and energy-efficiency data.
 - 9. Materials, dimensions, and finishes of poles.
 - 10. Means of attaching luminaires to supports, and indication that attachment is suitable for components involved.
 - 11. Anchor bolts for poles.
 - 12. Manufactured pole foundations.

- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Anchor-bolt templates keyed to specific poles and certified by manufacturer.
 - 3. Design calculations, certified by a qualified professional engineer, indicating strength of screw foundations and soil conditions on which they are based.
 - 4. Wiring Diagrams: For power, signal, and control wiring.
- C. Samples: For products designated for sample submission in the Exterior Lighting Device Schedule. Each Sample shall include lamps and ballasts.

1.6 INFORMATIONAL SUBMITTALS

- A. Pole and Support Component Certificates: Signed by manufacturers of poles, certifying that products are designed for indicated load requirements in AASHTO LTS-4-M and that load imposed by luminaire and attachments has been included in design. The certification shall be based on design calculations by a professional engineer.
- B. Qualification Data: For qualified agencies providing photometric data for lighting fixtures.
- C. Field quality-control reports.
- D. Warranty: Sample of special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and poles to include in emergency, operation, and maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Glass and Plastic Lenses, Covers, and Other Optical Parts: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 3. Ballasts: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.9 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturer's laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with IEEE C2, "National Electrical Safety Code."
- D. Comply with NFPA 70.

1.10 DELIVERY, STORAGE, AND HANDLING

- A. Package aluminum poles for shipping according to ASTM B 660.
- B. Store poles on decay-resistant-treated skids at least 12 inches above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation.
- C. Handle wood poles so they will not be damaged. Do not use pointed tools that can indent pole surface more than 1/4 inch deep. Do not apply tools to section of pole to be installed below ground line.
- D. Retain factory-applied pole wrappings on fiberglass and laminated wood poles until right before pole installation. Handle poles with web fabric straps.
- E. Retain factory-applied pole wrappings on metal poles until right before pole installation. For poles with nonmetallic finishes, handle with web fabric straps.

1.11 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace products that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs or alterations from special warranty coverage.
 - 1. Warranty Period for Luminaires: Five years from date of Substantial Completion.
 - 2. Warranty Period for Metal Corrosion: Five years from date of Substantial Completion.
 - 3. Warranty Period for Color Retention: Five years from date of Substantial Completion.
 - 4. Warranty Period for Poles: Repair or replace lighting poles and standards that fail in finish, materials, and workmanship within manufacturer's standard warranty period, but not less than three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR LUMINAIRES

- A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.
 - 1. LER Tests Incandescent Fixtures: Where LER is specified, test according to NEMA LE 5A.
 - 2. LER Tests Fluorescent Fixtures: Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
 - 3. LER Tests HID Fixtures: Where LER is specified, test according to NEMA LE 5B.
- B. Lateral Light Distribution Patterns: Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.
- C. Metal Parts: Free of burrs and sharp corners and edges.
- D. Sheet Metal Components: Corrosion-resistant aluminum unless otherwise indicated. Form and support to prevent warping and sagging.
- E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.
- F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.
- G. Exposed Hardware Material: Stainless steel.
- H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- I. Light Shields: Metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field.
- J. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.
- K. Lenses and Refractors Gaskets: Use heat and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

- L. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.
- M. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or SSPC-SP 8, "Pickling."
 - 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 - a. Color: As selected from manufacturer's standard catalog of colors.
 - b. Color: Match Architect's sample of manufacturer's standard color.
 - c. Color: As selected by Architect from manufacturer's full range.
- N. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax.
 - 3. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 - 4. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.
 - a. Color: As selected by Architect from manufacturer's full range.

2.2 LUMINAIRE-MOUNTED PHOTOELECTRIC RELAYS

- A. Comply with UL 773 or UL 773A.
- B. Contact Relays: Factory mounted, single throw, designed to fail in the on position, and factory set to turn light unit on at 1.5 to 3 fc and off at 4.5 to 10 fc with 15-second minimum time delay.
 - 1. Relay with locking-type receptacle shall comply with ANSI C136.10.
 - 2. Adjustable window slide for adjusting on-off set points.

EXTERIOR LIGHTING

2.3 FLUORESCENT BALLASTS AND LAMPS

- A. Ballasts for Low-Temperature Environments:
 - 1. Temperatures 0 Deg F and Higher: Electronic or electromagnetic type rated for 0 deg F starting and operating temperature with indicated lamp types.
 - 2. Temperatures Minus 20 Deg F and Higher: Electromagnetic type designed for use with indicated lamp types.
- B. Ballast Characteristics:
 - 1. Power Factor: 90 percent, minimum.
 - 2. Sound Rating: Class A.
 - 3. Total Harmonic Distortion Rating: Less than 10 percent.
 - 4. Electromagnetic Ballasts: Comply with ANSI C82.1, energy-saving, high power factor, Class P, automatic-reset thermal protection.
 - 5. Case Temperature for Compact Lamp Ballasts: 65 deg C, maximum.
 - 6. Transient-Voltage Protection: Comply with IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
- C. Low-Temperature Lamp Capability: Rated for reliable starting and operation with ballast provided at temperatures 0 deg F and higher.

2.4 BALLASTS FOR HID LAMPS

- A. Comply with ANSI C82.4 and UL 1029 and capable of open-circuit operation without reduction of average lamp life. Include the following features unless otherwise indicated:
 - 1. Ballast Circuit: Constant-wattage autotransformer or regulating high-power-factor type.
 - 2. Minimum Starting Temperature: Minus 22 deg F.
 - 3. Normal Ambient Operating Temperature: 104 deg F.
 - 4. Ballast Fuses: One in each ungrounded power supply conductor. Voltage and current ratings as recommended by ballast manufacturer.
- B. Auxiliary, Instant-On, Quartz System: Factory-installed feature automatically switches quartz lamp on when fixture is initially energized and when momentary power outages occur. System automatically turns quartz lamp off when HID lamp reaches approximately 60 percent of light output.
- C. High-Pressure Sodium Ballasts: Electromagnetic type with solid-state igniter/starter and capable of open-circuit operation without reduction of average lamp life. Igniter/starter shall have an average life in pulsing mode of 10,000 hours at an igniter/starter-case temperature of 90 deg C.

- 1. Instant-Restrike Device: Integral with ballast, or solid-state potted module, factory installed within fixture and compatible with lamps, ballasts, and mogul sockets up to 150 W.
 - a. Restrike Range: 105- to 130-V ac.
 - b. Maximum Voltage: 250-V peak or 150-V ac rms.
- 2. Minimum Starting Temperature: Minus 40 deg F.

2.5 HID LAMPS

- A. High-Pressure Sodium Lamps: ANSI C78.42, CRI 21 (minimum), CCT color temperature 1900 K, and average rated life of 24,000 hours, minimum.
 - 1. Dual-Arc Tube Lamp: Arranged so only one of two arc tubes is lighted at one time and, when power is restored after an outage, the cooler arc tube, with lower internal pressure, lights instantly, providing an immediate 8 to 15 percent of normal light output.
- B. Low-Pressure Sodium Lamps: ANSI C78.43.
- C. Metal-Halide Lamps: ANSI C78.43, with minimum CRI 65, and CCT color temperature 4000 K.
- D. Pulse-Start, Metal-Halide Lamps: Minimum CRI 65, and CCT color temperature 4000 K.
- E. Ceramic, Pulse-Start, Metal-Halide Lamps: Minimum CRI 80, and CCT color temperature 4000 K.

2.6 GENERAL REQUIREMENTS FOR POLES AND SUPPORT COMPONENTS

- A. Structural Characteristics: Comply with AASHTO LTS-4-M.
 - 1. Wind-Load Strength of Poles: Adequate at indicated heights above grade without failure, permanent deflection, or whipping in steady winds of speed indicated in "Structural Analysis Criteria for Pole Selection" Article.
 - 2. Strength Analysis: For each pole, multiply the actual equivalent projected area of luminaires and brackets by a factor of 1.1 to obtain the equivalent projected area to be used in pole selection strength analysis.
- B. Luminaire Attachment Provisions: Comply with luminaire manufacturers' mounting requirements. Use stainless-steel fasteners and mounting bolts unless otherwise indicated.

- C. Mountings, Fasteners, and Appurtenances: Corrosion-resistant items compatible with support components.
 - 1. Materials: Shall not cause galvanic action at contact points.
 - 2. Anchor Bolts, Leveling Nuts, Bolt Caps, and Washers: Hot-dip galvanized after fabrication unless otherwise indicated.
 - 3. Anchor-Bolt Template: Plywood or steel.
- D. Handhole: Oval-shaped, with minimum clear opening of 2-1/2 by 5 inches, with cover secured by stainless-steel captive screws.
- E. Power-Installed Screw Foundations: Factory fabricated by pole manufacturer, with structural steel complying with ASTM A 36/A 36M and hot-dip galvanized according to ASTM A 123/A 123M; and with top-plate and mounting bolts to match pole base flange and strength required to support pole, luminaire, and accessories.
- F. Breakaway Supports: Frangible breakaway supports, tested by an independent testing agency acceptable to authorities having jurisdiction, according to AASHTO LTS-4-M.

2.7 STEEL POLES

- A. Poles: Comply with ASTM A 500, Grade B, carbon steel with a minimum yield of 46,000 psig; one-piece construction up to 40 feet in height with access handhole in pole wall.
 - 1. Shape: Round, tapered, Round, straight, Square, tapered or Square, straight.
 - 2. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.
- B. Steel Mast Arms: Single-arm type, continuously welded to pole attachment plate. Material and finish same as pole.
- C. Brackets for Luminaires: Detachable, cantilever, without underbrace.
 - 1. Adapter fitting welded to pole, allowing the bracket to be bolted to the pole mounted adapter, then bolted together with galvanized-steel bolts.
 - 2. Cross Section: Tapered oval, with straight tubular end section to accommodate luminaire.
 - 3. Match pole material and finish.
- D. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.
- E. Steps: Fixed steel, with nonslip treads, positioned for 15-inch vertical spacing, alternating on opposite sides of pole; first step at elevation 10 feet above finished grade.
- F. Intermediate Handhole and Cable Support: Weathertight, 3-by-5-inch handhole located at midpoint of pole with cover for access to internal welded attachment lug for electric cable support grip.

265600 - 9 Page 5397 of 6215

- G. Grounding and Bonding Lugs: Welded 1/2-inch threaded lug, complying with requirements in Section 260526 "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.
- H. Cable Support Grip: Wire-mesh type with rotating attachment eye, sized for diameter of cable and rated for a minimum load equal to weight of supported cable times a 5.0 safety factor.
- I. Platform for Lamp and Ballast Servicing: Factory fabricated of steel with finish matching that of pole.
- J. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting.
- K. Galvanized Finish: After fabrication, hot-dip galvanize complying with ASTM A 123/A 123M.
- L. Factory-Painted Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or with SSPC-SP 8, "Pickling."
 - 2. Interior Surfaces of Pole: One coat of bituminous paint, or otherwise treat for equal corrosion protection.
 - 3. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 - a. Color: As selected by Architect from manufacturer's full range.

2.8 ALUMINUM POLES

- A. Poles: Seamless, extruded structural tube complying with ASTM B 429/B 429M, Alloy 6063-T6 with access handhole in pole wall.
- B. Poles: ASTM B 209, 5052-H34 marine sheet alloy with access handhole in pole wall.
 - 1. Shape: Round, tapered, Round, straight, Square, tapered or Square, straight.
 - 2. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.
- C. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.
- D. Grounding and Bonding Lugs: Welded 1/2-inch threaded lug, complying with requirements in Section 260526 "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.

- E. Brackets for Luminaires: Detachable, with pole and adapter fittings of cast aluminum. Adapter fitting welded to pole and bracket, then bolted together with stainless-steel bolts.
 - 1. Tapered oval cross section, with straight tubular end section to accommodate luminaire.
 - 2. Finish: Same as pole.
- F. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting.
- G. Aluminum Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax.
 - 3. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 - 4. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.
 - a. Color: Light bronze, Medium bronze, Dark bronze, Black or As selected by Architect from manufacturer's full range.

2.9 FIBERGLASS POLES

- A. Poles: Designed specifically for supporting luminaires, with factory-formed cable entrance and handhole. Not less than 65 percent fiberglass, with resin and pigment making up the remainder.
 - 1. Resin Color: Dark bronze; provide uniform coloration throughout entire wall thickness.
 - 2. Surface Finish: Pigmented polyurethane, with a minimum dry film thickness of 1.5 mils. Polyurethane may be omitted if the surface layer of pole is inherently UV inhibited.

2.10 WOOD POLES

- A. Poles: Douglas fir or Southern yellow pine complying with ANSI O5.1 and with AWPA C4 for wood species used; and bored, roofed, and gained before treatment.
 - 1. Mounting Provisions: Embedded.
- B. Preservative Treatment: Pressure treat poles with creosote, pentachlorophenol or ammoniacal copper arsenate according to AWPA C1 and AWPA C4.
- C. Luminaire Brackets: Comply with ANSI C136.13.

2.11 POLE ACCESSORIES

A. Transformer Type Base: Same material and color as pole. Coordinate dimensions to suit pole's base flange and accept [ballast(s)] [indicated accessories].

PART 3 - EXECUTION

3.1 LUMINAIRE INSTALLATION

- A. Install lamps in each luminaire.
- B. Fasten luminaire to indicated structural supports.
 - 1. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
- C. Adjust luminaires that require field adjustment or aiming.

3.2 POLE INSTALLATION

- A. Alignment: Align pole foundations and poles for optimum directional alignment of luminaires and their mounting provisions on the pole.
- B. Clearances: Maintain the following minimum horizontal distances of poles from surface and underground features unless otherwise indicated on Drawings:
 - 1. Fire Hydrants and Storm Drainage Piping: 60 inches.
 - 2. Water, Gas, Electric, Communication, and Sewer Lines: 10 feet.
 - 3. Trees: 15 feet from tree trunk.
- C. Concrete Pole Foundations: Set anchor bolts according to anchor-bolt templates furnished by pole manufacturer. Concrete materials, installation, and finishing requirements are specified in Section 033000 "Cast-in-Place Concrete."
- D. Foundation-Mounted Poles: Mount pole with leveling nuts, and tighten top nuts to torque level recommended by pole manufacturer.
 - 1. Use anchor bolts and nuts selected to resist seismic forces defined for the application and approved by manufacturer.
 - 2. Grout void between pole base and foundation. Use nonshrink or expanding concrete grout firmly packed to fill space.
 - 3. Install base covers unless otherwise indicated.
 - 4. Use a short piece of 1/2-inch- diameter pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole.

- E. Embedded Poles with Tamped Earth Backfill: Set poles to depth below finished grade indicated on Drawings, but not less than one-sixth of pole height.
 - 1. Dig holes large enough to permit use of tampers in the full depth of hole.
 - 2. Backfill in 6-inch layers and thoroughly tamp each layer so compaction of backfill is equal to or greater than that of undisturbed earth.
- F. Embedded Poles with Concrete Backfill: Set poles in augered holes to depth below finished grade indicated on Drawings, but not less than one-sixth of pole height.
 - 1. Make holes 6 inches in diameter larger than pole diameter.
 - 2. Fill augered hole around pole with air-entrained concrete having a minimum compressive strength of 3000 psi at 28 days, and finish in a dome above finished grade.
 - 3. Use a short piece of 1/2-inch- diameter pipe to make a drain hole through concrete dome. Arrange to drain condensation from interior of pole.
 - 4. Cure concrete a minimum of 72 hours before performing work on pole.
- G. Poles and Pole Foundations Set in Concrete Paved Areas: Install poles with minimum of 6inch- wide, unpaved gap between the pole or pole foundation and the edge of adjacent concrete slab. Fill unpaved ring with pea gravel to a level 1 inch below top of concrete slab.
- H. Raise and set poles using web fabric slings (not chain or cable).

3.3 BOLLARD LUMINAIRE INSTALLATION

- A. Align units for optimum directional alignment of light distribution.
- B. Install on concrete base with top 4 inches above finished grade or surface at bollard location. Cast conduit into base, and shape base to match shape of bollard base. Finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 033000 "Cast-in-Place Concrete."

3.4 INSTALLATION OF INDIVIDUAL GROUND-MOUNTING LUMINAIRES

A. Install on concrete base with top 4 inches above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 033000 "Cast-in-Place Concrete."

3.5 CORROSION PREVENTION

- A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
- B. Steel Conduits: Comply with Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch- thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

265600 - 13 Page 5401 of 6215

3.6 GROUNDING

- A. Ground metal poles and support structures according to Section 260526 "Grounding and Bonding for Electrical Systems."
 - 1. Install grounding electrode for each pole unless otherwise indicated.
 - 2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.
- B. Ground nonmetallic poles and support structures according to Section 260526 "Grounding and Bonding for Electrical Systems."
 - 1. Install grounding electrode for each pole.
 - 2. Install grounding conductor and conductor protector.
 - 3. Ground metallic components of pole accessories and foundations.

3.7 FIELD QUALITY CONTROL

- A. Inspect each installed fixture for damage. Replace damaged fixtures and components.
- B. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source.
 - 1. Verify operation of photoelectric controls.
- C. Illumination Tests:
 - 1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IESNA testing guide(s):
 - a. IESNA LM-5, "Photometric Measurements of Area and Sports Lighting Installations."
 - b. IESNA LM-50, "Photometric Measurements of Roadway Lighting Installations."
 - c. IESNA LM-52, "Photometric Measurements of Roadway Sign Installations."
 - d. IESNA LM-64, "Photometric Measurements of Parking Areas."
 - e. IESNA LM-72, "Directional Positioning of Photometric Data."
- D. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain luminaire lowering devices.

END OF SECTION 265600

EXTERIOR LIGHTING