
E102 Final Project:
Stabilizing an Inverted Pendulum

Clayson Briggs and Gabriel Zwillinger

I. INTRODUCTION

Stabilizing systems is a crucial application of control the-
ory. Frequently an unstable system will need to be controlled
for various applications. In this case, a cart must move 1m
while supporting an inverted pendulum, as seen in Fig. 1.
Additional constraints are also given: the cart must move
the full 1m in under 10 seconds; the cart may not overshoot
the final position; the magnitude of the acceleration of
the cart is limited to |a(t)| < 0.5m/s2; finally, the cart is
subjected to a constant angular acceleration disturbance of
α(t) = 0.5rad/s2. To stabilize the system, we can develop a
full state feedback control system that maintains the angular
displacement of the pendulum while satisfying the given
constraints.

Fig. 1. Diagram of the cart-pendulum system to be stabilized. Courtesy
of Annie Tran, 2001.

The governing equations of the pendulum-cart system are
given as:

Lθ̈(t)−gsin(θ(t)) = a(t)cos(θ)+Lα(t)

s̈(t) = a(t)

where L = 0.5m and g = 9.81m/s2 represent the length of
the pendulum and gravitational acceleration, respectively.

II. STATE SPACE DESIGN OF LINEAR
CONTROLLER FOR A LINEARIZED PLANT

A. Linearized State Space Equations

To formulate a state-space feedback control scheme for
the total system, we first investigate the linearized state space
equations for the cart-pendulum plant. The state vector used
is:

x =


θ(t)
θ̇(t)
s(t)
ṡ(t)



with the control input u = a(t), disturbance input w = α(t)
and output vector

y =

[
θ(t)
s(t)

]
.

To linearize the system, we can use the small angle
approximation such that sin(θ(t)) = θ(t) & cos(θ(t)) = 1.
This results in the following state space equations:

ẋ(t) = Ax+Bu+Ew (1)

y = Cx+Du

where

A =


0 1 0 0

g/L 0 0 0
0 0 0 1
0 0 0 0

 ,

B =


0

−1/L
0
1

 , E =


0
1
0
0



C =

[
1 0 0 0
0 0 1 0

]
, and D =

[
0
0

]
.

With our state equations for system dynamics and outputs,
we can move on to establishing the stability, controllability,
and observability of the system.

B. Stability, Controllability, and Observability

The system stability is determined by the the eigenvalues
of A, the system matrix. Using MATLAB to find the eigen-
values of A, we get s1 = 4.4294, s2 = −4.4294, and s3 =
s4 = 0. Since s1 has a positive real part, the original system
is unstable, providing motivation for the implementation of
a control scheme.

To determine if the system is controllable, we can examine
the controllability matrix. We know that for a system to be
stable, the controllability matrix must have rank n, where n
is the dimension of the system matrix A. The controllability
matrix is defined by:

C=
[

B AB · · · An−1B
]

Using MATLAB, we find that rank(C) = 4. Since the
dimensions of A are 4 x 4, we know that n = 4 and thus
the system is controllable.

Next, we analyze the observability of the system. The
system is observable if the observability matrix O has rank =
n. The observability matrix is given by:

O=


C

CA
...

CAn−1


Using MATLAB, we find that rank(O) = 4, which means

that this system is observable.

C. State Feedback Control

State feedback was implemented using a linear propor-
tional controller and integral action. A linear observer was
also implemented to estimate the current state of the system.
The block diagram of this system can be seen in Fig. 2.

Fig. 2. Block diagram of the closed-loop cart pendulum system.

The first step in implementing full state feedback was
finding the controller gains such that the closed-loop system
was stable and met all constraints. To find the controller
gains, the controller poles needed to be first determined.
Because the system is fourth-order with integral control
desired for the cart position, 5 controller poles are required.
The method of dominant poles was used to simplify finding
the poles, understanding that we would later tune the system
to satisfy the constraints.

Using the method of dominant poles, we assume that the
system can be approximated as second-order. We can then
select values of ζ and ωn knowing that the system may not
have overshoot and must reach the final position in under 10
seconds. Since the equation derived for the settling time ts
is reliant on an underdamped second-order plant, we choose
ζ = 0.99 to minimize the overshoot, and we select ts = 7.5
to introduce a factor of safety under 10 s. From here, we
derive our values to be ζ = 0.99 and ωn = 0.884.

Our dominant poles take the form of:

s1,2 =−ωnζ ±ωn j
√

1−ζ 2

We then chose the next 3 poles to have real parts 8, 9, and
10 times greater than the real part of our dominant poles,
respectively. Altogether, after later tuning ζ and ωn to better
meet system constraints, our controller poles are selected to
be

s1 =−0.8752+0.1247 j, s2 =−0.8752−0.1247 j

s3 =−7.0013, s4 =−7.8764, and s5 =−8.7516.

Equipped with our poles, we could now find our propor-
tional gains K and our integral gain KI . To do this, the state
vector and system matrices were augmented to account for
integral action:

ẋI = r(t)− y(t) = r−Cx (2)

and
u =−

[
−KI K

][xI
x

]
(3)

.
Substituting Eq.s (2) and (3) into (1) results in our

augmented state equation:[
ẋI
ẋ

]
=A

[
xI
x

]
+Bu

where
A=

[
0 −C
0 A

]
and B=

[
0
B

]
It is important to note that for the augmented matrices,

C =
[

0 0 1 0
]

because only the displacement of the cart s is being con-
trolled and not the rotation of the pendulum. Using the
full C would result in an uncontrollable augmented system.
Knowing the poles of the system and the augmented matrices
A and B we can use the MATLAB command place to
determine our controller gains. This results in:

KI =−19.2219 and

K =
[
−148.7722 −34.2166 −50.4360 −43.0536

]
.

D. Observer Design

The observer equations are given by:

˙̂x = Ax̂+Bu+L(y− ŷ) (4)

ŷ = Cx̂

We can substitute equations (1) and (4) into ê = x− x̂ to
obtain:

˙̂e = (A−LC)ê+Ew. (5)

Equation (5) describes the observer dynamics. To deter-
mine the observer gains L, we must first determine the
observer poles. These are usually set to be 5-10x further from
the origin than the controller poles so that the observer can
quickly estimate the system state without stability concerns.
With this in mind, we selected the observer poles to have
real parts 7 times greater than the real part of the observer
poles:

sobserver = 7Re(scontroller)+ Im(scontroller).

Additionally, since only 4 observer poles are required, only
the first 4 controller poles were used. The place command in
MATLAB with the transposed A and C system matrices was

then used to obtain the initial observer gains. After tuning,
our final observer gains are:

L =


67.2655 0.1462
387.5825 2.6285
0.1562 61.3828
2.9371 344.3692

 .

E. Linear System Simulation and Verification

The next step in fully implementing state control is
simulating the closed-loop system to verify that this control
scheme meets the problem constraints. To do this, first note
that when the observer is implemented, eq. (3) becomes:

u =−
[
−KI K

][xI
x̂

]
. (6)

After substituting equation (6) into (1) and using the fact
that ê = x− x̂, we acquire the closed-loop system dynamics:

ẋ = (A−BK)x+BKê+BKIxI +Ew (7)

Equations (2), (5), and (7) can then be combined in
one large augmented differential equation to encompass the
controller, observer, and integral action dynamics: ẋI

˙̂e
ẋ

= A

 xI
ê
x

+Br+Ew

where

A =

 0 0 C
0 A−LC 0

BKI BK A−BK

 ,

B =

 1
0
0

 , and E =

 0
E
E

 .

This linear ordinary differential equation was programmed
into MATLAB and the solver ode45 was used to derive the
states over the 0 to 10 s interval. Initial conditions were all
0, as defined in the problem statement. Additionally, an if
statement was used in the function definition to limit the
maximum acceleration of the cart to 0.5 m/s2, as given by
the constraints. Using the controller, integral, and observer
gains defined in sections C and D of this report, the system
response is shown in Fig. 3. The cart acceleration is shown
in Fig.4

As seen, these controller, integral, and observer gains
result in a stable linear system that meets the constraints.

III. SIMULATION OF CONTROL OF NONLINEAR
PLANT WITH THE LINEAR CONTROLLER

Up until now, all of the analysis has used the linearized
governing equations resulting form the small angle ap-
proximation. Simulating the nonlinear plant will give more
accurate behavior of the closed loop system, but the linear
system provides a good starting point for controlling the
nonlinear plant.

Fig. 3. Closed-loop system response of the linearized cart pendulum
system. As seen in the upper diagram, the cart reaches a displacement
of 1m without overshoot within 10 s. In the lower diagram, the constant
angular acceleration disturbance results in a non-zero steady-state rotational
displacement of the pendulum.

Fig. 4. Cart acceleration in the linearized system. The acceleration does
not exceed 0.5 m/s2 as specified.

A. Simulating the Nonlinear System

Using the same controller, integral, and observer gains
as the linear system, the nonlinear plant, controller, and
observer were programmed into a MATLAB function, and
the states were derived using ode45. Just like in the linear
system, an if statement was used to make sure the cart
acceleration did not exceed 0.5 m/s2 and initial conditions
were all 0. As seen in Fig. 5 and Fig. 6, this closed-
loop system response of the nonlinear system also satisfies
all system constraints. Since the system already meets the
constraints with the same system gains as the linear system,
the parameters did not need to be tuned.

B. Largest Allowable Disturbance

We want to find the largest allowable disturbance w(t)
such that the system will become unstable. We are also
interested in seeing at which disturbance w(t) the system

Fig. 5. Closed-loop system response of the nonlinear cart pendulum
system. As seen in the upper diagram, the cart reaches a displacement
of 1m without overshoot within 10 s. In the lower diagram, the constant
angular acceleration disturbance results in a non-zero steady-state rotational
displacement of the pendulum.

Fig. 6. Cart acceleration in the nonlinear system. The acceleration does
not exceed 0.5 m/s2 as specified.

no longer meets the system constraints. To consider system
stability more generally, we no longer restricted time to 10
seconds, as we wanted to see if the systems were stable for all
time, not necessarily within the constraints of the problem.
We did, however, leave our controller and observer gains
the same, as that provided a more interesting comparison
to our previous system than tuning our system poles and
gains further. Iterating through w(t), we found that as long
w(t) ≤ 7.5, the system remained stable. That being said,
the system had 115% overshoot and a settling time of
36 seconds. We could, in a future problem, maximize the
disturbance the system could handle while staying within the
problem constraints by retuning the poles and gains further,
but that will remain a fun future challenge for a rainy day.

Next, we found the maximum allowable disturbance such
that the system constraints were still met. Again leaving
the controller and observer gains the same, we slowly in-

cremented w(t) until we found that the maximum value of
w(t) such that the cart reached 1m by 10 seconds, had no
overshoot, and |a(t)|< 0.5m/s2. This resulted in a maximum
disturbance of w(t) = 2.4. For w(t) ≤ 2.4, the system was
stable and met all system constraints.

IV. DISCUSSION AND CONCLUSIONS

A cart supporting an inverted pendulum subject to a
disturbance was stabilized by deriving control, observer,
and integral gains. The cart was simulated and controlled
both by analyzing the linearized system for simplicity and
implementing the full nonlinear system in MATLAB. To
control the system, we first determined approximate con-
troller poles using the method of dominant poles. We then
found observer poles that were 7 times faster than the
controller poles. We were then able to find the corresponding
controller, integral, and observer gains. Using ode45 with a
limit on α , we simulated the system and tuned our gains
to verify that our system constraints were met. The same
controller and observer gains were used in both the linear and
nonlinear systems. As expected, the linearized model gave
a moderately good approximation for the actual, nonlinear,
system. A comparison of the two models can be seen in Fig.
7

Fig. 7. Comparison of cart and pendulum displacement for the linear and
nonlinear system

Increasing the disturbance w(t) leads to the linear ap-
proximation deviating further and further from the nonlinear
system. This is to be expected as the linear model relies
on small-angle approximation and as the applied disturbance
gets bigger, the angle of the pendulum increases.

V. ACKNOWLEDGMENTS

We would like to thank Professors Cha and Shia for
their guidance throughout this project and for teaching us
the fundamental skills that we learned in this course. We
also wanted to give a big shoutout to Professor Bright for
providing us with comprehensive notes on the class.

VI. APPENDIX

A. MATLAB Script

1 % E102 Final Project
2 % CB + GZ
3
4 % Parameters
5 g = 9.81;
6 l = 0.5;
7 alpha = 0.5; % alpha (nonlinear: max for

stability is 7.5, 2.4 for meeting
constraints)

8
9 % Plant matrices

10 A = [0 1 0 0; g/l 0 0 0; 0 0 0 1; 0 0 0
0];

11 B = [0; -1/l; 0; 1];
12 C = [1 0 0 0; 0 0 1 0];
13 D = [0; 0]; %[0 0; 0 0];
14 E = [0; 1; 0; 0];
15
16 % Check stability
17 Aeig = eig(A);
18
19 % Check controllability
20 Con = [B A*B Aˆ2*B Aˆ3*B];
21 if rank(Con) == 4
22 disp('This system is controllable!')
23 else
24 disp("This system ain't controllable

breh")
25 end
26
27 % Check observability
28 Obs = [C; C*A; C*Aˆ2; C*Aˆ3];
29 if rank(Obs) == 4
30 disp('This system is observable')
31 else
32 disp('this system is tragically not

observable')
33 end
34
35 % Solve for initial poles
36 Mp = 0.001;
37 ts = 7.5;
38 ops = optimset('Display', 'off');
39 zG = 0.99; %fsolve(@(z) exp(-pi*z/sqrt

(1-zˆ2))-Mp, 0.7, ops);
40 wG = fsolve(@(w) -log(0.01*sqrt(1-zGˆ2))

/(zG*w)-ts, 0.7, ops);
41 pG = [wG*(-zG+1i*sqrt(1-zGˆ2)), wG*(-zG

-1i*sqrt(1-zGˆ2)), -wG*zG*8, -wG*zG

*9, -wG*zG*10]; % poles with dominant
pole method

42
43 % Augmented system matrices and

controller gains

44 Aa = [0 -C(2,:); zeros(4,1) A];
45 Ba = [0; B];
46
47 Kextended = place(Aa, Ba, pG);
48 Ki = -Kextended(1);
49 K = Kextended(2:end);
50
51 % Calculate observer poles and gains
52 obsPG = zeros(length(pG)-1,1);
53 for i = 1:(length(pG)-1)
54 obsPG(i) = 7*real(pG(i))+imag(pG(i))

;
55 end
56 L = (place(A',C',obsPG))';
57
58 % Solve linear system
59 [tL,xLin] = ode45(@(t,x) finalLinear(t,x

,1,alpha,A,B,C,K,Ki,L,E), [0 10], [0,
zeros(1,4), 0, 0, 0, 0]);

60
61 % Plotting response of linear system
62 figure(1)
63 clf
64 subplot(1,2,1)
65 plot(tL,xLin(:,8))
66 xlabel('Time (s)')
67 ylabel('Displacement (m)')
68
69 subplot(1,2,2)
70 plot(tL,xLin(:,6))
71 xlabel('Time (s)')
72 ylabel('Angle (rad)')
73
74 % Solve and plot nonlinear system
75 [tN, xN] = ode45(@(t,x) finalNonlinear(t

,x,1,alpha,A,B,C,K,Ki,L,E), [0 10],
[0, zeros(1,4), 0, 0, 0, 0]);

76
77 figure(2)
78 clf
79 subplot(1,2,1)
80 plot(tN,xN(:,8))
81 xlabel('Time (s)')
82 ylabel('Displacement (m)')
83
84 subplot(1,2,2)
85 plot(tN,xN(:,6))
86 xlabel('Time (s)')
87 ylabel('Angle (rad)')
88
89 % Test integral control
90 Aint = [0 -C(2,:); zeros(4,1) A]; %[0

zeros(1,4) -C(2,:); zeros(4,1) A-L*C
zeros(4,4); B*Ki B*K A-B*K];

91 Bint = [0; B]; %[1; zeros(4,1); zeros
(4,1)];

92 Cint = [0 0 0 1 0]; %[0 0 0 0 0 0 0 1
0];

93
94 sysInt = ss(Aint-Bint*Kextended, [1; 0;

0; 0; 0], Cint, 0);
95
96 figure(3) % acceleration graph
97 accel = zeros(length(tL),9);
98 for i = 1:length(tL)
99 accel(i,:) = finalLinear(tL(i), xLin

(i,:)', 1, alpha, A, B, C, K, Ki,
L, E);

100 end
101 plot(tL, accel(:,9))
102 xlabel('Time (s)')
103 ylabel('Acceleration (m/s)')
104 title('Acceleration of cart')
105
106 figure(4) % nonlinear system

acceleration
107 accel = zeros(length(tN),9);
108 for i = 1:length(tN)
109 accel(i,:) = finalNonlinear(tN(i),

xN(i,:)', 1, alpha, A, B, C, K,
Ki, L, E);

110 end
111 plot(tN, accel(:,9))
112 xlabel('Time (s)')
113 ylabel('Acceleration (m/s)')
114 title('Acceleration of nonlinear system'

)
115
116 figure(5)
117 clf
118 step(sysInt)
119 title('Integral Control, no observer')
120
121 figure(6) % debug menu
122 clf
123 for i = 1:5
124 subplot(2,3,i)
125 plot(tL,xLin(:,i))
126 end
127
128 max(xN(:,8))

B. Linear MATLAB Function

1 function out = finalLinear(t, x, r, w, A
, B, C, K, Ki, L, E)

2 %The function for our E102 Final Project
3 % Inputs are t (time), x (state), r (

tracking input),
4 % w (disturbance input), A, B, and C (

the system
5 % matrices), K and L (the controller

and

6 % observer gains), and E (the error
matrix)

7 % Output is xdot
8
9 Abar = [0 zeros(1,4) -C(2,:);

10 zeros(4,1) A-L*C zeros(4,4);
11 B*Ki B*K A-B*K];
12 Bbar = [1; zeros(8,1)];
13 Ebar = [0; E; E];
14
15 xdot = Abar*x + Bbar*r + Ebar*w;
16
17 % if t > 2 && t < 2.25
18 % xdot = xdot + Ebar*w;
19 % end
20
21 if xdot(9) > 0.5
22 xdot(9) = 0.5;
23 elseif xdot(9) < -0.5
24 xdot(9) = -0.5;
25 end
26
27 out = xdot;
28
29 end

C. Nonlinear MATLAB Function

1 function xdot = finalNonlinear(t, x, r,
w, A, B, C, K, Ki, L, E)

2 %finalNonlinear The nonlinear function
for the E102 final project

3 % Takes u, the system input, as well
as alpha, disturbance input, as

4 % system inputs
5 xdot = zeros(9,1);
6
7 g = 9.81;
8 l = 0.5;
9

10 %u = -K*x(2:5)+Ki*x(1);
11
12 xdot(1) = r - C(2,:)*x(6:9);
13 xdot(2:5) = (A-L*C)*x(2:5)+E*w;
14 xdot(6:9) = [x(7);
15 g/l*sin(x(6))-1/l*cos(x(6))

(-[-Ki K][x(1); x(6:9)
])+w;

16 x(9)
17 -[-Ki K]*[x(1); x(6:9)]];
18
19 if xdot(9) > 0.5
20 xdot(9) = 0.5;
21 elseif xdot(9) < -0.5
22 xdot(9) = -0.5;
23 end
24
25 end

D. Simulink Block Diagram

We did not use Simulink and thus have no Simulink block
diagram. See Fig. 2 for system block diagram

