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I. INTRODUCTION

Periodic structures arise in various applications of struc-
tural engineering, since the manufacturing, assembly, and
analysis of such structures is typically more straightforward.
However, it is practically impossible to ensure that every
periodic component is perfectly identical due to manu-
facturing or material imperfections. In periodic structures,
system responses can be especially sensitive to these small
inconsistencies, but often, engineers do not take this into
account because it can add significant complexity to the
design and analysis stages.

In this project, we model a bladed disk assembly (fre-
quently referred to in industry as a “blisk”) as a one-
dimensional 50-degree-of-freedom lumped element model,
shown in Figure 1. Each of the 50 blades is modeled as
a mass with a material stiffness of k0 and an aerodynamic
or physical coupling stiffness of kc. Initially, we assume
that the structure is perfectly periodic, to gain a baseline
understanding of the system. Then, we introduce random
perturbations into the material stiffness k0 and apply both
a direct approach and a perturbation analysis to examine the
perturbations’ effects on the system’s responses. Finally, we
present a conclusion with our summary of the system and
some remarks. In the end, we hope to gain intuition about the
effects of various perturbations on the dynamics of periodic
structures and learn more about various methods to solve
eigenvalue problems in the context of structural engineering
and model these perturbations.

Fig. 1. A lumped element model of the bladed disk assembly [1]

II. PERFECTLY PERIODIC SYSTEM

A. Equations of Motion

To derive the equations of motion, we analyzed Free
Body Diagrams (FBDs) to apply Newton’s laws of motion.
Because the structure is perfectly periodic, we can use
symmetry to observe that only masses 1 and N are coupled
to one other mass, and every other mass is coupled to two
other masses. The FBD of a general case is illustrated in
Figure 2.

The FBDs are summarized below:

Fig. 2. The free body diagram for the ith mass in the model. Fs represents
a spring force.

For i = 1:

mẍ1 =−k0(x1 −0)− kc(x1 −0)− kc(x1 − x2)

⇒ mẍ1 +(2kc + k0)x1 − kcx2 = 0 (1)

Similarly, for i ̸= 1 and i ̸= N

mẍi +(2kc + k0)xi − kcxi−1 − kcxi+1 = 0 (2)

Finally, for i = N

mẍN +(2kc + k0)xN − kcxN−1 = 0 (3)

For i = 1, . . . ,N, where N = 50, equations (1), (2), and (3)
are collectively the Equations of Motion of the system.

B. Eigenvalue Problem

To begin the analysis and obtain the system’s Eigenvalue
Problem, we must first put the Equations of Motion into
matrix form:

[M0]ẍ+[k∗0]x = 0 (4)

where

[M0] =


m 0 0 · · · 0
0 m 0 · · · 0
...

. . .
...

0 · · · 0 m


and

[k∗0] =


2kc + k0 −kc 0 · · · 0
−kc 2kc + k0 −kc · · · 0

...
...

. . .
...

0 · · · · · · −kc 2kc + k0

 .

By introducing a dimensionless stiffness ratio R = kc
k0

, we
can simplify equation (4) to:

m
k0
[I]ẍ+[k0]x = 0 (5)



where

[k0] =


2R+1 −R 0 · · · 0
−R 2R+1 −R · · · 0

...
...

. . .
...

0 · · · · · · −R 2R+1


and [I] is the identity matrix. Since we know that the solution
to eq. (5) must be sinusoidal or complex exponential from
the theory of Differential Equations, we can write our ansatz
as:

x = ue jωrt .

where ωr is the rth natural frequency of the system. We can
now substitute this into equation (5) and rearrange to obtain:

[k0]u =
m
k0

ω
2
r [I]u.

If we introduce a dimensionless natural frequency ωr such
that

ωr =

√
m
k0

ωr,

the above reduces to our generalized eigenvalue problem for
this system:

[k0]u = ω
2
r [I]u. (6)

C. Modes of Vibration

Using the generalized eigenvalue problem formulated
above in equation (6), we can solve for the modes of
vibration using the eig command in MatLab. A plot of the
first five mode shapes can be seen in Figure 3 for R = 0.01.
These five mode shapes were chosen as a representative
sample of all 50 mode shapes to demonstrate the periodicity
and harmonic nature of the system.

D. Conclusion from Mode Shapes

Viewing the first five mode shapes shown in Figure 3,
a clear pattern of behavior emerges. In every mode shape,
the relative displacement of each mass is sinusoidal with
respect to the oscillator number. Although the mode shapes
are different, all demonstrate sinusoidal behavior with respect
to the oscillator number. Additionally, we can see that all of
the mode shapes are harmonic. The first mode shape is a
sinusoid with the fundamental frequency, ω0, and the nth

mode shape is a sinusoid with a frequency nω0.

E. Coupling Ratio Effects on Mode Shapes

We can vary R and see how it impacts our mode shapes.
As seen on Figure 4, two of the mode shapes for R = 1000
are identical to the corresponding mode shapes for R = 1.
Plotting the rest of the mode shapes, we see that varying
R has no impact on any of the mode shapes. The plots
for other mode shapes were omitted as they didn’t present
any new information. As such, the coupling ratio R does
not impact the modes of vibration for a perfectly periodic

Fig. 3. First five mode shapes of the perfectly periodic system

system. This makes intuitive sense when we consider the
entire system because each mass is coupled with the same
springs and, because there is no damping, the energy in free
oscillation will be distributed evenly. As long as the masses
are coupled by the same springs, R will not change the modes
of vibration.

F. Frequency Response Function

The steady-state frequency response of different oscillators
within the structure is important to study. If we introduce a
harmonic force to the first structure,

F(t) = F̄e jωt

then the governing equation for our system becomes:

m
k0
[I]ẍ+[k0]x = F (7)

where



Fig. 4. A comparison of different mode shapes with varied R

F =


F̄
k0

e jωt

...
0

 .

From the theory of differential equations, the steady-state
solution must take the form of

x = x̄e jωt .

We can then substitute this into eq. (5). To ensure a
finite response, we also introduce a structural damping term
onto the stiffness matrix, with γ = 0.001. This results in the
equation:

(
(1+ jγ)[k0]− ω̄

2[I]
)

x̄ =
1
k0

F̄. (8)

The term on the left side of this equation is our impedance
matrix [Z]. To find the amplitude of the system’s response in
terms of ω̄ , we can solve for x̄ in equation (8) using Gaussian

Fig. 5. The frequency responses for different oscillators and different values
of structural damping

elimination on MATLAB for a range of ω̄ . The frequency
responses for the 10th, 20th, 30th, 40th, and 50th oscillators
are plotted in Figure 5 for γ = 0.001, 0.01, and 0.1.

By analyzing the plot we can see that as the structural
damping of the system increases, the peak amplitude of
oscillation decreases. Additionally, we see that for greater
oscillator numbers, the amplitude of oscillations at frequen-
cies below the resonant frequency is lower. This makes
sense because these masses are further down the chain of
oscillators and there is energy loss due to damping.

This method to solve for the amplitude is known as the
“impedance approach” since the matrix multiplying x̄ in
equation (8) is the “impedance matrix” [Z]. This method
is intuitive and relatively simple to understand, but x̄ must
be recomputed for every value of ω̄ , which becomes com-
putationally expensive. Additionally, this method is only
appropriate to determine the steady-state solution. This was
straightforward to implement in MATLAB and the script
runs quickly, so we determined that it was appropriate for
acquiring the plots of Figure 5.

However, modal analysis could also be used to decouple
the 50 degrees of freedom and find the amplitude of x̄ based
on ω̄ . While conceptually more challenging to understand,
modal analysis can yield closed forms for both transient and
steady-state solutions, and can be computationally less inten-
sive. However, as stated previously, the impedance approach
was sufficient for our purposes.



III. NEARLY PERIODIC SYSTEM

Now that we have characterized the modal response of the
perfectly ordered system, we turn our attention to a non-ideal
system. By varying parameters to account for irregularities,
we can easily characterize a nearly periodic system instead.
For the purposes of this project, we introduce a random
variation in the spring stiffness ki such that

ki = k0(1+ εδki), i = 1, ...,N

where k0 is the nominal stiffness, ε is the disorder strength,
and δki is the random disorder parameter of the ith compo-
nent.

The values of δki are determined by generating a vector
of random variables of elements xi, with a mean of x̄ and a
standard deviation of σ . We can then create a vector of δki
such that the mean of the set is 0 and the variance is 1 by
applying the transformation

δki =
xi − x̄

σ

A. Eigenvalue Problem

Now we can compute the updated system’s eigenvalue
problem. To do this we can perform the same steps as we
did for the perfectly periodic system, but we introduce a new
stiffness matrix [k]. Thus we obtain:

m
ko
[I]ẍ+[k]x = 0

where

[k] = [k0 + εδki] =

2R+1+ εδk1 −R 0 · · · 0
−R 2R+1+ εδk2 −R · · · 0

...
...

. . .
...

0 · · · · · · −R 2R+1+ εδkN


which allows us to write our generalized eigenvalue problem
as:

[k]u = ω
2
r [I]u. (9)

B. Modes of Vibration

Using the generalized eigenvalue problem in Equation
9, we can solve for the modes of vibration. First, we
need to generate our mistuning parameters, δki. Using the
transformation above, we can generate random mistuning
parameters with a mean of 0 and a variance of 1. Now we will
consider the case where ε = 0.1 and R = 0.5 and determine
the modes of vibration for the 50 degree of freedom system.
A plot of the first 5 mode shapes can be seen in Figure 6.
If we compare this to our perfectly periodic mode shapes as
seen in Figure 3, we can see that we no longer have perfectly
periodic mode shapes. However, the overall oscillatory trends
remain. We can see for the nth mode shape there are n
peaks. This relationship is not nearly as strong as it was
in the perfectly periodic system, but it still exists. Now, let’s

consider the case where ε = 0.1 and R = 0.01. A plot of
the first 5 mode shapes using the new parameters can be
seen in Figure 7. There is a significant difference between
these two cases. When R << ε , the mode shapes become
localized. This means that instead of periodic behavior, there
are large, discrete spikes. This localized behavior indicates
very low coupling compared to the level of perturbation. The
low coupling implies that every mass oscillates relatively
independently, and the relatively large perturbations mean
that each of these masses have distinct eigenvalues, resulting
in the large, discrete spikes in the mode shape.

Fig. 6. The first five mode shapes for the perturbed system are plotted for
R = 0.5.

C. Perturbation Theory

Although we can compute the eigenvalues and eigen-
vectors of the new, mistuned system using the generalized
eigenvalue problem, we can also estimate the eigenvalues and
eigenvectors using perturbation theory. Perturbation theory is
beneficial because it allows us to compute the new eigenval-
ues and vectors without the computationally intensive task of
recomputing the solutions to the GEVP. It also allows us to
gain more physical insight into the system by seeing exactly



Fig. 7. The first five mode shapes for the perturbed system are plotted for
R = 0.01.

what parameters are changing the natural frequencies and
mode shapes of the system.

To compute the new eigenvalues and eigenvectors, we
will utilize first-order perturbation theory. From lecture, we
derived the following general equations for the eigenvalues
and eigenvectors of a perturbed system.

λ j = λo j +xT
o j([δk]−λo j[δm])xo j

x j = xo j(1−
1
2

xT
o j[δm]xo j)+

N

∑
r=1
r ̸=4

(
xT

or([δk]−λo j[δm])xo j

λo j −λor
)xor

where λ j is the jth perturbed eigenvalue, λo j is the jth

unperturbed eigenvalue, x j is the jth perturbed eigenvector,
and xo j is the jth unperturbed eigenvector.

For our system [δm] is zero because there is no change
in the mass of the blades, thus our equations simplify to:

λ j = λo j +xT
o j[δk]xo j

x j = xo j +
N

∑
r=1
r ̸=4

(
xT

or([δk])xo j

λo j −λor
)xor

The [δk] matrix is a matrix that is made up of the
differences between the perturbed system and the original
system. Using ε and δki we can compute [δk].

[δk] =


εδk1 0 · · · 0

0 εδk2 · · · 0
...

. . .
...

0 0 0 εδkN


Finally, using our [δk] and our equations for λ j and xj

we can use MATLAB to compute new eigenvalues and
eigenvectors for our system.

By varying the order of magnitude of ε and R we can
see the existence of mode localization. When the order of
magnitude of ε is much smaller than that of R we see
periodic, harmonic behavior. A plot of the first 5 mode shapes
when ε = 0.001 and R = 1 can be seen in Figure 8. In
contrast, when the order of magnitude of ε is much larger
than that of R we get a strong localization effect. A plot
of the first 5 mode shapes when ε = 1 and R = 0.001 can
be seen in Figure 9. The physical implications are that a
strongly coupled non-symmetric system can handle medium
to large perturbations without losing its periodicity however,
a system with weak coupling can only handle very small
perturbations before the mode shapes localize.

We can compare the results obtained by solving the
eigenvalue problem to the results obtained by applying
perturbation analysis to determine how good of an approxi-
mation perturbation analysis yields. We that the smaller our
perturbations were compared to our coupling the closer our
approximation was. As the perturbations compared to the
coupling increased, so did the error between the approximate
and directly found eigenvalues. When R = 0.5 and ε = 0.1
we had an error in our estimated eigenvalues of 0.54% When
the perturbations get even smaller, and R = 0.5 and ε = 0.01
the error becomes even smaller. We have an error of only
0.0061% This shows how powerful perturbation analysis can
be. Without having to resolve the eigenvalue problem we get
approximations within 0.6% of the correct eigenvalue and an
error even lower as the perturbations shrink. Although the
approximation of our mode shapes are not quite as close as
those of our eigenvalues, when we have small perturbations,
the error stays under 1%. However, perturbation analysis fails
when the perturbations are large compared to the coupling.
For instance, if R = 0.5 and ε = 1, our percent error grows to
64.3%. This demonstrates the shortcomings of perturbation
analysis. It only provides a valid approximation for medium
to small perturbations with respect to the system coupling.

D. Frequency Response

Just like for the perfectly periodic system, we want to
study the frequency response of each of the blades. When
we introduce random variation into our system, the approach



Fig. 8. The first five mode shapes for O(R)>> O(ε) are displayed.

for finding the frequency response doesn’t change. So, we
can use the same methods we used for the perfectly periodic
system. After we introduce structural damping we get the
following equation.

(
(1+ jγ)[k]− ω̄

2[I]
)

x̄ =
1
k0

F̄. (10)

Here, the only difference between the perturbed system
and the unperturbed system is [k] vs [k0]. [k] is the stiffness
matrix of the perturbed system where

[k] = [k0]+ ε[δk]

Letting MATLAB solve equation 10 we get the frequency
responses seen in Figure 10. Figure X shows the frequency
response for the 1st, 2nd, 3rd, 4th, and 5th oscillators with
structural damping of γ = 0.001 The frequency response for
the perturbed system follows general second order trends like
the initial tuned model. However, we note split resonances
in the response magnitude, indicating the physical effects of
localization.

Fig. 9. The first five mode shapes for O(R)<< O(ε) are displayed.

IV. CONCLUSION

For this specific application, the perfectly tuned periodic
system exhibits harmonic modal behavior for all N degrees
of freedom in the bladed disk assembly. When introduc-
ing a structural damping term, the respective frequency
response functions exhibit second order behavior, with the
magnitude of the resonant peak determined by the order of
the structural damping factor γ . When introducing arbitrary
perturbations in the spring constants ki, we create a mistuned
periodic structure. When R is large compared to ε the mode
shapes have loosely oscillatory behavior. As R decreases
compared to ε , the mode shapes become localized. For
the frequency response functions of the mistuned system,
we still approximate second-order behavior in general trend
analysis, but note split resonant peaks in the response of
the individual oscillators. These split resonances could be
useful in forced vibration application, as carefully mistuning
the system can reduce the magnitude of the response at the
system’s perfectly tuned resonant peak.

Also, note that relative energy calculations can be accom-
plished through perturbation theory, noting that the energy of
each component is proportional to its displacement squared.



Fig. 10. The frequency responses for the first five oscillators of the
perturbed slightly periodic system, R = 0.01 and ε = 0.1

In order to minimize the localization phenomena that
occurs in mistuned systems, it would be ideal to introduce
additional coupling in the system. By increasing the coupling
in the system, the effects of R decreasing as opposed to ε

are minimized. So if we rely on aerodynamic coupling, small
perturbations will cause localization. However, if we intro-
duce strong, rigid coupling between blades, then localization
will not be caused by small perturbations.

This model of a bladed disk is an easy-to-understand sys-
tem that allows us to model complicated system behavior and
easily see the effects of perturbation analysis and coupling.

APPENDIX

The MATLAB code used to analyze this problem and
generate results will be sent via email after this report is
submitted.

ACKNOWLEDGMENTS

We want to acknowledge Prof. Cha for allowing us to work
together on this final project, as well as for teaching us this

awesome class. We’ve all very much enjoyed learning more
about dynamics, systems, mechanics, linear algebra, and
differential equations, and we all look forward to working
with you more in the future and learning from you in E102!

REFERENCES

[1] Cha, P. Problem Statement for E171 Final Project, Fall 2022.


