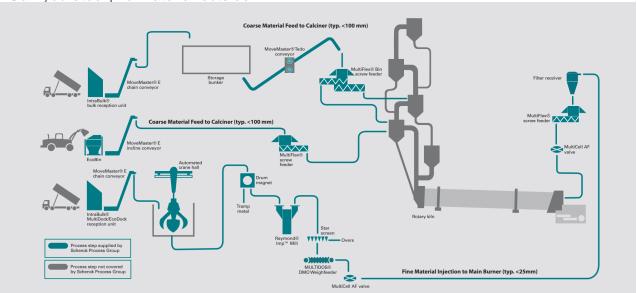


Alternative Fuels IEEE East Coast Birmingham, AL 2022

Chuck Trowbridge - Product Line Manager - Alt. Fuels

Challenges of NA Cement and Lime Producers to Increase Usage of AF

Equipment Considerations


- 1. Unstable fuel sources require flexible equipment and systems at the plant site
 - 1. Plants that have been metering a consistent material may need to accept more types
- 2. Reception, storage, conveying, metering and injection systems that can handle different classes of materials
 - 1. The power to meter TDF and shingles, but the volume to meter shredded plastic rejects
 - 2. Particle size
- 3. Cost to operate
 - 1. Labor
 - 1. Reception or trailer jockeying
 - 2. The cost of a shared front-end loader with other tasks in the plant may suffice for 2-3 tons/hr., but may not be cost affective for maintaining 10-15 tph.
 - 2. Maintenance cost
 - 1. Maintenance costs are not linear with increase in tonnage increases, but equipment choices will greatly affect maintenance costs
 - 2. Are machines operating near their max. capacity or under-utilized? Some machines require maintenance based on tons/fuel and some based on hrs. of operation.
 - 3. Uptime and reliability of equipment varies
- 4. Increased Volume
 - 1. Delivery traffic & logistics
 - 1. Just in time or leaving trailers at the plant
 - 2. Storage constraints
 - 1. Trailers vs. Buffer Bin vs. Large Storage Solutions

Challenges of US Cement and Lime Producers to Increase Usage of AF

Interphase with existing facilities

- 1. Lowest cost location to inject material
 - 1. Main burner or lance
 - 1. If you have a multi-channel burner already a simple pneumatic injection system located near the kiln may be to the simplest fastest ROI system
 - 2. Calciner
- Real estate available
 - 1. Some plant sites are very limited in space available
- 3. Evaluate current systems for week link or choke point
 - 1. Often re-working or replacing one machine can increase the capacity of a system
- 4. Regional challenges
 - 1. Will the material you are evaluating unload from trucks when its -40C and convey through a system
 - 2. Can you stockpile material outside?

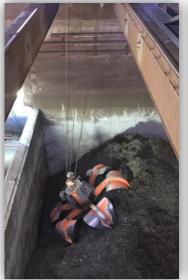
General Mistakes

- 1. Using light duty equipment just because the density is lower than other materials in the plant
 - 1. To make AF a reliable fuel source for your plant you need heavy duty cement plant and mining grade equipment.
- 2. Repurposing equipment designed for other tasks in the cement plant
 - 1. "We took that old screw hopper, pulled it around front and dumped some TDF into it.....why can't we get a consistent fuel feed out of it?"
- 3. Not investing in precision metering or weighing devise for your fuel control
- 4. Redundancy
 - 1. Having alternative reception systems to bypass sophisticated storage solutions
 - 2. Two rotary valves for a pneumatic injection system

schenckprocess

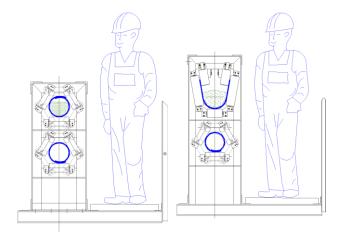
Reception:

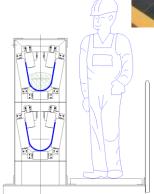
- 1. Using front end loaders
 - 1. High spillage
 - 2. Prone to damaging reception equipment
 - 3. Introduce contaminates to fuel stream
 - 4. A system can be created to efficiently use front end loaders
 - 1. Dedicated loader and dedicated operator
 - 2. Stays in the building or on the concrete storage pad
 - 3. Large reception hoppers
 - 4. More efficient at certain rates
- 2. Using low-cost, simple reception stations may result in:
 - High spillage when a truck is replaced resulting in house keeping labor
 - 2. Dust emissions while unloading could create a hazardous area
- Upgrading to a low spillage and low dust emission reception station may be higher capex, but may save you This may work when only receiving 1-2 trucks a day, but when you move multiple trucks per shift these may not be practical



Storage

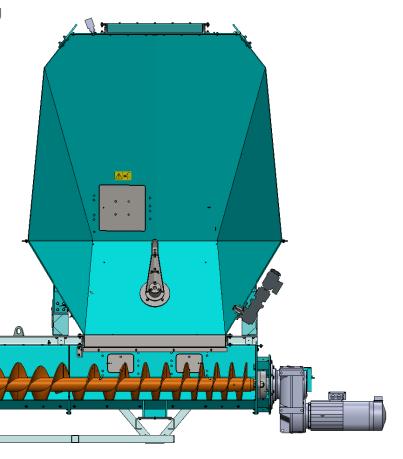
- Stock piling material on the ground or in a building
 - High dust emissions in building while unloading and moving material around
 - 2. Introducing contaminates into the system
 - Moisture and weather affects on fuel
- 2. Using a storage system only capable of handling one type or class of materials
 - 1. "We bought this silo and used it for 5 years for sawdust, but now want to store RDF..."
 - 2. Not factoring compaction of fuel in storage
 - 3. 1st in 1st out or 1st in Last out
 - 4. Fire detection or monitoring, as well as explosion prevention or protection





Conveying

- Using conveyors that don't contain dust or don't have features to keep the plant clean
- 2. Often wind can blow AF off of a conventional idler conveyor even with corrugated galvanized covers
- 3. Too many transfer points
- 4. Pay attention to dribble back on the return circuit. Many AF materials are hard to clean from the belt
- 5. Use pneumatic if practical



Metering

- Sacrificing accuracy or consistency by feeder choice or location in the system
 - 1. It is often the control of the equipment feeding the weighing device that is overlooked
- 2. Often the metering device is too far away from the injection location.
 - As substitution rates increase the faster response time is needed for all fuels.
 - 2. Equipment after the metering device may be affecting the performance of the system

Injection

- 1. No using magnets or screens before pneumatic systems
 - 1. Small investments will pay for themselves in preventing down time or costly maintenance/repairs
- 2. Overlooking pneumatic when it may be very practical
- 3. Using pneumatic too long or with the wrong materials when a mechanical system may make sense
- 4. Maintaining pneumatic conveying best practice principles
 - 1. No inclines
 - 2. Long sweep elbows
 - 3. Mindful of particle size
 - 4. AR elbows

	Pipe	Horizontal Distance	Vertical Distance	Elbows	Max. TPH	SCFM	3D Max. Particle Size	2D Max. Particle Size
MainBurner/Lance	4	75	25	3	6.75	761	0.80	1.33
MainBurner/Lance	5	75	25	3	8.5	949	1.00	1.67
Calciner	6	75	75	4	11.5	1250	1.20	2.00
Calciner	8	75	75	4	17.5	2073	1.60	2.67
Calciner	10	75	75	4	26	3022	2.00	3.33
Limits:								
4:1 or 5 PSIG at valve								
4500 ft/min pick up								

Common Problems with Various Fuel Sources in NA

1. Contaminants

- 1. Screening
- 2. Ferrous metal removal
- 3. Non-Ferrous metal removal
- 4. Frozen material
- 5. Contaminants coming into stream from trailers or front-end loaders

2. Raw fuels

- Many plants having to source direct from supplier and prepare themselves
- 2. NA Vs. Europe
 - 1. Some technologies working in Europe may struggle here in NA and we need to use caution
 - 2. Few 3rd party fuel suppliers providing quality control and consistent product

Common Problems with Various Fuel Sources in NA

- 1. Inconsistency
 - 1. Fuel sources drying up or costs changing
 - 2. Difference in "RDF" from supplier A vs. B
- 2. Logistics
 - 1. Too long to unload a truck OR who unloads the truck
 - 1. Dump and Go system or trailer jockeying
 - 2. Don't be too restrictive on type of trucks
- 3. Density Variations
 - 1. The same equipment may need to meter plastic rejects and tire chunks, mixed or not
 - 2. Total range or equipment
 - 1. Ton/hr range multiplied by density range < 20:1
 - 2. Will have to sacrifice low range stability as max. rate is pushed higher and higher.

Thank you for your time!

Contact me at c.trowbridge@schenckprocess.com or 262-374-0503 for more information

