

Introduction

#grey2green – the green polysius® cement plant

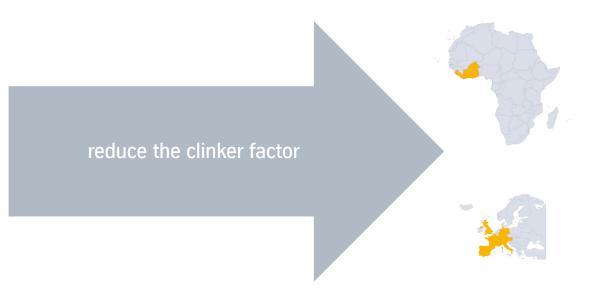
polysius®
Waste heat recovery

polysius® fuel substitution

polysius® NOx reduction polysius® booster mill polysius® activated clay

polysius® pure oxyfuel

. . .


Which are the market drivers for the cement industry applying an activated clay plant?

Drivers for activated clay...

...are applicable in different regions

Activated clay contributes to a higher competitiveness and sustainability of a cement producer

Usable raw clay quality

First indicators for using a clay as new SCM

Physical parameters

Sedimentary & weathered clays with impurities

- Even deposits possible
- High moisture contents of clays

Chemical parameters

Mineralogical parameters

Limestone cement replacement by PPC Kaolinite content ~10-20%

e.g. reduction of clinker content down to 65% (65% clinker - 30% act. clay - 5% gypsum)

OPC replacement by Ternary Blends Kaolinite content ~40%

e.g. reduction of clinker content down to 50% (50% clinker - 30% act. clay - 15% limestone - 5% gypsum)

- Other clay minerals than Kaolinite can be activated as well
- Mixed clay minerals can be fully activated

Indicative figures – detailed analysis for each clay needed in the LAB

How to activate a clay?

Thermal activation of e.g. kaolinite in a determined temperature range produces metakaolinite – a high quality SCM

Activated clay as an Supplementary Cementitious Material (SCM)

Origin of kaolinitic clays:

Widespread in clay deposits, often overburden of kaolin mines or residue from aggregate quarries with different principal materials

Potential of kaolinitic clays:

Many deposits are not used today because of only low-grade kaolinitic content, not suitable for e.g. paper or ceramic industry, but well for activated clays as an SCM

Temperature

500 - 550 °C

750 – 950 °C

960 - 980 °C

1100 – 1150 °C

> 1150 °C

Kaolinite 2SiO₂Al2O₃x2H₂O

Principle of reactions for activated clay production based on Kaolin

Metakaolinite 2SiO₂Al₂O₃

Si-Al-Spinelle Si₃Al₄O₁₂

Mullite $3Al_2O_32SiO_2$

Chamotte 3Al₂O₃2SiO₂

Activation

Water evapuration

Dehydroxylation & activation

De-activation & loss of pozzolanic activity

The needed process temperature depends from the clay, color control and used fuel. A typical temperature range is between 750 – 950 °C.

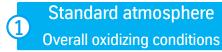
Metakaolinite is the most important constituent in activated clay – other clay minerals can be activated as well

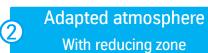
tkIS technology

Basic process of clay activation in an industrial plant

From the quarry to activated clay

Color of activated clay


Raw clay preparation


Activation

Cement product

The product color is depending from the raw clay and the applied process

Sieving of raw clay 500 mm screen cut

Storage
Partial homogenization

Crushing & separation

If containing hard rock

De-agglomeration & drying
Hammer mill & flash dryer

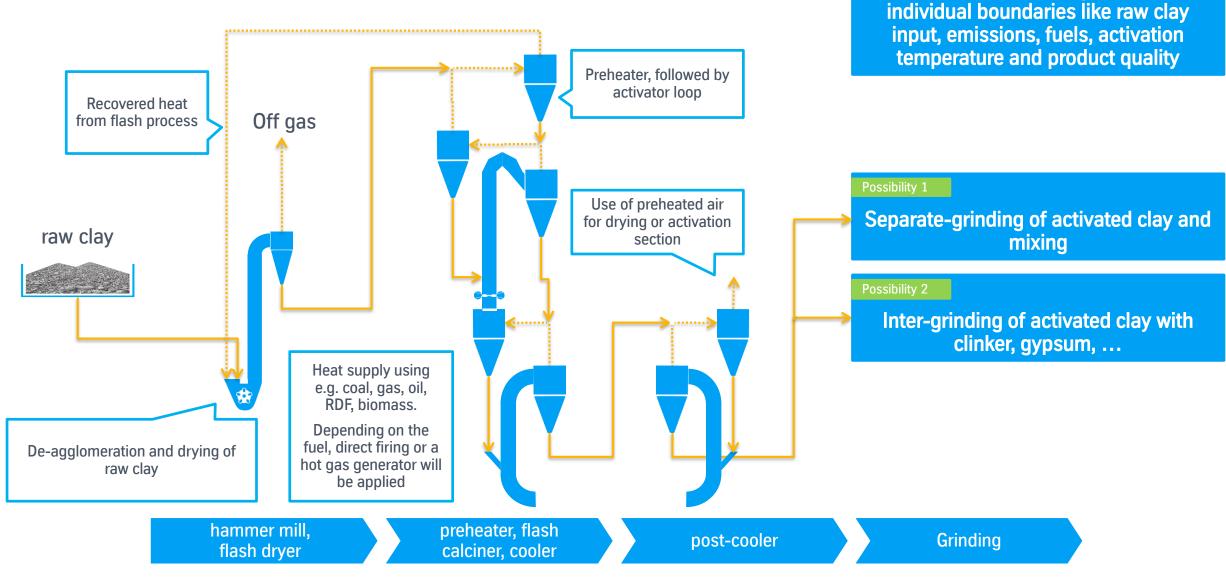
Flash activator feed
< 2 mm

Preheating & partial dehydroxylation

Cyclone preheater tower

Final dehydroxylation & activation

Activator loop


Grinding
Clay & clinker & other SCM's

Storage
Finished clay or final cement

Packaging/loading
Bulk or big bag

General flow sheet of a flash activation process

Detailed process design based on

Project approach

From best clay deposit to best quality product

We support you all along the value chain

Business case service

GEO service: Sampling of suitable clays

Gate 1 – Start of LAB services with collected samples

LAB Service package 1: Basic clay assessment PSD, density, moisture, XRF, LOI, XRD, TGA, emissions, ...

Gate 2 – Continue with clays assessed as suitable

LAB Service package 2: Cement quality forecast
Small scale activation, cement, quality assessment & optimization

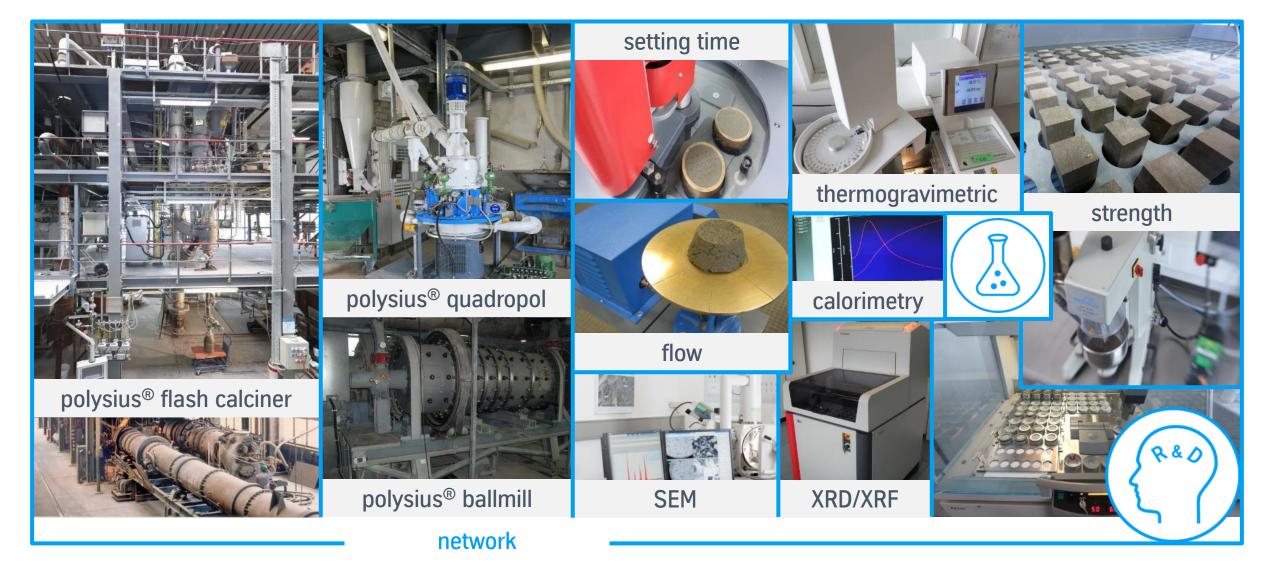
Gate 3 – Continue with clays showing good quality results

LAB Service package 3: Pilot scale flash activation

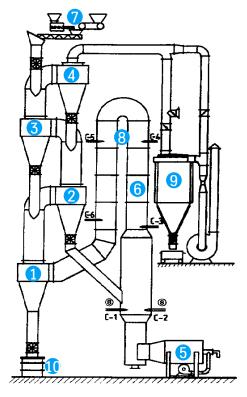
Activation in polcal, cooling parameters, wear tests, process selection, ...

Gate 4 – Selected clays suitable for large scale installation

Technical concept & plant design


tkIS technology center Germany

Trials for conclusions and assurance of clay and cement quality

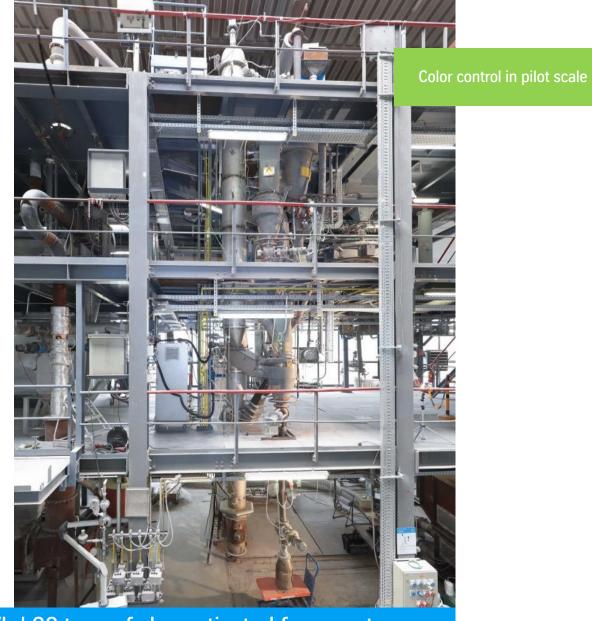

Raw material analysis, semi-industrial test production and mortar tests in R&D center

LAB service

Pilot scale flash activation using polcal 2

1 – 4 Preheating Cyclones

8 Separate gas burner


5 Combustion chamber (natural gas)

9 Bag filter

6 Calciner duct

10 Product discharge

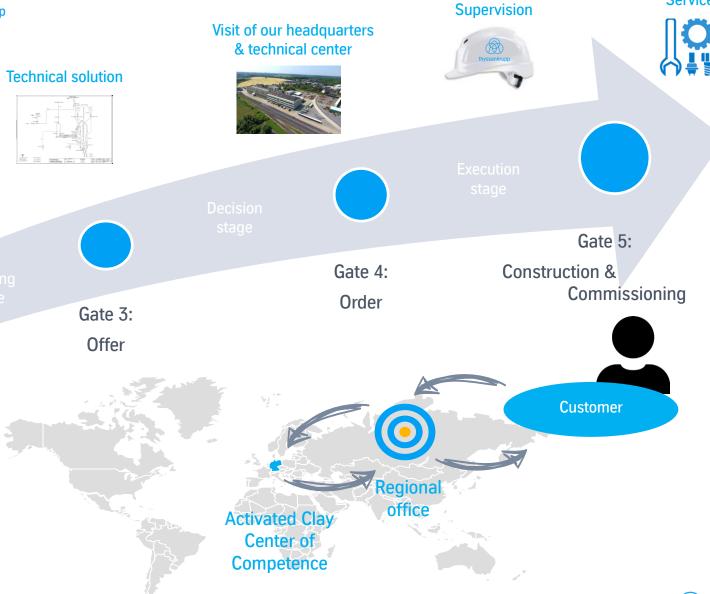
7 Weigh belt feeder

Two LAB flash calciners to activate clays | 50 kg/h and 500 kg/h | 20 tons of clay activated for a customer

Next steps

polysius® LAB services

Gate 2:

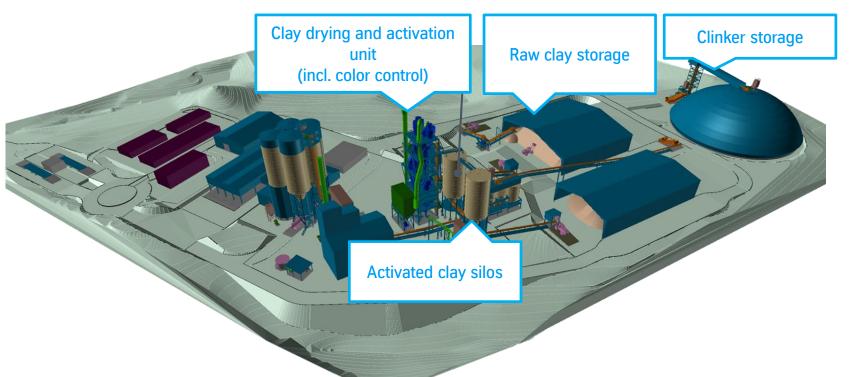

Budget

How to go on with your individual project?

Business cases

Gate 1:

Overview


Service

Input: Data sheet

Reference

New industrial-size flash activation process under construction by Polysius

Basic data

- Flash activation unit
- Grinding plant
- EPC turn key project including coal grinding, storage and material handling facilities
- Raw material with coarse hard rock particles, high moisture and iron content
- Color control using coal

Key to success was an intense support with GEO/LAB services and the development of the most competitive solution

References on flash calcination technology: Koniambo Nickel S.A.S, New Caledonia

Nickel ore drying and calcination with POLCAL flash technology

Customer: Koniambo Nickel S.A.S

Kone, New Caledonia Location:

Feed material: Nickel Laterite Ore,

max. 35% Moisture

Process: Hammer Mill, Flash Dryer & Flash

Calciner, Flash cooler

Temperature: 1000°C

Fuels: Coal, Oil, Off-gas recycling

No. of lines: 2

Capacity: 3840 tpd per line pre-heated &

calcined ore

References on flash calcination technology: Navoi Mining, Uzbekistan

Phosphate rock calcination with POLCAL flash technology

Customer: Navoi Mining and Metallurgical

Combinat

Location: Uzbekistan, Navoi Phosphate Rock -Feed material:

2 x 1300 tpd

Process: Hammer Mill, Flash Dryer,

POLCAL Pre-heater & Flash

Calciner, Flash cooler

No. of lines: 2 (2000, 2014)

Project Notes:

The process design was based on test work at the R&D center of TKIS and conducted acc. to special needs of the feed material.

The project consisted of a calcination plant for phosphate rock applying hammer mill, flash dryer followed by POLCAL flash calcination and flash cooler for heat recuperation.

In 2012 the contract was signed for a second line.

#grey2green

