

Ventilation System Optimization Without Engineering

Luis J. Castano
Applications Engineering Manager
Icastano@iac-intl.com

IEEE East Coast Conference October 2022

www.iac-intl.com

1

Agenda

- Ventilation Systems
- Baghouses
- Filtration Media
- Installation
- Operation

Types of Ventilation Systems

- Process
 - -Kiln
 - -Mill
 - -Separator
 - -Pneumatic Conveying
- Auxiliary -Belt Transfers
 - -Elevators

3

Basic Concepts of Ventilation Systems

- Capture Velocity
- Closed Box

5

Capture Velocity

- A Draft of Air Influences Particle Behavior
- This Can Be Used to Address Dust Emissions Problems

Capture Velocity

- A Draft of Air Influences Particle Behavior
- This Can Be Used to Address Dust Emissions Problems

7

Capture Velocity

- A Draft of Air Influences Particle Behavior
- This Can Be Used to Address Dust Emissions Problems

Capture Velocity

- A Draft of Air Influences Particle Behavior
- This Can Be Used to Address Dust Emis

v Itself NOT

Jems

• By Itself, NOT A Solution

9

Closed Box Principle

• Dust in a Sealed Box Is NOT a Problem

Closed Box Principle

• Dust in a Sealed Box Is NOT a Problem

11

Closed Box Principle

- Dust in a Sealed Box Is NOT a Problem
- Helps, But Does NOT Solve The Problem

Ventilation Solution

- Enclose as Best Possible
- Apply Capture Velocity on Necessary Openings

13

Purpose of Ventilation System

- Is NOT to Suction Dust
- It's to Keep an Enclosure Under Negative Pressure

15

Enclosures

• Bad / Nonexistent

Enclosures

- Bad / Nonexistent
- Good Enclosure

17

Vent Point Position

- Purpose: Keep Enclosure Under Negative Pressure
- NOT Suction Dust

19

Vent Point Position

• Vent Away From the Cloud of Dust

Vent Point Optimized With Hood

- Minimize Suction of Material
- Still Keeping Enclosure Under Negative Pressure

21

Hoods

- Minimize Flow Restriction
- Minimize Suction of Material

Hoods

- Minimize Flow Restriction
- Minimize Suction of Material

23

Ductwork

What NOT To Do

27

Fan Optimization

• Specs Defined Under Ideal Conditions

Poor Fan Installation

29

Poor Fan Outlet

Excellent Fan Outlet

31

Agenda

- Introduction to IAC
- Ventilation Systems
- Baghouses
- Filtration Media
- Installation
- Operation

33

Pulse Jet Baghouses

- On-Line Cleaning
- High Capacity/ Small Size
- Lower Cost
- Harsh on Filter Media

37

Discharge Valves

• Rotary Valve vs Double Tipping Valve

Conceptual Design

• Inlet and Outlet on Opposite Sides

39

Conceptual Design

• Inlet and Discharge on Opposite Sides

Baghouse Sizing

- Air to Cloth Ratio (ACR)
- Filtration Velocity (FV)

$$ACR = \frac{CFM}{Area}$$

$$ACR = \frac{ft^3}{min \cdot ft^2}$$

$$ACR = \frac{ft}{min}$$

41

Baghouse Sizing

- Air to Cloth Ratio
- Filtration Velocity

Process

FV = 3 to 3.3 fpm

AuxiliaryFV = 4 to 5 fpm

Agenda

- Introduction to IAC
- Ventilation Systems
- Baghouses
- Filtration Media
- Installation
- Operation

43

Polyester Felt

- Workhorse of Industry
- 275F Temp Limit
- Inexpensive, Durable
- Subject to Hydrolysis
- Used in Most Low Temp Applications

Acrylic Felt

- Solves Hydrolysis
- 265 F Temp Limit
- Resists High Humidity
- More Expensive than Polyes
- Commonly Used in Cement Mill Circuits

45

Aramid Felt (Nomex)

- 390 F Temperature Limit
- Subject to Hydrolysis at +300F With High Humidity
- More Expensive than Polyester and Acrylic
- Commonly Used in Clinker Cooler Baghouses

Woven Fiberglass

- 500 F Temperature Limit
- Fragile/ Easily Damaged
- Used in Kiln Baghouses
- Usually Laminated with PTFE Membrane

47

PTFE Membrane

- Surface Filtration Principle
- High Efficiency Filtration
- Excellent Dust Release
- Base Fabric Becomes Support Only

PTFE Membrane

- Surface Filtration Principle
- High Efficiency Filtration
- Excellent Dust Release
- Base Fabric Becomes Support Only
- Cannot Handle Oily Flow

49

Agenda

- Introduction to IAC
- Ventilation Systems
- Baghouses
- Filtration Media
- Installation
- Operation

51

Excess Pinch

• Reduces Cleaning Efficiency

Excess Pinch

- Reduces Cleaning Efficiency
- Creates Failures on Fiberglass

53

Keep Tubesheet Clean

• Avoids Inside Bag Contamination

))

Eliminate Inleakage

- Incoming Ambient Air Reduces Capacity
- Most Common Deficiency
- Particularly Troublesome in High Temperature Systems

Common Inleakage Points

- Ductwork Branching & Elbows
- Baghouse Discharge
- Access Door Seals
- Expansion Joints

57

Agenda

- Introduction to IAC
- Ventilation Systems
- Baghouses
- Filtration Media
- Installation
- Operation

Dustcake

- Filtered Particles on Media
- Part of the System

59

Verify a Good Dustcake

• Differential Pressure

Differential Pressure Explained

• Difference Between Clean and Dirty Side

61

Differential Pressure

- Operator's Stethoscope
- Indicates a Problem Before it Becomes Disaster
- Good DP is about 4" to 6" w.g.

DP Measuring Devices

- Manometer
- Magnehelic
- Photohelic

63

Cleaning Based on DP

- Saves Compressed Air
- Reduces Wear and Tear on Filter Media

Cleaning Based on DP

- Saves Compressed Air
- Reduces Wear and Tear on Filter Media
- Accuracy IMPORTANT

65

Cleaning Based on DP

- Saves Compressed Air
- Reduces Wear and Tear on Filter Media
- Typical Programming

Cleaning Based on DP

- Saves Compressed Air
- Reduces Wear and Tear on Filter Media
- Recommended Programming

67

Pulse Jet System

- Apply Recommended Pressure and Pulse On-Time
- Typical 80 90 psi, 0.1 to 0.2 seconds
- Fiberglass and PTFE Lower
- Clean, Dry Compressed Air

Shutdown Procedure

- Turn off Process, Fan Runs to Cool to Ambient Temperature
- Turn off Fan, Pulsing and Discharge Continue Operating
- Verify Hopper is Empty
 Turn off Pulsing and Discharge System

69

Flow Balancing

- Determine Order of Adjustment, Starting at Closest
- Gradually Close Damper Until Slight Pressurization.
- Repeat for Each Vent Point
- Adjust Fan Damper and Verify Flow

System Monitoring Basics

- Verify Differential Pressure Daily
- Visual Stack Check
- Verify Pulsing System Operation
- Verify Discharge System Operation
- Modern Controls Inexpensive

71

(800) 334-7431

<u>Luis J. Castano</u> lcastano@iac-intl.com

Visit our YouTube channel https://www.youtube.com/IndustrialAccessoriesCompany