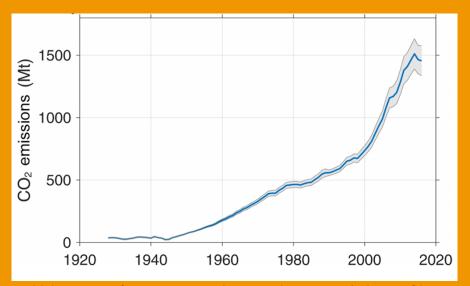


Activating Clay to Help Achieve CO₂ Emissions Goals by 2050

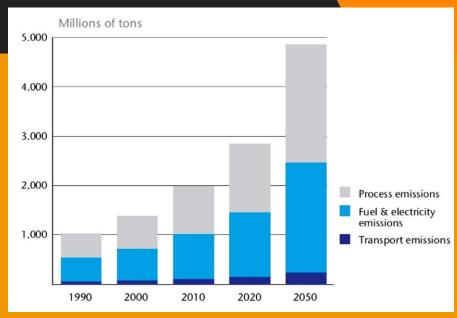
Pedro Ladeira Tech Director

Topics

- ✓ CO₂ reduction with green cement
- ✓ Options
- ✓ Making the right decision


Topics

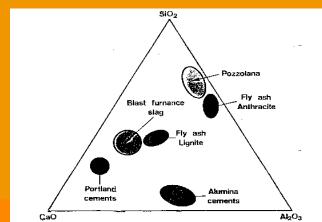
- ✓ CO₂ reduction with green cement
- ✓ Options
- ✓ Making the right decision

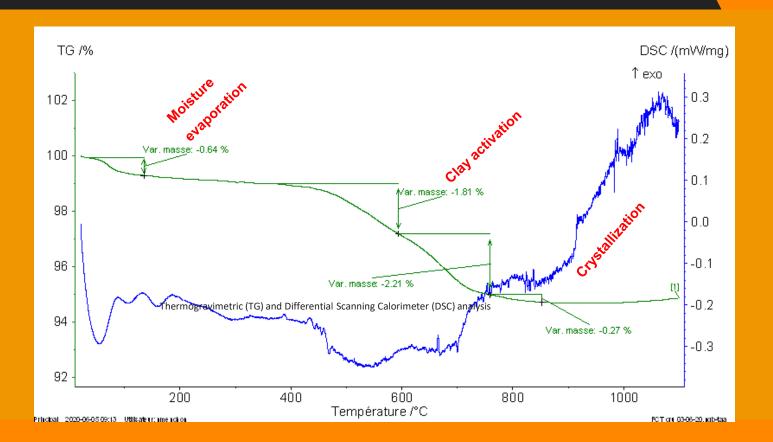


CO₂ Emission

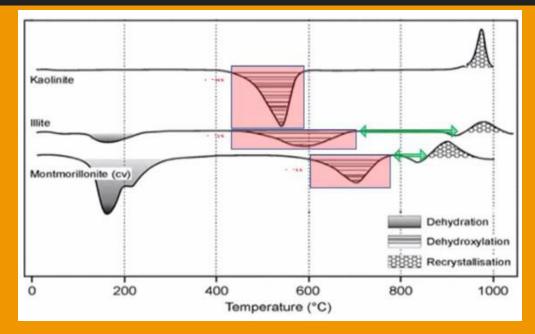
Cement production is responsible for around **8%** of man-made CO₂ emissions

Global CO₂ emissions from rising cement production over the past century (with 95% confidence interval)¹.

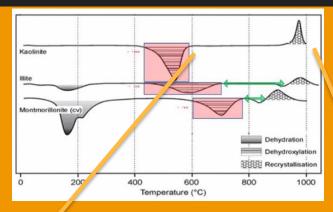

Projected global cement industry reference CO₂, million metric tonnes


Several countries are adopting strict policies for greenhouse emission reductions

Pozzolanic activity due to the amorphous structure of the aluminosilicate obtained from the heat treatment of clays, in temperatures ranging from 600 to 900 °C, lower than the 1450°C needed for clinker


$$Al_2Si_2O_5(OH)_4 \xrightarrow{450-650^{\circ}C} Al_2O_3.2SiO_2 + 2H_2O$$

$$metakaolin$$

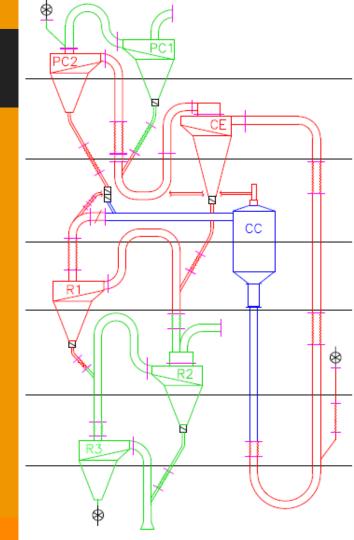


Temperature ranges for activation and recrystallization

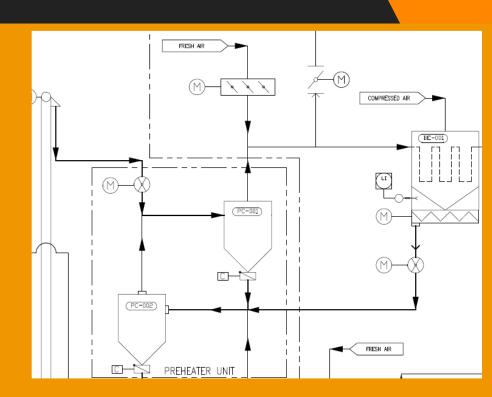
Topics

- ✓ CO₂ reduction with green cement
- ✓ Options
- ✓ Making the right decision

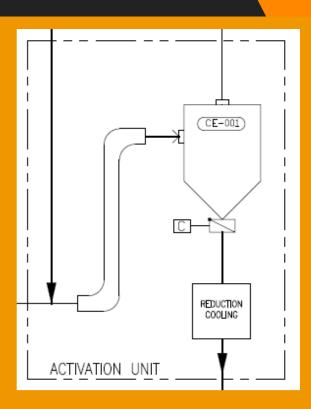
Rotary vs. Flash


The solution to a specific site depends on the types of fuel, available capex, existing equipment, raw material characteristics

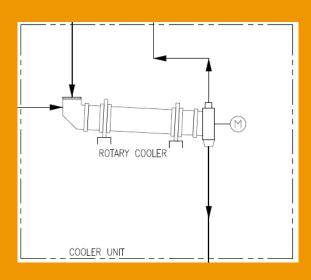
K. Scrivener, A. Dekeukelaere, F. Avet, L. Grimmeissen LC3 Production in an Integrated Cement Plant PAYBACK PAYBACK PAYBACK

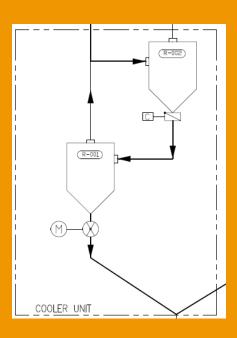

Financial Attractiveness of LC3

- > Steps
 - Feed and Preheating
 - Calcination
 - Cooling


> Enhanced heat recovery

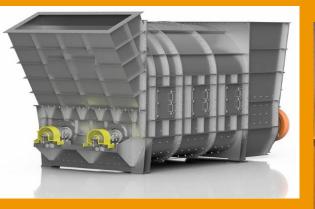
- Feed and Preheating
 - Exhaust gas used for drying
 - Bucket elevator with recirculation




- > Calcination
 - In-Line or Separate-LineCalciner
 - Optional color management feature

Cooling

Rotary or Suspension Cooler


- Refractory only applied in the combustion chamber, riser and calciner cyclone: quick heat-up
- No moving parts: low maintenance, light structure, high reliability installation.
- Precise temperature control, preventing melting and agglomeration of the clay, highly reactive pozzolan

Why Flash?

- ► High pozzolanic activity (allows for maximized use of pozzolan in Cement blends)
- ► No calcine grinding
- Quick start and easy operation
- ► Lower fuel consumption
- Lower maintenance cost
- Lower overall electrical consumption

Drying

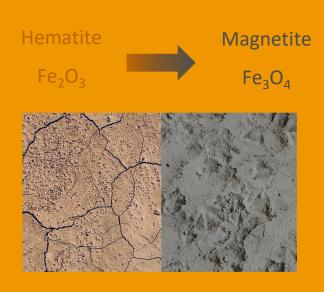
Rapid Dryer

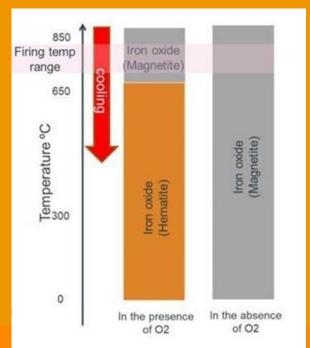
VRM w/ sand removal

Rotary dryer

Hot Gas Generation

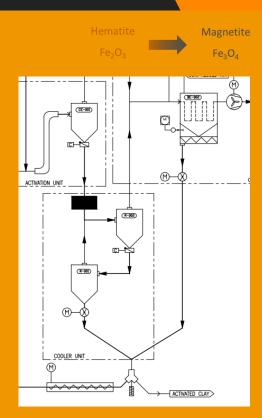
Fluidized bed for coarse and/or alternative fuels




Rotary Kiln

- > Existing (or new) equipment
- Drying and calcination in a single equipment
- **Burner or Combustion chamber**
- Cooler

- No correlation with Cement strength development
- Psychological influence on buyer's decision


Method I: O₂ depletion

- Rationale: Hematite is the most oxidized form of iron oxide
- \triangleright Action: minimize O_2 in kiln operation
 - \triangleright back end O₂ target < 1%
 - > fuel injection in the vicinity of the kiln discharge

Method II: Quenching

- Rationale: Freezing Fe in Magnetite form
- Action: promote quenching
 - Water spraying, and/or
 - Indirect cooling in inert environment

Method II: Quenching

- Rationale: Freezing Fe in Magnetite form
- Action: promote quenching
 - Water spraying, and/or
 - Indirect cooling in inert environment

Method III: Inorganic Modifiers

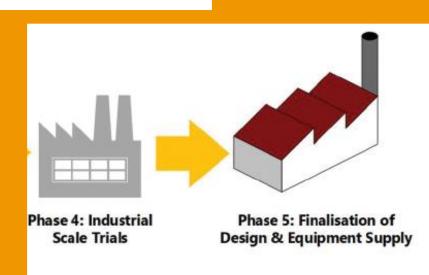
- Rationale: Fe structure-change
- > Action: case by case analysis
 - NDA required
 - Assess feedstock and available resources

Topics

- ✓ CO₂ reduction with green cement
- ✓ Options
- ✓ Making the right decision

Rotary vs. Flash - Comparison

	Case 1 Existing preheater kiln		Case 2 Energy Eff, Color Control	Case 3 Mothballed long kiln
Solutions	Sizer, grizzly Raw clay trans Combustion sy With lifters	port system ystem evaluation Without lifters	short rotary dryer 5-stage tower fluidized bed HGG quenching (or inorganic modifiers) for color control	 Sizer, grizzly Raw clay transport system Pre combustion chamber Water spraying
CAPEX	low	lowest	medium	low
OPEX	low	medium	lowest	high
Moisture	20%	20%	15%	10%
Heat Consumption	570 kcal/kg	610 kcal/kg	570 kcal/kg with quenching 510 without quenching	720 kcal/kg
Production	1050 tpd	750 tpd	1000 tpd	450 tpd



Phase 2: Conceptual Design

Phase 1: Raw Material Characterisation

(a) Desktop Evaluation

(b)Laboratory Quality Assessment

Calciner

Offer

Conclusion

 There are several grinding/drying/calcining solutions to produce calcined clay

...trade-off studies have to be conducted

- Each project should be evaluated with its own specificities
- Transition to LC3 requires knowledge in mining, logistics, clinker and concrete technologies, thermo fluid dynamics, grinding

THANKS!

pedro.ladeira@fctinternational.com

484 868 7487