

Agenda

- What is clay calcination
- Drivers and roadblocks for calcined clay
- Clay sourcing
 - Confirming a good clay source
 - Pilot testing
- Clay Calcining technology
- Influence of clay feed moisture
- Conclusion

Clay Calcination

Calcination temperature

Drivers for calcined clay projects

- "Green" Cement:
 - Lower CO₂ emissions
 - CO₂ credits
- Small production increase:
 - Lower CAPEX and OPEX per ton of cement
 - Lower CO₂ emissions
- Reduced availability of fly ash and slag
- Limestone unavailable locally

Potential roadblocks and challenges

- Slag or fly ash are readily available
- Cement/concrete codes / Lack of familiarity with calcined clay in cement and concrete with end users
- Permitting Follow cement emissions/permitting rules or something else?
- Clinker replacement or concrete additive?

Clay performance evaluation – Not all clays are equal!

Clay SCM Potential Viability

 $SiO_2+AI_2O_3+Fe_2O_3$ Content (XRF) Mineral content (XRD) **Emissions potential** Pilot activation including color control Calcined clay product analysis Strength Development

Pilot Testing of Calcined Clay

- Larger scale testing of clay to prove quality potential, color control, and emissions
- Both cement and concrete quality testing
- Proof of large-scale installation

Without color control

With color control

Production using a kiln system - Older technology

Challenges

- Wet "lumpy" material fed to kiln
- Uneven heating of clay
- Change of color
- Inconsistent calcination

Limits the % substitution into finished cement

Inspiration for modern clay calciner

- Alumina calciners have been used for 30+ years with 40+ references worldwide
- Efficiency and stability benefits of preheater/calciner operation with cooler heat recovery

Clay Gas Suspension Calciner (GSC)

- patent pending

Expected OPEX with 20% feed H₂O and 10% LOI:

- Fuel ~ 425 kcal/kg
- Power ~ 12-14 kWht for dryer/crusher and fans

Expected benefits of a GSC versus a kiln

- Higher quality product due to more consistent calcination
- Higher mix percentage of calcined clay into blended cement
- Lower fuel and maintenance costs
- Greater fuel flexibility for burning waste fuels
- Smaller footprint for a new system
- Lower total cost of ownership for a new system

Impact of clay moisture on fuel consumption Clay GSC system w/ heat recuperation (patent pending)

Comparison of OPC and LC³ Cement OPEX Benefits (per ton of cement)

	OPC (95% clinker / 5% gypsum)	LC ³ (50% clinker/ 15% limestone / 30% activated clay / 5% gypsum)	Impact
Fuel consumption kcal/ kg	684	468*	>30% decrease in fuel
Power consumption kWh/t	85	51	~40% decrease in power
CO ₂ reduction kg/kg:			
Raw material	0.50	0.25**	
Fuel***	0.26	0.18	
Power	0.06	0.04	
Total CO ₂ emission kg/kg	0.82	0.47	>40% specific reduction
Cement capacity index	100	100-190	Make more cement w/ same clinker or same cement w/ less clinker

Based on 15% moisture and 10% LOI in the raw clay

^{**} excludes carbonate and organic content in clay (traces may be expected)

^{***} excludes "neutral" CO2 fuels

Comparison of PLC and LC³ Cement OPEX Benefits (per ton of cement)

	PLC (85% clinker / 10% limestone/ 5% gypsum)	LC ³ (50% clinker/ 15% limestone / 30% activated clay / 5% gypsum)	Impact
Fuel consumption kcal/ kg	612	468*	>24% decrease in fuel
Power consumption kWh/t	76	51	~33% decrease in power
CO ₂ reduction kg/kg:			
Raw material	0.45	0.25**	
Fuel***	0.23	0.18	
Power	0.05	0.04	
Total CO ₂ emission kg/kg	0.73	0.47	>35% specific reduction
Cement capacity index	100	100-190	Make more cement w/ same clinker or same cement w/ less clinker

Based on 15% moisture and 10% LOI in the raw clay

^{**} excludes carbonate and organic content in clay (traces may be expected)

^{***} excludes "neutral" CO2 fuels

Conclusion

Calcined Clay is a cost-effective way to increase production and/or reduce CO₂ emissions

Quality product with color similar to cement - higher substitution rates

Lower capital & operating costs

High system flexibility Low maintenance

More environmentally friendly sustainable products

Thank you

- in flsmidth.com/linkedin
- flsmidth.com/twitter
- f flsmidth.com/facebook
- flsmidth.com/instagram
- flsmidth.com/youtube