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 FORMERLY EUROPIAN SPACE AGENCY LANGUAGE  

 

 
Summary. The ambitious short-term and long-term goals set down by the various national 
space agencies call for radical advances in several of the main space engi- neering areas, the 
design of intelligent space agents certainly being one of them. In recent years, this has led to 
an increasing interest in artificial intelligence by the entire aerospace community. However, 
in the current state of the art, several open issues and showstoppers can be identified. In this 
chapter, we review applications of artificial intelligence in the field of space engineering and 
space technology and identify open research questions and challenges. In particular, the 
following topics are identified and discussed: distributed artificial intelligence, enhanced 
situation self-awareness, and decision support for spacecraft system design. 

 

12.1 Introduction 

 
In the second half of 2003, the European Space Agency (ESA) delivered     a roadmap, in the framework of the Aurora program, to bring humans to explore Mars within the next few decades [MO03]. The plan included the successful implementation of several flagstone missions as stepping stones for achieving this final ambitious goal. A few months later, with the vision delivered by U.S. president George W. Bush, the National Aeronautics and Space Administration (NASA) also started to draft plans for the manned exploration of Mars [Bus04]. Their vision included the establishment of a human base on the Moon, among several other advanced preparatory steps. The return of humans to the Moon and a future manned mission to Mars therefore seem to be likely achievements we may witness in the next few decades. At the same time, even more ambitious plans and missions are being conceived by farsighted researchers who dream about the exploration and colonization of even farther planets. In the framework of these more or less concrete future scenarios, the consolidation of artificial intelligence methods in space engineering is certainly an enabling factor. As an example, the reader may think of a future mission to Mars. This will probably be constituted by a large number of heterogeneous 
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space agents (intended to be satellites, humans, robots, modules, sensors, and so on). In such a scenario, the round-trip communication delay time, depending on the relative positions of Mars and Earth, would range from 6.5 minutes to 44 minutes approximately. Besides, communication with Earth would not be possible at all during a 14 day period every Mars synodic period (approximately 2.1 years). Clearly, for such a mission to happen, the single space agents must be able to make autonomous decisions, to interact harmoniously with each other, and to be able to determine their own health status so as to properly plan their actions. Unfortunately, if we take a look at the current state of the art of artificial intelligence applications in space engineering, we can identify several open issues and showstoppers. Actually, it seems that we are far away from the desirable situation in which these methods can be considered as off-the-shelf tools available to space engineers. This chapter is addressed to the artificial intelligence community in order to create an awareness of the many open research questions and challenges in the space engineering community. In order to achieve this task, the chapter focuses on a few niche applications only, namely distributed artificial intelligence for swarm autonomy and distributed computing, and enhanced situation self-awareness and decision support for spacecraft system design. Our survey aims to give the reader a general overview of these topics by pointing out some of the relevant activities within the international space community and as such is not intended to cover the entire array of all artificial intelligence applications in space. For example, we deliberately omitted in this discussion research on automated planning and scheduling, which is traditionally the most studied field within artificial intelligence for space, and we refer interested readers to other resources such as the proceedings of the International Workshop on Planning and Scheduling for Space (e.g., 1997, 2000, 2004, and 2006). 
 

12.2 Distributed Artificial Intelligence 

 
At the end of the 1980s, the artificial intelligence community started wondering whether intelligence had to be strictly related to reasoning. Failures in constructing agents able to interact with the environment in real-time following high-level decisions derived via symbolic reasoning led to a new approach   in the design of robot control systems: “behavior based” robotics [Bro91]. Starting from the simple observation that most of what we do in our daily lives is not related to detailed planning but rather to instinctual reactions  to an unstable and changing environment, behavioral robotics introduced, for the first time, the notion of “emerging” intelligence. Researchers were forced to observe that, in some systems, intelligence could emerge from the interaction with the environment and from indirect relations between system parts and that, in general, intelligence could not always be easily located in one particular part of the system studied. The idea of intelligence residing in a 
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distributed form throughout an agent started the study of intelligent systems made by more than one agent. Hence, “distributed artificial intelligence” (DAI) developed as a discipline studying systems made up of a number of diverse agents that despite their individuality are able to achieve common global tasks. In the following sections, we mainly touch upon two topics of DAI systems for space applications: swarm intelligence and distributed computing. 
 12.2.1 Swarm Intelligence 
 

1 The so-called social component in the PSO algorithm requires at each step for each agent 
to know the best solution found so far by the entire swarm. Interagent communication is, in 
this case, direct and unlimited in range. 
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More recently, the idea of a number of satellites flying in formation has been used in a number of missions for applications ranging from x-ray astronomy (XEUS) to differential measurements of the geomagnetic field (CLUSTER II), space interferometry, the search for exoplanets (DARWIN), and others. All these missions 2 are able to meet their requirements without making use of an emerging property that can be regarded as swarm intelligence. On the other hand, if available, swarm intelligence methods would represent an attractive design option allowing, for example, achievement of autonomous operation of formations. Simple agents interacting locally could be considered as a resource rather than overhead. At the same time, one would be able to engineer systems that are robust, autonomous, adaptable, distributed, and inherently redundant. Besides, swarms allow for mass production of single components, thus promising mission cost reduction, and represent highly stowable systems, thus allowing reduced launch costs. Recently, these motivations led a number of researchers to simulate some degree of swarm intelligence in a number of space systems and to investigate their behavior. Kassabalidis et al. [KEM+01] studied the routing problem in wireless communication networks between satellites or planetary sensors. He applied ant-inspired algorithms to achieve a great efficiency in networks that are spatially distributed and changing over time. This type of research is targeted at applications such as those being developed by the NASA sensorweb project [CCD+05]. Distributed cooperative planning between satellites belonging to the same constellation has also been studied, introducing swarm intelligence at the level of coordinated planning [DVC05] (for a typical case study, see Fuego, studied by Escorial et al. [ETR+03]). Recent work on intersatellite communication in constellations observed the birth of emerging properties from a more or less complex system of rules and behaviors [BT07] programmed in the autonomous planners onboard the satellites. More generally, any problem of autonomy for satellite constellations is a problem of distributed artificial intelligence, where the possibility of communication between agents (ISL-intersatellite links) or between an agent and a central planner (ground station) is limited by the complex dynamics of the system and by the agent design. Another field where swarm intelligence provides a possibility to improve current technology is that of relative satellite motion control. When a system of many satellites has to move in a coordinated way, the control action selected by each satellite may take into account the decisions made by the others at different levels. The information exchanged with the other swarm components is useful but not necessary to define the geometric and kinematical representation of the time-varying environment, which will then influence the satellite action selection. Many studies dealing with terrestrial robot navigation [Kha86], with spacecraft proximity and rendezvous operations [McI95], and self-assembly structures in space [McQ97] have taken the ap- 
 

2 At the time of writing, CLUSTER II is the only one operational. 
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proach of defining an artificial potential field to model the environment. The control action is then chosen to follow the steepest descent of the defined potential. Another approach to the action selection problem, based on dynamic systems theory, was introduced by Schoner [SD92]. In this approach, the state-space  systems such as those derived by introducing electrostatic interactions between swarm agents [PIT06]. 
 12.2.2 Distributed Computing 

 
A second example of distributed artificial intelligence with specific applications to space systems, and in particular to trajectory design [IM05], is that       of distributed computing. The possibility of sharing the memory and the computing resources of a large network of simple computers is clearly appealing for any kind of application. On the other hand, not every problem is suitable for being solved in a distributed computing environment. The problem struc- ture has to be such as to allow its subdivision into packages that have little or no dependency between each other. This requirement is the main limitation to 
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Fig. 12.1. Two examples of orbital swarms assembling a given structure (source: [IP07]). 

 
 the use of distributed computing. The forthcoming sections introduce, briefly, two examples of space applications suitable for distributed computations. 
 Analysis of Large Quantities of Data 

 
The main purpose of most of the commercial satellites currently orbiting Earth is to provide data. Satellites continuously download data to ground stations in a nonprocessed format (usually, few data manipulations are made by the not too powerful computers onboard satellites). ESA’s ENVISAT satellite alone generates 400 terabytes of data each year [FGL+03]. The data are then processed sequentially by computers and the results stored again in mass memories together with raw ones. Over the years, these data accumulate to the point that deletion is sometimes necessary (also due to changes in storage technology). Sophisticated analysis of these datasets can take as long as years to complete, often making the analysis itself obsolete before it has even been concluded. Distributed computing therefore becomes a useful tool to allow efficient use of satellite data, the main asset of the space business. Earth observation data coming from European satellites have already been made available in a computer grid [FGL+03], sharing processing power, memory storage, and processed data. A dedicated generic distributed computing environment that uses the idle CPU time of ESA internal personal computers has also been tested already [IM05] on problems such as ionospheric data processing and Monte Carlo simulations of constellation architectures 
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[IMN05]. In these types of applications, as no dependency is present between the different parts of the computations, little distributed artificial intelligence is actually present. The huge problem is just divided into small isolated subproblems that, in turn, are solved by different machines located in various parts of a common network. From the technological point of view, the challenges in these types of distributed computations (and the part where artificial intelligence could play a role) are mainly in the coordination of network traffic, in resource sharing, and in the reconstruction of the whole solution from the different parts returned by the different machines. 
 Distributed Solving of Global Optimization Problems 

 
Distributing global optimization tasks over a large network of computers is certainly more elaborate, as it introduces a dependency between the different computations. Global optimization problems can be found everywhere in industrial processes. Many of the issues engineers face during spacecraft design are global optimization problems. Most notably, global optimization seems to be essential in preliminary trajectory optimization [MBNB04]. Essentially, this can be considered in the rather generic form 

min : f (x) subject to : g(x) ≤ 0 

with x Rn. The problem dimension n depends on the type of trajectory considered and can be as low as 2 but also on the order of thousands. In order to visualize, for the reader, the problem of trajectory optimization, Figure 12.2 illustrates an example of an optimized interplanetary trajectory. Since the first applications of evolutionary strategies to trajectory design [RC96], heuristic optimization techniques such as differential evolution, simu- lated annealing, particle swarm optimization, and genetic algorithms have proven to be quite effective in providing preliminary solutions to trajectory problems [BMN+05, DRIV05]. The complete automatization of the optimi- zation process, however, is not yet possible, as the existing algorithms are incapable of replacing the acute reasoning necessary to locate the best possible transfer between celestial bodies. A recent attempt to capture some expert knowledge and to use it to prune the search space in a trajectory problem, called “multiple gravity assist” (MGA), has managed to reduce the MGA problem complexity to polynomial time [IBM+07]. In other cases, NP-complexity cannot be avoided, and the global optimization of an inter- planetary trajectory may be untractable for a single machine. Fortunately, global optimization algorithms such as evolutionary algorithms and branch- and bound-based techniques are suitable for distributed environments [GP02, AF98], drastically improving the performance of the search and thus allevi- ating the “curse of dimensionality”. A first attempt to use this possibility  in a spacecraft trajectory optimization problem has been performed by ESA 
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Fig. 12.2. An optimized Earth-Venus-Earth-Venus-Earth-Jupiter-Saturn-asteroid trajectory. 

 
 researchers, who solved a complicated MGA transfer distributing a differential evolution algorithm in a small number of personal computers. The problem solved3 

using the distributed version of differential evolution was inspired by the 1st Global Trajectory Optimization Competition (GTOC1), an annual event established in 2005 to make international research groups compete to find the best solution to the same trajectory design problem. Depending   on the type of spacecraft one is considering (the main difference being the possibility of having impulsive or continuous velocity changes), the mission goal (destination orbit and celestial body), and the launch window considered, the trajectory optimization problem’s dimension and complexity vary a lot. As in many other fields, for trajectory optimization, too, there is no available algorithm that outperforms all others. Consequently, this often leaves one to try different techniques until finally the algorithm that in a particular problem performs best is found. In the attempt to make the entire problem-solving process entirely distributed, a novel approach is that of Vinko et al. [VIP07], who consider a central server and a number of clients, which evolve demes (subpopulations) extracted from a larger population stored in the server, 
3 There is actually no mathematical guarantee that the solution found is the global optimum, but 

the experiment improved previous solutions by approximately 10%. 
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which then takes care of the reinsertion of the demes. According to the results returned by the various clients in each given phase of the optimization process, the server updates the probabilities to allocate a given algorithm for the next subsearch request to a client. The resulting global optimization environment is able to understand and select the best-performing algorithm in each phase of the solution of a problem. A preliminary version of this intelligent server is being developed and tested [VIP07] for the final purpose of being able to automatically carry out the whole trajectory optimization process without any expert supervision. 
 

12.3 Enhanced Situation Self-Awareness 

 
Ideally, a spacecraft should be able to perform autonomous actions, determine its own health status, and eventually make decisions based on this enhanced self-awareness. Unfortunately, real space missions are instead strongly depen- dent on the ground segment and on the flight engineers who monitor the enormous amount of telemetry data sent back to Earth during spacecraft operation. This procedure, which requires large numbers of human experts, is of course cumbersome and time-consuming. Sometimes, it might take days before the data are processed, decisions are made, and uploaded commands reach the spacecraft, whereas during critical mission phases such as the launch, information must be processed and decisions make within seconds. Furthermore, humans are not always able to recognize anomalous situations, especially when these involve complex relationships among large numbers  of variables. Autonomous systems for enhanced situation self-awareness are therefore a very important research topic in spacecraft engineering. Classically, two major approaches can be described: model-based methods and data-driven (model-free) methods. Model-based methods use models of the hardware and the physical processes to track the states of the system and detect deviations from nominal behavior. These models are sometimes very expensive to produce because they largely depend on expert knowledge. Moreover, when applied to very complex systems such as spacecraft, they might fail to reproduce all the possible off-nominal modes for which accurate models are lacking most of the time. On the other hand, data-driven approaches, based on data mining and machine-learning techniques, are not based on a physical system but rather on models that are inferred from the telemetry data (e.g., temperature sensor data). Many activities in this field are being carried out in the framework  of the Integrated Vehicle Health Management (IVHM) program of NASA Ames Research Center for the Second Generation Reusable Launch Vehicle (RLV), crew, and cargo transfer vehicles [IVH06]. This program is dedicated to the development of highly integrated systems that will include advanced smart sensors, diagnostic and prognostic software for sensors and components, model-based reasoning systems for subsystem- and system-level managers, 
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advanced onboard and ground-based mission and maintenance planners, and a host of other software and hardware technologies. These hardware and software technologies will provide both real-time and life-cycle vehicle health information, which will enable decision making. 
 12.3.1 Data-Driven Approaches 

 
The application of data-driven approaches to flight time-series analysis is being researched extensively by the space engineering community for the autonomous identification of suspicious trends that might lead to malfunctions or losses. Only the preventive detection of these trends might allow the ground systems or the intelligent planner and scheduler of the spacecraft   to take corrective actions. Most of the data-driven approaches used in daily spacecraft operations are based on unsupervised learning techniques since in safety-critical applications, such as space engineering, it is usually impossible to collect exhaustive datasets for the representation of all possible fault modes. Therefore, most of these methods and algorithms can detect anomalies and off-nominal trends but leave to the flight control operator the delicate task of interpretation. The forthcoming paragraphs introduce a few of these approaches. Far from being an exhaustive list, we intend to give the reader a flavor of some work done in this field. In [Ive04], the authors propose an “inductive monitoring system” (ISM) to detect off-nominal behaviors. Flight data of past missions are used as training data for a clustering algorithm (i.e., K-means and density-based clustering) that identifies nominal behavior areas (the clusters) in the n-dimensional data space, where n is the number of sensor readings. The clusters, which, according to the authors, represent the ISM knowledge base, can be used for the real-time detection of anomalous behavior during a new flight. Once a new measurement vector is received, the knowledge base returns the cluster to which the vector would belong (according to some cluster limit, preidentified after training). When the membership in a specific cluster cannot be detected, the distance to the closest cluster (with respect to Euclidean metrics in the n-dimensional space) will give the control operator an idea of the system’s deviation from its nominal behavior as represented by the training data. The algorithm is tested successfully on the data collected during mission STS-107 of the Columbia space shuttle, which exploded during reentry because of a breach in its thermal protection system [Geh03]. An approach very similar to the one just introduced is presented in [Sch05]. In this work, an unsupervised detection algorithm named Orca, developed by the authors on the basis of the nearest-neighbor approach, is applied to the test data of the space shuttle main engine and of a rocket engine stand. The K-means clustering algorithm is also used in [VLFD05] on the space of the features extracted from the time series collected from past missions. The authors here make an attempt to find specific relations between fault occurrence and the trend of the parameters by inferring association rules 
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from data by means of the a priori algorithm. Therefore, the fault occurrence data must be part of the training set so that the algorithm can be trained to recognize future similar events. Unexpected fault modes therefore cannot be detected by the algorithm. 
 12.3.2 Model-Based Approaches 

 
Most of the model-based approaches for enhanced situation awareness that have been researched and developed in space systems in recent years used as a reference the Livingstone model-based diagnosis engine [WN96] and its successors Livingstone 2 (L2) and Livingstone 3 (L3). Livingstone flew on Deep Space 1, and L2 has been uploaded to the Earth Observing One (EO-1) satellite [HSC+04, CST+04] for the “autonomous sciencecraft experiment” (ASE), which provides an onboard planning capability. The task of these diagnosis engines is to predict nominal state transitions initiated by control commands monitoring the spacecraft sensors and, in the case of failure, isolate the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. L3 is the most recent and advanced of these architectures and consists of three main components. The “system model” stores the model of the system and is responsible for tracking the modes of operation of the different components and determining the constraints that are valid at any point in time. The “constraint system” serves the role of tracking the overall system behavior using constraint programming techniques. It receives constraints from the system model indicative of the current configuration of the system and propagates these constraints to try to assign consistent values to variables in the system. When observations are different from propagated values for corresponding components, the “candidate manager” is responsible for gener- ating candidate faults that resolve all the conflicts and that can possibly explain all of the inconsistencies. In order to deal with uncertainties, the dynamic behavior of the system is tracked through Bayesian approaches such as “particle filtering” in order to assign posterior probability distributions to the candidate faults [NDB04, NBB04]. Bayesian approaches are also used in [GIB06], where the authors present the preliminary results of dual filtering techniques for the detection of possible variations of the thermal properties of the spacecraft that result from vari- ations of its physical properties and for determining a complete thermal mapping of the system. System and sensor uncertainties are taken into account in the lumped parameter modeling of the thermal system, and a dual unscented Kalman filter is run on the stochastic model in an alternating optimization fashion to estimate the thermal state and coefficients of the resulting thermal network from the readings of a few strategically placed thermal sensors. Events such as faults can be detected by the dual filter as well as new values of system parameters (e.g., radiative couplings) that result 
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from a variation of the spacecraft geometry (e.g., from the deployment of antennas, solar panels, etc.). This method would be particularly attractive in networks whose state and parameters can be estimated by the filter using a minimal amount of readings. The relation between the network topology and this minimal number is therefore an issue strictly related to the observability of the system, which is here approached using graph theory. 
 

12.4 Decision Support for Spacecraft System Design 

 
As the complexity of space systems increases, innovative approaches to system design are needed to allow assessment of the largest possible number of design concepts at an early stage. In space system design, several disciplines corresponding to all different subsystems4 must be considered, and the overall spacecraft is the result of a “multidisciplinary design optimization” (MDO) [BS02, Roy96]. MDO can be described as a methodology for the design of systems where the interaction between several disciplines must be considered and where the designer is free to significantly affect the system performance in more than one discipline. In this sense, the space design process is an integrated optimization 5 that receives as inputs the mission requirements in the form of constraints and produces as output an optimal design. In the classical approach to MDO, each specialist would prepare a sub- system design relatively independently from the others using stand-alone tools. Design iterations among the different discipline experts would take place in meetings at intervals of a few weeks. This well-established approach has the drawbacks of reducing the opportunity to find interdisciplinary solutions and to create system awareness in the specialists. A considerable step toward a multidisciplinary approach in the early phases of space system design has been achieved through an MDO based on concurrent engineering, where a sequential iterative approach to system design is replaced by a parallel and cooperative approach. Design facilities where these methodologies are implemented are, among others, the ESA Concurrent Design Facility [BMO99], the NASA Goddard Integrated Mission Design Center [KMSR03], and the Concept Design Center at The AeroSpace Corporation [ADL98]. In these concurrent MDO approaches, however, the subsystem experts are the core of the decision process of the design. Over the last couple       of years, much research has been dedicated to the achievement of decision support systems or that of autonomous system design methods, which try to capture the reasoning of the experts toward an optimal and robust design. 

4 A spacecraft is constituted by the following subsystems: attitude determination and 
control, telemetry tracking and command, command and data handling, power, thermal 
structures and mechanisms, and guidance and navigation [WL99]. 

5 The term optimization is not used here in the strict mathematical sense but rather to indicate 
any procedure that aims to find a solution that is either optimal or suboptimal. 
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Therefore, the spacecraft design started to be viewed as the solution of an optimization problem under constraints: given a set of decision variables D (e.g., the dimension of solar arrays) and a set of constraints C on D (e.g., their volume and mass), the constrained optimization algorithm looks for the values of D that minimize or maximize an objective function F (X) subject to C.6 However, finding the optimal design point was revealed to be a very difficult task, and traditional global optimization approaches most of the time fail to find the global optimum in the design space [FCM+97]. To tackle this problem in spacecraft design, a quite common approach is based on the employment of heuristic solvers. The Jet Propulsion Laboratory implemented an optimization assistant (OASIS) that depending on the design problem selects and tunes either a genetic algorithm or a simulated annealing algorithm [FCM+97]. The goal of OASIS was to facilitate rapid “what-if” analysis of spacecraft design by developing a spacecraft design optimization system that maximizes the automation of the optimization process and minimizes the amount of customization required by the user. More recently, evolutionary algorithms have been used to evolve the design of the antenna that flew on NASA’s Space Technology 5 (ST5) mission [HGLL06] and for trajectory design as discussed in the previous section. The problem of tackling the conflicting situations that might emerge during the system design activity when interests from different disciplines must be harmonized in the same project or when different goals must       be reached within the same mission has been studied in [AFA+04]. The neighborhood approach aims at finding by means of dedicated heuristics a set of “paretian” solutions at the system level. To efficiently reduce the total number of such solutions to a small subset that is to be considered “optimal” from the point of view of conflict reduction, “game theory” and “multicriteria decision analysis” are used. Other approaches to autonomous space system design look not only at the achievement of an optimal design but also at its robustness with respect to uncertainties of the design variables and models involved in the design.7 In this framework, the most common approach in space system design is essentially based on safety margins and expert knowledge. The safety margins, which are the most conservative way of handling uncertainties, identify the worst possible conditions that might be encountered during the operational phase in order for the resulting design to be adequate. Probabilistic approaches have been introduced in space system design as a consequence of the Challenger accident in 1986 [Fey86] and are essentially based on “probabilistic risk analysis” [PF93]. However, in general, the probability of infeasibility for a given design cannot be determined reasonably without knowing the joint 
 

6 In the case of spacecraft design, the objective function is most of the time the cost, which 

is ultimately proportionally linked to be the spacecraft’s total mass. 
7 For an extensive qualitative and quantitative overview of these uncertainties, the reader may 

consult [Thu05]. 
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distribution of the uncertain variables or having sufficient amounts of data samples from past observations. Sometimes, the probability model assumptions can be replaced by deterministic data, for which a rigorous worst-case analysis could be performed by using numerically reliable tools, such as verified interval calculations. In the most recent literature on system design under uncertainties, design variables are modeled by a range of values (intervals), by membership-degree functions of fuzzy sets [LF02], or by evidence theory [CCV07]. The European Space Agency’s Advanced Concepts Team is assessing a promising new approach for an autonomous and robust design based on the concept of clouds [Neu04, DP05]. Clouds capture useful properties of  the probabilistic and fuzzy uncertainties, enabling the user to utilize the collected empirical information (even if limited in amount) in a reliable and validated way. Being a hybrid between probabilistic and deterministic models, clouds can provide risk analysis using tools from optimization, in particular global optimization, and constraint satisfaction techniques. The numerical techniques for solving such problems have recently become much more reliable and powerful and allow one to compute bounds for the expected values of any multivariate functions of design processes and also for probabilities of qualitative statements involving design variables [NFD+07]. 
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