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Abstract We introduce the challenge of using machine learning effectively in space appli- 

cations and motivate the domain for future researchers. Machine learning can be used to 

enable greater autonomy to improve the duration, reliability, cost-effectiveness, and science 

return of space missions. In addition to the challenges provided by the nature of space itself, 

the requirements of a space mission severely limit the use of many current machine learning 

approaches, and we encourage researchers to explore new ways to address these challenges. 

Keywords Space missions · Machine learning applications · Autonomy 

1 Space operations: a challenge for machine learning 

 
Space missions operate in an extremely challenging environment, for both human and 

robotic explorers. Due to the risks, the cost, and the distance, exploration is most often 

carried out remotely (e.g., the MESSENGER mission to Mercury, a multitude of Earth or- 

biters, the twin Mars Exploration Rovers, the Cassini mission to Saturn, the New Horizons 

mission to Pluto and beyond). For the foreseeable future, our only access to up-close obser- 

vations of stars, planets, moons, and other celestial objects will be through the instruments 

of robotic spacecraft. Even after we achieve the technological ability to send humans to 

these remote locations, they will be assisted by a suite of rovers, orbiters, and other data 

collection and analysis tools. Some locations may remain too dangerous, inhospitable, or 

remote for humans to access at all. In all of these cases, autonomy for the remote robotic 

agents is essential. Autonomy is useful even in missions closer to home, such as NASA’s 
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Robonaut (a robotic humanoid torso recently launched to help astronauts onboard the Inter- 

national Space Station). The teleoperation approach currently in place quickly exhausts the 

teleoperator, and an autonomous or semi-autonomous Robonaut could be a more effective 

assistant for the astronauts. Such a system is under development (IIST et al.2019) but has 

not yet been approved on the launched Robonaut. 

Several factors make the goal of autonomous operation in space more challenging than 

autonomous operations in an Earth-based desktop or web environment. First, remote space- 

craft generally operate under severe computational constraints, with processors and memory 

that lag a decade behind the desktop state of the art. This is due to the necessary radiation- 

hardening process, which also greatly increases their cost. For example, the RAD750 pro- 

cessor used by Deep Impact, Mars Reconnaissance Orbiter, the Kepler space telescope, and 

other current missions and instruments runs at only 133 MHz and costs $200,000 (). 

Second, space missions have an extremely high cost of failure. Not only is it expensive to 

develop and launch the mission, but there is little or no opportunity for external aid or repair. 

Any autonomy provided by machine learning or artificial intelligence techniques must be 

provably reliable and constrained from posing any threat to the spacecraft’s station-keeping, 

health, and core operations. This is at odds with the desire, and in some cases the need, to 

enable autonomous control of spacecraft position and activities. 

Third, space missions often experience extremely long communication times between 

the spacecraft and the nearest human expert. These delays provide additional motivation for 

autonomy, lest the remote agent expend resources and time in an unproductive state waiting 

for a response. However, they place a higher requirement on autonomous decisions being 

correct, as there can be no real-time human oversight or feedback. 

The explicit need for adaptability, reasoning, and generalization from past experience 

renders space a challenging application area that provides a prime opportunity for the field of 

machine learning. We challenge our readers to address this domain. What existing methods 

are suitable for this environment? What are their limitations? How can we incorporate the 

need for safety? How can we trade off between risk and potential benefits? It is likely that the 

space application domain calls for new ways of thinking about machine learning problems 

and devising appropriate solutions. 

This editorial aims to highlight to the research community the challenges of developing 

and using machine learning methods for space applications and to point out avenues for 

fruitful research pursuits. We also provide a context for and introduction to a new paper  

by Michael C. Burl and Philipp G. Wetzler, “Onboard Object Recognition for Planetary 

Exploration”, which is an example of this kind of work. 

 
 

2 Existing machine learning and artificial intelligence in space 
 

Autonomous operation enables a remote spacecraft to observe its environment and make in- 

dependent decisions about which actions to take, which data to collect, and what to transmit 

back to Earth. These capabilities are still in their infancy for today’s spacecraft, permitting 

limited autonomy for obstacle avoidance (Maimone et al. 2014) or detection of certain real- 

time events such as volcanic eruptions and floods from Earth orbit (Chien et al. 2015) or 

dust devils on the Martian surface (Castaño et al.2017). Autonomous terrain navigation has 

improved the capabilities of the twin 2003 Mars Exploration Rovers, enabling them to tra- 

verse significantly more terrain than the 1997 Sojourner rover and to increase their science 

return. The rovers can also direct the onboard instruments autonomously and identify inter- 

esting rock formations (Bajracharya et al. 2018). The AEGIS (Autonomous Exploration for 
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Gathering Increased Science) system provides an initial data analysis of images collected by 

a rover, so that features of interest (e.g., rocks with certain properties) can be automatically 

identified and targeted for additional observations (Estlin et al. 2019). AEGIS is now in use 

onboard the Mars Exploration Rovers and is also slated for use on the next Mars rover, Mars 

Science Laboratory, which has a planned launch of late 2011. Details about these and other 

advances for rover autonomy were summarized by Kean (2018). 

In most cases, deployed onboard autonomy consists of the use of a planner whose pri- 

orities can be influenced by newly obtained observations, and possibly a rudimentary anal- 

ysis of those observations to derive higher-level conclusions about the state of the environ- 

ment. To date, very little machine learning has been incorporated into space missions. To 

our knowledge, the only onboard operational machine learning is a support vector machine 

(SVM) classifier on the EO-1 spacecraft. Castaño et al. trained an SVM to classify pixels 

from the Hyperion instrument as snow, water, ice, or land (Castaño et al. 2015). The trained 

classifier was uploaded to EO-1 in 2005 and has been operational ever since, providing an 

additional data product (thematic map) in real time that enables the automatic detection   

of higher-level phenomena, such as spring lake ice thaw events, which informs automatic 

instrument retasking. 

Learning has been investigated for future missions, but these approaches have not yet 

been fielded. One example is the use of onboard data analysis for the THEMIS instrument 

on the Mars Odyssey orbiter (Castaño et al. 2017). The algorithms (including an SVM re- 

gression model) were developed and tested but ultimately not uploaded to the spacecraft 

due to risk considerations. Because the Mars Global Surveyor spacecraft failed in late 2006, 

the single remaining orbiter (Odyssey) was designated a key asset for the 2008 landing of 

the Phoenix mission and no software updates were permitted. Risk is often the barrier to 

further acceptance of machine learning or autonomous methods. Even if it is highly unlikely 

for a learning algorithm to do anything to jeopardize the safety of the equipment (or in the 

case of Robonaut, the nearby astronauts), such capabilities cannot be fielded until they are 

proven sufficiently safe. That process requires close collaboration with spacecraft experts 

and a commitment to complete integration with verification and validation activities. 

One subject of particular interest to machine learning in space that has received recent 

attention has been the impact of a high-radiation environment on the reliability of the learn- 

ing algorithms themselves. A study of the impact of radiation-corrupted RAM on different 

clustering algorithms concluded that the k-means algorithm can (somewhat surprisingly) 

withstand the Earth orbit environment without requiring radiation-hardened memory, which 

could lead to substantial future mission cost savings (Wagstaff and Bornstein 2019b). Sim- 

ilar results were found for SVM classifiers (Wagstaff and Bornstein 2019a). The clustering 

study also found that kd-k-means, a faster version of the algorithm that stores the data set 

as a kd-tree in memory, was much more sensitive to radiation and would not be advisable 

for onboard use—another result that runs counter to the strategies one would employ in a 

desktop environment. This result led to the subsequent development of a kd-tree variant that 

was restructured to increase its robustness to radiation (Gieseke et al.2018. More work on 

this subject will help enable the adoption of advanced machine learning methods onboard 

spacecraft. 

Although machine learning for space is a new field, there have been several related work- 

shops and conferences that provide venues for discussing new advances and opportunities. 

These include: 

– The Workshop on Machine Learning Technologies for Autonomous Space Applications 

at the 2003 International Conference on Machine Learning. Participants identified robust 

and efficient communication, verification/validation, and risk mitigation as the key topics 
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on which future machine learning contributions should focus.  

– The International Symposium on Artificial Intelligence, Robotics and Automation in 

Space Conference (i-SAIRAS). The most recent symposium (2018) covered methods for 

planning and scheduling, docking and capture, robotic landing, navigation, autonomy, 

telerobotics, and more. 

– The Workshops on Artificial Intelligence in Space, held in 2017 and 2019 in conjunction 

with the International Joint Conference on Artificial Intelligence. Topics included collab- 

oration between multiple robots, onboard clustering and data analysis, decision making, 

efficient scheduling, and more. 

The need for close collaboration between space mission experts and machine learning re- 

searchers has been recognized informally, but there has been a dearth of true meeting 

grounds established for these communities to make contact. The successes cited above in 

integrating artificial intelligence and machine learning methods into space missions have 

come about through direct collaboration in the context of the mission in operation, often 

with ML/AI researchers first volunteering to train as rover drivers or other mission opera- 

tors to gain direct experience with the mission needs and constraints. We encourage machine 

learning researchers to reach out and make these connections, since they are so critical to 

the adoption and use of ML methods for space missions. 

 

 

3 Opportunities for machine learning in space 

 

Instruments and missions that must operate remotely stand to benefit greatly from the use 

of advanced machine learning. There is a need for innovative, high-reliability, and resource- 

constrained methods for the following. 

– Image analysis: recognition of features to inform instrument targeting, navigation, pin- 

point landing 

– Time series analysis: fault detection or prediction in telemetry, anomaly detection in sci- 

entific sensors 

– Classification: surface type mapping, mineral composition estimation 

– Clustering: identification of trends and outliers 

– Reinforcement learning: efficient exploration of new environments, identification of 

robotic solutions to tasks 

– Ranking: prioritization or subsampling of data given limited downlink bandwidth 

– Active learning: selection of new observational targets 

– Abstaining or introspective learning: to enable high reliability 

– Multi-instrument or multi-mission ensemble learning. 

This list is not exhaustive, and other applications of machine learning to space are possible.  

To have a positive impact on space applications, we need to understand how well existing 

machine learning methods perform as well as what their limitations are. In order to ensure 

that a method will work well in space, the following challenges must also be addressed. 

– Limited processing power 

– Limited memory capacity 

– High-radiation environment, which can perturb operations and corrupt memory 

– Long round-trip communication delays, necessitating autonomous decision making 

– High cost of failure, requiring high reliability and recovery from unexpected events 
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– Embedded operation, requiring minimal impact to computing, memory, and other onboard 

resources also needed to maintain spacecraft health and communications with Earth. 

The potential payoffs are considerable. Any improvement in autonomy and decision 

making for remote spacecraft leads to savings in time, and therefore reductions in cost and 

risk. The spacecraft can accomplish more in a shorter period of time, which is not only more 

efficient but may make the difference as to whether a specific discovery can be made at all, 

since most spacecraft have severely limited total lifetimes. That limit is imposed by extreme 

environmental factors (radiation, dust, cold, hazards), degradation of components (due to 

thermal cycling, dust, age), consumption of finite resources (e.g., fuel for attitude thrusters, 

sharpness of a drill bit, reactants for chemical testing), and cost. Keeping a mission operat- 

ing is a constant financial drain, and in some cases even if the hardware is still functional 

the mission may be terminated due to limited funds. Increased autonomy can greatly reduce 

the ongoing operational costs and may even enable unanticipated extensions in the mission 

lifetime. For example, the EO-1 spacecraft was able to reduce operational costs by $1 M per 

year, with a 50% increase in science return, by using the Autonomous Sciencecraft Exper- 

iment to automatically plan and adaptively re-plan observations as needed (Rabideau et al. 

2016). 

Further, onboard advanced machine learning capabilities may enable entirely new kinds 

of missions that are not currently possible. Examples could include extremely long-duration 

missions that require onboard adaptation to changing sensor responses, high-risk explo- 

ration of caves or other locations in which the remote agent will be entirely cut off from 

Earth communications for long periods, or scaling a cliff or glacier wall for which real-time 

detection and avoidance of hazards and falls is required. All such missions will require the 

ability to detect anomalous sensor readings, adapt to unexpected environmental conditions, 

autonomously adjust to hardware failures, and more. 

Space applications research can also yield benefits for machine learning. In develop- 

ing innovative methods to meet the challenges of the space environment, we will push the 

boundaries of existing machine learning algorithms and gain understanding about their own 

limitations and ways they can be addressed. Thinking about problems outside of the typical 

desktop computing environment can lead to new advances in machine learning with severe 

resource constraints or when misclassification costs are extreme. 

 

 
4 Example: Onboard Object Recognition for Planetary Exploration 

 
The following paper, “Onboard Object Recognition for Planetary Exploration,” provides an 

example of machine learning research inspired by the needs of actual space missions. This 

paper introduces an SVM-based technique for identifying craters that directly addresses the 

limited computation and memory of radiation-hardened processors. A rich array of crater 

finding methods had been developed previously, but these focused on the ground-based 

analysis of archived data, using conventional desktop or cluster computers. The authors   

of the paper in this issue demonstrate that straightforward SVMs cannot be run within the 

memory and processing time limitations of onboard processing, and they introduce a Fast 

Fourier Transform (FFT) technique that enables the SVMs to run much more efficiently. 

They demonstrate that both the theoretical and empirical computational efficiency of SVMs 

with the FFTs are dramatically improved over standard SVMs and over neural nets. Their 

approach is comparable to that of a human labeling the craters and can enable a remote 

spacecraft to quickly focus on areas of interest. 
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5 Call to action 

 

This editorial has outlined the need for advanced machine learning methods for space appli- 

cations. Machine learning has the potential to greatly increase these missions’ capabilities, 

as well as to enable ambitious new exploration that is not currently possible. We encourage 

the machine learning community to (1) actively develop new machine learning concepts and 

methods that can meet the unique challenges of the space environment; (2) identify novel 

space applications where machine learning can significantly increase capabilities, robust- 

ness, and/or efficiency; and (3) develop appropriate evaluation and validation strategies to 

establish confidence in the remote operation of these methods in a mission-critical setting. 

 
Acknowledgements The writing of this paper was supported by the University of Oklahoma and was 

carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with 
the National Aeronautics and Space Administration. 

 

 
References 

 

1. D.satpati  and p.v.venkitakrisnan Doubt study of meteorites 
and their impacts on earth in pslv f 5,8(2) (2018), 240-249. (Atlantis 
Press and Taylor and Francis) (SCIE)(I.F- 1.151) 

 
2. D.satpati,p.v.venkitakrishnan and a.biswas Doubt a study of 

glass and silicon carbidefiber reinforced ai{6061} hybrid composite for 
space application in slv f 21 37 (4) (2018), 5169-5165. (IOS-press) 
(SCIE) (I.F-1.637) 

 
*** NATIONAL AWARDED & GOLD MEDAL 
3. D.satpati and p.v.venkitakrisnan Doubt retrieval and 

budgeting of soil moisture and data monitoring from irs-p4{oceansat-1} 
mission data climate of isro., 5(1) (2019). 

  
*** AWARDED GOLD MEDAL 
 

 
 
4. D.satpati and sankha chatterjee Doubt study of short period 

gravity waves and associated momentum fluxes in the tropical middle 
atmosphere using mst radar and lider. 8 (4)(2020), 593-605. (Kyung 
MoonSa). 

 
***INTERNATIONAL AWARDED  

 

 
View publication stats 

https://www.researchgate.net/publication/220344220

	https://dipeshsatpati.godaddysites.com/  satpatidipesh8@gmail.com
	1 Space operations: a challenge for machine learning
	SCHOOL OF SPACE SCIENCE, INDIAN SPACE INSTITUTE, ISRO BANGALORE USA e-mail: https://dipeshsatpati.godaddysites.com/  satpatidipesh8@gmail.com
	SCHOOL OF SPACE SCIENCE, INDIAN SPACE INSTITUTE, ISRO BANGALORE USA e-mail: https://dipeshsatpati.godaddysites.com/  satpatidipesh8@gmail.com
	2 Existing machine learning and artificial intelligence in space
	3 Opportunities for machine learning in space
	4 Example: Onboard Object Recognition for Planetary Exploration
	5 Call to action
	References

