See discussions, stats, and author profiles for this publication at: https://dipeshsatpati.godaddysites.com/

1IITBOMBAY21 C++ COMPUTER SCIENCE AND APPLICATION

Article in 1IITBOM21 C++ COMPUTER SCIENCE AND APPLICATION -NOVEMBER 2020

DIPESH SATPATI{SPACE REASEARCHER,IRS104758IITK}

INDIAN SPACE RESEARCH ORGANISATION <l -~
15 PUBLICATIONS 2,60 CITATIONS ?»T{ﬁ =ra

All content following this page was uploaded by DIPESH SATPATI on 10 october 2019.

The user has requested enhancement of the downloaded file.

https://dipeshsatpati.godaddysites.com/

https://dipeshsatpati.godaddysites.com/
https://www.researchgate.net/profile/Dario_Izzo?enrichId=rgreq-9e317fda27a0e4546a27dcca0e505e52-XXX&enrichSource=Y292ZXJQYWdlOzI0MTg4NTM5MDtBUzoxNTA2NzI5NjgyNjE2MzJAMTQxMjkzNDY0MzAzMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf
https://dipeshsatpati.godaddysites.com/

***MY CO-RESEARCHER:- SNEHASISH BISWAS,SWARNENDU

AGARWAL,AKASH MUKHERJEE,AISHIKI SEN,AYAN GHORAI,DR.
RITOBROTO CHATTERJEE ,DR.ISHITA BANERJEE

C++ PROGRAMMING LANGUAGE

DIPESH SATPATI,.SWARNENDU AGARWAL ,AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

FORMERLY INDIAN C++ LANGUAGE

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

-C++ FOR B.SC M.SC FOR BETTER PERFORMANCE_

C++

About the Tutorial

C++ is a middle-level programming language.. C++ runs on a variety of platforms, such
as Windows, Mac OS, and the various versions of UNIX.

This "ARTICLE"” adopts a simple and practical approach to describe the concepts of C++.

Audience

This "ARTICLE"” has been prepared for the beginners to help them understand the basic
to advanced concepts related to C++.

Prerequisites

Before you begin practicing various examples given in this ARTICLE, we are making an
assumption that you are already aware of some basics, like the computer software
installation process and computer programming language.

Copyright & Disclaimer

DIPESH SATPATI,.SWARNENDU AGARWAL AKASH MUKHERJEE
IIT;BOMBAY{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

FORMERLY INDIAN C++ LANGUAGE

All the content and graphics published in this e-book are the property of C++ ARTICLE IN
IIT KGP. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors C++ ARTICLE IN IIT
KGP. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us https:/dipeshsatpati.godaddysites.com/

DIPESH SATPATI,.SWARNENDU AGARWAL ,AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

FORMERLY INDIAN C++ LANGUAGE

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com
https://dipeshsatpati.godaddysites.com/
https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

C++

Table of Contents

ADOUL ThE TULOTTAL ...t e ek b bt e e e e e e st et e e e e e s st e e e e e e e e e nbebeees i
F XU 1T=T o ot =S e PR SO PRPTTTPP i
PrEIEQUISITES ...ttt ettt e bt e e et bt e e s be e e e s ab bt e s e aa s bt ee ek bt e e e aabe e e e sabn e e e e anbeeeeabneee e e i
COPYIIGNT & DISCIAIMIET ...ttt st e s ahe et e ekt e eaab et e s e e e sbee e e s be e e e s annbee s i
L OVERVIEW. ...kttt b e e bbb e bbb e e 1
ODbject-Oriented ProgramMIMiNg ... et e e bae e e e s ibbbE e e e e e e s e aasbeeeaaesaaasbbaseaaesssanibbabeeaeeaans 1
Y= Ta Lo F= o I I o] =T = T S S TP PUTUOU PP 1
LI AN N IS T S] = o o = o e RSP S 1
==Y T o O SRRSO SRR 2
2. ENVIRONMENT SETUP ...ttt et sss e sttt b 3
Try it OPLION ONIINE ettt e oot e e e e e e e e bbb et e e e e e e e aanbeeeeaae e e anbbbeeeeeeeannbnbeeaaans 3
3. BASIC SYNTAX ottt ebssisbss s sas et bbb saas bbb b et es et s bbb st s bbbt e b s st s 5
(08 o e o To =10 IS U [0 (UL = e PRSP PPPPTR R 5
ComPile & EXECULE CHd PrOQIAM ..o ieeiiieee ettt e ettt eaa e bbbt e e e 22 e e bbb be e e e e e s e sanbbe et e e e s e snbaanseaaneaan 6
SemMICOIONS & BIOCKS TN CAa ..ttt ettt e e e e ettt e e e e s e s bbbe e e e e e e e s abeaeeaaeeaans 6
108 o =20] o [O TT TR P O PPPPP P 7
4, COMMENTS IN G4 Lottt s etk e sttt e e st e e s s b e e e a b b e e e sbeesnneeeannneeans 10
D DATATYPES ...ttt st b e s b bbb e be e b st e s ebeebe st et e e enseseebeseente s eRssbeeteseenens 11
Primitive BUIT-IN TYPES oottt s et e e e e e s e e e e e e s s at s e e e e e e s assnnanaeeaeaesassbedenneeeanns 11
1877 L=T0 [B D= Tod = U= L1 [0 1 1 SRR 13
U L aT=T = =T I o L= PSRRI 14
6. VARIABLE TYPES ..ottt sttt sttt b e st b e bt sebeebe st rennns 15

Variable Definition 1N CHt ..ot e e e et et e srr e sabe e e sneeesnneenenas 15
Variable DecClaration iN Ca ..ot e e e sr e e s e 16
LValuES @Nd RVAIUESooiiiiiiiiiiieee ettt e et e e e s e s enees 18
7. VARIABLE SCOPE ...ttt sttt nenens 19
LOCAI VAITADIES ...ttt e e e b e hr e e enr e e s s e e s Re e e nrn e e nnneennree s 19
GlODAI VANTADIES ...t ettt e e e n e e e 20
Initializing Local and Global Variableso e 21
8. CONSTANTS/LITERALS ..ottt st en e e aene e nn s 22
TaLa=To L= I (Y - | S P PPERR 22
Floating-POiNt LITEIAIS ...ooo oottt e e et e e e e e e s e saabbe et e e e e e e nbbaneeaeeeaan 22
BOOIEAN LITEIAIS .ttt a bt e s e a bt e e ekt e s nb e e e b be e e e eabne e e iR 23
(O aEo Lo (=] g I (= =L O e O T ST OO PSP P PR PP 23
STIING LITEIAIS ..ttt et e s e kbt e e e bt e e s bbbt e e e st et e s nbn e e e enb e e e snbe e e e e Ees 24
DEfiNING CONSTANTS ...eeiiiiiiie ittt ettt ittt e et e sk be et e sttt e e e sa b b et e e bbbt e e aabe et e aabne e e e anbneeesnnbneeeenees 25
9. MODIFIER TYPES ..o ottt sttt 27
TYPE QUANTIEIS TN CA oottt e ettt e e st e e e e et e e e e e ahbe e e e st e e e e s asbeeeesnbneeseanbeeeeaat 28
10. STORAGE CLASSES ..ottt sss s s bbb 29
THe QULO STOFAGE ClaSS ...uiiiiiiiiiiiiitie ettt e b et e e e e ettt e e e e e e bbb e e e e e e e e e anbbbeeaaee e e hnnbeeeeaeaesiannnes 29
The regiSter StOrAQgE ClASS ...oiiiiiiiiiiii ittt e e e e e e bbb et e e e e e s aabbae e e e e e e e nbbbeeeeaeeeeanneees 29
The Static SIOrage ClASSuiiiiiiiiei ittt e ettt e e et e e s sabe e e e s b e e sanee 29
The XTErN SEOrAQgE ClASS . .uii ittt b e et e e e bt e e s et e e et b e e e e anbe e e e abneeeeaees 31
The MULADIE STOrage ClaSS . ..ottt ekttt e e s seb et e eebre e e neee 32
11. GEBRD KORS il e T . - . PV 33
ATTENMETIC OPEIALOIS .. .eiiiiiiiiee ittt ettt e e sh b et e e st e et e e ab b e e e e aa bbb e s skt b e e s aanieeenbneeeeas 33
YT E A To] g F L @ o 1=] = (o] £ PP PO UPPPPRTI 35
(o To Tof: L @] o1=T =1 o] £ TP PP POPPPRTP 37
BItWISE OPEIALOIS . .eiiiiiiitiiie ittt ettt ettt e ekttt e s b e et e e aa b et e e sk et e e e aabe e e e sbbe e e e anbb e e e sabbe e e e nnneas 39

ASSIGNMENT OPEIALOTS . ..iiiiiiiie e ettt e e e s e e e e e e e e e e e e e e s s tbeaeeeeessaaateseeeaeesaaststeeeaeeesasssteneeaeeesasnrens 41
LYol @] o 1= =1 o] €T PP UPTPP TP PPUPUPRRP 44
Operators PreCedenCe IN Ch ... ettt e e e s et e e e e e e st b e e e e e e e e e aanbeeeeeas 45
12, LOOP TYPES ...ttt ss st sttt 48
RVAY T L= o T Yo O S SRR 49
LOOP CONTIOl STALEMENTS ...ttt e e ettt e e e e e e s e e bbbt e e e e e s e sanbbe e e e e s e e annbnbeeaeeeaans 57
THE INFINTEE LOOP -eveeiiiiie ittt ittt e oottt e e e e e 1ot b b e et e e e s bbbt e e e e e e e e mnbb e e e e e e e e annbeneaaas 63
13. DECISION-MAKING STATEMENTS ...ttt e nn e snns 65
1S =1 0= 0 1= 0 e S PP PP PUPR P UPRPPOPRI 66
if... €180 STALEMENTo et e e s n e s e 67
if...elSE if...eISE STAIEMENT ... ettt et eb et n e e 69
SWITCN STALEMIENT ...t et eh e st et e e s b e e s iR bt e e ek b e e e e aab et e e e b b e e e e anbe e e s anbeeeeenreas 71
NESTEA I STALEMENT ..ot e st e st et e s s abe et e sbb e e e annn e e e snneeesaenebas 73
LN TSR @ o1 &= 1o] S PP PP OTPP PP UPPRY 76
LA FUNGCTIONS ..ot bbbt b ettt bttt ane it 77
DefiNiNG @ FUNCLION L..uiiiiiiiiie etttk e e e e e skttt e e e e e e s s abbb e e e e e e s e aanbbeeeaaeeesnnbaneaaeeeaans 77
FUNCEION DECIAIALIONSeiiiiitie ettt e et e sttt e e s et e e s be et e e anbb e e e s bbb e e e es 78
(0= 1 1o To =T U o Tox A o o P Oy PSPPSR P PR 78
LT Lo (o] oI N o TU 4=) £ PSSP 80
15, NUMBERSot e bttt bbb b r e e s nnne 87
Defining NUMDEIS N CH oottt s b e e e s s R b e e s et e e s nbe e e e snneeeeanneeas 87
= U O o T=T = o T Fo N [T O o RSP 88
RANAOM NUMDEIS TN CA oottt e et e e b et e b e e e e abe et e sabb e e e s abba e e e sbne e e e nnne s 90
16, ARBANSL L ETcoorccnccnnnnnecnnesnseesnsessnessesesse oSO ol e sl o il il e 92
(D =Tol Fo T gT oo BN o = | 2T O P PPPPP 92
LT EE AT g Lo AN 4 =\ VA PO PP PPPPPOPTP 92
ACCESSING ATAY EIEMENTSoiiiiiii ettt e et e e nbr e 93

F N - VT 1 5 PR 94
Passing Arrays t0 FUNCLIONS ...ttt e e e e e e e e e e e e et et et e eeaaaaaaaaaaaaaaaaaaaaaaaens 98
17, STRINGS .ottt e e s e e st e e s te e e sste e e ssbeeesnbeeessaeeennaeeenneeans 104
The C-Style Character StIiNQocceeeiei i e s r e e e e s s e e e e e s s santreereeeessnranneeeeesaansnes 104
The SEHNQG ClASS IN Crruuuiiiiiiii i e e e e e e e s s brae e e eeeesetrreeeaeessassntaaesaaeessassreeeeeesaansnes 106
18. POINTERS ...ttt sttt eb s st b et e et et et et et ne et e ne s ene e ne e e 108
WHaAL Are POINTEIS? ...ttt e e e e s e nan e st sin e s re e e nn e e abne e nnneenene e 108
L0 LY T o I =0 1T a1 (=T T g T O e USRS 109
POINTEIS 1M Crt ottt et Eh e sa e s et e st e e e be e e sbs e e s s beeaRbe e anbe e e abeeennbbesnneennnes 110
N LU o1] (=] P S P T S PO PP S PRR PP 111
POINTEr ATTERMEBLIC ...ttt b e e skt e et e e e e e e re e s s s e e e ee s 111
POINTEIS VS ATTAY'S ..uittiiiiie ittt e e bttt e e e ekttt e e e e s et b s beeeea e e s bbbt et b e e s e aanbbeeeeaeeesnnbeaeeaaeesannbabeeaaeeanns 115
ATTAY OF POINTEIS ...tttk e ettt e e e e b e e e s a b et e e enb b e e e e enbe e e e annbeeeennre 117
POINTET 1O 8 POINTET ...eiiieee ittt ekttt e et b et e e et e e e bt e e e s aabb e e e e nbeeeeanbneeeennee 119
Passing POINTErs t0 FUNCLIONS ..o..uiiiiieie et et a e e 120
Return Pointer from FUNCLIONSoii ettt bee e e 123
19. REFERENCES ..ottt e sttt bttt 126
REFEIENCES VS POINTEIS ..ottt ettt a kbt e e et bt e e e sbb e e e s eabet e e enbeeesanbns 126
Creating REfEIENCES IN CHt iiuiiiiiiiiiiiiiiiiiiiiiee s iureee s sivssssssssssssissss e sasssse et reeaesasseesssssssasinssseessisssensnns 126
REfErenCes @S ParamMELersScociiiiiieiiie ettt 127
ReferenCe as RELUIN VAIUEcociiiii et aneesanes 129
20. DATE AND TIME . coeiii ittt s e aba e ib e nb e e e nbb e e e sa e e esr e e e abn e e e nreas 131
CUrrent DAte @nd TIMEiiiiiiiiie ettt e ettt e e e b bt e e e aa ket e e s e b e e e e e 1 a bt e e e sabbe e e e sabeeesaabeeeessnbbeeeane 132
Format Time USING STIUCT T ..ueiiiiiiiiiiice e e s e e e e e st e e e e e s nannn e e aee e e e annnrannaeeeean 133
21. BASIC INPUT/OUTPUT ..ottt ae bbb s s st nes e senenenes 135
/O LiDrary HEAAEr FIlES ... ittt et e e e e 135
The Standard OUtPUL SIrEAM (COUL) ...uiiitiiiiiiiiii ittt nbe e sanee e s 135

The Standard INPUL STrEAM (CIN) c.uuueiiiiii e e e e s e e e e e s e sabre e e e e e e ssnraaeeeeeeseannnes 136
The Standard Error SIFEAIM (COIT). ... i i iitieeie e ettt e e e e ettt e e e e e st bbeeeee e s s aaanbeeeeaaaeaanbaseeeeeeaaannes 137
The Standard Log STream (ClOQ) ...e ettt e e e e ee e e e e e e aaees 137
22. DATA STRUCTURES ...ttt sss s s st esse s 139
DEfINING @ STTUCTUIE...eeiiii ittt e e e e e e e et e e e e e e s aate e e eaeeseassstaaeeaeessnntsneeaseesanntareeeeeeans 139
ACCESSING STIUCTUIE MEIMDEISuiiiiiiiiiiiiiiii ittt ettt et e s e aeaeasananaaaaanas 140
Structures as FUNCLION AFQUMENTS ... ittt e ettt e e e st e e e e e e e e annbbeeeaaeeesnnneneeas 141
POINTEIS 1O STIUCTUIESiiiiiitiiieiitiie ettt ettt e e e s b et e e e b b e sa b et e e e st e e e s enbr e e e e nnbe e e nees 143
23. CLASSES AND OBJECTS ..ottt isssssissssssie st ssesssssssssssssssessessssssssastassssssessns 146
CH+ Class DEFINITIONS ...ttt sab e e et e s e e s b re e e e anr e e e s rne e e e 146
D T O @] o =T o) £ PP OPUPUUR 146
Classes & ODJECES iN DELAIcciiuiiiiiiiiiieii ettt e et e e st e e sbe e e e e anbeeeeane 148
Class ACCESS MOGITIEIS ...tttk e ettt e e sab et e e s be e e e s abbeeeesabneeeesnbbeeeanes 152
The PUDBLIC MEMDEIS ...ttt e e b e ettt e e st et e e s sttt e e e sabeeeeaabneee e 153
THE PrIVALE MEIMDEIS ...ttt ettt b e e st bt e e e st b e e e s sabe e e e sabaeeesabbeee e 154
The Protected MEMDEISottt e e sttt e sttt e e s anbee e s anneeee s 156
CONSIIUCTOT & DESTIUCTON ...ttt etttk e e st e e st e e sn e e e s amne e e s sannee et annneeennne 157
[=T oo I UL o o o] o 1= e P T oS TP PP PP 167
INHINE FUNCTIONS ...ttt et e et e e s st e e e e e e s e e e e ennre e e s s 168
LTS 011 L= S PSP PPPRRUPPR 169
POINTEL 10 CAt ClASSES ...ttt ittt et e e ettt e e e st et e e e kbt e e e aa b et e e anb et e e e abbe e e e aabreeesanbeeeeanbeis 171
Static MeMBDErS OF @ ClASSviiieiieiee ettt e st e et e e s aba e e s s e e e sabne e e e snbeeeeane 173
Static FUNCTION MEMDEIS ...t eeeaae 174
24, INHERITANCE ..ottt bbbt b et b bbbttt 177
BaSE & DEINVEA CIASSESoeiuiiiiitiiiiiie ittt e bt sb e st e st e e aane e s an e s e nneennnes 177
Access Control and INNEMITANCEcuii i re e as 179
TYPE OF INNEIITANCE ..ttt e e ettt e e e e e e e bbb et e e e e e e e babeeeeaeeeannbees 179
MUIEIPIE INNEIITANCE ..ottt e e e e e e ettt e e e e e e snbbeee e e e e e annbareeaaeeanns 180

25. OVERLOADING (OPERATOR & FUNCTION)......cciiiisieicieisese e 182
FUNCtion OVErIoading iN CHt .ottt e e et e e e et e e e e st e e e e ente e e e e nteeeenneeas 182
Overloadable/Non-overloadable OPeratorscc.ueevieiiiiiieii e e 186
Operator Overloading EXamMPIESccooi it e e e e e s e e e e e e e s snreenees 186
Unary Operators OVEIIOAINGcccoiiiiiiiieee e e s r e e e e e s skt ae e e e e e s s sannba e e e e e s e snnnraaeeaeanas 187
Increment (++) and Decrement (- -) OPEIratOrSoouuueiieee it ettt e e e e e ebb e e e e e e aeees 189
Binary Operators OVErIOAING ..cc.ooi i ittt e et e e s e e e e e e an 191
Relational Operators OVErTOAAING .ooiiuuee ittt ab e et e et e e s abbe e e e eneas 193
Input/Output OPerators OVErlOAAINGuuiiiiiiiieiiiiie ettt sr et e e she e eesnenneas 195
4 aNd - - OPErators OVErTOAUING .uuueeeieeeeitiiee et ee ittt rrr et e b e e e s stbee e s rebeeeesbseeessrneeeeane 197
Assignment Operators OVErTOAMINGooiuuiie ittt e e e e sbb e seeeae e sineeas 199
Function Call () Operator OVErlOAdINGcociiuriiiie et e e s s e e e e e e st rer e e e e s annb e eeeeeanas 201
Subscripting [] Operator OVErlOadiNgicieeiiceiieee it ede s siti e e e s sree e e e e s senaareeeeesaenbaeeeeees 202
Class Member Access Operator - > OVErloadiNgcooiciiiiieeeii i ee e 204
26. POLYMORPHISM ..ottt sttt sttt se b st e st et neebeebesbesbe e e neneene 208
BT U= L 0T o o SRS 210
27. DATA ABSTRACTION ..ottt sttt esa et sa et ntene s 212
Access Labels ENfOrce ADSTIACTION ...ouiiiiiieiiiiiie ettt e e e e e e s st ae e e e e e 213
28. DATA ENCAPSULATION L. ittt 215
29. INTERFACES ..ottt ettt sttt s b e bt beebe s b et et e e eaeebeseennenaeneenenhe 218
30. FILES AND STREAMS ..ottt sttt ae et st e st enaea s b n et sn e ne e 221
OPENING @ FIIE ..ttt e sttt e e s bb e e e e sabe e e e saba e e e s abbeeeeane 221
ClOSING @ FIlE e ettt b bt e e e sk b bt e e s bb e e e e shbe e e e s ba e e e e abbeeeeane 222
WIITING 10 @ FIlE oottt e e e e e s bb e s e bb e e s s bb e e e e nbe s 222
File POSITION POINTEIS .ttt ettt e e s e bt e e s bt e e s e st e e e enbe e e s snbeeeeeneee 224
31. EXCEPTION HANDLINGoottcteisee ettt 226
TRIOWING EXCEPTIONS ...ttt e s bt e e e sb bt e e sabb e e e e aab e e e e snbaeeesnbreeeeas 226

(OF 1 (o 1T a0l b qoT=] o1 4 o] ¢ =TSSR 227
CH+ Standard EXCEPTIONS ..ottt e e e e et e e e e e s e b bbbt e e e e e s e nbbe e e e e e e e e snnbeneeas 228
DefiNg NEW EXCEPTIONS ..ociiiiiiiiie ettt ettt ettt e e e e ettt e e e e e e st b e e e e e e e s abbbe e e e e e s s annbeneaaaeean 230
32. DYNAMIC MEMORY ..ottt sse ettt st ne e s e 232
The new and delete OPEraLOrSuceieiiiiiiiiiiiiee e e iciiee e e e e e e s e e e e e e s st ereeeeeassesatsaeeaaaeasarereeeaeessassnes 232
Dynamic Memory AHOCALION fOr AFTAYSuuurureiiimiireirirreeeeieiriererrerrrrerrrrrrrrrrretatataraaaaataaaaeaaeaaaaeans 233
Dynamic Memory Allocation fOr ODJECTSuiiiiiiiiii e a e 234
33 . NAMESPACES ...ttt sae s a ettt ie et et et ne e eeneenene e e 236
DEfINING @ NAMESPACEciiiieieeei et e e e e i e e e e e e e e e e e s e s st eeeeeessastaaeeeaeesannrrreseeeessaatbreaeeeeenan 236
TRE USING QIFECTHIV ettt ettt e e ettt e e e e bttt e e e e e e abebe e e e e s e eanbnbeeeae e eeannneees 237
DiSCONTIGUOUS NABIMESPACESeieieeiiiiitiiieaaeeiaiteeeeeae e s e ibtbeetaaa s s aaaebteeaaaaetaasbaaeeeaeeaaaabebeeeaassaannbeneaaasain 239
NESTEA NAMESPACES ...eeiiiiiiiitiii it bttt e ekttt e e e e s i bt s bt e e e e s e e s bbbttt beesaaanbbeeeaaeeeannbeaeaaaessannbabeeaaaeanns 239
K I Y e I 241
FUNCLION TEMPIALE ...ttt e ek bbbt a e e e e s bbb e e e e e e e e sabbe e e e e e e e snnbnreaaaeeaans 241
(O P T =T 4 0] o] = L= S PP PPRTTR PSP 242
35. PREPROCESSOR ... civiiiiiiiscie sttt s ses s sa et na e st a st e se e stenesnns 245
BN TCE o L= E =T el =T o] oY od =TT Yo) PSRRI 245
FUNCEION-LIKE IMBICTOS ...ttt sttt et et e s et £ e e e e e e e e e e e e s nnnae s 246
Conditional COMPIALION .cooiiiiiee e e e e e e s bbb e e e e e e s s ba b eeaae e e s anbbreeeas 246
TNE # AN # # OPEIALOTS ...eeeiiie ettt e e ettt e e e e e et ettt e e e e e s e bbbt e e eaeeaaaanbeeeeaaeesaanbabaesaeeeaasnes 248
PredefiNed CH+ IMBICIOS ..uii ittt e et e e et e e e sk e e e e e R R e e e e tb e e e e anbre e e e anbeeeenrnas 249
36. SIGNAL HANDLINGcooiceeesee ettt ettt sttt p e nnns 251
The SIgNal() FUNCHION ... e e e e e e e s e st e e e e e e e e s nbate e s e eea s e sntaeeeeeeesanneees 251
THE raISE() FUNCLION oottt ettt e e e e et e et e e e e e e s R bebe b e eese e baba e e e e e e anneees 253
37. MULTITHREADING ...ttt sttt 255
(1 =T {1 o T 41 == Vo K= S 255
Terminating TRIEAASvviiiii e e e e e e e e e s s et e re e e e e e e s e santeeeeeeeesnanrees 256

Passing Arguments t0 THIEAUASccuiiiiii e e e e s e e e e e s e snrr e e e e e e e s 257
Joining and Detaching TRIEAUSccvvvviiiiiiiii e 259
38. WEB PROGRAMMING ..ottt ettt nnns 263
WAL IS CGI? ..ttt bbbttt b bt s bbbt ekt e bt e sh e e eb e e sbe e sbeeeb e e ebe e nbe e sheenbeenbeentees 263
MVED BIOWSING 1 iiiiiieiie e ie ettt e e e e e s et e e e e e e st te e e e e e e e ateteeeeee e e e anteeeeeeeessstsseaaaeesssntsaassaaessanrsreneeeesansnes 263
O CT I AN o] VL (= Toa U =N BT Vo | = o [SPR 264
Web Server CONfIQUIALIONo. ittt e e e e et b e e e e e et e e e e e e e s e nbbbeeeaeeeeannnes 264
L I I o 1= = o] P SRRSO P PPPRRP 266
CGI ENVIroNMENt Variablescoo ittt e s sen b e e e sab e e e e sabeeeeanes 266
(08 S O1 G | o =1 PSPPSR PR PPPURP PRSP PPPPTNE 269
GET @nd POST MeEINOUSceiiiiiiie ittt ettt et e e st e e e sbbe e e s aabeeee e sabbeeeaie 270
USING COOKIES 1N TGl coiiiiiiiiiiiiie ettt e e st e e e et et e e e e s e e anns e e aeeeesnanteaneaeeeannntseeeeeesanns 279
39, STL TUTORIAL ...ttt ittt ettt sttt sttt eban et 286
40. STANDARD LIBRARY ..oiiiititintinitecsiisessssesseseb et sssessesssssssssbsssssssssshasse s s sssssssessssssssssessessssssssssessessesns 289
The Standard FUNCLION LIDIAIYeiiiiiie ettt e e e e e e e s e e anees 289
The Object Oriented Class LibIary ... it 289

DIPESH SATPATI,.SWARNENDU AGARWAL ,AKASH MUKHERJEE
IIT;BOMBAY{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com
FORMERLY INDIAN C++ LANGUAGE

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

1. OVERVIEW

C++ is a statically typed, compiled, general-purpose, case-sensitive, free-form programming
language that supports procedural, object-oriented, and generic programming.

C++ is regarded as a middle-level language, as it comprises a combination of both high-
level and low-level language features.

C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs in Murray Hill, New
Jersey, as an enhancement to the C language and originally named C with Classes but later
it was renamed C++ in 1983.

C++ is a superset of C, and that virtually any legal C program is a legal C++ program.

Note: A programming language is said to use static typing when type checking is performed
during compile-time as opposed to run-time.

Object-Oriented Programming

C++ fully supports object-oriented programming, including the four pillars of object-oriented
development:

e Encapsulation
e Data hiding
e Inheritance

e Polymorphism

Standard Libraries

Standard C++ consists of three important parts:

e The core language giving all the building blocks including variables, data types and
literals, etc.

e The C++ Standard Library giving a rich set of functions manipulating files, strings, etc.

e The Standard Template Library (STL) giving a rich set of methods manipulating data
structures, etc.

10

C++

The ANSI Standard

The ANSI standard is an attempt to ensure that C++ is portable; that code you write for
Microsoft's compiler will compile without errors, using a compiler on a Mac, UNIX, a Windows
box, or an Alpha.

The ANSI standard has been stable for a while, and all the major C++ compiler manufacturers
support the ANSI standard.

Learning C++

The most important thing while learning C++ is to focus on concepts.

The purpose of learning a programming language is to become a better programmer; that is,
to become more effective at designing and implementing new systems and at maintaining old
ones.

C++ supports a variety of programming styles. You can write in the style of Fortran, C,
Smalltalk, etc., in any language. Each style can achieve its aims effectively while maintaining
runtime and space efficiency.

Use of C++

C++ is used by hundreds of thousands of programmers in essentially every application
domain.

C++ is being highly used to write device drivers and other software that rely on direct
manipulation of hardware under real-time constraints.

C++ is widely used for teaching and research because it is clean enough for successful
teaching of basic concepts.

Anyone who has used either an Apple Macintosh or a PC running Windows has indirectly used
C++ because the primary user interfaces of these systems are written in C++.

DIPESH SATPATI.SWARNENDU AGARWAL ,AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8 @gmail.com

FORMERLY INDIAN C++ LANGUAGE

11

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

2. ENVIRONMENT SETUP

Tryit Option Online

You really do not need to set up your own environment to start learning C++ programming
language. Reason is very simple, we have already set up C++ Programming environment
online, so that you can compile and execute all the available examples online at the same
time when you are doing your theory work. This gives you confidence in what you are reading
and to check the result with different options. Feel free to modify any example and execute
it online.

Try the following example wusing our online compiler option available at
http://www.compileonline.com/

#include <iostream>

using namespace std;

int main()
{
cout << "Hello World";

return 0;

}

For most of the examples given in this tutorial, you will find Try it option in our website code
sections at the top right corner that will take you to the online compiler. So just make use of
it and enjoy your learning.

Local Environment Setup

If you are still willing to set up your environment for C++, you need to have the following two
softwares on your computer.

Text Editor

This will be used to type your program. Examples of few editors include Windows Notepad,
0OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

Name and version of text editor can vary on different operating systems. For example,
Notepad will be used on Windows and vim or vi can be used on windows as well as Linux, or
UNIX.

12

http://www.compileonline.com/

C++

The files you create with your editor are called source files and for C++ they typically are
named with the extension .cpp, .cp, or .c.

A text editor should be in place to start your C++ programming.

C++ Compiler

This is an actual C++ compiler, which will be used to compile your source code into final
executable program.

Most C++ compilers don't care what extension you give to your source code, but if you don't
specify otherwise, many will use .cpp by default.

Most frequently used and free available compiler is GNU C/C++ compiler, otherwise you can
have compilers either from HP or Solaris if you have the respective Operating Systems.

Installing GNU C/C++ Compiler:

UNIX/Linux Instalation

If you are using Linux or UNIX then check whether GCC is installed on your system by
entering the following command from the command line:

$ g+t -v

If you have installed GCC, then it should print a message such as the following:

Using built-in specs.

Target: i386-redhat-linux

Configured with: ../configure --prefix=/usr
Thread model: posix

gcec version 4.1.2 20080704 (Red Hat 4.1.2-46)

If GCC is not installed, then you will have to install it yourself using the detailed instructions
available at http://gcc.gnu.org/install/ .

Mac OS X Instalation

If you use Mac OS X, the easiest way to obtain GCC is to download the Xcode development
environment from Apple's website and follow the simple installation instructions.

Xcode is currently available at developer.apple.com/technologies/tools/.

Windows Instalation

To install GCC at Windows you need to install MinGW. To install MinGW, go to the MinGW
homepage, www.mingw.org, and follow the link to the MinGW download page. Download the

13

http://gcc.gnu.org/install/
http://www.mingw.org/

C++

latest version of the MinGW installation program which should be named MinGW -
<version>.exe.

While installing MinGW, at a minimum, you must install gcc-core, gcc-g++, binutils, and the
MinGW runtime, but you may wish to install more.

Add the bin subdirectory of your MinGW installation to your PATH environment variable so
that you can specify these tools on the command line by their simple names.

When the installation is complete, you will be able to run gcc, g++, ar, ranlib, dlltool, and
several other GNU tools from the Windows command line.

DIPESH SATPATI.SWARNENDU AGARWAL ,AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8 @gmail.com
FORMERLY INDIAN C++ LANGUAGE

DIPESH SATPATI,.SWARNENDU AGARWAL ., AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ FORMERLY INDIAN C++ LANGUAGE

14

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com
https://dipeshsatpati.godaddysites.com/

3. BASIC SYNTAX

When we consider a C++ program, it can be defined as a collection of objects that
communicate via invoking each other's methods. Let us now briefly look into what a class,
object, methods, and instant variables mean.

e Object - Objects have states and behaviors. Example: A dog has states - color, name,
breed as well as behaviors - wagging, barking, and eating. An object is an instance of
a class.

e Class - A class can be defined as a template/blueprint that describes the
behaviors/states that object of its type support.

¢ Methods - A method is basically a behavior. A class can contain many methods. It is
in methods where the logics are written, data is manipulated and all the actions are
executed.

o Instant Variables - Each object has its unique set of instant variables. An object's
state is created by the values assigned to these instant variables.

C++Program Structure

Let us look at a simple code that would print the words Hello World.

#include <iostream>

using namespace std;

// main() is where program execution begins.

int main()

{
cout << "Hello World"; // prints Hello World

return O;

}

Let us look at the various parts of the above program:

1. The C++ language defines several headers, which contain information that is either
necessary or useful to your program. For this program, the header <iostream> is
needed.

15

DIPESH SATPATI,SWARNENDU AGARWAL ,AKASH MUKHERJEE

IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8 @gmail.com

FORMERLY INDIAN C++ LANGUAGE

DIPESH SATPATI.SWARNENDU AGARWAL . AKASH MUKHERJEE

IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8 @gmail.com

FORMERLY INDIAN C++ LANGUAGE

16

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com
https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

C++

2. The line using namespace std; tells the compiler to use the std namespace.
Namespaces are a relatively recent addition to C++.

3. The next line ‘// main() is where program execution begins.” is a single-line
comment available in C++. Single-line comments begin with // and stop at the end of
the line.

4. The line int main() is the main function where program execution begins.

5. The next line cout << "This is my first C++ program."”; causes the message"This
is my first C++ program" to be displayed on the screen.

6. The next line return 0; terminates main() function and causes it to return the value 0
to the calling process.

Compile & Execute C++Program

Let's look at how to save the file, compile and run the program. Please follow the steps given
below:

1. Open a text editor and add the code as above.
Save the file as: hello.cpp

Open a command prompt and go to the directory where you saved the file.

e alanleccll BN

Type 'g++ hello.cpp' and press enter to compile your code. If there are no errors in
your code the command prompt will take you to the next line and would generate a.out
executable file.

5. Now, type 'a.out' to run your program.

6. You will be able to see ' Hello World ' printed on the window.

$ g++ hello.cpp
$./a.out
Hello World

Make sure that g++ is in your path and that you are running it in the directory containing file
hello.cpp.

You can compile C/C++ programs using makefile. For more details, you can check
our ‘Makefile Tutorial’.

Semicolons & Blocksin C++

In C++, the semicolon is a statement terminator. That is, each individual statement must be
ended with a semicolon. It indicates the end of one logical entity.

For example, following are three different statements:
16

C++

X=Y;
y = y+l;
add(x, y);

A block is a set of logically connected statements that are surrounded by opening and closing
braces. For example:

{
cout << "Hello World"; // prints Hello World

return 0;

}

C++ does not recognize the end of the line as a terminator. For this reason, it does not matter
where you put a statement in a line. For example:

X=y;
y = y+1;
add(x, y);

is the same as

X = y; y=y+l; add(x, y);

C++ Identifiers

A C++ identifier is a name used to identify a variable, function, class, module, or any other
user-defined item. An identifier starts with a letter A to Z or a to z or an underscore (_)
followed by zero or more letters, underscores, and digits (0 to 9).

C++ does not allow punctuation characters such as @, $, and % within identifiers. C++ is a
case-sensitive programming language. Thus, Manpower and manpower are two different
identifiers in C++.

Here are some examples of acceptable identifiers:

mohd zara abc move_name a 123

myname50 _temp j a23h9 retVal

C++ Keywords

The following list shows the reserved words in C++. These reserved words may not be used
as constant or variable or any other identifier names.

DIPESH SATPATI,SWARNENDU AGARWAL ,AKASH MUKHERJEE

17

1IT;KHARAGPUR{IRS104758I1K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8 @gmail.com

FORMERLY INDIAN C++ LANGUAGE

DIPESH SATPATI,.SWARNENDU AGARWAL AKASH MUKHERJEE

IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

FORMERLY INDIAN C++ LANGUAGE

C++

18

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com
https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

C++

asm else new this

auto enum operator throw
bool explicit private true
break export protected try

case extern public typedef
catch false register typeid
char float reinterpret_cast typename
class for return union
const friend short unsigned
const_cast goto signed using
continue if sizeof virtual
default inline static void
delete int static_cast volatile
do long struct wchar_t
double mutable switch while
dynamic_cast namespace template

DIPESH SATPATI.SWARNENDU AGARWAL AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8 @gmail.com

FORMERLY INDIAN C++ LANGUAGE
19

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

C++

Trigraphs

A few characters have an alternative representation, called a trigraph sequence. A trigraph is
a three-character sequence that represents a single character and the sequence always starts
with two question marks.

Trigraphs are expanded anywhere they appear, including within string literals and character
literals, in comments, and in preprocessor directives.

Following are most frequently used trigraph sequences:

Trigraph Replacement
7= #

2?/ \

?? N

?2([

2?)]

2?1 |

??< {

27> >

??- ~

All the compilers do not support trigraphs and they are not advised to be used because of
their confusing nature.

Whitespace in C++

A line containing only whitespace, possibly with a comment, is known as a blank line, and
C++ compiler totally ignores it.

Whitespace is the term used in C++ to describe blanks, tabs, newline characters and
comments. Whitespace separates one part of a statement from another and enables the

20

C++

compiler to identify where one element in a statement, such as int, ends and the next element
begins. Statement 1:

int age;

In the above statement there must be at least one whitespace character (usually a space)
between int and age for the compiler to be able to distinguish them. Statement 2:

fruit = apples + oranges; // Get the total fruit

In the above statement 2, no whitespace characters are necessary between fruit and =, or
between = and apples, although you are free to include some if you wish for readability
purpose.

DIPESH SATPATI.SWARNENDU AGARWAL ,AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8 @gmail.com
FORMERLY INDIAN C++ LANGUAGE

21

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

4. COMMENTS IN C++

Program comments are explanatory statements that you can include in.the C++ code. These
comments help anyone reading the source code. All programming languages allow for some
form of comments.

C++ supports single-line and multi-line comments. All characters available inside any
comment are ignored by C++ compiler.

C++ comments start with /* and end with */. For example:

/* This is a comment */

/* C++ comments can also
* gpan multiple lines

*/

A comment can also start with //, extending to the end of the line. For example:

#include <iostream>

using namespace std;

main()

{
cout << "Hello World"; // prints Hello World

return O;
}

When the above code is compiled, it will ignore // prints Hello World and final executable
will produce the following result:

Hello World

Within a /* and */ comment, // characters have no special meaning. Within a // comment, /*
and */ have no special meaning. Thus, you can "nest" one kind of comment within the other
kind. For example:

21

C++

/* Comment out printing of Hello World:

cout << "Hello World"; // prints Hello World
*/

22

5. DATATYPES

While writing program in any language, you need to use various variables to store various
information. Variables are nothing but reserved memory locations to store values. This means
that when you create a variable you reserve some space in memory.

You may like to store information of various data types like character, wide character, integer,
floating point, double floating point, boolean etc. Based on the data type of a variable, the
operating system allocates memory and decides what can be stored in the reserved memory.

Primitive Built-inTypes

C++ offers the programmer a rich assortment of built-in as well as user defined data types.
Following table lists down seven basic C++ data types:

Type Keyword
Boolean bool
Character char
Integer int
Floating point float
Double floating point double
Valueless void
Wide character wchar_t

Several of the basic types can be modified using one or more of these type modifiers:
e signed

e unsigned

e short

23

DIPESH SATPATI,.SWARNENDU AGARWAL AKASH MUKHERJEE

IIT;KHARAGPUR{IRS104758I1K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8 @gmail.com

FORMERLY INDIAN C++ LANGUAGE

24

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

C++

e long

The following table shows the variable type, how much memory it takes to store the valuein
memory, and what is maximum and minimum value which can be stored in such type of
variables.

Type Typical Bit Width Typical Range

char 1byte -127 to 127 or 0 to 255
unsigned char 1lbyte 0 to 255

signed char lbyte -127 to 127

int 4bytes -2147483648 to 2147483647
unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647
short int 2bytes -32768 to 32767

unsigned short int Range 0 to 65,535

signed short int Range -32768 to 32767

long int 4bytes -2,147,483,647 to 2,147,483,647
signed long int 4bytes same as long int

unsigned long int 4bytes 0 to 4,294,967,295

float 4bytes +/- 3.4e +/- 38 (~7 digits)
double 8bytes +/- 1.7e +/- 308 (~15 digits)
long double 8bytes +/- 1.7e +/- 308 (~15 digits)

24

C++

wchar_t 2 or 4 bytes 1 wide character
The size of variables might be different from those shown in the above table, depending on

the compiler and the computer you are using.

Following is the example, which will produce correct size of various data types on your
computer.

#include <iostream>

using namespace std;

int main()

{

cout << "Size of char : << sizeof(char) << endl;

cout << "Size of int : << sizeof(int) << endl;

cout << "Size of short int : << sizeof(short int) << endl;

cout << "Size of long int : " << sizeof(long int) << endl;
cout << "Size of float : " << sizeof(float) << endl;

cout << "Size of double : " << sizeof(double) << endl;
cout << "Size of wchar_t : " << sizeof(wchar_t) << endl;
return O;

}

This example uses endl, which inserts a new-line character after every line and << operator
is being used to pass multiple values out to the screen. We are also using sizeof() function
to get size of various data types.

When the above code is compiled and executed, it produces the following result which can
vary from machine to machine:

Size of char : 1

Size of int : 4

Size of short int : 2
Size of long int : 4
Size of float : 4 Size
of double : 8 Size of

wchar_t : 4

25

C++

typedef Declarations

You can create a new name for an existing type using typedef. Following is the simple syntax
to define a new type using typedef:

typedef type newname;

For example, the following tells the compiler that feet is another name for int:

typedef int feet;

Now, the following declaration is perfectly legal and creates an integer variable called
distance:

feet distance;

Enumerated Types

An enumerated type declares an optional type name and a set of zero or more identifiers that
can be used as values of the type. Each enumerator is a constant whose type is the
enumeration.

Creating an enumeration requires the use of the keyword enum. The general form of an
enumeration type is:

enum enum-name { list of names } var-list;

Here, the enum-name is the enumeration's type name. The list of names is comma separated.

For example, the following code defines an enumeration of colors called colors and the variable
c of type color. Finally, c is assigned the value "blue".

enum color { red, green, blue } c;

c = blue;

By default, the value of the first name is 0, the second name has the value 1, and the third
has the value 2, and so on. But you can give a name, a specific value by adding an initializer.
For example, in the following enumeration, green will have the value 5.

enum color { red, green=5, blue };

Here, blue will have a value of 6 because each name will be one greater than the one that
precedes it.

DIPESH SATPATI.SWARNENDU AGARWAL AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

26

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

C++
FORMERLY INDIAN C++ LANGUAGE

DIPESH SATPATI.SWARNENDU AGARWAL AKASH MUKHERJEE
IT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

FORMERLY INDIAN C++ LANGUAGE

DIPESH SATPATI.SWARNENDU AGARWAL ,AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

FORMERLY INDIAN C++ LANGUAGE

27

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com
https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

6. VARIABLE TYPES

A variable provides us with named storage that our programs can manipulate. Each variable
in C++ has a specific type, which determines the size and layout of the variable's memory;
the range of values that can be stored within that memory; and the set of operations that can
be applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It
must begin with either a letter or an underscore. Upper and lowercase letters are distinct
because C++ is case-sensitive:

There are following basic types of variable in C++ as explained in last chapter:

Type Description

bool Stores either value true or false.

char Typically a single octet (one byte). This is an integer type.
int The most natural size of integer for the machine.

float A single-precision floating point value.

double A double-precision floating point value.

void Represents the absence of type.

wchar_t A wide character type.

C++ also allows to define various other types of variables, which we will cover in subsequent
chapters like Enumeration, Pointer, Array, Reference, Data structures, and Classes.

Following section will cover how to define, declare and use various types of variables.

DIPESH SATPATI,.SWARNENDU AGARWAL ,AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

FORMERLY INDIAN C++ LANGUAGE
27

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

C++

Variable Definitionin C++

A variable definition tells the compiler where and how much storage to create for the variable.
A variable definition specifies a data type, and contains a list of one or more variables of that
type as follows:

type variable_list;

Here, type must be a valid C++ data type including char, w_char, int, float, double, bool or
any user-defined object, etc., and variable_list may consist of one or more identifier names
separated by commas. Some valid declarations are shown here:

int i, j, K;
char c, ch;
float f, salary;
double d;

The line int i, j, k; both declares and defines the variables i, j and k; which instructs the
compiler to create variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer
consists of an equal sign followed by a constant expression as follows:

type variable_name = value;

Some examples are:

extern int d 3, F=25; // declaration of d and fT.

intd =3, f=25; // definition and initializing d and f.
byte z = 22; // definition and initializes z.
char x = 'x"; // the variable x has the value "x".

For definition without an initializer: variables with static storage duration are implicitly
initialized with NULL (all bytes have the value 0); the initial value of all other variables is
undefined.

Variable Declaration in C++

A variable declaration provides assurance to the compiler that there is one variable existing
with the given type and name so that compiler proceed for further compilation without
needing complete detail about the variable. A variable declaration has its meaning at the time
of compilation only, compiler needs actual variable declaration at the time of linking of the

C++

program.

C++

A variable declaration is useful when you are using multiple files and you define your variable
in one of the files which will be available at the time of linking of the program. You will
use extern keyword to declare a variable at any place. Though you can declare a variable
multiple times in your C++ program, but it can be defined only once in a file, a function or a
block of code.

Example

Try the following example where a variable has been declared at the top, but it has been
defined inside the main function:

#include <iostream>

using namespace std;

// Variable declaration:
extern iInt a, b;
extern int c;

extern float T;

int main ()

{
// Variable definition:
int a, b;
int c;

float f;

nitialization

// actual
a = 10;
b = 20;

c a+ b;

cout << ¢ << endl ;

T =70.0/3.0;

cout << f << endl ;

C++

return 0;

When the above code is compiled and executed, it produces the following result:

30
23.3333

Same concept applies on function declaration where you provide a function name at the time
of its declaration and its actual definition can be given anywhere else. For example:

// function declaration

int func();

int main()

{

// function call

int i = func(Q;

// function definition

int func()
{

return O;
}

Lvalues andRvalues

There are two kinds of expressions in C++:

e Ivalue : Expressions that refer to a memory location is called "lvalue" expression. An
Ivalue may appear as either the left-hand or right-hand side of an assignment.

e rvalue : The term rvalue refers to a data value that is stored at some address in
memory. An rvalue is an expression that cannot have a value assigned to it which
means an rvalue may appear on the right- but not left-hand side of an assighment.

C++

Variables are Ivalues and so may appear on the left-hand side of an assignment. Numeric

literals are rvalues and so may not be assigned and cannot appear on the left-hand side.
Following is a valid statement:

int g = 20;

But the following is not a valid statement and would generate compile-time error:

10 = 20;

/. VARIABLE SCOPE

A scope is a region of the program and broadly speaking there are three places, where
variables can be declared:

¢ Inside a function or a block which is called local variables,
e In the definition of function parameters which is called formal parameters.
e Outside of all functions which is called global variables.

We will learn what a function is, and it's parameter in subsequent chapters. Here let us explain
what local and global variables are.

Local Variables

Variables that are declared inside a function or block are local variables. They can be used
only by statements that are inside that function or block of code. Local variables are not
known to functions outside their own. Following is the example using local variables:

#include <iostream>

using namespace std;

int main ()

{
// lLocal variable declaration:
int a, b;

int c;

// actual initialization

a = 10;

b = 20;

c=a+b;

cout << c;

return 0;

32
(J 3 - =
tutorialspoint

C++

Global Variables

Global variables are defined outside of all the functions, usually on top of the program. The
global variables will hold their value throughout the life-time of your program.

A global variable can be accessed by any function. That is, a global variable is available for
use throughout your entire program after its declaration. Following is the example using global
and local variables:

#include <iostream>

using namespace std;

// Global variable declaration:

int g;

int main)

{
// Local variable declaration:

int a, b;

// actual initialization
a = 10;

b = 20;

g=at+hb;

cout << g;

return 0;

}

A program can have same name for local and global variables but value of local variable inside
a function will take preference. For example:

#include <iostream>

using namespace std;

33

C++

// Global variable declaration:

int g = 20;

int main

{

// Local variable declaration:

int g = 10;

cout << g;

return 0;

}

When the above code is compiled and executed, it produces the following result:

10

Initializing Local and Global Variables

When a local variable is defined, it is not initialized by the system, you must initialize it
yourself. Global variables are initialized automatically by the system when you define them
as follows:

Data Type Initializer
int 0

char "\0'

float 0

double 0

pointer NULL

34

It is a good programming practice to initialize variables properly, otherwise sometimes
program would produce unexpected result.

DIPESH SATPATI.SWARNENDU AGARWAL ,AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

FORMERLY INDIAN C++ LANGUAGE

DIPESH SATPATI.SWARNENDU AGARWAL AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

FORMERLY INDIAN C++ LANGUAGE

C++

35

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com
https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

8. CONSTANTS/LITERALS

Constants refer to fixed values that the program may not alter and they are called literals.

Constants can be of any of the basic data types and can be divided into Integer Numerals,
Floating-Point Numerals, Characters, Strings and Boolean Values.

Again, constants are treated just like regular variables except that their values cannot be
modified after their definition.

Inteqer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base
or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for decimal.

An integer literal can also have a suffix that is a combination of U and L, for unsigned and
long, respectively. The suffix can be uppercase or lowercase and can be in any order.

Here are some examples of integer literals:

212 // Legal
215u // Legal
OxFeeL // Legal
078 // 1llegal: 8 is not an octal digit
032UU // 1llegal: cannot repeat a suffix

Following are other examples of various types of Integer literals:

85 // decimal

0213 // octal

0x4b // hexadecimal
30 // int

30u // unsigned int
30I // long

30ul // unsigned long

36

C++

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent
part. You can represent floating point literals either in decimal form or exponential form.

While representing using decimal form, you must include the decimal point, the exponent, or
both and while representing using exponential form, you must include the integer part, the
fractional part, or both. The signed exponent is introduced by e or E.

Here are some examples of floating-point literals:

3.14159 // Legal

314159E-5L // Legal

510E // 1llegal: incomplete exponent

210f // Illegal: no decimal or exponent
-e55 // Illegal: missing integer or fraction

Boolean Literals

There are two Boolean literals and they are part of standard C++ keywords:
e A value of true representing true.
e A value of false representing false.

You should not consider the value of true equal to 1 and value of false equal to 0.

Character Literals

Character literals are enclosed in single quotes. If the literal begins with L (uppercase only),
it is a wide character literal (e.g., L'x") and should be stored in wchar_t type of variable.
Otherwise, it is a narrow character literal (e.g., 'x') and can be stored in a simple variable of
char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\t"), or a
universal character (e.g., "\u02C0").

There are certain characters in C++ when they are preceded by a backslash they will have
special meaning and they are used to represent like newline (\n) or tab (\t). Here, you have
a list of some of such escape sequence codes:

Escape sequence Meaning

\\ \ character

37

C++

\' ' character

\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\Vv Vertical tab

\ooo Octal number of one to three digits
\xhh . .. Hexadecimal number of one or more digits

Following is the example to show a few escape sequence characters:

#include <iostream>

using namespace std;

int main()

{
cout << "Hello\tWorld\n\n";

return O;

38

C++

When the above code is compiled and executed, it produces the following result:

Hello World

String Literals

String literals are enclosed in double quotes. A string contains characters that are similar to
character literals: plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separate them using
whitespaces.

Here are some examples of string literals. All the three forms are identical strings.

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"

Defining Constants

There are two simple ways in C++ to define constants:
e Using #define preprocessor.

e Using const keyword.

The #define Preprocessor

Following is the form to use #define preprocessor to define a constant:

#define identifier value

Following example explains it in detail:

#include <iostream>

using namespace std;

39

C++

#define LENGTH 10
#define WIDTH 5
#define NEWLINE "\n'

int main()

{

int area;

area = LENGTH * WIDTH;
cout << area;
cout << NEWLINE;

return O;

}

When the above code is compiled and executed, it produces the following result:

50

The const Keyword

You can use const prefix to declare constants with a specific type as follows:

const type variable = value;

Following example explains it in detail:

#include <iostream>

using namespace std;

int main()

{
const int LENGTH = 10;
const int WIDTH = 5;

const char NEWLINE = "\n’;

int area;

40

C++

area = LENGTH * WIDTH;
cout << area;
cout << NEWLINE;

return 0O;

}

When the above code is compiled and executed, it produces the following result:

50

Note that it is a good programming practice to define constants in CAPITALS.

DIPESH SATPATI,SWARNENDU AGARWAL ,AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

FORMERLY INDIAN C++ LANGUAGE

41

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

9. MODIFIER TYPES

C++ allows the char, int, and double data types to have modifiers preceding them. A
modifier is used to alter the meaning of the base type so that it more precisely fits the needs
of various situations.

The data type modifiers are listed here:
e signed
e unsigned
e long
e short

The modifiers signed, unsigned, long, and short can be applied to integer base types. In
addition, signed and unsigned can be applied to char, and long can be applied to double.

The modifiers signed and unsigned can also be used as prefix to long or short modifiers.
For example, unsigned long int.

C++ allows a shorthand notation for declaring unsigned, short, or long integers. You can
simply use the word unsigned, short, or long, without int. It automatically implies int. For
example, the following two statements both declare unsigned integer variables.

unsigned X;

unsigned int y;

To understand the difference between the way signed and unsigned integer modifiers are
interpreted by C++, you should run the following short program:

#include <iostream>

using namespacestd;

/* This program shows the difference between
* signed and unsigned integers.

*/

int main()

{

shortinti; // a signed short integer

42

C++

short unsigned int j; // an unsigned short integer

j = 50000

i=j;

cout<<i <<" " <<j;

return O;

}

When this program is run, following is the output:

-15536 50000

The above result is because the bit pattern that represents 50,000 as a short unsigned integer
is interpreted as -15,536 by a short.

Type Qualifiersin C++

The type qualifiers provide additional information about the variables they precede.

Qualifier Meaning

const Objects of type const cannot be changed by your program during execution

volatile The modifier volatile tells the compiler that a variable's value may be
changed in ways not explicitly specified by the program.

restrict A pointer qualified by restrict is initially the only means by which the object
it points to can be accessed. Only C99 adds a new type qualifier called
restrict.

43

10. STORAGE CLASSES

A storage class defines the scope (visibility) and life-time of variables and/or functions within
a C++ Program. These specifiers precede the type that they modify. There are following
storage classes, which can be used in a C++ Program

e auto
e register
o static
o extern
e mutable
Theauto Storage Class

The auto storage class is the default storage class for all local variables.

{

int mount;

auto int month;

}

The example above defines two variables with the same storage class, auto can only be used
within functions, i.e., local variables.

Thereqgister Storage Class

The register storage class is used to define local variables that should be stored in a register
instead of RAM. This means that the variable has a maximum size equal to the register size
(usually one word) and can't have the unary '&' operator applied to it (as it does not have a
memory location).

{

register int miles;

}

The register should only be used for variables that require quick access such as counters. It
should also be noted that defining 'register' does not mean that the variable will be stored in

44

C++

a register. It means that it MIGHT be stored in a register depending on hardware and
implementation restrictions.

The static Storage Class

The static storage class instructs the compiler to keep a local variable in existence during the
life-time of the program instead of creating and destroying it each time it comes into and
goes out of scope. Therefore, making local variables static allows them to maintain their
values between function calls.

The static modifier may also be applied to global variables. When this is done, it causes that
variable's scope to be restricted to the file in which it is declared.

In C++, when static is used on a class data member, it causes only one copy of that member
to be shared by all objects of its class.

#include <iostream>

// Function declaration

void func(void);

static int count = 10; /* Global variable */

main()
{
while(count--)
{
func();
}
return O;

}

// Function definition

void func(void)

{
static int i = 5; // local static variable
i++;
std::cout << "i is " << i ;

std::cout << " and count is " << count << std::endl;

45

C++

}

When the above code is compiled and executed, it produces the following result:

i is 6 and count is 9
i is 7 and count is 8
i is 8 and count is 7
i is 9 and count is 6
i is 10 and count is
i is 11 and count is
i is 12 and count is
i is 13 and count is

i is 14 and count is

O B, N W b~ O

i is 15 and count is

The extern Storage Class

The extern storage class is used to give a reference of a global variable that is visible to ALL
the program files. When you use 'extern' the variable cannot be initialized as all it does is
point the variable name at a storage location that has been previously defined.

When you have multiple files and you define a global variable or function, which will be used
in other files also, then extern will be used in another file to give reference of defined variable
or function. Just for understanding extern is used to declare a global variable or function in
another file.

The extern modifier is most commonly used when there are two or more files sharing the
same global variables or functions as explained below.

First File: main.cpp

#include <iostream>

int count ;

extern void write_extern();

main()

{

count = 5;

46

C++

write_extern();

Second File: support.cpp

#include <iostream>

extern int count;

void write_extern(void)

{

std::cout << "Count is " << count << std::endl;

}

Here, extern keyword is being used to declare count in another file. Now compile these two
files as follows:

$g++ main.cpp support.cpp -0 write

This will produce write executable program, try to execute write and check the result as
follows:

$./write

5

The mutable Storage Class

The mutable specifier applies only to class objects, which are discussed later in this tutorial.
It allows a member of an object to override const member function. That is, a mutable
member can be modified by a const member function.

DIPESH SATPATI,.SWARNENDU AGARWAL AKASH MUKHERJEE
IIT;KHARAGPUR{IRS10475811K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

FORMERLY INDIAN C++ LANGUAGE

47

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

11. OPERATORS

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C++ is rich in built-in operators and provide the following types of operators:

Arithmetic Operators
Relational Operators
Logical Operators
Bitwise Operators
Assignment Operators

Misc Operators

This chapter will examine the arithmetic, relational, logical, bitwise, assignment and other
operators one by one.

Arithmetic Operators

There are following arithmetic operators supported by C++ language:

Assume variable A holds 10 and variable B holds 20, then:

Operator Description

%

Adds two operands

Subtracts second operand from the
first

Multiplies both operands

Divides numerator by de-numerator

Modulus Operator and remainder of
after an integer division

Example

A + B will give 30

A - B will give -10

A * B will give 200

B/ A will give 2

B % A will give O

48

++

C++

Increment operator, increases A++ will give 11
integer value by one

Decrement operator, decreases A-- will give 9
integer value by one

Try the following example to understand all the arithmetic operators available in C++.

Copy and paste the following C++ program in test.cpp file and compile and run this program.

#include <iostream>

using namespace std;

main()

{
int a = 21;
int b = 10;
int c ;
c=a+b;
cout << "Line 1 - Value of c is :" << ¢ << endl ;
c=a-b;
cout << "Line 2 - Value of c is :" << ¢ << endl ;
c=a?*b;
cout << "Line 3 - Value of c is :" << ¢ << endl ;
c=a/ b;
cout << "Line 4 - Value of c is :" << c << endl ;
c=ah%b;
cout << "Line 5 - Value of c is :" << ¢ << endl ;
C = at+;
cout << "Line 6 - Value of c is :" << ¢ << endl ;
c = a--;
cout << "Line 7 - Value of c is :" << ¢ << endl ;
return O;

49

C++

}

When the above code is compiled and executed, it produces the following result:

Line 1 - Value of c is :31
Line 2 - Value of c is :11
Line 3 - Value of c is :210
Line 4 - Value of c is :2
Line 5 - Value of c is :1
Line 6 - Value of c is :21
Line 7 - Value of c is :22
Relational Operators

There are following relational operators supported by C++ language

Assume variable A holds 10 and variable B holds 20, then:

Operator

Description

Checks if the values of two operands
are equal or not, if yes then
condition becomes true.

Checks if the values of two operands
are equal or not, if values are not
equal then condition becomes true.

Checks if the value of left operand is
greater than the value of right
operand, if yes then condition
becomes true.

Checks if the value of left operandis
less than the value of right operand,
if yes then condition becomes true.

Example

(A == B) is not true.

(A '= B) is true.

(A > B) is not true.

(A < B) is true.

50

C++

>= Checks if the value of left operandis (A >= B) is not true.
greater than or equal to the value of
right operand, if yes then condition
becomes true.

<= Checks if the value of left operandis (A <= B) is true.
less than or equal to the value of
right operand, if yes then condition
becomes true.

Try the following example to understand all the relational operators available in C++.

Copy and paste the following C++ program in test.cpp file and compile and run this program.

#include <iostream>

using namespace std;

main()

{
int a = 21;
int b = 10;

int c ;

if(a==b)
{

cout << "Line 1 - a is equal to b" << endl ;

}

else

{

cout << "Line 1 - a is not equal to b" << endl ;

}
if (a<b)

{

cout << "Line 2 - a is less than b" << endl ;

51

C++

else
{
cout << "Line 2 - a is not less than b" << endl ;
}
if (a>Db)
{
cout << "Line 3 - a is greater than b" << endl ;
}
else
{
cout << "Line 3 - a is not greater than b" << endl ;
}
/* Let"s change the values of a and b */
a=>5;
b = 20;

52

DIPESH SATPATI,SWARNENDU AGARWAL ,AKASH MUKHERJEE

IIT;KHARAGPUR{IRS104758I1K}
https://dipeshsatpati.godaddysites.com/ satpatidipesh8@gmail.com

FORMERLY INDIAN C++ LANGUAGE

C++

53

https://dipeshsatpati.godaddysites.com/
mailto:satpatidipesh8@gmail.com

	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	About the Tutorial
	Audience
	Prerequisites
	Copyright & Disclaimer
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	Table of Contents
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	1. OVERVIEW
	Object-Oriented Programming
	Standard Libraries
	The ANSI Standard
	Learning C++
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE

	2. ENVIRONMENT SETUP
	Try it Option Online
	Text Editor
	C++ Compiler
	UNIX/Linux Instalation
	Mac OS X Instalation
	Windows Instalation

	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE

	3. BASIC SYNTAX
	C++ Program Structure
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	Compile & Execute C++ Program
	Semicolons & Blocks in C++
	C++ Keywords
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	Trigraphs
	Whitespace in C++

	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE

	4. COMMENTS IN C++
	5. DATA TYPES
	Primitive Built-in Types
	 signed
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	typedef Declarations
	Enumerated Types
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE

	6. VARIABLE TYPES
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	Variable Definition in C++
	Variable Declaration in C++
	Example

	Lvalues and Rvalues

	7. VARIABLE SCOPE
	Local Variables
	Global Variables
	Initializing Local and Global Variables
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE

	8. CONSTANTS/LITERALS
	Integer Literals
	Floating-point Literals
	Boolean Literals
	Character Literals
	String Literals
	Defining Constants
	The #define Preprocessor
	The const Keyword

	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE

	9. MODIFIER TYPES
	Type Qualifiers in C++

	10. STORAGE CLASSES
	The auto Storage Class
	The register Storage Class
	The static Storage Class
	The extern Storage Class
	First File: main.cpp

	The mutable Storage Class
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE

	11. OPERATORS
	Arithmetic Operators
	Relational Operators
	DIPESH SATPATI,SWARNENDU AGARWAL,AKASH MUKHERJEE

