

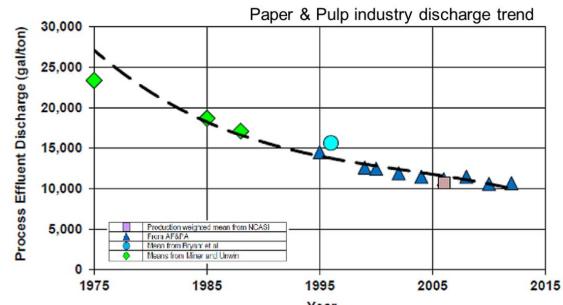
APRIL 22 - 26, 2023 • ATLANTA, GA

Amphoteric Dry Strength Chemistry Approach to Deal with Low-Quality Fiber and Difficult Wet-end Chemistry Conditions in the Asian and North American Markets

> Ryo Ito, Arakawa Chemical (USA) Inc. Akira Nakagawa, Arakawa Chemical Industries, Ltd. Lebo Xu, WestRock Corporation Peter Hart, WestRock Corporation Przem Pruszynski, Pruszynski Paper Chemistry Consulting, LLC

Overview

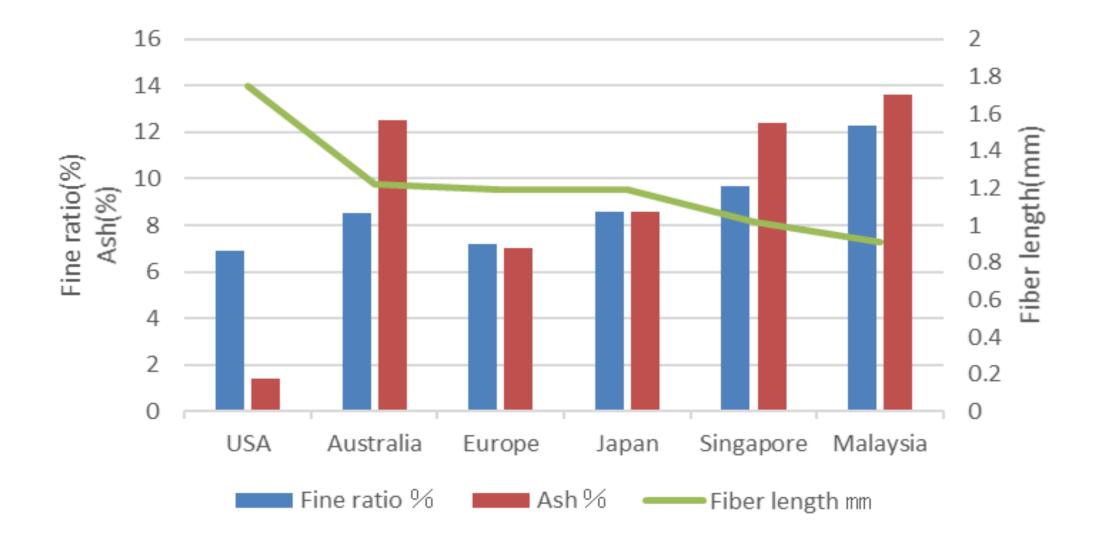
- 1. Industry trends
- 2. Differences between Cationic and Amphoteric papermaking strength additives
- 3. Short description of AmPAM
- 4. Lab examples of performance
- 5. Mill cases
- 6. Synergy between GPAM and AmPAM application

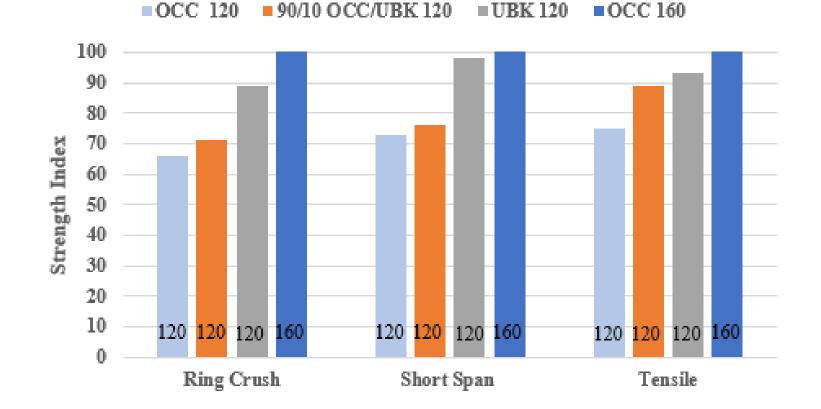

Fiber

Quality

OCC

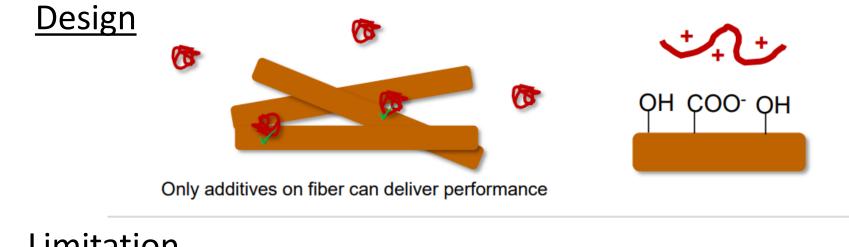
Papermaking condition




Mixed Waste

OCC

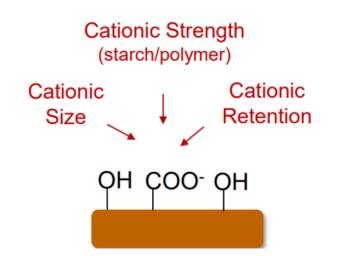
OCC quality based on 2018 data.



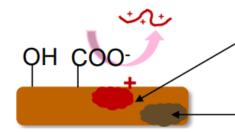
Strength of paper with OCC

Strength properties for UBK, OCC and UBK/OCC (10/90) at 25lb (120 g/m²). Dark blue bar represents OCC pulp at 33lb (160g/m²). Data are relative to the strength of the 33lb OCC handsheet (100%).

Cationic Additive Design and Its Limitation

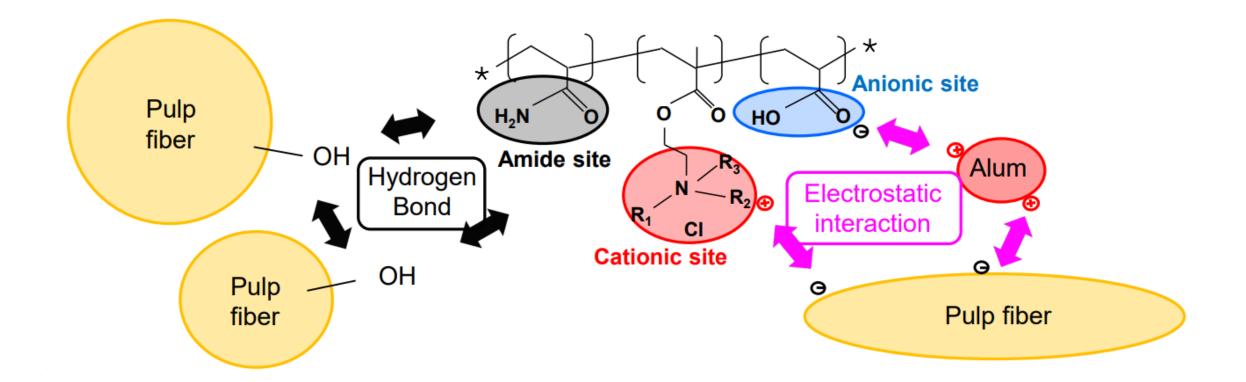


Cationic additive design

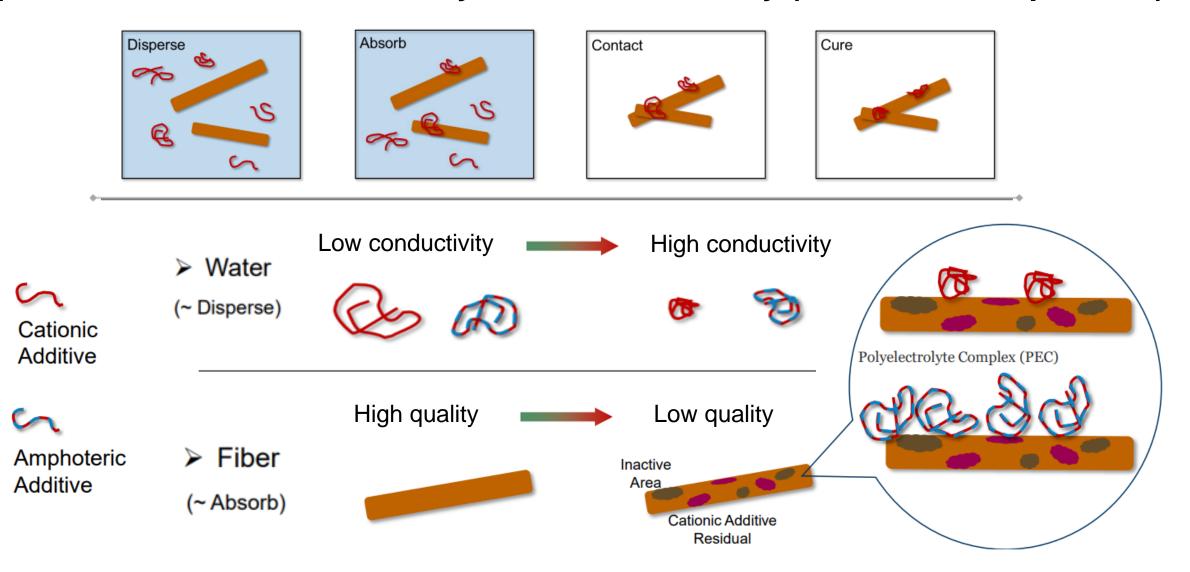

- o Good Design
- Current Primary Strategy (US Market)

Limitation

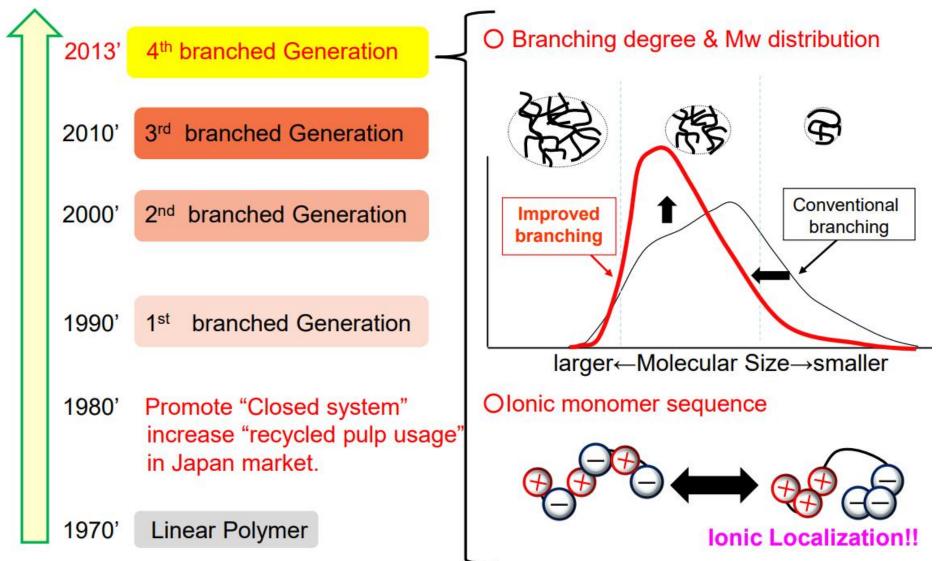
Limited Loading Capacity


Reduced Performance on Lower Quality Fiber

Cationic Residual

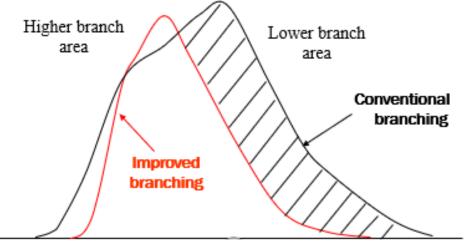

Inactive Area "Hornification Effect" Due to raw material fiber quality and high level of mill closure, Japanese and other Asian markets rely almost entirely on Amphoteric dry strength agents.

Amphoteric Polyacrylamide Dry Strength Agent (AmPAM)



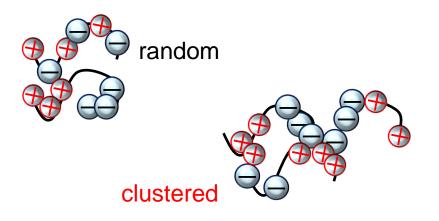
- More available interaction modes with the fiber for adsorption.
- Less net cationic charge more loading on the fiber possible.
- No longer short life.

Impact of Low Water/Fiber Quality on Chem Efficiency (cationic vs. amphoteric)


Development of Amphoteric PAM

Our Technology and Product

1) Improved branching:


Both Smaller molecular (not adsorb enough to the pulp) and ultra-large molecular (may bad formation) is cut.

Ultra large \leftarrow large \leftarrow <u>Molecular size</u> \rightarrow small

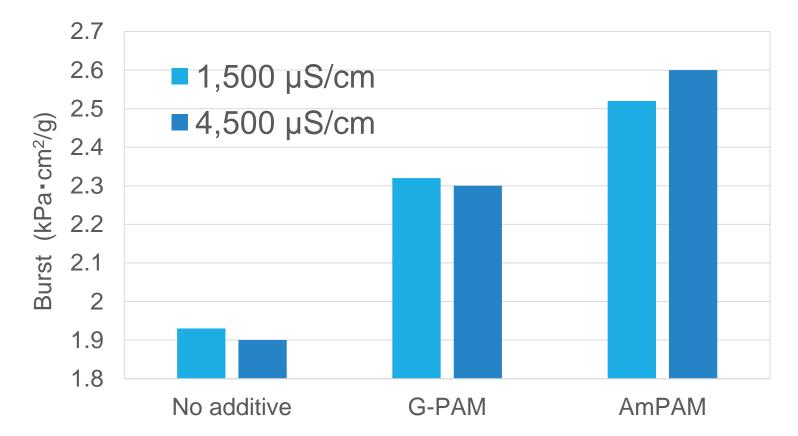
2) Charge distribution:

We make ions localized in the polymer, and which polymers easily become large volume poly-ion complex and precipitate to some extent.

Associative character – 3D structure, better patch shape and extension

Appearance	Solid (%)	Viscosity (mPa⋅s/25°C)	Specific gravity	рН (1%)	lonicity	Solubility
Slightly white- turbid viscous	15%min.	7,000~13,000	1.05 (25°C)	3.0-5.0	+/-	Soluble in water

Performance of AmPAM and GPAM – laboratory work


Furnish: OCC 100%, pH: 6.5-7.0, Conductivity: 2,000µS/cm, Basis weight: 37lbs (180 g/m²)

RCT (Nm/g) Burst (KPa m^2/g) Blank Blank AmPAM 2kg/t AmPAM 2kg/t AmPAM 4kg/t AmPAM 4kg/t GPAM 2kg/t GPAM 2kg/t GPAM 4kg/t GPAM 4kg/t 2 2.2 2.4 2.6 2.8 10 12 8 14

AmPAM has higher strength effect than GPAM

Burst strength in different conductivity conditions – laboratory work

Furnish: OCC 100%, pH: 6.5-7.0, Dosage rate: 8.8#/t, Basis weight: 29lb (140 g/m²)

• AmPAM show higher strength effect than GPAM in high conductivity condition.

Mill Case A – new product development

Mill: Linerboard 36lb (175g/m²)
Furnish: 100% OCC (LOCC/AOCC/HOCC = 1/1/1)
pH: Neutral
Starch: 4.4 lb/t (internal) and 13.2 lb/t size press
Goal: Reach strength target for new product developed

	No.	AmPAM (lbs/t, as dry)	Basis weight (lb)	Density (g/c㎡)	Burst index (kPa•㎡/g)
Initial	1	0	46.1	0.80	3.01
condition	2	0	45.5	0.80	2.97
]	3	13.2	45.9	0.80	3.70
Trial condition	4	13.2	46.9	0.82	3.62
	5	13.2	46.9	0.80	3.62
	6	16.5	46.5	0.81	3.76

Burst strength increased from 3.0 to over 3.6 by adding AmPAM at 13.2lbs/t (dry) (#1,2 vs #3~5)
 Burst strength increased from 3.0 to 3.76 by adding AmPAM at 16.5lbs/t (dry) (#1,2 vs #6)

Mill Case B – bypassing size press

Mill: Linerboard
Furnish: 100% OCC
pH: Neutral
Starch: 35 lb/t size press
Goal: More speed and less energy consumption by bypassing size press

	No.	AmPAM (lbs/t) (as dry)	Surface Starch (lbs/t)	Burst index (kPa∙mٌ/g)	Ash in paper (%)	Starch in paper (%)
Initial	1	7.0	35.2	3.52	8.9	3.2
condition	2	7.5	24.2	3.50	9.9	2.5
Trial condition	3	10.1	0	3.45	10.6	1.4
	4	10.1	0	3.47	10.5	1.5
	5	11.0	0	3.49	10.7	1.7

Size press bypass was achieved on PS dosage 10.1~11.0 lbs/t (dry)

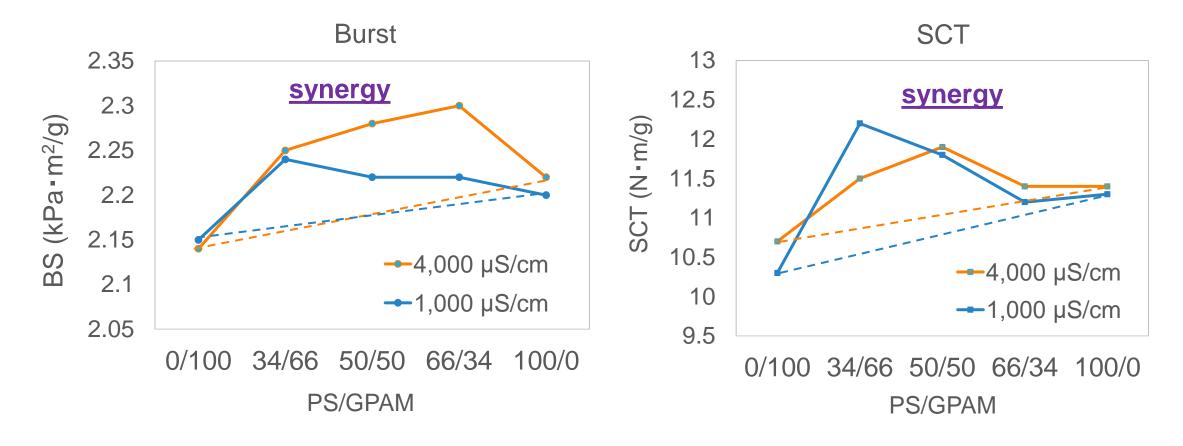
> Burst maintained at standard or higher level

Mill Case C – sizing improvement

Mill: Kraft paper for packaging
Furnish: 100% Softwood pulp
pH: 4.2
Starch: 4.4 lb/t (internal)
Goal: Optimizing charge and improve sizing by changing current PAM to PS

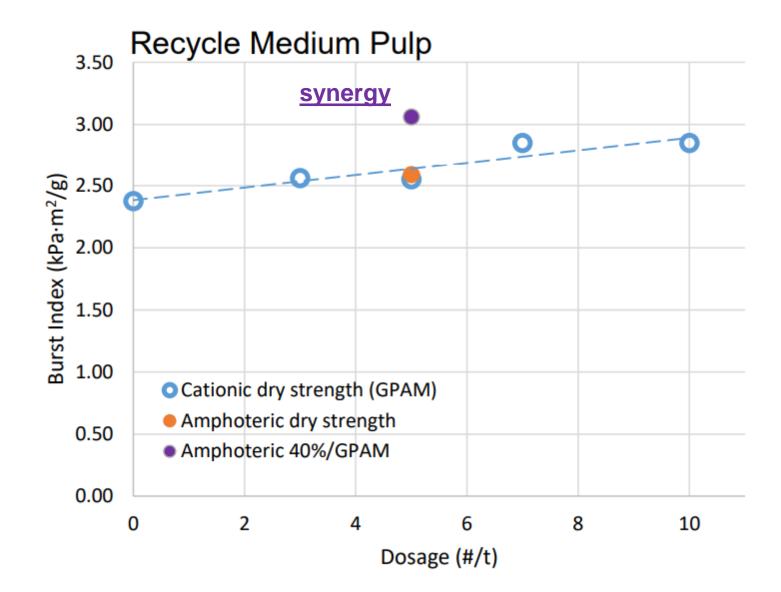
	No.	AmPAM (Ibs/t) (as dry)	Current AmPAM (Ibs/t) (as dry)	Stockigt size (Sec)	S.BOX ZP (mv)	Inlet ZP (mv)
Initial condition	1	0	7.9	32	+1.3	+2.1
Trial condition	2	7.9	0	39	-0.4	+1.2

- ZP charge at Stuff Box and Head Box was optimized when sizing changed from current AmPAM (more cationic) to new AmPAM (with less cationic charge).
- ➢ Stockigt size value was improved from 32sec to 39sec.
- > Not all AmPAM are the same.


Mill Case D – cost improvement

Mill: Linerboard Furnish: 100% OCC **pH:** 4.2 Starch: None **Goal:** Cost reduction by decreasing DSR dosage No. AmPAM Current Conductivity **Burst** RC White Water (lbs/t) **AmPAM** index index (as dry) (lbs/t) (CD) (as dry) (µS/cm) (kPa•m^{*}/g) (N•m²/g) 9.7 3.27 1 0 3,700 153 9.5 3,500 3.43 157 2 0 3 8.1 3,500 3.42 156 0 Trial condition 6.8 3,400 3.34 154 4 0 6.2 5 3,500 3.25 155 0 8.1 0 3,500 3.20 152 6

PS showed almost the same Burst and RCT even at the around 30% decreased dosage compared to the current DSR, 1st~2nd generation.


Synergy between AmPAM and GPAM application for US OCC

Furnish: OCC 100%, pH: 6.5-7.0, Dosage rate: 4.4#/t, Basis weight: 29lb

- AmPAM/GPAM > AmPAM > GPAM
- The synergistic effect of AmPAM and G-PAM was confirmed.

Synergy between AmPAM and GPAM application for US OCC

Summary:

- 1. Lower fiber quality and increased closure of board mill systems create challenges in strength development.
- 2. Above trends are more advanced in Japan and other Asian regions, but may become relevant to North American market.
- 3. Amphoteric dry strength technology dominant in Japan and Asia.
- 4. Amphoteric dry strength technology may differ in molecular weight, crosslinking, net charge, and charge distribution.
- 5. Examples of lab experiments and mill cases were presented.
- 6. Synergy between GPAM and new AmPAM was observed.

Thank you for your attention!!

