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SUMMARY

‘ Brightening processes are the major con-
tributors to variability in wet end chemistry
-in production of papers based on mechan-
:ical pulps. Reductive brightening (hydro-
‘suffite brightening) contributes mainly to
‘increased levels of conductivity, while
hydrogen peroxide brightening, due to its
initial high pH, generates increased levels
‘of anionic, polymeric materials giving rise
'to elevated cationic demand values. Both
lincreased conductivity and cationic
demand can negatively affect retention,
(drainage  and  colloidal  stability.
\Consequently, machine efficiency and
iproduct quality are impacted.

{This paper reports on continuation of earlier
‘studies dedicated to process water variabili-
ity in papermaking. Sources and chemical
nature of anionic trash generated during
hydrogen peroxide brightening are reviewed
‘ogether with developments in hydrogen
‘peroxide brightening technology. Finally,
:available anionic trash control strategies,
specifically the unique potential of enzymat-
fic treatment are discussed. Results of pre-
liminary laboratory studies and practical
applications of pectinase enzymatic technol-
ogy for two mills are presented.
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Paper machine efficiency is negatively
impacted by process instabilities (7,2).
This impact is especially significant in
wood-containing paper production where
brightness targets require the use of
brightening chemicals, most often sodium
hydrosulfite and hydrogen peroxide, and
where brightening processes carried out
in the pulp mill are highly integrated with
paper machine operations (3-6). The need
to achieve constant brightness targets
despite varying wood quality necessitates
significant adjustments to the dosage of
brightening chemicals in the pulp mill.
These circumstances collectively increase
the amount and level of contaminant
carry-over from the brightening process
and are a major source of paper making
process instability; since the pulping,
brightening and papermaking processes
have limited or no separation.

At elevated pH conditions of the
hydrogen peroxide brightening process,
pectin esters, which are present as a part
of the cell wall, undergo rapid general
base hydrolysis and are converted to pec-
tic acids (Fig.1, polygalacturonic acids -
PGA). PGA are one of the most prevalent
and active by-products of hydrogen per-
oxide brightening. Their négative charge
and high molecular weight result in limit-
ed thermodynamic stability in the water
phase and consequently make them reac-
tive towards cationic wet-end additives
(7-9). Additionally, usage of other compo-
nents in the hydrogen peroxide process
such as caustic and sodium silicate and a
need for post-brightening pH neutralisa-
tion, give rise to a significant increase in
the ionic strength of the system, generally
indicated by elevated conductivity levels.

Both simple electrolytes (increasing
conductivity) and polymeric anionic
materials (increasing cationic demand)
are collectively known as dissolved and
colloidal substances (DCS). DCS generat-
ed and carried through a peroxide bright-
ening system can complex with cationic
additives (cationic demand) (/0-14), or

render conformational changes to floccu-
lants and starches (conductivity) (15).

Although the impact of conductivity is
important and often underestimated, the
focus of this paper remains on the issues
related to anionic polymeric materials.
These anionic species are quantified by
titration with a standardised cationic poly-
mer solution and their concentration is
represented in terms of cationic demand,
in meq/L or peq/L. Anionic materials that
contribute to the cationic demand form
various types of complexes with cationic
additives, from soluble species to insolu-
ble precipitates.

Presence of detrimental anionic poly-
meric materials can significantly reduce
the performance of cationic additives.
This can lead to increased tray water
solids, press felt filling, losses in strength,
increases in drying steam demand, and
many other negative consequences.
Newly formed complexes formed
between cationic additives and the DCS
may significantly change characteristics
of papermaking stock and contribute to
retention and dewatering variability, for-
mation of deposits, outbreaks of holes and
sheet breaks. For these reasons, a high
and varying level of cationic demand has
significant, detrimental consequences on
machine efficiency and products quality.

Several strategies have been imple-
mented recently to address the amount of
anionic materials generated during the
peroxide brightening process. Two impor-
tant examples of these strategies are high
consistency peroxide bleaching which
utilises a thickening stage and sewering of
the pressate, and replacement of sodium
hydroxide with magnesium hydroxide as
a source of alkalinity (16,17). Each of
these strategies require compromises or
are limited in terms of cost, energy
requirements, brightness development,
fibre losses and by generation of detri-
mental substances (10-12,14).

The conventional anionic trash control
strategy utilises typical coagulants to neu-



Fig. 1
and acid functions.

tralise the charge of anionic materials
generated during peroxide brightening.
Thornton established that in the case of
hydrogen peroxide brightening process, at
least 40% of the measured cationic
demand could be attributed to the pres-
ence of PGA (18) (Fig.1).

The unique molecular structure of
PGA, with both ester and acid functional-
ity, provides the opportunity for effective
pectinase enzymatic treatment (8,9,18-
23). Pectinase hydrolytic enzyme cataly-
ses the depolymerisation reaction of poly-
galacturonic acids, converting them into
low molecular weight oligomers. Lower
molecular weight materials with 5-6
mMonomer units, are more soluble in water
(increased thermodynamic stability in
solution) and consequently display no
activity towards cationic polymeric addi-
tives (24). These lower molecular weight
materials are no longer able to form new
potentially harmful polyelctrolyte com-
plexes with cationic polymers. Pectinase
catalytic activity makes its dosage
requirement also very effective when
compared to coagulants that require
dosages stoichometrically proportional to
actual DCS levels.

The active site of Pectinase hydrolytic
enzyme contains 3 aspartate residues that
participate in the process of water addi-
tion to the glycosidic bond (Fig.2) that
leads to its cleavage.

It is obvious that the degree of protona-
tion of these aspartic acid carboxylic
groups must have a significant impact on
Pectinase enzyme activity. Pectinase oper-
ates in the slightly acidic environment of
fruit and its pH versus activity profile has a
maximum around pH 5.0-5.5 with activity
falling off sharply above pH 6.

Application of enzymes opens new
avenues for cationic demand reduction
that until now were cost and runnability
prohibited.

In this paper results from machine
applications of Pectinase enzffne in two
newsprint mills utilizing hydrogen perox-
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Fig. 2 Active site of Pectinase and mechanism of hydrol-
ysis of a-glycosidic bond.

ide brightening technology and paper
machines operating in acid pH range are
discussed. This paper focuses on the ben-
efits of improved efficiency, raw material
utilisation and product quality resulting
from enzymatic treatment of anionic trash.

RESULT AND DISCUSSION

Mill Trial 1

This North American mill operates a
machine with a Duoformer D forming
section and produces a newsprint sheet at
1070 m/min. The pH ranges from 4.7 to
5.1 and the conductivity ranges from
1600 to 2200 pS/cm. Although this
machine does not use hydrogen peroxide
bleached pulp, it uses filtrate generated in
the thickening stage of peroxide bleached
TMP, used on another machine, for thick
stock pulp dilution. Typical cationic
demand levels in this system could reach
almost 2000 peq/L. These high cationic
demand values significantly affected the
performance of the cationic flocculant
causing poor fines retention, poor
drainage on the newsprint machine, and
as a consequence led to overloading the

operation of a DAF unit in the wastewater
plant. As a result, the waste water system
of the mill required frequent production
shutdowns that impacted overall econom-
ic results of the mill operation. The charge
neutralisation approach of coagulant
addition for anionic charge control pro-
vided only limited improvements, as
could be expected based on earlier discus-
sion. The key mill economical drivers
such as on- machine efficiency, raw mate-
rial utilisation and wastewater treatment
plant operations with its impact on envi-
ronmental compliance, were strongly
affected by high cationic demand. The
challenge was to overcome these limita-
tions without the negative impact on
machine efficiency associated with typi-
cal use of coagulants. Considering the
high level of the soluble fraction of
cationic demand and pH range of paper
machine water circuits, Pectinase applica-
tion offered a potential solution

Initial testing performed on the furnish
from the mill showed high effectiveness
of the Pectinase in terms of cationic
demand reduction, as shown in Figure 3.
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Fig. 3 Laboratory evaluation of Pectinase performance
using furnish from Mill Trial 1.
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Fig. 6 Mill Trial 1: Reduction in the sewer losses resulting

from Pectinase application.

Greater than 40% cationic demand reduc-
tion was measured at a dose of 0.09 kg/t
with reaction conditions of 50 °C, 10 min-
utes, and a pH of 5.0. On-machine evalu-
ation was therefore proposed to the mill.

The machine application consisted of
feeding the pectinase into the contaminat-
ed pressate stream from the other machine
at the mixing manifold on the inlet to the
blend chest. This application point pro-
vided excellent mixing, a fundamental
requirement for success of any chemical
application. From the blend chest, the
treated stock progressed through the
machine chest, stuff box, cleaners and
finally to the approach system with a 20
to 25 minute of total residence time. The
dosage of Pectinase product ranged
between 0.05 to 0.10 kg/t.

When the Pectinase was first intro-
duced, the cationic demand of the stuff
box and headbox dropped by more than
50%, from 1800 peg/L and 1500 peg/L to
700 peq/L and 550 peq/L, respectively
(Fig. 4). This cationic demand reduction
resulted in an increased effectiveness of
the retention program.

As Figure 5 indicates, a reduction in
the headbox cationic demand correlated
with a reduction in the white water con-
sistency, reflecting improved tetention

program activity.
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at the same

As the system gradually cleaned up,
the sewer losses were reduced on average
from 29 t/day to 12 t/day (Fig. 6). The
variability in solids loss was also reduced.

Additionally, increasing the fines
retention had a positive impact on the
final product quality. Figure 7 depicts the
scattering coefficient before and during
the pectinase trial. An increase of 2.5
units (increased sheet fines content) was
noted while the variability in this sheet
property was nearly cut in half.

In conclusion, application of the
Pectinase resulted in vastly improved
machine efficiency, reduction in fibre and
filler losses, reduced load on the waste
treatment plant and a reduction in paper
property variability.

Mill Trial 2

This European mill produces a high
brightness mechanical furnish-based
sheet, using hydrogen peroxide bleached
pulp on a paper machine equipped with
top former and operating at 1100 m/min.
As in typical hydrogen peroxide brighten-
ing processes, this pulp was acidified
after brightening to prevent alkaline dark-
ening, and the wet end of the paper
machine operates at a pH range of 4.7-
5.1. The furnish blend used in this mill

Fig. 7 Mill Trial 1: Improvement in scattering coefficient

filler dosage during Pectinase trial.

includes TMP, Softwood Kraft (SWK),
and calcined clay filler. The mill depends
on filler addition for opacity develop-
ment. This mill operates typically at a
very high cationic demand level, reaching
6000 peg/L. This high level of cationic
demand negatively affects filler retention,
and consequently, the ability to reach
quality specifications of opacity for the
product. The required filler content need-
ed to achieve the opacity specification
could only be achieved by driving higher
filler consistency in the headbox. This led
to higher filler losses, which impacted
production costs. It also leads to sheet
two-sidedness in filler distribution and
effectiveness of filler opacifying proper-
ties. For the reasons presented during dis-
cussion of the case of Mill 1, the classical
charge neutralisation approach via coagu-
lant application had only a very limited
impact on this situation. Similarly to Mill
1, the key drivers for this mill were on-
machine efficiency, filler utilisation and
effective wastewater treatment plant oper-
ations for environmental compliance.
Application of Pectinase presented a real
opportunity for significant improvements
to mill operations.

Laboratory testing of Pectinase
enzyme at a dose of 0.04 kg/t reduced the
cationic demand of furnish samples by
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Fig.12 Mill Trial 2: Impact of Enzyme application on First

Pass Filler Retention.

80%. This result was even higher than
predicted by Thornton (3), suggesting that
the component of pectic acids in total
cationic demand was higher than the
expected 40-50%. A lower contribution
from the inorganic fraction of total cation-
ic demand (associated typically with sodi-
um silicate application) is a possible
explanation for the occurrence. This
result suggested that Mill 2 wofild signif-

icantly benefit from Pectinase treatment.
Further laboratory studies indicated that
improved flocculant efficiency would
permit a 30% reduction of flocculant
dosage at the same tota]l retention. In
these experiments filler retention was
doubled for a given total retention
improvement, suggesting certain selectiv-
ity in filler retention, resulting from
Pectinase application. In addition,
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study were a pH of 5, a temperature of
45 °C, and a reaction time of 30 minutes.
Figure 8 shows that treating furnish with
pectinase improves the starch retention
(measured indirectly by the lowered con-
centration of dissolved (unretained)
starch in the filtrate.)

These promising laboratory results
fully justified recommendation for an on-
machine irial. The machine trial began
with pectinase applied at an average dose
of 0.04 to 0.05 kg/t. The cationic demand
dropped 80%, from 6000 to 1000 peq/L
(meq/L in figure), especially after moving
the feed point from the exit to the
entrance of the TMP high-density chest to
achieve increased reaction time. Figure 9
shows cationic demand changes observed
during the initial phase of the trial. At the
end of the trial, when the Pectinase was
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a result of Pectinase application.

removed from the system, an immediate
increase in the cationic demand value was
recorded (note the reverse scale of cation-
ic demand on this graph).

Variability observed in cationic
demand and conductivity for various
brightness targets is a major contributor to
process instability. This leads to changes
in retention, drainage, centre roll release
angle (point) and consequently to reduced
on-machine efficiency and lower and
variable product quality. The following
figures represent the significant benefits
of Pectinase application from improved
system stability through wet end chem-
istry (cationic demand and conductivity)
when varying levels of hydrogen peroxide
dosage were applied to achieve selected
brightness targets. The impact of bright-
ening level (via hydrogen peroxide dose)
on the cationic demand is presented in
Figure 10. Without the Pectinase, as the
brightening requirement or peroxide dose
increased due to changes in the brightness
specifications, the cationic demand
increased significantly. When the

‘
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Pectinase was applied, lower and much
more stable levels of cationic demand
were observed.

The higher brightening levels resulted
in an increase in conductivity as well.
Figure 11 illustrates how increases in the
conductivity are decoupled from the
cationic demand because the pectinase
provides a reduction and stabilisation of
the cationic demand.

This reduction in the value and vari-
ability of cationic demand had a very pos-
itive impact on the filler retention as illus-
trated by Figure 12.

Pectinase application allowed for
much more effective performance of the
retention program in terms of fines and
filler retention. An average increase of
First Pass Retention of 10 percentage
points was recorded during the trial. The
variability in the retention was also
reduced. Higher level of filler retention
allowed for a reduction of the filler con-
sistency in the headbox needed to reach
required ash content in the sheet to meet
opacity specifications (Fig. 13).

As a result of the combined benefits of
increased filler retention and improved filler
distribution, scattering coefficient of the
sheet was higher even at lower filler feeding
rates, as shown in Figure 14. Machine shut-
downs due to clarifier overload were
reduced or eliminated and efficiency of the
machine improved significantly.

CONCLUSIONS

Two examples of Pectinase application
demonstrate the benefits of enzymatic
anionic trash reduction in improving
machine efficiencies in peroxide bleached
mills. If the requirement of pH < 6 after
peroxide bleaching is fulfilled, cationic
demand reductions of 40% and higher are
possible through the molecular weight
reduction of polygalacturonic acid with
pectinase. There are no alternative strate-
gies available that match level of perfor-
mance delivered by Pectinase. Other treat-
ments fall short of this benchmark in terms
of effectiveness, cost and their impact on
runnability, energy and fibre losses.

Benefits of anionic trash reduction
include increased retention, in particular
filler retention, drainage, reduction in pro-
cess and sheet quality variability, reduced
downtime improved overall yield of the
process and lowered environmental foot-
print of mill operations.

Laboratory cationic demand reduction
results were a good prediction of on-
machine performance.
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Uy — Average press speed in m/s

P Blanket reference pressure
exerted on ink

Vian— Penetration velocity into the
paper

U,- Elongation in the x or width
direction

U, - Elongation in the y or width
direction

U, Elongation at the kth partition
of the paper
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