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Impact of commonly used drugs on the
composition and metabolic function of the
gut microbiota
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The human gut microbiota has now been associated with drug responses and efficacy, while

chemical compounds present in these drugs can also impact the gut bacteria. However,

drug–microbe interactions are still understudied in the clinical context, where polypharmacy

and comorbidities co-occur. Here, we report relations between commonly used drugs and the

gut microbiome. We performed metagenomics sequencing of faecal samples from a popu-

lation cohort and two gastrointestinal disease cohorts. Differences between users and non-

users were analysed per cohort, followed by a meta-analysis. While 19 of 41 drugs are found

to be associated with microbial features, when controlling for the use of multiple medications,

proton-pump inhibitors, metformin, antibiotics and laxatives show the strongest associations

with the microbiome. We here provide evidence for extensive changes in taxonomy, meta-

bolic potential and resistome in relation to commonly used drugs. This paves the way for

future studies and has implications for current microbiome studies by demonstrating the

need to correct for multiple drug use.
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In recent years there has been growing interest in the asso-
ciations between the gut microbial ecosystem and the use of
non-antibiotic drugs. The interaction between drugs and gut

microbe composition is important for understanding drug
mechanisms and the development of certain drug side effects1,2.
The impact of antibiotics on gut microbiome composition has
been well known for some time, but studies in population-based
cohorts have found relations between multiple groups of drugs
and gut microbiome signatures3–6. The use of proton pump
inhibitors (PPIs), drugs that inhibit stomach acid production, has
been associated with an increase in typically oral bacteria in the
gut7,8. Metformin, a commonly used drug in type II diabetes, has
been associated with changes in gut microbiome composition
both in vivo and in mice, in particular with an increase in bacteria
that produce short chain fatty acids9,10. A recent study in a
general population cohort showed that multiple drugs are asso-
ciated with an altered gut microbiome composition6. In the same
line, in vitro analysis of more than 1000 marketed drugs showed
that non-antibiotic drugs can also inhibit the growth of gut
bacterial strains11. This, together with the fact that gut microbial
composition has been linked to host conditions such as rheu-
matoid arthritis, inflammatory bowel disease (IBD) and sus-
ceptibility to enteric infections, suggests that some drug side
effects could be induced via their impact on the gut
ecosystem7,12–15. To date, most of the studies published on this
topic have focused on general population cohorts or single
drug–microbe interactions4–6. However, these approaches do not
reflect the clinical situation. Patients with gastrointestinal (GI)
diseases like IBD and irritable bowel syndrome (IBS), for exam-
ple, harbour a different gut microbiota composition than general
population controls15, and this could influence the occurrence of
side effects or alter the mechanism of action of certain drugs.
Moreover, patients with IBD or IBS also show differences in their
patterns of drug use compared to general population controls,
including increased polypharmacy, either due to the GI disease
itself or to other comorbidities16–19. In IBS, many commonly
used drugs such as nonsteroidal anti-inflammatory drugs
(NSAIDs) or antidepressants can trigger or alleviate GI symp-
toms19. Investigating drug–microbiome interactions could
therefore lead to insights that can unravel the mechanisms
involved in treatment response in IBD and the occurrence of GI
symptoms with drug use in IBS. To understand the impact of
drug–microbiome interaction in humans, especially in the clinical
context, it is crucial to consider the combination of different drug
types.

Here we present a meta-analysis of the associations between
drug use and the gut microbiome in three independent cohorts
from the same geographical region. After correcting for the age,
sex and BMI of the participants, 19 of the 41 medication cate-
gories available in this study show an association with microbial
features. When we also correct for the use of multiple drugs at the
same time, PPI, metformin, antibiotics and laxatives show the
largest number of associations. Through this data, we pinpoint
relevant changes in microbial species and metabolic pathways and
consequences for antibiotic resistance (AR) mechanisms in the
gut in clinical context.

Results
Drug use. In this study, we used three Dutch cohorts: a general
population cohort, a cohort of patients with IBD and a case-
control cohort of patients with IBS (see methods). 1126 of the
1883 participants from all three cohorts were taking at least one
drug at time of faecal sampling. The number of drugs used per
participant ranged from 0 to 12, with median values of 0 for the
population cohort (mean 1.03, n= 1124), 2 for the IBD cohort

(mean 2.35, n= 454) and 1 for the IBS cohort (mean 1.6, n=
305) (Table 1, Supplementary Data 1 and 2). In total, we observed
537 different combinations of drugs, with the most frequent being
the combination of a beta-sympathomimetic inhaler with a
steroid inhaler (18 users) (Supplementary Data 2). The use of
steroid inhalers was strongly correlated with the use of beta
sympathomimetic inhalers (Rpopulation-cohort= 0.78, RIBD-cohort

= 0.65, RIBS-cohort= 0.78, Spearman correlation, False Discovery
Rate [FDR] < 0.05) (Supplementary Data 3–5). In patients with
IBD, the strongest correlation was observed between calcium and

Table 1 Drug usage per cohort. Number and percentage of
drug users in each cohort.

Drugs LifeLinesDEEP
(n= 1124)

1000 IBD
(n= 454)

MIBS
(n= 305)

ACE inhibitors 44 (4%) 24 (5%) 7 (2%)
Alpha blockers 10 (1%) 3 (1%) 7 (2%)
AngII receptor
antagonist

33 (3%) 10 (3%) 17 (6%)

Anti-androgen oral
contraceptive

14 (1%) 2 (0%) 6 (2%)

Anti-epileptics 5 (0%) 5 (1%) 7 (2%)
Antihistamine 69 (6%) 15 (4%) 14 (5%)
Anti-TNFα 1 (0%) 119 (25%) 0 (0%)
Antibiotics merged 13 (1%) 12 (3%) 7 (3%)
Benzodiazepine
derivatives related

25 (2%) 16 (4%) 13 (5%)

Beta blockers 61 (5%) 34 (8%) 23 (8%)
Beta
sympathomimetic
inhaler

64 (6%) 16 (4%) 16 (6%)

Bisphosphonates 10 (1%) 13 (3%) 4 (1%)
Ca-channel blocker 21 (2%) 10 (2%) 14 (5%)
Calcium 14 (1%) 76 (17%) 8 (3%)
Iron preparations 7 (1%) 15 (3%) 1 (0%)
Folic acid 7 (1%) 31 (7%) 0 (0%)
Insulin 4 (0%) 11 (2%) 0 (0%)
IUD that includes
hormones

60 (5%) 5 (1%) 1 (0%)

K-saving diuretic 7 (1%) 9 (2%) 1 (0%)
Laxatives 21 (2%) 30 (7%) 27 (9%)
Levothyroxine 26 (2%) 10 (2%) 5 (2%)
Melatonin 6 (1%) 4 (1%) 1 (0%)
Mesalazines 2 (0%) 162 (36%) 2 (1%)
Metformin 15 (1%) 7 (2%) 6 (2%)
Methylphenidate 6 (1%) 5 (1%) 1 (0%)
NSAID 42 (4%) 21 (5%) 22 (7%)
Opiate 13 (1%) 22 (5%) 7 (2%)
Oral anti-diabetics 8 (1%) 8 (2%) 4 (1%)
Oral contraceptive 113 (10%) 55 (12%) 32 (11%)
Oral steroid 5 (0%) 79 (17%) 4 (1%)
Other antidepressant 9 (1%) 10 (2%) 3 (1%)
Paracetamol
(acetaminophen)

11 (1%) 42 (9%) 42 (14%)

Platelet aggregation
inhibitor

32 (3%) 27 (6%) 18 (6%)

PPI 93 (8%) 108 (24%) 48 (16%)
SSRI antidepressant 28 (2%) 10 (2%) 30 (10%)
Statin 55 (5%) 28 (6%) 26 (9%)
Steroid inhaler 57 (5%) 17 (4%) 17 (6%)
Steroid nose spray 55 (5%) 6 (1%) 7 (2%)
Thiazide diuretic 43 (4%) 17 (4%) 17 (6%)
Thiopurines 0 (0%) 151 (33%) 0 (0%)
Tricyclic
antidepressant

10 (1%) 16 (4%) 2 (1%)

Triptans 20 (2%) 5 (1%) 2 (1%)
Vitamin D 14 (1%) 70 (15%) 3 (1%)
Vitamin K antagonist 5 (0%) 7 (2%) 6 (2%)
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vitamin D supplements (R= 0.84, Spearman correlation, FDR <
2 × 10-16). Mesalazines (36%), thiopurines (33%) and anti-TNFα
agents (25%) were present in the top 10 most-used drugs in the
IBD cohort (Table 1). Since thiopurines and anti-TNFα agents
were solely used in the IBD cohort, these drugs were not included
in our multi-drug analyses.

Microbial ecosystem and drug use. We first investigated the
effect of each individual drug on the richness and overall gut
microbial composition. As described earlier, disease cohorts
presented a lower microbial richness compared to the general
population cohort (Population cohort Shannon Indexmean= 2.26
(0.96–2.91), IBD cohort Shannon Indexmean= 2.1 (0.38–2.78),
IBS cohort Shannon Indexmean= 2.02 (1.01–2.65))15. Within
cohorts, we did not observe any significant changes in the
microbial richness associated with the use of any drug or in the
number of different drugs used (Spearman correlation, FDR >
0.05, Supplementary Data 6, Fig. 1). However, we did observe
differences between the number of drugs used and the overall
microbial composition within all cohorts (Permutational multi-
variate analysis of variance (PERMANOVA) test; Population
cohort: r2= 0.006, FDR= 0.001; IBD cohort: r2= 0.015, FDR=
0.001; IBS cohort: r2= 0.014, FDR= 0.0014; Supplementary
Data 7). PPIs were the only individual drug associated with
compositional changes in all cohorts (PERMANOVA, Population
cohort: r2= 0.007, FDR= 0.006; IBD cohort: r2= 0.023, FDR=
0.0006; IBS cohort: r2= 0.021, FDR= 0.01).

Taxa and pathways associated with drug use. In the meta-
analysis accounting for host age, sex, BMI and sequencing depth,
154 associations between individual taxa and 17 groups of drugs
were found to be statistically significant (inverse variance meta-
analysis, FDR < 0.05, Fig. 2a, Supplementary Data 8). PPIs, met-
formin, vitamin D supplements and laxatives were the individual
drugs with the highest number of associations (>10) in the single-
drug analysis. An interesting observation was that changes in the
abundance of specific taxa were associated with multiple inde-
pendent drugs. For example, the abundance of Streptococcus
salivarius was increased in users of opiates, oral steroids, platelet
aggregation inhibitors, PPIs, SSRI antidepressants and vitamin D
supplements (inverse variance meta-analysis, FDR < 0.05). We
did, however, also see features that were specific to individual
drugs: an increased abundance of Bifidobacterium dentium was
specific to PPI users (inverse variance meta-analysis, FDR=
9.38 × 10−17) and an increased abundance of Eubacterium
ramulus was specific to participants using SSRI antidepressants
(inverse variance meta-analysis, FDR= 0.047). The use of drugs
was also associated with functional changes in the gut. In the
same analysis, 411 microbial pathways were related to 11 drugs
(inverse variance meta-analysis, FDR < 0.05, Fig. 2b, Supple-
mentary Data 9).

In order to consider multiple drug groups being prescribed at
the same time, we tested each drug adding other drugs as
covariates in the linear models. Overall, 47 associations were
found between microbial relative abundance and the use of six
drugs (inverse variance meta-analysis, FDR < 0.05, Fig. 1b,
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Fig. 1 Microbial richness (Shannon index) for each participant stratified per number of medications used. Dots represent the richness value per each
sample in the study. Boxplot shows the median and interquartile range (25th and 75th). Whiskers show the 1.5*IQR range. Black lines show linear
regression with a purple shadow indicating the 95% confidence interval. From left to right, the IBD cohort (N= 454 samples, linear regression, coefficient
=−0,001, p= 0.88), population cohort (N= 1124 samples, linear regression, coefficient=−0.002, p= 0.77) and the IBS cohort (N= 305 samples, linear
regression, coefficient=−0.016, p= 0.06). (Source data are provided as a Source Data file).
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Supplementary Data 10). PPIs, laxatives and metformin showed
the largest number of associations with microbial taxonomies and
pathways. Despite the low number of antibiotics users, a decrease
in the genus Bifidobacterium was observed in this meta-analysis
(inverse variance meta-analysis, FDR= 0.001). Laxative users
showed higher abundance of Alistipes and Bacteroides species in
their microbiome (inverse variance meta-analysis, FDR < 0.05).
The association between SSRI antidepressant use and Eubacter-
ium ramulus remained significant after considering multi-drug

use (inverse variance meta-analysis, FDR= 0.032). In this multi-
drug analysis, 271 pathways were associated with four drug
categories: PPIs, laxatives, antibiotics and metformin (inverse
variance meta-analysis, FDR < 0.05, Supplementary Data 11).
Interestingly, while antibiotic use was related to a lower
abundance of microbial pathways such as amino-acid biosynth-
esis, metformin use was associated with increased bacterial
metabolic potential (inverse variance meta-analysis, FDR < 0.05).
Within the category of antibiotics, tetracyclines showed the
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use of multiple drug types while taking age, sex and BMI into account. (Source data are provided as a Source Data file).
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strongest association with the altered pathways (two-sided
Wilcoxon test, FDR < 0.05, Supplementary Data 12). Moreover,
the abundance of microbial pathways in laxative- and PPI-users
did show some similarities, including increase of glucose usage
(increase of glycolysis pathways) and decrease of starch degrada-
tion and aromatic compounds biosynthesis pathways (inverse
variance meta-analysis, FDR < 0.05). All the associations between
taxonomy and pathways and individual drugs can be found in
Supplementary Data 13–46.

Cohort-specific changes in gut microbiome composition.
Changes in the gut microbiota composition in patients with IBD
and IBS have been observed before15,20,21. We therefore exam-
ined whether these changes were also present in the associations
between the microbiota and the use of a drug. In the IBD cohort,
benzodiazepine use was associated with an increased abundance
of Haemophilus parainfluenzae (linear regression, t-test, FDR=
0.008, Supplementary Data 47). Interestingly, this bacterium has
also been described to be more prevalent in patients with IBD
than in healthy individuals. The use of tricyclic antidepressants
was associated with an increased abundance of Clostridium lep-
tum and intake of levothyroxine was associated with a higher
abundance of Actinomyces in the IBD cohort (linear regression,
t-test, FDR= 0.005 and 0.005, respectively, Supplementary
Data 47). In addition, the 17 steroid inhaler users in the IBS
cohort showed a higher abundance of Streptococcus mutans and
Bifidobacterium dentium in their gut microbiome (linear
regression, t-test FDR= 0.001 and 0.01, respectively, Supple-
mentary Data 40). Interestingly, patients with IBD using oral
steroids showed a higher abundance of Methanobrevibacter
smithii (linear regression, t-test, FDR= 0.004, Supplementary
Data 47). This association was also reflected at pathway level: the
four pathways associated with the use of this drug also showed a
high correlation with the abundance of Methanobrevibacter
smithii (Spearman correlation, rho > 0.93, FDR < 2 × 10−16,
Supplementary Data 48 and Fig. 3). Two of these pathways are

involved in methanogenesis, one in the biosynthesis of vitamin
B2 and one in the biosynthesis of nucleosides. Conversely, the
use of other medication usually prescribed to treat IBD did not
show strong associations with the microbial composition. Only
the abundance of an Erysipelotrichaceae species was found to be
slightly increased in mesalazine users (linear regression, t-test,
FDR= 0.047, Supplementary Data 49).

Microbiome signature of PPI users. PPIs accounted for the
largest number of associations, with a total of 40 altered taxa and
166 altered microbial pathways in the single-drug analyses (inverse
variance meta-analysis, FDR < 0.05, Supplementary Data 8 and 9).

When correcting for the impact of other drug types, 24 taxa
and 133 microbial pathways remained significantly associated
with PPIs (inverse variance meta-analysis, FDR < 0.05). We
observed an increased abundance of Veillonella parvula, which
is known to establish a mutualistic relation with Streptococcus
mutans by co-aggregating and transforming the metabolic
products of carbohydrate-fermenting bacteria22 (inverse variance
meta-analysis, FDR= 1.61 × 10−6 and 6.13 × 10−24, respectively).

Functional changes included the increase of fatty acid and lipid
biosynthesis, fermentation NAD metabolism and biosynthesis of
L-arginine. The pathways associated with PPI use involve
functions that have a broad taxonomic contribution. However,
a closer look at the predicted microbial contribution and the gene
families involved in each pathway revealed that the enrichment of
specific microbial mechanisms is likely to be explained by the
changes observed in taxonomic composition. Purine deoxyribo-
nucleoside degradation, a pathway used as a source of energy and
carbon, was predicted from the genomes of >25 different bacterial
genera (Fig. 4). The increase in this function in the gut
microbiome of PPI users can be explained by an increased
abundance of Streptococcus species (S. salivaris, S. parasanguinis
and S. vestibularis) (two-sided Wilcoxon-test, FDR < 0.05). Three
pathways involved in L-arginine biosynthesis (MetaCyc ID:
PWY-7400, ARGSYNBSUB and ARGSYN) were more abundant
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Fig. 3 Correlation between the relative abundance of Methanobrevibacter smithii and the pathways associated with oral steroids. Dots are coloured by
study cohort. In blue the cohort of IBD patients, in yellow the population cohort and in grey the IBS case-control cohort. X-axis represents the relative
abundance of Methanobrevibacter smithii and Y-axis the read per kilobase (RPK) of each pathway. Spearman correlation was used to calculate the
correlation and significance. (Source data are provided as a Source Data file).
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in the microbiome of PPI users. While several bacterial taxa,
including Bifidobacterium and Ruminococcus species were pre-
dicted to contribute to these pathways, only Streptococcus mutans
pathways showed a significant enrichment (two-sided Wilcoxon-
test, FDR < 0.05, Supplementary Data 50). These analyses have
also been performed in the medication’s metformin, antibiotics
and laxatives (Supplementary Data 51–53).

Different types of PPIs, namely omeprazole, esomeprazole and
pantoprazole, exhibited a similar effect on the gut microbiome.
Additionally, of the 133 microbial pathways associated with PPI
use, 46 pathways also showed dosage dependent effects (two-
sided Wilcoxon test, FDR < 0.05, Supplementary Data 12). For
example, participants using a higher dosage of PPIs (greater than
or equal to 40 mg/day) showed a marked decrease in a pathway
involved in the biosynthesis of amino acids (PWY-724) when
compared to low dosage users (two-sided Wilcoxon test, FDR=
0.00065, Supplementary Data 12).

Metformin is associated with changes in metabolic potential.
While changes in the abundance of Streptococcus, Coprococcus
and Escherichia species were initially found to be enriched in
metformin users, these associations were no longer significant

after correcting for the use of other drug types. However, a
suggestive association with Escherichia coli (linear regression, t-
test, FDR= 0.08, Supplementary Data 10) remained and, in the
IBD cohort, the abundance of Streptococcus mutans was slightly
increased in participants using this drug (linear regression, t-test,
FDR= 0.05) (Supplementary Data 47).

Strikingly, the functional implications of metformin use were
large even after correction for the use of other drugs, with 48
microbial pathways altered compared to the non-users (inverse
variance meta-analysis, FDR < 0.05, Supplementary Data 11).
Metformin use was associated with changes in the metabolic
potential of the microbiome, in particular with increases in the
butanoate production, quinone biosynthesis, sugar derivatives
degradation and polymyxin resistance pathways (Supplementary
Data 11). Interestingly, metagenomic pathway prediction and
gene family analyses revealed that Enterobacteriaceae species,
mainly Escherichia coli, were the major contributors to the
functional changes associated with metformin use. Our data
suggest that physiological changes induced by metformin can
provide competitive advantage to enterobacterial species, which
could potentially have implications on health (two-sided
Wilcoxon-test, FDR < 0.05, Supplementary Data 51). Further-
more, we did not identify dosage-dependent effects of metformin
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Fig. 4 Microbial contribution to the purine deoxyribonucleoside degradation pathway. Box plots represent the relative contribution of each microbe to
the overall pathway quantification for each cohort separately. On top is the IBD cohort represented, in the middle the IBS cohort and on the bottom row the
LLD cohort. Blue box-plots represent the values of PPI users. Red box-plots represent the values of non-PPI users. Asterisks indicate statistically significant
differences between PPI users and non-users (Wilcoxon test, FDR < 0.05). Box plots show medians and the first and third quartiles (the 25th and 75th
percentiles), respectively. The upper and lower whiskers extend the largest and smallest value no further than 1.5*IQR, respectively. Outliers are plotted
individually.
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usage on the associated pathways (two-sided Wilcoxon test, FDR
> 0.05, Supplementary Data 12).

Effect of SSRI antidepressant use in patients with IBS. SSRI
antidepressants were among the top 10 most-used drugs in the
IBS cohort. In SSRI users, the only taxa that remained statistically
significant in the multi-drug meta-analysis was the increased
abundance of Eubacterium ramulus (inverse variance meta-ana-
lysis, FDR= 0.032, Supplementary Data 10). This medication
category included six different subtypes of drugs in which par-
oxetine represented 32% of the SSRI users (Supplementary
Data 1). Interestingly, and despite the low numbers, the increased
abundance of Eubacterium ramulus was mainly observed in the
paroxetine users (two-sided Wilcoxon test, FDR= 0.054, P-value
= 0.003, Supplementary Data 12).

Furthermore, the pathway involved in peptidoglycan matura-
tion was decreased in the multi-drug meta-analysis of SSRI
antidepressant users compared to non-users (inverse variance
meta-analysis, FDR= 0.13). However, this finding was mainly
observed in the IBS cohort (linear regression, t-test, FDR= 0.002,
Supplementary Data 38).

Drug use is associated with different resistome profiles. In vitro
evidence is becoming available that indicates it is not only anti-
biotic use that can increase AR: non-antibiotic drugs can also
contribute to this mechanism11. To address this we first analysed
for all three cohorts separately whether the total count of AR
genes was increased in users of individual drugs compared to
those who were not using any drugs. For the general population
cohort, the total number of AR genes was increased for users of
metformin and PPIs (two-sided Wilcoxon test, FDR= 0.04 and
0.04, respectively, Supplementary Data 54). In the IBS cohort,
after correction for multiple testing, none of the drugs were
associated with an increase in AR genes (two-sided Wilcoxon test,
FDR > 0.05). In the IBD cohort, this increase was present in
opiate and tricyclic antidepressant users (two-sided Wilcoxon-
test, FDR= 0.04 and 0.04, respectively). If we use a less stringent
FDR cutoff of < 0.25, 15 drugs were associated with the number of
AR markers across the three cohorts. To identify which drug
groups were related to an increase in individual AR genes, we
analysed the abundances of individual AR genes. In all three
cohorts, we identified consistent increases in three AR gene
markers in PPI users compared to participants not using any
drugs (two-sided Wilcoxon test, FDR < 0.05, Supplementary
Data 55). These genes belong to tetA, tetB and Mel
(ARO:3004033, ARO:3004032 and ARO:3000616, respectively),
which are parts of efflux pumps that pump certain types of
antibiotics out of the bacteria and thereby inhibit the functional
mechanisms of these antibiotics23,24. For tetA and tetB, this
affects the antibiotic group tetracyclines23. For Mel, it affects the
antibiotic group macrolides24.

These AR markers have the highest correlations with
Streptococcus parasanguinis (Spearman correlation, rho’s between
0.56–0.75, FDR < 0.05). We identified three ARs that have also
been tested in vitro11. The AR TolC, for example, is known to be
involved in multiple multi-drug efflux pumps23 and was
statistically significantly increased in six drug groups: three in
our general population cohort (PPI, statin and metformin), two in
our IBS cohort (steroid nose spray and levothyroxin) and one in
our IBD cohort (tricyclic antidepressants) (two-sided Wilcoxon
test, FDR < 0.05). Another example of an in vitro-tested AR is
mdtP, another multi-drug resistance efflux pump, which was
increased in metformin users in our general population cohort
(two-sided Wilcoxon test, FDR= 0.001) and in tricyclic

antidepressant users in the IBD cohort (two-sided Wilcoxon test,
FDR= 0.017, Supplementary Data 55).

Discussion
In this study we have shown the influence of commonly used
drugs on gut microbiome composition, microbial functions and
AR mechanisms in both the general population and individuals
with GI diseases while also considering the clinical context, where
polypharmacy and comorbidities play an important role. We also
observed how drug-associated changes have implications for the
clinically relevant feature of AR. Interestingly, for 15 different
drugs and across all three cohorts, we observed an increase in
total AR genes in drug users compared to participants not using
any drugs (FDR < 0.25).

We observed that the overall composition of the gut ecosystem
is only consistently altered by the use of PPIs and by the use of
multiple drugs. While the effect of PPI use can potentially be
explained by changes in acidity that facilitate the growth of upper
intestinal bacterial in the gut, the effect of the number of drugs
used could reflect either severe health conditions that impact
microbiome composition or a bigger stress on the gut environ-
ment caused by multiple drug intake. In addition, we did not
observe any change in the microbial richness with multi-drug use,
suggesting that there is not a clear depletion or colonisation of
bacteria.

We identified over 500 drug combinations in our cohorts. Even
though we could not analyse specific drug combinations sepa-
rately because of the limited numbers of each combination, we
were able to show the importance of taking use of multiple drugs
concurrently into account using two strategies: identifying asso-
ciations in a multi-drug model and identifying associations in a
single-drug models. As depicted in Fig. 2, we identified large
differences in the number of associated taxa and pathways and
the number of different drugs in the single-drug and multi-drug
strategies. This demonstrates the added value of studying these
interactions in patient groups where polypharmacy and comor-
bidities are common.

In the multi-drug meta-analysis, we identified that usage of
PPI, laxatives and antibiotics had the largest effect on the gut
microbiome composition. These three medication categories have
different targets. Antibiotics directly target bacteria by inhibiting
bacterial growth, while laxatives and PPIs have an impact on the
host. A recent study, however, demonstrated that chemical
compounds present in common medications can exhibit inhibi-
tory effects on bacterial species11. In the case of PPIs, the impact
on the gut microbial composition has been suggested to be a
consequence of the combination of two mechanisms: indirect
impact mediated by the changes in the gastrointestinal pH, which
promotes the growth of typically oral bacteria, and a direct effect
via inhibition of certain commensal gut bacteria that include
Dorea and Ruminococcus species7,11,25.

In our cohort, 30 participants were using, or had used, anti-
biotics in the 3 months prior to faecal sampling. Despite the
limited number of users, we showed a decreased relative abun-
dance of Bifidobacterium species in recent antibiotics users in the
general population that is consistent with what has been descri-
bed previously4. The decrease of Bifidobacterium abundances has
also been shown in in vitro studies, where multiple antibiotic
chemical components impact the growth of these bacteria11.

A confounding factor in the study of the interaction between
laxatives and gut microbiota is the difference in the intestinal
transit time in patients using this medication due to diarrhoea or
constipation. For example, increased abundances of Bacteroides
species have been described in individuals experiencing a fast
transit time26. This signature, however, has also been observed in
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mice exposed to the laxative polyethylene glycol (PEG). While
there is no evidence for a direct effect of this chemical compound
on the inhibition of bacterial growth, experiments in mice sug-
gest that microbial changes are indirect consequences of the
disruption of the gut osmolality27, and these changes seem to
persist even weeks after the PEG administration. However, the
long-term effect in humans has not yet been described. In
addition, we found that the use of laxatives was associated with a
higher relative abundance of the Alistipes genus. Interestingly,
this genus has also been shown to be decreased in children with
chronic functional constipation and to be resistant to bile acids28,
while another study identified a deficiency of bile acids in a
subset of patients with IBS of the subtype with constipation29.
These results may suggest a role for Alistipes in the pathogenesis
of constipation.

We also identified an increase of Methanobrevibacter smithii in
oral steroid users. This species has been associated with obesity
and an increase in BMI in both rats and humans30,31. Pathways
involved in methanogenesis were also increased in oral steroid
users. However, these pathways were linked to the abundance of
Methanobrevibacter smithii, therefore these functional changes
are probably consequence of the increased abundance of this
archaeon. It is believed that the methane produced by these
species facilitates the digestion of polyfructose and thereby plays a
role in caloric harvest30,31. This could potentially explain the
weight gain frequently observed in oral steroid users32. In our
study this effect was evident in patients with IBD, who were the
cohort with the largest number of oral steroid users.

Species highly prevalent in the oral microbiome, like Strepto-
coccus parasanguinis, are especially characteristic of the gut
microbiome of PPI users, which is in agreement with a previously
published study8. Correlated with this increase, specific AR
mechanisms such as macrolide resistance also appear to be more
abundant in faecal samples from PPI users. Previous studies have
shown a synergistic effect of macrolides and PPIs, as indicated by
the increased success rate of eradication therapy for Helicobacter
pylori in patients receiving macrolides and PPIs versus macrolides
alone, and this effect does not appear to be pH-dependent
in vitro. The macrolide clarithromycin also inhibits the metabo-
lism of the PPI omeprazole33,34. Moreover, we also observed an
increase in microbial functions characteristic of the oral bacteria,
such as carbohydrate degradation pathways, and an increase in
pathways involved in L-arginine biosynthesis. Interestingly, one
previous study has shown an important role for L-arginine in the
bioavailability of the PPI omeprazole, where L-arginine increases
the stability and solubility of omeprazole35.

Our results showed an important role for Escherichia coli
species in the gut microbiota of metformin users. Even though we
could not identify any taxa associated with metformin use, we did
identify an increased predicted metabolic potential of this species.
Two recent studies exploring the impact of metformin on the gut
microbiota showed significant changes in the bacterial composi-
tion and metabolic potential9,10. Although both studies identify a
significant enrichment of Escherichia coli in the faecal samples of
metformin users, direct causality could not be established in
in vitro experiments. In our meta-analysis, this trend was also
observed, but did not reach significance after multiple testing
corrections. This can be partially explained by the fact that this
species is already enriched in the faecal microbiota of patients
with IBD. Consistent with previous studies, we observed changes
in lipopolysaccharide and carbohydrate metabolism. More
detailed analyses showed an enrichment in Escherichia coli-
annotated pathways and gene families. However, this could par-
tially be due the overrepresentation of this species in the current
databases. Moreover, we replicated the in vitro finding that the
AR protein emrE was increased in metformin users in the general

population (two-sided Wilcoxon test, FDR= 0.011)11, indicating
that non-antibiotic drugs can also influence the resistome profiles.

Although an interaction between acetaminophen (para-
cetamol) and the gut microbiota has been described36, we could
not replicate this association in our study. In line with our results,
an in vitro study by Maier et al. showed that the administration of
acetaminophen did not have a negative impact on bacterial
growth of 40 common gut species11. Therefore, the inclusion of
metabolomic measurements together with host genetics is needed
to identify the indirect effects of the microbe–drug interactions.

The complex interaction between the use of medication, the
gut microbiota and confounding factors poses several limitations
in our study. Firstly, the cross-sectional nature of this study
cannot identify causality in the observed associations. Second, the
use of medication by itself is indicative of changes in the host’s
health condition that may also be accompanied by changes in
lifestyle, and both are known to influence the microbiome com-
position in the gut. Third, due to the wide range of disorders for
which the commonly used medications described in this manu-
script are prescribed, it is difficult to establish a direct relation
between medication use and its confounders. For example, PPIs
are indicated for treating gastroesophageal reflux, but they are
also prescribed for disorders like bloating or co-administered with
NSAIDs to prevent ulcers. Moreover, for drugs sold over-the-
counter, the indication is usually unclear. On the other hand,
when drugs are commonly prescribed for a unique indication,
such as metformin for type-2 diabetes, it becomes difficult to
distinguish between the impact of the disease on the gut micro-
biota and the effect of the medication use. Fourth, patients using
multiple different drugs could be less healthy. Ideally, to pinpoint
the causality of our observed associations, prospective studies are
needed that look at metagenomes from stool samples taken at
multiple time points before and after the start of specific drugs.
To disentangle these complex relations, the combination of
longitudinal studies (from pre-treatment to wash-out period)
with in vitro experiments can be a good approach.

Metagenomic sequencing studies provide insight into the
associations between the use of medication and the changes in the
microbial population in the gut, which may be related to phar-
macological mechanisms and side effects. The integration of
multiple host and microbial measurements, however, is needed to
completely understand the complexity of the pharmacomicro-
biomics interactions. For example, faecal metatranscriptomics
experiments will provide a better understanding of bacterial
dynamics and their functional implications, while metabolic
profiling can reveal important host–microbiota interactions that
affect drug metabolism.

Despite these limitations, our study of microbiome and med-
ication use shows consistent associations between the functions
and composition of the faecal microbiome and the intake of
medication. We further show that the use of multiple drugs is
associated with overall gut microbiome composition, either as a
result of the drugs themselves or as a proxy for the underlying
diseases. It is therefore worth correcting for multiple drug use in
future gut microbiome studies in both the general population and
GI disease cohorts.

Together our results contribute to the current knowledge of
drug–microbiome interactions in a clinical context and provide a
basis for further investigations of pharmacomicrobiomics and the
potential gut-microbiota-driven side effects of currently
prescribed drugs.

Methods
Cohort description. For this study we used three independent Dutch cohorts: (1) a
general population cohort, LifeLines-DEEP, consisting of 1539 individuals; (2) 544
patients with IBD from the 1000 IBD cohort of the University Medical Center of
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Groningen (UMCG); and (3) an IBS case–control cohort with 313 participants
from Maastricht University Medical Center+ (MUMC+ )37–39. The LifeLines-
DEEP cohort consists of volunteers from the general population from whom faecal
samples have been collected. Additionally, these participants filled in ques-
tionnaires about their (gastrointestinal) health, lifestyle and medication use. Par-
ticipants from this cohort have a mean age of 44.8 with a standard deviation of
13.7, 58% are female and the mean BMI is 25.3 with a standard deviation of 4.2.
The IBD cohort consists of patients for whom the diagnosis IBD has been made via
standard radiological, endoscopic and histopathological evaluation by their treating
physicians. Information about their medication use is derived from their medical
records. For these IBD patients the mean age is 42.8 with a standard deviation of
14.8, 59% are female and the mean BMI is 25.5 with a standard deviation of 5.0.
The IBS cohort consists of patients with IBS for whom a diagnosis has been made
after extensively ruling out other diagnoses that might explain their GI complaints,
usually also including an endoscopy. Furthermore, this cohort contains age- and
sex-matched controls. Their medication use is derived from their medical records.
In this cohort the mean age is 45.4 with a standard deviation of 17.7, 65% are
female and the mean BMI is 24.6 with a standard deviation of 4.0. Each medication
was classified into a drug category based on its indication following the Anatomical
Therapeutic Chemical code (ATC-code) database and its working mechanism
reviewed by medical doctors (Supplementary Data 1).

Ethical approval. All participants signed an informed consent form prior to
sample collection. Institutional ethics review board (IRB) approval was available for
all three cohorts: Lifelines DEEP (ref. M12.113965) and 1000 IBD (IRB-number
2008.338) cohort were approved by the UMCG IRB and the Maastricht IBS (ref.
MEC 08-2-066.7/pl) cohort was approved by the MUMC+ IRB.

Sample collection and sequencing. Each participant was asked to collect and
freeze the faecal samples at home. Samples were then picked up and transported on
dry ice and stored at –80 ̊ C. DNA extraction was done using AllPrep DNA/RNA
Mini kit (Qiagen; cat. #80204) combined with mechanical lysis. Metagenomic
shotgun sequencing was performed at the Broad Institute (Boston, Massachusetts,
USA) using Illumina HiSeq platform, and low-quality reads were filtered out in the
sequencing facility.

Faecal sampling collection and metagenomic profiling. Metagenomic reads
mapping to the human genome or aligning to Illumina adapters were removed
using KneadData (v0.4.6.1). After quality control of the sequenced reads, the
microbial taxonomic and functional profiles were determined usingMetaPhlAn2 (v
2.2)40 and HUMAnN2 (v 0.10.0)41, respectively. The Uniref90 and Chocophlan
databases were used as a reference for microbial gene identification. Resistome
characterisation was performed using ShortBRED42 and the pre-calculated anti-
biotics database provided with the tool (accession July 2017). Default parameters
for these tools were used.

Sample exclusions and diversity measurements. In the IBD cohort, 67 patients
with stomas, pouches or short bowel syndrome were excluded. Furthermore,
samples with a sequencing depth <10 million reads were removed (n= 30,
22 samples from the IBD cohort and 8 samples from the Maastricht IBS cohort).
After filtering, 1883 samples remained for the analyses.

Microbial diversities and dissimilarities were computed using taxonomical end-
points defined as the lower and non-redundant taxonomic level for each branch of
the phylogenetic tree. Bray–Curtis distances and Shannon index were calculated
using the functions vegdist (method= “bray”) and diversity (index= “shannon”)
implemented in the R package vegan (v. 2.4-1). Microbial taxa were removed if they
were redundant, absent in at least 90% of the samples in each cohort, or if the mean
abundance of a taxon was <0.01% in each cohort. The remaining taxa values were
normalised using the square root arcsine transformation. Microbial pathways were
transformed to relative abundance and considered for analyses if they were present
in >10% of the samples in each cohort. Finally, pathway abundances were log
transformed, keeping the zero values. In total, 194 taxonomical end-points and 321
pathways were evaluated.

Associations with microbial community measurements. The association
between each drug and bacterial richness (Shannon Index) was evaluated by per-
forming two-sided Wilcoxon signed-rank tests between users and non-users. The
impacts of medication categories on overall microbial composition (Bray-Curtis
dissimilarities) were estimated using a PERMANOVA test with 10,000 permuta-
tions as implemented in the adonis function the R package vegan. In addition, the
association between the number of administered drugs per participant, microbial
diversity and composition were tested. Significance levels were adjusted for mul-
tiple testing using the Benjamini–Hochberg method.

Drug–microbiome associations. Medication categories were considered for ana-
lysis if they were used by at least 5 participants in each cohort. Drug associations
with microbial features were initially evaluated per cohort using multivariable
linear regression models adjusting for age, sex and BMI of each participant and the

sequencing depth of the sample. In the IBS cohort and the general population
cohort, the IBS status was considered (yes/no) as covariate. Likewise, in cohort of
patients with IBD, disease sub-phenotype was also added as a variable in the
models (Crohn’s disease, ulcerative colitis or IBD type unclassified).

Due to the multiple drug combinations it was not possible to estimate the effect
of drug co-administration. However, to correct for this potential effect, two models
were constructed:

(i) Association between individual taxa or pathways and specific drug types,
adjusting for the general host factors: age, sex, BMI, sequencing depth and
diseases. Represented as:

lm (feature ~ intercept+Drug+Age+ Sex+ BMI+ Seq.depth+Dis-
ease (IBS/CD/UC/IBDU))

(ii) Association between individual taxa or pathways and specific drug types
adjusted for host factors (age, sex, BMI, and sequencing depth), disease and
the effect of the other drugs available in our metadata. Represented as:

lm (feature ~ intercept+Age+ Sex+ BMI+ Seq.depth+Disease (IBS/CD/
UC/IBDU)+Drug1+…+Drug N)

We run both models in each cohort separately. For each of two models we
extracted standard error and regression coefficient of the drug variable from single
cohort analysis, and combined these in a meta-analysis framework. Specifically, the
inverse variance weighted meta-analysis approach was used to calculate the
combined meta z-scores and the corresponding meta p-values43. P-values were
further adjusted for multiple testing using the Benjamini-Hochberg calculation as
implemented in the p.adjust function in R. Associations with an FDR < 0.1 were
further tested for heterogeneity using the Cochran’s Q-test as implemented in the
function metagen (meta R package (v. 4.8-4)). Finally, associations were considered
to be significant if the meta-analysis multiple testing adjusted p-values were <0.05
(FDR < 0.05) and the heterogeneity p-value > 0.05.

Resistome analysis. AR gene abundances were calculated as the mean value of the
normalised read counts of each marker representing a gene. AR genes present in <
10% of the participants were excluded from further analyses. Drug users were
compared to participants not using any drugs in each cohort separately by per-
forming a two-sided Wilcoxon test.

Taxonomic contribution to metabolic pathways. Pathways that were shown to be
associated with medication use in the multi-drug meta-analysis were further inves-
tigated. To estimate the bacterial contribution to each pathway, we calculated the
species-level stratified abundances using the HUMAnN2 pipeline. Gene families were
also extracted using the humann2_unpack_pathways script. Values were transformed
to relative abundance and log-transformed as described above. For each medication
category associated with changes in the metabolic potential of the gut microbiota, the
differential abundances in the stratified pathways and gene families were tested using
the two-sided Wilcoxon signed-rank test. Significant levels were adjusted for multiple
testing applying the Benjamini–Hochberg correction.

Individual medication and dosage-dependent effects. Statistically significant
drug–microbiome associations were further assessed for the differential influence of
drug types within the same category and the prescription dosages. Medication sub-
types were analysed if they were present in at least 5 participants. To evaluate the effect
of each medication subtype, the abundance of the associated microbial features was
compared between users of a drug subtype and participants not using drugs belonging
to the same category, for example a comparison of tetracycline users to participants
not using antibiotics. Due to the distribution of the data referring to medication doses
(Supplementary Data 12), samples were grouped into two categories: “high dose” and
“low dose” of each particular drug. For PPIs this threshold was set to a minimum of
40mg/day for the high dosage group and for metformin this minimum was set at
1000mg/day. Users of laxatives, alpha-blockers, SSRI antidepressants or antibiotics
in our cohort reported similar prescription patterns or the subtypes within this
medication categories showed major differences in dosages. Therefore, we were unable
to analyse dosages in these medication categories. Differences between groups were
tested using a non-parametric t-test (two-sided Wilcoxon-test).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available within the article
and its Supplementary Information files. Data underlying Figs. 1–4 are provided as
a Source Data file. Other data are available from the corresponding author upon
reasonable requests. The raw metagenomics sequencing reads and host-phenotype meta-
data used for the analysis presented in this study are available from the European
Genome-phenome Archive data repository: 1000 IBD cohort [https://www.ebi.ac.uk/ega/
datasets/EGAD00001004194], LifeLines Deep cohort [https://www.ebi.ac.uk/ega/
datasets/EGAD00001001991], Maastricht IBS cohort [https://www.ebi.ac.uk/ega/
datasets/EGAD00001002668]. Due to participant confidentiality, the datasets are
available upon request to the University Medical Center of Groningen (UMCG),
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LifeLines and Maastricht University Medical Center, respectively. This includes the
submission of a letter of intent to the corresponding data access committees (1000 IBD
Data Access Committee UMCG, LifeLines Data Acces Committee and Maastricht
Irritable Bowel Syndrome Metagenomics Data Access Committee). Data access is subject
to local rules and regulations.

Code availability
For this study the following publicly available software was used: kneadData v0.4.6.1,
MetaPhlAn2 v 2.2, HUMAnN2 v 0.10.0, ShortBRED v 1, R v 3.3.2; metagen (R package)
v. 4.8-4, and vegan (R package) v. 2.4-1. Codes used for generating the microbial profiles
are publicly available at: [https://github.com/WeersmaLabIBD/Microbiome/blob/master/
Protocol_metagenomic_pipeline.md]. Codes used for generating the resistome profiles
are publicly available at: [https://github.com/WeersmaLabIBD/Microbiome/blob/master/
Protocol_antibiotic_resistance_genes_ShortBred.md]. Code used for the statistical
analyses is publicly available at: [https://github.com/GRONINGEN-MICROBIOME-
CENTRE/Groningen-Microbiome/tree/master/Projects/Medication_metanalysis].
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