

Mark Scheme

Q1.

Question Number	Scheme	Marks
(a)	$\frac{dN}{dt} = \frac{(kt-1)(5000-N)}{t}, t > 0, 0 < N < 5000$ $\int \frac{1}{5000-N} dN = \int \frac{(kt-1)}{t} dt \left\{ \text{or} = \int \left(k - \frac{1}{t}\right) dt \right\}$ See note	s B1
	$-\ln(5000 - N) = kt - \ln t; +c$ See note	M1 A1; A1
	then eg either $-kt + c = \ln(5000 - N) - \ln t \qquad kt + c = \ln t - \ln(5000 - N) \qquad \ln(5000 - N) = -kt + \ln t + c$ $-kt + c = \ln\left(\frac{5000 - N}{t}\right) \qquad kt + c = \ln\left(\frac{t}{5000 - N}\right) \qquad 5000 - N = e^{-kt + \ln t + c}$	
	$e^{-kt+c} = \frac{5000 - N}{t}$ $e^{kt+c} = \frac{t}{5000 - N}$ $5000 - N = te^{-kt+c}$	
	leading to $N = 5000 - Ate^{-kt}$ with no incorrect working/statements. See notes	A1 * cso [5]
(b)	$\{t=1, N=1200 \Rightarrow\}$ $1200=5000-Ae^{-k}$ At least one correct statement written $\{t=2, N=1800 \Rightarrow\}$ $1800=5000-2Ae^{-2k}$ down using the boundary condition So $Ae^{-k}=3800$	n R1
	and $2Ae^{-2k} = 3200$ or $Ae^{-2k} = 1600$ Eg. $\frac{e^{-k}}{2e^{-2k}} = \frac{3800}{3200}$ or $\frac{2e^{-2k}}{e^{-k}} = \frac{3200}{3800}$ An attempt to eliminate A by producing an equation in only A so $\frac{1}{2}e^{k} = \frac{3800}{3200}$ or $2e^{-k} = \frac{3200}{3800}$	
	$k = \ln\left(\frac{7600}{3200}\right)$ or equivalent $\left\{\text{eg } k = \ln\left(\frac{19}{8}\right)\right\}$ or $k = \ln\left(\frac{7600}{3200}\right)$ or exact equivalent	t A1
	$\left\{ A = 3800 \left(e^k \right) = 3800 \left(\frac{19}{8} \right) \Rightarrow \right\} A = 9025 \text{or } k = \ln \left(\frac{7600}{3200} \right) \text{or exact equivalent}$	t A1
	Alternative Method for the M1 mark in (b)	[4
	$e^{-k} = \frac{3800}{A}$ $2A\left(\frac{3800}{A}\right)^2 = 3200$ An attempt to eliminate by producing an equation in only A	
(c)	$\begin{cases} t = 5, \ N = 5000 - 9025(5)e^{-5\ln\left(\frac{19}{8}\right)} \\ N = 4402.828401 = 4400 \text{ (fish) (nearest 100)} \end{cases}$ anything that rounds to 4400	
	N = 4402.828401 = 4400 (fish) (nearest 100) anything that rounds to 4400	B1 [1]

		Question Notes
(a)	B1	Separates variables as shown. dN and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.
	M1	Either $\pm \lambda \ln(5000 - N)$ or $\pm \lambda \ln(N - 5000)$ or $kt - \ln t$ where $\lambda \neq 0$ is a constant.
	A1	For $-\ln(5000 - N) = kt - \ln t$ or $\ln(5000 - N) = -kt + \ln t$ or $-\frac{1}{k}\ln(5000 - N) = t - \frac{1}{k}\ln t$ or
	A1	which is dependent on the 1 st M1 mark being awarded.
		For applying a constant of integration, eg. $+c$ or $+ \ln e^c$ or $+ \ln c$ or A to their integrated equation
	Note	+ c can be on either side of their equation for the 2 nd A1 mark.
	A1	Uses a constant of integration eg. "c" or " ln e" " "ln c" or and applies a fully correct method to
		prove the result $N = 5000 - Ate^{-ht}$ with no incorrect working seen. (Correct solution only.)
	NOTE	IMPORTANT
	23/02-000	There needs to be an intermediate stage of justifying the A and the e^{-ht} in Ate^{-ht} by for example • either $5000 - N = e^{\ln t - ht + \epsilon}$
		• or $5000 - N = te^{-ht + \epsilon}$
		• or $5000 - N = te^{-kt}e^{c}$
		or equivalent needs to be stated before achieving $N = 5000 - Ate^{-kt}$
(b)	В1	At least one of either $1200 = 5000 - Ae^{-k}$ (or equivalent) or $1800 = 5000 - 2Ae^{-2k}$ (or equivalent
	M1	 Either an attempt to eliminate A by producing an equation in only k.
		 or an attempt to eliminate k by producing an equation in only A
	A1	At least one of $A = 9025$ cao or $k = \ln\left(\frac{7600}{3200}\right)$ or equivalent
	A1	Both $A = 9025$ cao or $k = \ln\left(\frac{7600}{3200}\right)$ or equivalent
	Note	Alternative correct values for k are $k = \ln\left(\frac{19}{8}\right)$ or $k = -\ln\left(\frac{8}{19}\right)$ or $k = \ln 7600 - \ln 3200$
		or $k = -\ln\left(\frac{3800}{9025}\right)$ or equivalent.
	Note	k = 0.8649 without a correct exact equivalent is A0.

Question	Sche	eme	Marks	AOs
(a)	$\frac{\mathrm{d}r}{\mathrm{d}t} \propto \pm \frac{1}{r^2}$ or $\frac{\mathrm{d}r}{\mathrm{d}t}$	$= \pm \frac{k}{r^2} \qquad \text{(for } k \text{ or a numerical } k\text{)}$	M1	3.3
	$\int r^2 \mathrm{d}r = \int \pm k \mathrm{d}t$	$t \Rightarrow \dots$ (for k or a numerical k)	M1	2.1
	$\frac{1}{3}r^3 = \pm kt \ \{+$	c}	A1	1.1b
	t = 0, r = 5 and t = 4, r = 3 gives $\frac{1}{3}r^3 = -\frac{49}{6}t + \frac{125}{3}$,	t = 0, r = 5 and t = 240, r = 3 gives $\frac{1}{3}r^3 = -\frac{49}{360}t + \frac{125}{3}$,	M1	3.1a
	where r, in mm, is the radius {of the mint} and t, in minutes, is the time from when it {the mint} was placed in the mouth	where r, in mm, is the radius {of the mint} and t, in seconds, is the time from when it {the mint} was placed in the mouth	A1	1.16
		- - •	(5)	
(b)	$r = 0 \Rightarrow 0 = -\frac{49}{6}t + \frac{125}{3} \Rightarrow$	$0 = -49t + 250 \implies t = \dots$	M1	3.4
	time = 5 minut	tes 6 seconds	A1	1.1b
11010			(2)	
(c)	 Not valid for times greater the Mint may not retain the shap radius) as it is being sucked The model indicates that the it dissolves Model does not consider the Model does not consider rate 	w the mint is sucked tether the mint is bitten p to 5 minutes 6 seconds, o.e. than 5 minutes 6 seconds, o.e. to of a sphere (or have uniform tradius of the mint is negative after temperature in the mouth	B1	3.5b
	- Milli could be swallowed be	1010 It dissolves in the mouth	(1)	
	5			mark

	Notes for Question
(a)	
M1:	Translates the description of the model into mathematics. See scheme.
M1:	Separates the variables of their differential equation which is in the form $\frac{dr}{dt} = f(r)$ and some attempt at integration. (e.g. attempts to integrate at least one side). e.g. $\int r^2 dr = \int \pm k dt$ and some attempt at integration. Condone the lack of integral signs
Note:	You can imply the M1 mark for $r^2 dr = -k dt \Rightarrow \frac{1}{3}r^3 = -kt$
Note:	A numerical value of k (e.g. $k = \pm 1$) is allowed for the first two M marks
Al:	Correct integration to give $\frac{1}{3}r^3 = \pm kt$ with or without a constant of integration, c
M1:	For a complete process of using the boundary conditions to find both their unknown constants and finds an equation linking r and t So applies either • $t = 0$, $r = 5$ and $t = 4$, $r = 3$, or • $t = 0$, $r = 5$ and $t = 240$, $r = 3$, on their integrated equation to find their constants k and c and obtains an equation linking r and t
Al:	Correct equation, with variables r and t fully defined including correct reference to units. • $\frac{1}{3}r^3 = -\frac{49}{6}t + \frac{125}{3}$, {or an equivalent equation,} where r , in mm, is the radius {of the mint} and t , in minutes, is the time from when it {the mint} was placed in the mouth • $\frac{1}{3}r^3 = -\frac{49}{360}t + \frac{125}{3}$, {or an equivalent equation,} where r , in mm, is the radius {of the mint} and t , in seconds, is the time from when it {the mint} was placed in the mouth
Note:	Allow correct equations such as • in minutes, $r = \sqrt[3]{\frac{250 - 49t}{2}}$, $r^3 = -\frac{49}{2}t + 125$ or $t = \frac{250 - 2r^3}{49}$ • in seconds, $r = \sqrt[3]{\frac{15000 - 49t}{120}}$, $r^3 = -\frac{49}{120}t + 125$ or $t = \frac{15000 - 120r^3}{49}$
Note:	t defined as "the time from the start" is not sufficient for the final A1

(b)	
M1:	Sets $r = 0$ in their part (a) equation which links r with t and rearranges to make $t =$
Al:	5 minutes 6 seconds cao (Note: 306 seconds with no reference to 5 minutes 6 seconds is A0)
Note:	Give M0 if their equation would solve to give a negative time or a negative time is found
Note:	You can mark part (a) and part (b) together
(c)	
B1:	See scheme
Note:	 Do not accept by itself mint may not dissolve at a constant rate rate of decrease of mint must be constant 0 ≤ t < 250/49, r≥ 0; without any written explanation reference to a mint having r>5

Question Number	Scheme		Notes	Marks
	$\frac{dh}{dt} = k\sqrt{(h-9)}, 9 < h \le 200; h = 130,$	$\frac{\mathrm{d}h}{\mathrm{d}t} = -1.1$		
(a)	$1.1 - \kappa \sqrt{130}$ $\rightarrow \kappa$	Substitutes $h = 130$ and either $\frac{dh}{dt} = -1.1$ or $\frac{dh}{dt} = 1.1$ into the printed equation and rearranges to give $k =$		M1
	so, $k = -\frac{1}{10}$ or -0.1		$k = -\frac{1}{10}$ or -0.1	A1
		28 232222		[2]
(b) Way 1	1 0/1	wrong positions, al	rectly. dh and dt should not be in though this mark can be implied by working. Ignore the integral signs.	B1
	$\int (h-9)^{-\frac{1}{2}} \mathrm{d}h = \int k \mathrm{d}t$			
	1 2	Integrates $\frac{\pm \lambda}{\sqrt{(h-1)}}$	$\frac{1}{9}$ to give $\pm \mu \sqrt{(h-9)}$; $\lambda, \mu \neq 0$	M1
	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \left(+c\right) \qquad \frac{(h-1)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}$	/ (2	$\frac{9)^{\frac{1}{2}}}{1} = (\text{their } k)t, \text{with/without } + c,$	A1
		or equivalent, wi	hich can be un-simplified or simplified.	
	$\{t=0, h=200 \Longrightarrow\} 2\sqrt{(200-9)} = k(0) + c$	per men more annual film falls	Some evidence of applying both 0 and $h = 200$ to changed equation a constant of integration, e.g. c or A	M1
	$\Rightarrow c = 2\sqrt{191} \Rightarrow 2(h-9)^{\frac{1}{2}} = -0.1t + 2\sqrt{191}$ $\{h = 50 \Rightarrow\} 2\sqrt{(50-9)} = -0.1t + 2\sqrt{191}$ $t = \dots$	de Ar	ependent on the previous M mark oplies $h = 50$ and their value of c to eir changed equation and rearranges to find the value of $t =$	dM1
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minutes) (near	est minute)	$t = 20\sqrt{191} - 20\sqrt{41}$ isw or awrt 148	A1 cso
				[6]

(b) Way 2	$\int_{200}^{50} \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int_{0}^{T} k \mathrm{d}t$	in the wrong posit	tions, although this mark can be implied. Integral signs and limits not necessary.	41 Y 45 Y 50 Y 50 Y
	$\int_{200}^{50} (h-9)^{-\frac{1}{2}} dh = \int_{0}^{T} k dt$		50 St.	
	$\left[\frac{1}{(h-0)^{\frac{1}{2}}} \right]^{50}$	Integrates $$	$\frac{\pm \lambda}{(h-9)}$ to give $\pm \mu \sqrt{(h-9)}$; $\lambda, \mu \neq 0$	M1
	$\left[\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)^{2}}\right]_{200}^{50} = \left[kt\right]_{0}^{T}$	15055	$\frac{(n-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{ with/without limits,}$ at, which can be un-simplified or simplified.	A1
	$2\sqrt{41} - 2\sqrt{191} = kt \text{ or } kT$	Atter	inputs to apply limits of $h = 200$, $h = 50$ mplied) $t = 0$ to their changed equation	м1 ¬
	$t = \frac{2\sqrt{41} - 2\sqrt{191}}{-0.1}$	Th	dependent on the previous M mark en rearranges to find the value of $t =$	dM1
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (min	utes) (nearest minute)	$t = 20\sqrt{191} - 20\sqrt{41}$ or awrt 148 or 2 hours and awrt 28 minutes	A1 cso
s	-	90.00		[6]
				8

		Question Notes
(b)	Note	Allow first B1 for writing $\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}}$ or $\frac{dt}{dh} = \frac{1}{(\text{their } k)\sqrt{(h-9)}}$ or equivalent
	Note	$\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}}$ leading to $t = \frac{2}{k}\sqrt{(h-9)}$ (+ c) with/without + c is B1M1A1
	Note	After finding $k = 0.1$ in part (a), it is only possible to gain full marks in part (b) by initially writing $\frac{dh}{dt} = -k\sqrt{(h-9)}$ or $\int \frac{dh}{\sqrt{(h-9)}} = \int -k dt$ or $\frac{dh}{dt} = -0.1\sqrt{(h-9)}$ or $\int \frac{dh}{\sqrt{(h-9)}} = \int -0.1 dt$. Otherwise, those candidates who find $k = 0.1$ in part (a), should lose at least the final A1 mark in part (b).

Question Number	Scheme	Marks
(a)	$\frac{2}{P(P-2)} = \frac{A}{P} + \frac{B}{(P-2)}$	
	$2 \equiv A(P-2) + BP$ Can be implied. A = -1, B = 1 Either one.	M1 A1
	giving $\frac{1}{(P-2)} - \frac{1}{P}$ See notes. cao, aef	A1
(b)	$\frac{dP}{dt} = \frac{1}{2}P(P-2)\cos 2t$	[3]
	$\int \frac{2}{P(P-2)} dP = \int \cos 2t dt$ can be implied by later working	B1 oe
	$\pm \lambda \ln(P-2) \pm \mu \ln P,$ $\ln(P-2) - \ln P = \frac{1}{2} \sin 2t \ (+c)$ $\lambda \neq 0, \ \mu \neq 0$	M1
	$\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$ $\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$	A1
	$\{t=0, P=3 \Rightarrow\}$ $\ln 1 - \ln 3 = 0 + c$ $\{\Rightarrow c = -\ln 3 \text{ or } \ln(\frac{1}{3})\}$ See notes	M1
	$\ln(P-2) - \ln P = \frac{1}{2}\sin 2t - \ln 3$ $\ln\left(\frac{3(P-2)}{P}\right) = \frac{1}{2}\sin 2t$	
	Starting from an equation of the form $\pm \lambda \ln(P-\beta) \pm \mu \ln P = \pm K \sin \delta t + c,$ $\frac{3(P-2)}{P} = e^{\frac{1}{2} \sin 2t}$ $\lambda, \mu, \beta, K, \delta \neq 0$, applies a fully correct method to eliminate their logarithms. Must have a constant of integration that need not be evaluated (see note)	M1
	$3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P-6 = Pe^{\frac{1}{2}\sin 2t}$ A complete method of rearranging to make P the subject. gives $3P - Pe^{\frac{1}{2}\sin 2t} = 6 \Rightarrow P(3 - e^{\frac{1}{2}\sin 2t}) = 6$ Must have a constant of integration	dM1
	$P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})} * $ Correct proof.	A1 * cso
(c)	$\{\text{population} = 4000 \Rightarrow\} P = 4$ States $P = 4$ or applies $P = 4$	[7] M1
37.50	$\frac{1}{2}\sin 2t = \ln\left(\frac{3(4-2)}{4}\right) \left\{ = \ln\left(\frac{3}{2}\right) \right\}$ Obtains $\pm \lambda \sin 2t = \ln k$ or $\pm \lambda \sin t = \ln k$, $\lambda \neq 0, k > 0$ where λ and k are numerical values and λ can be 1	M1
-	t = 0.4728700467 anything that rounds to 0.473. Do not apply isw here	A1 [3] 13

		Onune
Question Number	Scheme	Marks
	Method 2 for Q7(b)	
(b)	$\ln(P-2) - \ln P = \frac{1}{2} \sin 2t \ (+c)$ As before for	B1M1A1
	$ \ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c $	
	Starting from an equation of the form $\pm \lambda \ln(P-\beta) \pm \mu \ln P = \pm K \sin \delta t + c$, $\frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t + c}$ or $\frac{(P-2)}{P} = Ae^{\frac{1}{2}\sin 2t}$ or $\frac{(P-2)}{P} = Ae^{\frac{1}{2}\sin 2t}$ or $\frac{\lambda, \mu, \beta, K, \delta \neq 0}{P}$, applies a fully correct method to eliminate their logarithms. Must have a constant of integration that need not be evaluated (see note)	3 rd M1
	$(P-2) = APe^{\frac{1}{2}\sin 2t} \Rightarrow P - APe^{\frac{1}{2}\sin 2t} = 2$ $\Rightarrow P(1 - Ae^{\frac{1}{2}\sin 2t}) = 2 \Rightarrow P = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2t})}$ A complete method of rearranging to make P the subject. Condone sign slips or constant errors. Must have a constant of integration that need not be evaluated (see note)	4 th dM1
	$\{t = 0, P = 3 \Rightarrow\} 3 = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2(0)})}$ See notes (Allocate this mark as the 2 nd M1 mark on ePEN).	2 nd M1
	$\begin{cases} \Rightarrow 3 = \frac{2}{(1-A)} \Rightarrow A = \frac{1}{3} \end{cases}$ $\Rightarrow P = \frac{2}{\left(1 - \frac{1}{3}e^{\frac{1}{2}\sin 2t}\right)} \Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})} *$ Correct proof.	Al * cso
	Question Notes	5
(a)	M1 Forming a correct identity. For example, $2 \equiv A(P-2) + BP$ from $\frac{2}{P(P-2)} = \frac{A}{P}$	$\frac{B}{(P-2)}$
	Note A and B are not referred to in question. A1 Either one of $A = -1$ or $B = 1$.	
	A1 $\frac{1}{(P-2)} - \frac{1}{P}$ or any equivalent form. This answer <i>cannot</i> be recovered from part (b)).
	Note M1A1A1 can also be given for a candidate who finds both $A = -1$ and $B = 1$ and $\frac{A}{P}$	$\frac{1}{P} + \frac{B}{(P-2)}$
	is seen in their working.	
	Note Candidates can use 'cover-up' rule to write down $\frac{1}{(P-2)} - \frac{1}{P}$, so as to gain all three	
	Note Equating coefficients from $2 \equiv A(P-2) + BP$ gives $A+B=2, -2A=2 \Rightarrow A=-1$,	B=1

(b)	Bl	Separates variables as shown on the Mark Scheme. dP and dt should be in the correct positions,
35%		though this mark can be implied by later working. Ignore the integral signs.
	Note	Eg: $\int \frac{2}{P^2 - 2P} dP = \int \cos 2t dt \text{or} \int \frac{1}{P(P-2)} dP = \frac{1}{2} \int \cos 2t dt \text{ o.e. are also fine for B1.}$
	1 st M1	$\pm \lambda \ln(P-2) \pm \mu \ln P$, $\lambda \neq 0$, $\mu \neq 0$. Also allow $\pm \lambda \ln(M(P-2)) \pm \mu \ln NP$; M,N can be 1.
	Note	Condone $2\ln(P-2) + 2\ln P$ or $2\ln(P(P-2))$ or $2\ln(P^2-2P)$ or $\ln(P^2-2P)$
	1st A1	Correct result of $\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$ or $2\ln(P-2) - 2\ln P = \sin 2t$
	2 nd M1	o.e. with or without $+c$ Some evidence of using both $t = 0$ and $P = 3$ in an integrated equation containing a constant of integration. Eg: c or A , etc.
	3rd M1	Starting from an equation of the form $\pm \lambda \ln(P - \beta) \pm \mu \ln P = \pm K \sin \delta t + c$, $\lambda, \mu, \beta, K, \delta \neq 0$,
	53.00.0000000	applies a fully correct method to eliminate their logarithms.
	4 th M1	dependent on the third method mark being awarded.
	Note	A complete method of rearranging to make P the subject. Condone sign slips or constant errors. For the 3 rd M1 and 4 th M1 marks, a candidate needs to have included a constant of integration,
		in their working, eg. c , A , $\ln A$ or an evaluated constant of integration.
	2 nd A1	Correct proof of $P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$. Note: This answer is given in the question.
	Note	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c \text{ followed by } \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^{c} \text{ is } 3^{\text{rd}} \text{ M0, } 4^{\text{th}} \text{ M0, } 2^{\text{nd}} \text{ A0.}$
	Note	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c \rightarrow \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t + c} \rightarrow \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^{c} \text{ is final M1M0A0}$
	4 th M1	for making P the subject
		ere are three type of manipulations here which are considered acceptable for making
	P the su	35. 3272 20
	(1) M1	for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P-6 = Pe^{\frac{1}{2}\sin 2t} \Rightarrow P(3-e^{\frac{1}{2}\sin 2t}) = 6$
		$\Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$
	(2) M1	for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - \frac{6}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - e^{\frac{1}{2}\sin 2t} = \frac{6}{P} \Rightarrow \Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$
	(3) M1	for $\left\{ \ln(P-2) + \ln P = \frac{1}{2}\sin 2t + \ln 3 \Rightarrow \right\} P(P-2) = 3e^{\frac{1}{2}\sin 2t} \Rightarrow P^2 - 2P = 3e^{\frac{1}{2}\sin 2t}$
		$\Rightarrow (P-1)^2 - 1 = 3e^{\frac{1}{2}\sin 2t} \text{ leading to } P =$
(c)	M1	States $P = 4$ or applies $P = 4$
	M1	Obtains $\pm \lambda \sin 2t = \ln k$ or $\pm \lambda \sin t = \ln k$, where λ and k are numerical values and λ can be 1
	Al	anything that rounds to 0.473. (Do not apply isw here)
	Note	Do not apply ignore subsequent working for A1. (Eg: 0.473 followed by 473 years is A0.)
	Note	<u>Use of $P = 4000$</u> : Without the mention of $P = 4$, $\frac{1}{2} \sin 2t = \ln 2.9985$ or $\sin 2t = 2 \ln 2.9985$
		or $\sin 2t = 2.1912$ will usually imply M0M1A0
	Note	Use of Degrees: t = awrt 27.1 will usually imply M1M1A0

Question Number	Scheme	Marks
	(a) $\frac{\mathrm{d}V}{\mathrm{d}t} = 0.48\pi - 0.6\pi h$	M1 A1
	$V = 9\pi h \implies \frac{\mathrm{d}V}{\mathrm{d}t} = 9\pi \frac{\mathrm{d}h}{\mathrm{d}t}$	B1
	$9\pi \frac{\mathrm{d}h}{\mathrm{d}t} = 0.48\pi - 0.6\pi h$	M1
	Leading to $75 \frac{dh}{dt} = 4 - 5h$ * eso	A1 (5
	(b) $\int \frac{75}{4-5h} dh = \int 1 dt$ separating variables	M1
	$-15\ln(4-5h) = t \ (+C)$ $-15\ln(4-5h) = t + C$	M1 A1
	When $t = 0$, $h = 0.2$	3.0
	$-15 \ln 3 = C$ $t = 15 \ln 3 - 15 \ln (4 - 5h)$	M1
	When $h = 0.5$ $t = 15 \ln 3 - 15 \ln 1.5 = 15 \ln \left(\frac{3}{1.5}\right) = 15 \ln 2$ awrt 10.4	M1 A1
	Alternative for last 3 marks $t = \left[-15\ln(4-5h)\right]_{0.2}^{0.5}$	
	$=-15\ln 1.5+15\ln 3$	M1 M1
	$=15 \ln \left(\frac{3}{1.5}\right) = 15 \ln 2$ awrt 10.4	A1 (6)

Question	Scheme		Marks
Number	Scheme		IVIGINA
(a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 1600 - c\sqrt{h} \text{or} \frac{\mathrm{d}V}{\mathrm{d}t} = 1600 - k\sqrt{h} ,$	Either of these statements	M1
	$(V = 4000h \implies) \frac{\mathrm{d}V}{\mathrm{d}h} = 4000$	$\frac{dV}{dh} = 4000 \text{ or } \frac{dh}{dV} = \frac{1}{4000}$	M1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\frac{\mathrm{d}V}{\mathrm{d}r}}{\frac{\mathrm{d}V}{\mathrm{d}h}}$		
	Either, $\frac{dh}{dt} = \frac{1600 - c\sqrt{h}}{4000} = \frac{1600}{4000} - \frac{c\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$	Convincing proof of $\frac{dh}{dt}$	A1 AC
	or $\frac{dh}{dt} = \frac{1600 - k\sqrt{h}}{4000} = \frac{1600}{4000} - \frac{k\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$	di	100000
			[3]
(b)	When $h = 25$ water leaks out such that $\frac{dV}{dt} = 400$		
	$400 = c\sqrt{h} \implies 400 = c\sqrt{25} \implies 400 = c(5) \implies c = 80$		
	From above; $k = \frac{c}{4000} = \frac{80}{4000} = 0.02$ as required	Proof that $k = 0.02$	B1 AG
Aliter (b)	$400 = 4000k\sqrt{h}$		[1]
Way 2	$\Rightarrow 400 = 4000k\sqrt{25}$		
		Using 400, 4000 and $h = 25$	
	$\Rightarrow 400 = k(20000) \Rightarrow k = \frac{400}{20000} = 0.02$	or $\sqrt{h} = 5$. Proof that $k = 0.02$	B1 AG [1]
		Separates the variables with	
(c)	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - k\sqrt{h} \implies \int \frac{\mathrm{d}h}{0.4 - k\sqrt{h}} = \int dt$	$\int \frac{\mathrm{d}h}{0.4 - k\sqrt{h}}$ and $\int dt$ on either side	M1 oe
		with integral signs not necessary.	
	: time required = $\int_0^{100} \frac{1}{0.4 - 0.02\sqrt{h}} dh = \frac{\div 0.02}{\div 0.02}$		
	time required = $\int_0^{100} \frac{50}{20 - \sqrt{h}} dh$	Correct proof	A1 AG
	200 2003 A 2		[2]

مُصُ	
Online Maths	

Question Number	Scheme		Marks	
(d)	$\int_0^{100} \frac{50}{20 - \sqrt{h}} \mathrm{d}h \text{with substitution} h = (20 - x)^2$			
	$\frac{dh}{dx} = 2(20-x)(-1)$ or $\frac{dh}{dx} = -2(20-x)$	Correct $\frac{dh}{dx}$	B1 aef	
	$h = (20 - x)^2 \implies \sqrt{h} = 20 - x \implies x = 20 - \sqrt{h}$	↑20 – x		
	$\int \frac{50}{20 - \sqrt{h}} \mathrm{d}h = \int \frac{50}{x} \cdot -2(20 - x) \mathrm{d}x$	$\pm \lambda \int \frac{20 - x}{x} dx \text{ or}$ $\pm \lambda \int \frac{20 - x}{20 - (20 - x)} dx$	M1	
	$=100\int \frac{x-20}{x} \mathrm{d}x$	where λ is a constant		
	$=100\int \left(1-\frac{20}{x}\right)\mathrm{d}x$			
	$=100(x-20\ln x) \ (+c)$	$\pm \alpha x \pm \beta \ln x \; ; \; \alpha, \beta \neq 0$ $100x - 2000 \ln x$	M1 A1	
	change limits: when $h = 0$ then $x = 20$ and when $h = 100$ then $x = 10$			
	$\int_0^{100} \frac{50}{20 - \sqrt{h}} \mathrm{d}h = \left[100 x - 2000 \ln x \right]_{20}^{10}$			
	or $\int_0^{100} \frac{50}{20 - \sqrt{h}} dh = \left[100(20 - \sqrt{h}) - 2000 \ln(20 - \sqrt{h})\right]_0^{100}$	Correct use of limits, ie. putting them in the correct way round		
	$= (1000 - 2000 \ln 10) - (2000 - 2000 \ln 20)$	Either $x = 10$ and $x = 20$ or $h = 100$ and $h = 0$	ddM1	
	$= 2000 \ln 20 - 2000 \ln 10 - 1000$	Combining logs to give 2000 ln 2 – 1000		
	$= 2000 \ln 2 - 1000$	or $-2000 \ln(\frac{1}{2}) - 1000$	A1 aef	6]
(e)	Time required = $2000 \ln 2 - 1000 = 386.2943611$ sec			-
	= 386 seconds (nearest second)			
	= 6 minutes and 26 seconds (nearest second)	6 minutes, 26 seconds	B1 [1	l]
9)			13 mark	s

Question	Scheme	Marks	AOs
(a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 0.48 - 0.1h$	B1	3.1b
	$V = 24h \Rightarrow \frac{dV}{dh} = 24$ or $\frac{dh}{dV} = \frac{1}{24}$	В1	3.1b
	$\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV} = \frac{0.48 - 0.1h}{24}$ or e.g. $\frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt} \Rightarrow 0.48 - 0.1h = 24 \frac{dh}{dt}$	M1	2.1
	$1200 \frac{dh}{dt} = 24 - 5h*$	A1*	1.1b
		(4)	
(b)	$1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \int \frac{1200}{24 - 5h} dh = \int dt$ $\Rightarrow e.g. \ \alpha \ln(24 - 5h) = t(+c) \text{ oe}$ or $1200 \frac{dh}{dt} = 24 - 5h \Rightarrow \frac{dt}{dh} = \frac{1200}{24 - 5h}$ $\Rightarrow e.g. \ t(+c) = \alpha \ln(24 - 5h) \text{ oe}$	M1	3.1a
3	$t = -240 \ln(24 - 5h)(+c)$ oe	A1	1.1b
	$t = 0, h = 2 \Rightarrow 0 = -240 \ln(24 - 10) + c \Rightarrow c =(240 \ln 14)$	M1	3.4
	$t = 240 \ln (14) - 240 \ln (24 - 5h)$	A1	1.1b
	$t = 240 \ln \frac{14}{24 - 5h} \Rightarrow \frac{t}{240} = \ln \frac{14}{24 - 5h} \Rightarrow e^{\frac{t}{240}} = \frac{14}{24 - 5h}$ $\Rightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Rightarrow h = \dots$	ddM1	2.1
	$h = 4.8 - 2.8e^{-\frac{t}{240}}$ oe e.g. $h = \frac{24}{5} - \frac{14}{5}e^{-\frac{t}{240}}$	A1	3.3
		(6)	

			mune mai
(c)	Examples: • As $t \to \infty$, $e^{-\frac{t}{240}} \to 0$ • When $h > 4.8$, $\frac{dV}{dt} < 0$		
	• When $h > 4.8$, $\frac{1}{dt} < 0$ • Flow in = flow out at max h so $0.1h = 4.8 \rightarrow h = 4.8$ • As $e^{-\frac{t}{240}} > 0$, $h < 4.8$	M1	3.1b
	• $h = 5 \Rightarrow \frac{dV}{dt} = -0.02 \text{ or } \frac{dh}{dt} = -\frac{1}{1200}$ • $\frac{dh}{dt} = 0 \Rightarrow h = 4.8$		
	• $h = 5 \Rightarrow 4.8 - 2.8e^{-\frac{t}{240}} = 5 \Rightarrow e^{-\frac{t}{240}} < 0$		
	 The limit for h (according to the model) is 4.8m and the tank is 5m high so the tank will never become full If h = 5 the tank would be emptying so can never be full The equation can't be solved when h = 5 	A1	3.2a
		(2)	
***		(12	marks

Notes

(a)

B1: Identifies the correct expression for $\frac{dV}{dt}$ according to the model

B1: Identifies the correct expression for $\frac{dV}{dh}$ according to the model

M1: Applies $\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$ or equivalent correct formula with their $\frac{dV}{dt}$ and $\frac{dV}{dh}$ which may

be implied by their working

A1*: Correct equation obtained with no errors

Note that:
$$\frac{dV}{dt} = 0.48 - 0.1h \Rightarrow \frac{dh}{dt} = \frac{0.48 - 0.1h}{24} \Rightarrow 1200 \frac{dh}{dt} = 24 - 5h * scores$$

B1B0M0A0. There must be clear evidence where the "24" comes from and evidence of the correct chain rule being applied.

(b)

M1: Adopts a correct strategy by separating the variables correctly or rearranges to obtain $\frac{dt}{dh}$

correctly in terms of h and integrates to obtain $t = \alpha \ln(24-5h)(+c)$ or equivalent (condone missing brackets around the "24 - 5h") and + c not required for this mark.

A1: Correct equation in any form and + c not required. Do not condone missing brackets unless they are implied by subsequent work.

M1: Substitutes t = 0 and h = 2 to find their constant of integration (there must have been some attempt to integrate)

A1: Correct equation in any form

ddM1: Uses fully correct log work to obtain h in terms of t.

This depends on both previous method marks.

A1: Correct equation

Note that the marks may be earned in a different order e.g.:

$$t + c = -240 \ln(24 - 5h) \Rightarrow -\frac{t}{240} + d = \ln(24 - 5h) \Rightarrow Ae^{-\frac{t}{240}} = 24 - 5h$$

$$t = 0, h = 2 \Rightarrow A = 14 \Rightarrow 14e^{-\frac{t}{240}} = 24 - 5h \Rightarrow h = 4.8 - 2.8e^{-\frac{t}{240}}$$

Score as M1 A1 as in main scheme then

M1: Correct work leading to $Ae^{\alpha t} = 24 - 5h$ (must have a constant "A")

A1:
$$Ae^{-\frac{t}{240}} = 24 - 5h$$

ddM1: Uses t = 0, h = 2 in an expression of the form above to find A

A1:
$$h = 4.8 - 2.8e^{-\frac{1}{240}}$$

(c)

M1: See scheme for some examples

A1: Makes a correct interpretation for their method.

There must be no incorrect working or contradictory statements.

This is not a follow through mark and if their equation in (b) is used it must be correct.