رکیایا مصف Online Maths Teaching

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
(a)	$x^n \rightarrow x^{n+1}$	M1	1.1b
	$\int \left(\frac{4}{x^3} + kx\right) dx = -\frac{2}{x^2} + \frac{1}{2}kx^2 + c$	A1 A1	1.1b 1.1b
		(3)	8
(b)	$\left[\left[-\frac{2}{x^2} + \frac{1}{2}kx^2 \right]_{0.5}^2 = \left(-\frac{2}{2^2} + \frac{1}{2}k \times 4 \right) - \left(-\frac{2}{\left(0.5\right)^2} + \frac{1}{2}k \times \left(0.5\right)^2 \right) = 8$	M1	1.1b
	$7.5 + \frac{15}{8}k = 8 \Longrightarrow k = \dots$	dM1	1.1b
	$k = \frac{4}{15} \text{ oe}$	A1	1.1b
		(3)	
		(6	marks)

Notes

Mark parts (a) and (b) as one (a)

M1: For $x^n \to x^{n+1}$ for either x^{-3} or x^1 . This can be implied by the sight of either x^{-2} or x^2 . Condone "unprocessed" values here. Eg. x^{-3+1} and x^{1+1}

A1: Either term correct (un simplified).

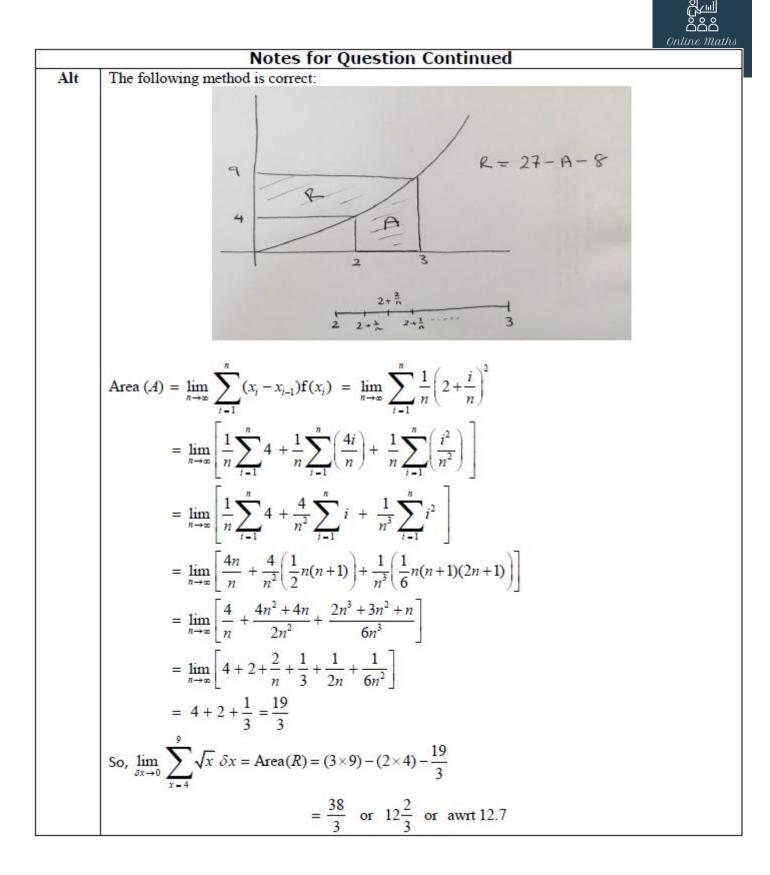
Accept
$$4 \times \frac{x^{-2}}{-2}$$
 or $k \frac{x^2}{2}$ with the indices processed.

A1: Correct (and simplified) with +c.

Ignore spurious notation e.g. answer appearing with an $\int sign or with dx$ on the end.

Accept
$$-\frac{2}{x^2} + \frac{1}{2}kx^2 + c$$
 or exact simplified equivalent such as $-2x^{-2} + k\frac{x^2}{2} + c$

(b)


M1: For substituting both limits into their $-\frac{2}{x^2} + \frac{1}{2}kx^2$, subtracting either way around and setting equal to 8. Allow this when using a changed function. (so the M in part (a) may not have been awarded). Condone missing brackets. Take care here as substituting 2 into the original function gives the same result as the integrated function so you will have to consider both limits.

dM1: For solving a **linear** equation in k. It is dependent upon the previous M only Don't be too concerned by the mechanics here. Allow for a linear equation in k leading to k =**A1:** $k = \frac{4}{15}$ or exact equivalent. Allow for $\frac{m}{n}$ where m and n are integers and $\frac{m}{n} = \frac{4}{15}$ Condone the recurring decimal 0.26 but not 0.266 or 0.267

Please remember to isw after a correct answer

Questio	on Scheme	Marks	AOs
	States $\left\{\lim_{\delta x \to 0} \sum_{x=4}^{9} \sqrt{x} \ \delta x \text{ is} \right\} \int_{4}^{9} \sqrt{x} \ dx$	B1	1.2
	$= \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{4}^{9}$	M1	1.1b
	$= \frac{2}{3} \times 9^{\frac{3}{2}} - \frac{2}{3} \times 4^{\frac{3}{2}} = \frac{54}{3} - \frac{16}{3}$		2
	$=\frac{38}{3}$ or $12\frac{2}{3}$ or awrt 12.7	A1	1.1b
		(3)	
	Notes for Question 5	(3 marks)
	- 8		
B1:	States $\int_{4}^{\pi} \sqrt{x} dx$ with or without the 'dx'		
M1:	Integrates \sqrt{x} to give $\lambda x^{\frac{3}{2}}$; $\lambda \neq 0$		
	See scheme		
Note:	You can imply B1 for $\left[\lambda x^{\frac{3}{2}}\right]_{4}^{9}$ or for $\lambda \times 9^{\frac{3}{2}} - \lambda \times 4^{\frac{3}{2}}$		
Note:	Give B0 for $\int_{1}^{9} \sqrt{x} dx - \int_{1}^{3} \sqrt{x} dx$ or for $\int_{3}^{9} \sqrt{x} dx$ without reference to	a correct $\int_{4}^{9} \sqrt{x}$	dx
Note:	Give B1 M1 A1 for no working leading to a correct $\frac{38}{3}$ or $12\frac{2}{3}$ or a	awrt 12.7	
Note:	Give B1 M1 A1 for $\int_{4}^{9} \sqrt{x} dx = \frac{38}{3}$ or $12\frac{2}{3}$ or awrt 12.7		
Note:	Give B1 M1 A1 for $\left[\frac{2}{3}x^{\frac{3}{2}} + c\right]_{4}^{9} = \frac{38}{3}$ or $12\frac{2}{3}$ or awrt 12.7		
Note:	Give B1 M1 A1 for no working followed by an answer $\frac{38}{3}$ or $12\frac{2}{3}$	or awrt 12.7	
	Give M0 A0 for use of a trapezium rule method to give an answer of aw but allow B1 if $\int_{4}^{9} \sqrt{x} dx$ is seen in a trapezium rule method	rt 12.7,	
Note:	Otherwise, give B0 M0 A0 for using the trapezium rule to give an answe	er of awrt 12.7	

www.onlinemathsteaching.co.uk

Q3.

Question Number	Scheme	Marks	s
(a)	$\frac{5}{(x-1)(3x+2)} = \frac{A}{x-1} + \frac{B}{3x+2}$ 5 = A(3x+2) + B(x-1) $x \to 1$ $5 = 5A \implies A = 1$		
	$x \rightarrow 1$ $5=5A \Rightarrow A=1$	M1 A1	
	$x \rightarrow -\frac{2}{3}$ $5 = -\frac{5}{3}B \implies B = -3$	A1	(3)
(b)	$\int \frac{5}{(x-1)(3x+2)} dx = \int \left(\frac{1}{x-1} - \frac{3}{3x+2}\right) dx$		
	$= \ln(x-1) - \ln(3x+2) (+C) \qquad \text{ft constants}$	M1 A1ft A	Alft
5			(3)
	f (1)		
(c)	$\int \frac{5}{(x-1)(3x+2)} \mathrm{d}x = \int \left(\frac{1}{y}\right) \mathrm{d}y$	M1	
(c)	$\int \frac{J}{(x-1)(3x+2)} dx = \int \left(\frac{1}{y}\right) dy$ $\ln(x-1) - \ln(3x+2) = \ln y (+C)$	M1 M1 A1	
(c)	$\ln(x-1) - \ln(3x+2) = \ln y (+C)$ $y = \frac{K(x-1)}{3x+2} \qquad \text{depends on first two Ms in (c)}$	A STATE	
(c)	$\ln(x-1) - \ln(3x+2) = \ln y (+C)$	M1 A1	
(c)	$\ln(x-1) - \ln(3x+2) = \ln y (+C)$ $y = \frac{K(x-1)}{3x+2} \qquad \text{depends on first two Ms in (c)}$	M1 A1 M1 dep	(6)

Question	Scheme	Marks	AOs
(a)	$\lim_{\delta x \to 0} \sum_{x=2.1}^{6.3} \frac{2}{x} \delta x = \int_{2.1}^{6.3} \frac{2}{x} \mathrm{d}x$	B1	1.2
		(1)	
(b)	$= \left[2\ln x \right]_{2.1}^{6.3} = 2\ln 6.3 - 2\ln 2.1$	M1	1.1b
	$= \ln 9$ CSO	A1	1.1b
		(2)	
Ϋ́α.		\$20 - 278 -	(3 marks)

Mark (a) and (b) as one

(a)

B1: States that $\int_{2.1}^{6.3} \frac{2}{x} dx$ or equivalent such as $2 \int_{2.1}^{6.3} x^{-1} dx$ but must include the limits and the dx. Condone $dx \leftrightarrow \delta x$ as it is very difficult to tell one from another sometimes (b)

M1: Know that $\int \frac{1}{x} dx = \ln x$ and attempts to apply the limits (either way around) Condone $\int \frac{2}{x} dx = p \ln x$ (including p = 1) or $\int \frac{2}{x} dx = p \ln qx$ as long as the limits are applied. Also be aware that $\int \frac{2}{x} dx = \ln x^2$, $\int \frac{2}{x} dx = 2 \ln |x| + c$ and $\int \frac{2}{x} dx = 2 \ln cx$ o.e. are also correct $[p \ln x]_{2,1}^{6,3} = p \ln 6.3 - p \ln 2.1$ is sufficient evidence to award this mark A1: CSO ln 9. Also answer = $\ln 3^2$ so k = 9 is fine. Condone $\ln |9|$

The method mark must have been awarded. Do not accept answers such as $\ln \frac{39.69}{4.41}$

Note that solutions appearing from "rounded" decimal work when taking lns should not score the final mark. It is a "show that" question

E.g.
$$[2\ln x]_{21}^{6.3} = 2\ln 6.3 - 2\ln 2.1 = 2.197 = \ln k \Longrightarrow k = e^{2.197} = 8.998 = 9$$

Q5.

5.			J
Question	Scheme	Marks	AOs
	$C: y = x \ln x; l \text{ is a normal to } C \text{ at } P(e, e)$		
	Let x_{A} be the x-coordinate of where l cuts the x-axis		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \ln x + x \left(\frac{1}{x}\right) \{= 1 + \ln x\}$	M1	2.1
	dx = mx + x(x) + (-1 + mx)	A1	1.1b
	$x = e, m_T = 2 \implies m_N = -\frac{1}{2} \implies y - e = -\frac{1}{2}(x - e)$ $y = 0 \implies -e = -\frac{1}{2}(x - e) \implies x =$	M1	3.1a
	<i>l</i> meets x-axis at $x = 3e$ (allow $x = 2e + elne$)	A1	1.1b
	{Areas:} either $\int_{1}^{e} x \ln x dx = \begin{bmatrix} \dots \end{bmatrix}_{1}^{e} = \dots$ or $\frac{1}{2}((\text{their } x_{A}) - e)e$	M1	2.1
	$\left\{\int x \ln x dx = \right\} \frac{1}{2} x^2 \ln x - \int \frac{1}{x} \left(\frac{x^2}{2}\right) \{dx\}$	M1	2.1
2	$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 $	dM1	1.1b
	$\left\{ = \frac{1}{2}x^{2}\ln x - \int \frac{1}{2}x \left\{ dx \right\} \right\} = \frac{1}{2}x^{2}\ln x - \frac{1}{4}x^{2}$	A1	1.1b
	Area $(R_1) = \int_1^e x \ln x dx = [\dots]_1^e = \dots;$ Area $(R_2) = \frac{1}{2}((\text{their } x_A) - e)e$ and so, Area $(R) = \text{Area}(R_1) + \text{Area}(R_2) \{= \frac{1}{4}e^2 + \frac{1}{4} + e^2\}$	M1	3.1a
	Area $(R) = \frac{5}{4}e^2 + \frac{1}{4}$	Al	1.1b
		(10)	

	On
	Notes for Question
M1:	Differentiates by using the product rule to give $\ln x + x$ (their g'(x)), where g(x) = $\ln x$
Al:	Correct differentiation of $y = x \ln x$, which can be un-simplified or simplified
M1:	Complete strategy to find the x coordinate where their normal to C at $P(e, e)$ meets the x-axis
	i.e. Sets $y=0$ in $y-e=m_N(x-e)$ to find $x=$
Note:	m_T is found by using calculus and $m_N \neq m_T$
Al:	<i>l</i> meets <i>x</i> -axis at $x = 3e$, allowing un-simplified values for <i>x</i> such as $x = 2e + elne$
Note:	Allow $x = awrt 8.15$
M1:	Scored for either
	• Area under curve = $\int_{1}^{e} x \ln x dx = [\dots]_{1}^{e} = \dots$, with limits of e and 1 and some attempt to
	substitute these and subtract
	• or Area under line = $\frac{1}{2}$ ((their x_A) – e)e, with a valid attempt to find x_A
M1:	Integration by parts the correct way around to give $Ax^2 \ln x - \int B\left(\frac{x^2}{x}\right) \{dx\}; A \neq 0, B > 0$
dM1:	dependent on the previous M mark
	Integrates the second term to give $\pm \lambda x^2$; $\lambda \neq 0$
Al:	$\frac{1}{2}x^2\ln x - \frac{1}{4}x^2$
M1:	Complete strategy of finding the area of R by finding the sum of two key areas. See scheme.
Al:	$\frac{5}{4}e^2 + \frac{1}{4}$
Note:	Area(R_2) can also be found by integrating the line <i>l</i> between limits of e and their x_A
	i.e. Area $(R_2) = \int_{e}^{\text{their } x_A} \left(-\frac{1}{2}x + \frac{3}{2}e \right) dx = \left[\dots \right]_{e}^{\text{their } x_A} = \dots$
Note:	Calculator approach with no algebra, differentiation or integration seen:
	 Finding <i>l</i> cuts through the x-axis at awrt 8.15 is 2nd M1 2nd A1
	 Finding area between curve and the x-axis between x = 1 and x = e to give awrt 2.10 is 3rd M1
	 Using the above information (must be seen) to apply
	Area(R) = 2.0972 + 7.3890 = 9.4862 is final M1
	Therefore, a maximum of 4 marks out of the 10 available.

Question	Scheme	Marks	AOs
5)). 	$y = \frac{(x-2)(x-4)}{4\sqrt{x}} = \frac{x^2 - 6x + 8}{4\sqrt{x}} = \frac{1}{4}x^{\frac{3}{2}} - \frac{3}{2}x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}$	M1 A1	1.1b 1.1b
	$\int \frac{1}{4}x^{\frac{3}{2}} - \frac{3}{2}x^{\frac{1}{2}} + 2x^{\frac{1}{2}}dx = \frac{1}{10}x^{\frac{5}{2}} - x^{\frac{3}{2}} + 4x^{\frac{1}{2}}(+c)$	dM1	3.1a
	$\int \frac{1}{4}x - \frac{1}{2}x + 2x dx = \frac{1}{10}x - x + 4x (+c)$	A1	1.1b
	Deduces limits of integral are 2 and 4 and applies to their $\frac{1}{10}x^{\frac{5}{2}} - x^{\frac{3}{2}} + 4x^{\frac{1}{2}}$	M1	2.2a
	$\left(\frac{32}{10} - 8 + 8\right) - \left(\frac{2}{5}\sqrt{2} - 2\sqrt{2} + 4\sqrt{2}\right) = \frac{16}{5} - \frac{12}{5}\sqrt{2}$ Area $R = \frac{12}{5}\sqrt{2} - \frac{16}{5}\left(\text{ or } \frac{16}{5} - \frac{12}{5}\sqrt{2}\right)$	A1	2.1
8		(6)	-
662			(6 mark

M1: Correct attempt to write $\frac{(x-2)(x-4)}{4\sqrt{x}}$ as a sum of terms with indices.

Look for at least two different terms with the correct index e.g. two of $x^{\frac{3}{2}}$, $x^{\frac{1}{2}}$, $x^{\frac{1}{2}}$, $x^{\frac{1}{2}}$ which have come from the correct places.

The correct indices may be implied later when e.g. \sqrt{x} becomes $x^{\frac{1}{2}}$ or $\frac{1}{\sqrt{x}}$ becomes $x^{\frac{1}{2}}$ A1: $\frac{1}{4}x^{\frac{3}{2}} - \frac{3}{2}x^{\frac{1}{2}} + 2x^{\frac{1}{2}}$ which can be left unsimplified e.g. $\frac{1}{4}x^{\frac{2}{2}} - \frac{1}{2}x^{\frac{1}{2}} - \frac{1}{2}x^{\frac{1}{2}} + 2x^{\frac{1}{2}}$ or as e.g. $\frac{1}{4} \left(x^{\frac{3}{2}} - 6x^{\frac{1}{2}} + 8x^{-\frac{1}{2}} \right)$

The correct indices may be implied later when e.g. \sqrt{x} becomes $x^{\frac{1}{2}}$ or $\frac{1}{\sqrt{x}}$ becomes $x^{\frac{1}{2}}$

dM1: Integrates $x^n \to x^{n+1}$ for at least 2 correct indices

i.e. at least 2 of $x^{\frac{3}{2}} \to x^{\frac{5}{2}}$, $x^{\frac{1}{2}} \to x^{\frac{3}{2}}$, $x^{\frac{1}{2}} \to x^{\frac{1}{2}}$

It is dependent upon the first M so at least two terms must have had a correct index. A1: $\frac{1}{10}x^{\frac{5}{2}} - x^{\frac{3}{2}} + 4x^{\frac{1}{2}}(+c)$. Allow unsimplified e.g. $\frac{1}{4} \times \frac{2}{5}x^{\frac{3}{2}+1} - \frac{1}{2} \times \frac{2}{3}x^{\frac{1}{2}+1} - \frac{2}{3}x^{\frac{1}{2}+1} + 2 \times 2x^{\frac{1}{2}}$ or as e.g. $\frac{1}{4} \left(\frac{2}{5} x^{\frac{5}{2}} - 4x^{\frac{3}{2}} + 16x^{\frac{1}{2}} \right) (+c).$

M1: Substitutes the limits 4 and 2 to their $\frac{1}{10}x^{\frac{5}{2}} - x^{\frac{3}{2}} + 4x^{\frac{1}{2}}$ and subtracts either way round.

There is no requirement to evaluate but 4 and 2 must be substituted either way round with evidence of subtraction, condoning omission of brackets.

E.g. condone
$$\frac{1}{10} \times 4^{\frac{5}{2}} - 4^{\frac{3}{2}} + 4 \times 4^{\frac{1}{2}} - \frac{1}{10} \times 2^{\frac{5}{2}} - 2^{\frac{3}{2}} + 4 \times 2^{\frac{5}{2}}$$

This is an independent mark but the limits must be applied to an expression that is not y so they may even have differentiated.

A1: Correct working shown leading to $\frac{12}{5}\sqrt{2} - \frac{16}{5}$ but also allow $\frac{16}{5} - \frac{12}{5}\sqrt{2}$ or exact equivalents Award this mark once one of these forms is reached and isw

Integration by parts:

$\int \frac{(x-2)(x-4)}{4\sqrt{x}} dx = \int \frac{1}{4} (x-2)(x-4) x^{-\frac{1}{2}} dx = \frac{1}{2} (x-2)(x-4) x^{\frac{1}{2}} - \int \frac{1}{2} (2x-6) x^{\frac{1}{2}} dx$	M1 A1	1.1b 1.1b
$\frac{\frac{1}{2}(x-2)(x-4)x^{\frac{1}{2}} - \int \frac{1}{2}(2x-6)x^{\frac{1}{2}}dx = \frac{1}{2}(x-2)(x-4)x^{\frac{1}{2}} - \int x^{\frac{3}{2}} - 3x^{\frac{1}{2}}dx}{= \frac{1}{2}(x-2)(x-4)x^{\frac{1}{2}} - \frac{2}{5}x^{\frac{5}{2}} + 2x^{\frac{3}{2}}}$ Or e.g. $= \frac{1}{2}(x-2)(x-4)x^{\frac{1}{2}} - \frac{1}{3}x^{\frac{3}{2}}(2x-6) + \frac{4}{15}x^{\frac{5}{2}}$	<u>dM1</u> A1	3.1a 1.1b
Deduces limits of integral are 2 and 4 and applies to their $\frac{1}{2}(x-2)(x-4)x^{\frac{1}{2}} - \frac{1}{3}x^{\frac{3}{2}}(2x-6) + \frac{4}{15}x^{\frac{5}{2}}$	M1	2.2a
$0 - \frac{16}{3} + \frac{128}{15} - \left(0 + \frac{4}{3}\sqrt{2} + \frac{16}{15}\sqrt{2}\right)$ Area $R = \frac{12}{5}\sqrt{2} - \frac{16}{5}\left(\text{or }\frac{16}{5} - \frac{12}{5}\sqrt{2}\right)$	A1	2.1
	(6)	

Notes:

M1: Applies integration by parts and reaches the form $\alpha(x-2)(x-4)x^{\frac{1}{2}} \pm \int (px+q)x^{\frac{1}{2}} dx \alpha, p \neq 0$

oe e.g.
$$\alpha (x^2 - 6x + 8) x^{\frac{1}{2}} \pm \int (px + q) x^{\frac{1}{2}} dx \ \alpha, p \neq 0$$

A1: Correct first application of parts in any form

dM1: Attempts their $\int (px+q) x^{\frac{1}{2}} dx$ by expanding and integrating or may attempt parts again.

E.g.
$$\int (2x-6)x^{\frac{1}{2}} dx = \int \left(2x^{\frac{3}{2}}-6x^{\frac{1}{2}}\right) dx = \dots$$
 or e.g. $\int (2x-6)x^{\frac{1}{2}} dx = \frac{2}{3}x^{\frac{3}{2}}(2x-6)-\frac{4}{3}\int x^{\frac{3}{2}} dx$

If they expand then at least one term requires $x^n \rightarrow x^{n+1}$ or if parts is attempted again, the structure must be correct.

- Al: Fully correct integration in any form
- **M1**: Substitutes the limits 4 and 2 to their $=\frac{1}{2}(x-2)(x-4)x^{\frac{1}{2}}-\frac{2}{5}x^{\frac{5}{2}}+2x^{\frac{3}{2}}$ and subtracts

either way round. There is no requirement to evaluate but 4 and 2 must be substituted either way round with evidence of subtraction, condoning omission of brackets.

E.g. condone $0 - \frac{16}{3} + \frac{128}{15} - 0 + \frac{4}{3}\sqrt{2} + \frac{16}{15}\sqrt{2}$

This is an independent mark but the limits must be applied to a "changed" function.

A1: Correct working shown leading to $\frac{12}{5}\sqrt{2} - \frac{16}{5}$ but also allow $\frac{16}{5} - \frac{12}{5}\sqrt{2}$ or exact equivalents

Attempts at integration by parts "the other way round" should be sent to review.

Integration by substitution example:

$u = \sqrt{x} \left(x = u^2 \right) \Rightarrow \int \frac{(x-2)(x-4)}{4\sqrt{x}} dx = \int \frac{(u^2-2)(u^2-4)}{4u} \frac{dx}{du} du$ $= \int \frac{(u^2-2)(u^2-4)}{4u} 2u du$	M1 A1	1.1b 1.1b
$=\frac{1}{2}\int \left(u^{4}-6u^{2}+8\right)du=\frac{1}{2}\left(\frac{u^{5}}{5}-\frac{6u^{3}}{3}+8u\right)(+c)$	dM1 A1	3.1a 1.1b
Deduces limits of integral are $\sqrt{2}$ and 2 and applies to their $\frac{1}{2} \left(\frac{u^5}{5} - \frac{6u^3}{3} + 8u \right)$	M1	2.2a
$\frac{1}{2} \left(\frac{32}{5} - 16 + 16 - \left(\frac{4\sqrt{2}}{5} - 4\sqrt{2} + 8\sqrt{2} \right) \right)$ Area $R = \frac{12}{5}\sqrt{2} - \frac{16}{5} \left(\text{ or } \frac{16}{5} - \frac{12}{5}\sqrt{2} \right)$	A1	2.1
	(6)	

Notes:

M1: Applies the substitution e.g.
$$u = \sqrt{x}$$
 and attempts $k \int \frac{(u^2 - 2)(u^2 - 4)}{u} \frac{dx}{du} du$

A1: Fully correct integral in terms of u in any form e.g. $\frac{1}{2} \int (u^2 - 2)(u^2 - 4) du$

- **dM1**: Expands the bracket and integrates $u^n \rightarrow u^{n+1}$ for at least 2 correct indices
- i.e. at least 2 of $u^4 \rightarrow u^5$, $u^2 \rightarrow u^3$, $k \rightarrow ku$ A1: $\frac{1}{2} \left(\frac{u^5}{5} - \frac{6u^3}{3} + 8u \right) (+c)$. Allow unsimplified.

M1: Substitutes the limits 2 and $\sqrt{2}$ to their $\frac{1}{2}\left(\frac{u^5}{5} - \frac{6u^3}{3} + 8u\right)$ and subtracts either way round.

There is no requirement to evaluate but 2 and $\sqrt{2}$ must be substituted either way round with evidence of subtraction, condoning omission of brackets.

E.g. condone $\frac{1}{2} \left(\frac{32}{5} - 16 + 16 - \frac{4\sqrt{2}}{5} - 4\sqrt{2} + 8\sqrt{2} \right)$

Alternatively reverses the substitution and applies the limits 4 and 2 with the same conditions. Al: Correct working shown leading to $\frac{12}{5}\sqrt{2} - \frac{16}{5}$ but also allow $\frac{16}{5} - \frac{12}{5}\sqrt{2}$ or exact equivalents

Award this mark once one of these forms is reached and isw.

There may be other substitutions seen and the same marking principles apply.

Question Number	Scheme	Notes	Marks
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \ge 0$		
(a) Way 1	$\int \frac{1}{x} \mathrm{d}x = \int -\frac{5}{2} \mathrm{d}t$	Separates variables as shown dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.	B1
	$\ln x = -\frac{5}{2}t + c$	Integrates both sides to give either $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$ or $\pm k \rightarrow \pm kt$ (with respect to <i>t</i>); $k, \alpha \neq 0$	M1
	2	$\ln x = -\frac{5}{2}t + c, \text{ including "} + c"$	A1
Ī	$\{t=0, x=60 \Longrightarrow\} \ln 60 = c$	Finds their c and uses correct algebra	
	$\ln x = -\frac{5}{2}t + \ln 60 \Rightarrow \frac{x = 60e^{-\frac{5}{2}}}{2} \text{ or } x =$	60 to achieve $x = 60e^{-\frac{5}{2}}$ or $x = \frac{60}{\frac{5}{2}}$	
	$\ln x = -\frac{1}{2}t + \ln 60 \implies \frac{x = 00e^2}{2} \text{ or } x = \frac{1}{2}$	$e^{\frac{e^2}{2t}}$ with no incorrect working seen	A1 cso
()		* 2 * 2	
(a) Way 2	$\frac{dt}{dx} = -\frac{2}{5x}$ or $t = \int -\frac{2}{5x} dx$	Either $\frac{dt}{dx} = -\frac{2}{5x}$ or $t = \int -\frac{2}{5x} dx$	B1
80 ·	-	Integrates both sides to give $aither, t = ar + a \ln pr; a \neq 0, n > 0$	M1
	$t = -\frac{2}{5}\ln x + c$	either $t =$ or $\pm \alpha \ln px; \alpha \neq 0, p > 0$ $t = -\frac{2}{5}\ln x + c, \text{ including "} + c"$	A1
	$\{t = 0, x = 60 \Rightarrow\} c = \frac{2}{5}\ln 60 \Rightarrow t = -\frac{2}{5}\ln 60$ $\Rightarrow -\frac{5}{2}t = \ln x - \ln 60 \Rightarrow \underline{x} = 60e^{-\frac{5}{2}t} \text{ or }$	$nx + \frac{2}{5}\ln 60$ Finds their c and uses correct algebra to achieve $x = 60e^{-\frac{5}{24}}$ or $\frac{60}{24}$	A1 cso
1			[
(a) Way 3	$\int_{60}^{x} \frac{1}{x} dx = \int_{0}^{t} -\frac{5}{2} dt$	Ignore limits	B1
181	$\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$	Integrates both sides to give either $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$ or $\pm k \rightarrow \pm kt$ (with respect to <i>t</i>); $k, \alpha \neq 0$	M1
	∟ 60 [2] ₀	$\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$ including the correct limits	A1
	$\ln x - \ln 60 = -\frac{5}{2}t \implies x = 60e^{-\frac{5}{2}}$ or $x =$	$= \frac{60}{e^{\frac{5}{2}}}$ Correct algebra leading to a correct result	A1 cso
			[4

(b)	$20 = 60e^{-\frac{5}{2}t}$ or $\ln 20 = -\frac{5}{2}t + \ln 20$	Substitutes $x = 20$ into an equation in the form of either $x = \pm \lambda e^{\pm \mu t} \pm \beta$ or $x = \pm \lambda e^{\pm \mu t \pm \alpha \ln \delta x}$ or $\pm \alpha \ln \delta x = \pm \mu t \pm \beta$ or $t = \pm \lambda \ln \delta x \pm \beta$; $\alpha, \lambda, \mu, \delta \neq 0$ and β can be 0	M1
	$t = -\frac{2}{5} \ln\left(\frac{20}{60}\right)$ $\left\{= 0.4394449(days)\right\}$ Note: t must be greater than 0	dependent on the previous M mark Uses correct algebra to achieve an equation of the form of either $t = A \ln \left(\frac{60}{20}\right)$ or $A \ln \left(\frac{20}{60}\right)$ or $A \ln 3$ or $A \ln \left(\frac{1}{3}\right)$ o.e. or $t = A(\ln 20 - \ln 60)$ or $A(\ln 60 - \ln 20)$ o.e. $(A \in \Box, t > 0)$	
	$\Rightarrow t = 632.8006 = 633$ (to the net		A1 cso
	Note: dM1 can be imp	blied by $t = awrt 0.44$ from no incorrect working.	

		Online Mat
Scheme	Notes	Marks
$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \ge 0$		
$\int \frac{2}{5x} \mathrm{d}x = -\int \mathrm{d}t$	Separates variables as shown. dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.	B1
$\frac{2}{10}(5x) = -t + c$	Integrates both sides to give either $\pm \alpha \ln(px)$ or $\pm k \rightarrow \pm kt$ (with respect to <i>t</i>); $k, \alpha \neq 0$; $p > 0$	M1
$\frac{1}{5} m(3x) = -i + c$	$\frac{2}{5}\ln(5x) = -t + c, \text{ including "} + c"$	A1
1111 D 172	Finds their <i>c</i> and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}}$ or $x = \frac{60}{e^{\frac{2}{2}}}$ with no incorrect working seen	A1 cso
		[4]
$\left\{\frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{5x} \Longrightarrow\right\} t = \int_{60} -\frac{2}{5x} \mathrm{d}x$	Ignore limits	B1
$t = \left[-\frac{2}{\ln x}\right]^x$	Integrates both sides to give either $\pm k \rightarrow \pm kt$ (with respect to t) or $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$; $k, \alpha \neq 0$	M1
L 5 J ₆₀	$t = \left[-\frac{2}{5}\ln x\right]_{60}^{x}$ including the correct limits	A1
$t = -\frac{2}{5}\ln x + \frac{2}{5}\ln 60 \Rightarrow -\frac{5}{2}t = \ln x - \frac{1}{5}$ $\Rightarrow \frac{x = 60e^{-\frac{5}{2}t}}{2} \text{ or } x = \frac{60}{e^{\frac{5}{2}t}}$	In 60 Correct algebra leading to a correct result	A1 cso
	$\frac{dx}{dt} = -\frac{5}{2}x, x \in \mathbb{R}, x \ge 0$ $\int \frac{2}{5x} dx = -\int dt$ $\frac{2}{5}\ln(5x) = -t + c$ $\left\{t = 0, x = 60 \Longrightarrow\right\} \frac{2}{5}\ln 300 = c$ $\frac{2}{5}\ln(5x) = -t + \frac{2}{5}\ln 300 \Longrightarrow \frac{x = 60e}{x = \frac{60}{e^{\frac{4}{3}t}}}$ $\left\{\frac{dt}{dx} = -\frac{2}{5x} \Longrightarrow\right\} t = \int_{60}^{x} -\frac{2}{5x} dx$ $t = \left[-\frac{2}{5}\ln x\right]_{60}^{x}$ $t = -\frac{2}{5}\ln x + \frac{2}{5}\ln 60 \Longrightarrow -\frac{5}{2}t = \ln x - \frac{1}{2}$	$\frac{dx}{dt} = -\frac{5}{2}x, x \in \mathbb{R}, x \ge 0$ Separates variables as shown. dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs. Integrates both sides to give either $\pm \alpha \ln(px)$ or $\pm k \to \pm kt$ (with respect to t); $k, \alpha \neq 0$; $p > 0$ $\frac{2}{5}\ln(5x) = -t + c$, including "+c" $\{t = 0, x = 60 \Rightarrow\}$ $\frac{2}{5}\ln 300 = c$ $\frac{2}{5}\ln(5x) = -t + \frac{2}{5}\ln 300 \Rightarrow x = 60e^{\frac{5}{2}}$ or $x = \frac{60}{e^{\frac{3}{2}}}$ Finds their <i>c</i> and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}}$ or $x = \frac{60}{e^{\frac{4}{2}}}$ with no incorrect working seen $\{\frac{dt}{dx} = -\frac{2}{5x} \Rightarrow\}$ $t = \int_{60}^{x} -\frac{2}{5x}dx$ Integrates both sides to give either $\pm k \to \pm kt$ (with respect to <i>t</i>) or $\pm \frac{\alpha}{x} \to \pm \alpha \ln x$; $k, \alpha \neq 0$ $t = \left[-\frac{2}{5}\ln x\right]_{60}^{x}$ including the correct limits $t = -\frac{2}{5}\ln x + \frac{2}{5}\ln 60 \Rightarrow -\frac{5}{2}t = \ln x - \ln 60$

	12	Question Notes
(a)	B1	For the correct separation of variables. E.g. $\int \frac{1}{5x} dx = \int -\frac{1}{2} dt$
	Note	B1 can be implied by seeing either $\ln x = -\frac{5}{2}t + c$ or $t = -\frac{2}{5}\ln x + c$ with or without $+c$
	Note	B1 can also be implied by seeing $\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$
	Note	Allow A1 for $x = 60\sqrt{e^{-5t}}$ or $x = \frac{60}{\sqrt{e^{5t}}}$ with no incorrect working seen
	Note	Give final A0 for $x = e^{-\frac{5}{2}t} + 60 \rightarrow x = 60e^{-\frac{5}{2}t}$
	Note	Give final A0 for writing $x = e^{-\frac{5}{2}t + \ln 60}$ as their final answer (without seeing $x = 60e^{-\frac{5}{2}t}$)
	Note	Way 1 to Way 5 do not exhaust all the different methods that candidates can give.
	Note	Give B0M0A0A0 for writing down $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$ with no evidence of working or integration seen.
(b)	Al	You can apply cso for the work only seen in part (b).
1012	Note	Give dM1(Implied) A1 for $\frac{5}{2}t = \ln 3$ followed by $t = \operatorname{awrt} 633$ from no incorrect working.
	Note	Substitutes $x = 40$ into their equation from part (a) is M0dM0A0

Question Number	Scheme		X	Notes		Marks
	(i) $\int \frac{3y-4}{y(3y+2)} dy, \ y > 0$, (ii) $\int_{0}^{3} \sqrt{\left(\frac{3y-4}{4}\right)^{3}} dy$	$\frac{x}{-x}$ dx, x	$x = 4\sin^2\theta$			
(i)	$\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \implies 3y-4 = A(3y-4)$	$+2) + B_{1}$			notes	M1
Way 1	$\frac{y(3y+2)}{y=0} = \frac{y}{y} + \frac{y}{(3y+2)} = \frac{y}{3y} - 4 = A(3y)$ $y=0 \implies -4 = 2A \implies A = -2$	+2) + <i>by</i>		At least one of $A = -2$ or their B		A1
	$y = -\frac{2}{3} \implies -6 = -\frac{2}{3}B \implies B = 9$	-		Both $4 = -2$ and their B		A1
	$\int \frac{3y-4}{y(3y+2)} dy = \int \frac{-2}{y} + \frac{9}{(3y+2)} dy$	$\frac{A}{y}$	-	five at least one of e $\frac{B}{3y+2} \rightarrow \pm \mu \ln(3y)$ $A \neq 0, 1$	+ 2)	M1
		At le		prrectly followed thr m their A or from th		A1 ft
	$= -2\ln y + 3\ln(3y+2) \{+c\}$			or -2ln y + 3ln(y with correct bracken plified. Can apply	ting,	A1 cao
		5/1			orin s	[6]
(ii) (a) Way 1	$\left\{x = 4\sin^2\theta \Rightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta \text{or} \frac{\mathrm{d}x}{\mathrm{d}\theta} =$	$4\sin 2\theta$ (or $dx = 8\sin\theta d$	cos θdθ		B1
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ \mathrm{d}\theta \right\} \text{ or } \int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 4\sin2\theta \left\{ \mathrm{d}\theta \right\}$		M1			
	$= \int \underline{\tan \theta} \cdot 8\sin \theta \cos \theta \left\{ d\theta \right\} \text{ or } \int \underline{\tan \theta} \cdot 4\sin 2\theta \left\{ d\theta \right\} \qquad \sqrt{\left(\frac{x}{4-x}\right)} \rightarrow$		$\sqrt{\left(\frac{x}{4-x}\right)} \rightarrow$	$\pm K \tan \theta$ or $\pm K \left(\frac{\sin \theta}{\cos \theta} \right)$	$\left(\frac{n\theta}{\sigma s\theta}\right)$	<u>M1</u>
	$= \int 8\sin^2\theta \mathrm{d}\theta$		∫8	$\sin^2 \theta \mathrm{d} \theta$ includin	g d <i>θ</i>	A1
	$3 = 4\sin^2\theta \text{ or } \frac{3}{4} = \sin^2\theta \text{ or } \sin\theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{\pi}{3}$ $\{x = 0 \Rightarrow \theta = 0\}$		involving x =	down a correct equ = 3 leading to $\theta = \frac{\pi}{3}$ ork seen regarding 1	and	B1
		20 31				[5]
(ii) (b)			plies $\cos 2\theta = 1 - 2s$ neir integral. (See n		M1	
			For ±	$\pm \alpha \theta \pm \beta \sin 2\theta, \alpha, \beta$	β≠0	M1
	$= \{8\} \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta\right) \{= 4\theta - 2\sin 2\theta\}$		$e^2 \theta \rightarrow \left(\frac{1}{2}\theta - \frac{1}{4}\sin^2\theta\right)$	20)	A1	
	$\left\{\int_{0}^{\frac{\pi}{3}} 8\sin^2\theta \mathrm{d}\theta = 8\left[\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{3}}\right\} = 8\left(\left(\frac{\pi}{6}\right)^{\frac{\pi}{3}}\right)$	$-\frac{1}{4}\left(\frac{\sqrt{3}}{2}\right)$	-(0+0)			
	$=\frac{4}{3}\pi - \sqrt{3}$ "two term"	" exact ans	wer of e.g. $\frac{4}{3}\pi$	$-\sqrt{3}$ or $\frac{1}{3}(4\pi - 3)$	3√3)	A1 o.e.
			-	-	60x12	[4]
8						15

		Question Notes Online M
(i)	1 st M1	Writing $\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)}$ and a complete method for finding the value of at least one of their A or their B.
	Note	M1A1 can be implied for writing down either $\frac{3y-4}{y(3y+2)} \equiv \frac{-2}{y} + \frac{\text{their } B}{(3y+2)}$ or $\frac{3y-4}{y(3y+2)} \equiv \frac{\text{their } A}{y} + \frac{9}{(3y+2)}$ with no working.
1	Note	Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A1 in (i)
	Note	Give 2^{nd} M0 for $\frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$
	Note	but allow 2 nd M1 for either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$
(ii)(a)	1 st M1	Substitutes $x = 4\sin^2\theta$ and their dx (from their correctly rearranged $\frac{dx}{d\theta}$) into $\sqrt{\left(\frac{x}{4-x}\right)} dx$
	Note	$dx \neq \lambda d\theta$. For example $dx \neq d\theta$
	Note	Allow substituting $dx = 4\sin 2\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 4\sin 2\theta$ or $dx = 4\sin 2\theta d\theta$
	2 nd M1	Applying $x = 4\sin^2\theta$ to $\sqrt{\left(\frac{x}{4-x}\right)}$ to give $\pm K\tan\theta$ or $\pm K\left(\frac{\sin\theta}{\cos\theta}\right)$
	Note	Integral sign is not needed for this mark.
	1 st Al	Simplifies to give $\int 8\sin^2\theta d\theta$ including $d\theta$
	2 nd B1	Writes down a correct equation involving $x = 3$ leading to $\theta = \frac{\pi}{3}$ and no incorrect work seen regarding limits
	Note	Allow 2 nd B1 for $x = 4\sin^2\left(\frac{\pi}{3}\right) = 3$ and $x = 4\sin^2 0 = 0$
İ	Note	Allow 2 nd B1 for $\theta = \sin^{-1}\left(\sqrt{\frac{x}{4}}\right)$ followed by $x = 3, \theta = \frac{\pi}{3}; x = 0, \theta = 0$

(ii)(b)	M1	Writes down a correct equation involving $\cos 2\theta$ and $\sin^2 \theta$
		E.g.: $\cos 2\theta = 1 - 2\sin^2 \theta$ or $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$ or $K\sin^2 \theta = K\left(\frac{1 - \cos 2\theta}{2}\right)$
8		and <i>applies</i> it to their integral. Note: Allow M1 for a correctly stated formula (via an incorrect rearrangement) being applied to their integral.
	MI	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$, $\alpha \neq 0, \beta \neq 0$ (can be simplified or un-simplified).
	1 st A1	Integrating $\sin^2 \theta$ to give $\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta$, un-simplified or simplified. Correct solution only. Can be implied by $k\sin^2 \theta$ giving $\frac{k}{2}\theta - \frac{k}{4}\sin 2\theta$ or $\frac{k}{4}(2\theta - \sin 2\theta)$ un-simplified or simplified.
	2 nd Al	A correct solution in part (ii) leading to a "two term" exact answer of e.g. $\frac{4}{3}\pi - \sqrt{3}$ or $\frac{8}{6}\pi - \sqrt{3}$ or $\frac{4}{3}\pi - \frac{2\sqrt{3}}{2}$ or $\frac{1}{3}(4\pi - 3\sqrt{3})$
	Note	A decimal answer of 2.456739397 (without a correct exact answer) is A0.
	Note	Candidates can work in terms of λ (note that λ is not given in (ii)) and gain the 1 st three marks (i.e. M1M1A1) in part (b).
	Note	If they incorrectly obtain $\int_{0}^{\frac{\pi}{3}} 8\sin^2\theta d\theta$ in part (i)(a) (or correctly guess that $\lambda = 8$) then the final A1 is available for a correct solution in part (ii)(b).

مرابع Online Maths Marks aching

			— Onli.
	Scheme	Notes	Marks
(i) Way 2	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{6y+2}{3y^2+2y} \mathrm{d}y - \int \frac{3y+6}{y(3y+2)} \mathrm{d}y$	$\frac{d}{dy}$ dy	
	$\frac{3y+6}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \implies 3y+6 = A(3y)$	(x+2) + By See notes	M1
	$y(3y+2) y (3y+2)$ $y=0 \Rightarrow 6=2A \Rightarrow A=3$	At least one of their $A = 3$ or their $B = -6$	A1
	$y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$	Both their $A = 3$ and their $B = -6$	A1
	$\int \frac{3y-4}{y(3y+2)} dy$ = $\int \frac{6y+2}{3y^2+2y} dy - \int \frac{3}{y} dy + \int \frac{6}{(3y+2)} dy$	Integrates to give at least one of either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{A}{y} \rightarrow \pm \lambda \ln y$ or $\frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	M1
	$\int 3y^2 + 2y$ $\int y$ $\int (3y + 2)$	At least one term correctly followed through	A1 ft
	$= \ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2) \{+c\}$	$ln(3y^2+2y) - 3ln y + 2ln(3y+2)$ with correct bracketing, simplified or un-simplified	A1 cao
			[6]
(i) Way 3	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y+1}{3y^2+2y} \mathrm{d}y - \int \frac{5}{y(3y+2)} \mathrm{d}y$	-/	10
	$\frac{5}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) +$	- By See notes	M1
	$y=0 \implies 5=2A \implies A=\frac{5}{2}$	At least one of their $A = \frac{5}{2}$ or their $B = -\frac{15}{2}$	A1
	$y = -\frac{2}{3} \implies 5 = -\frac{2}{3}B \implies B = -\frac{15}{2}$	Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$	A1
	$\int \frac{3y-4}{y(3y+2)} dy$ = $\int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{2} \frac{3y}{y} dy + \int \frac{15}{(3y+2)} dy$	Integrates to give at least one of either $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{A}{y} \rightarrow \pm \lambda \ln y$ or $\frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	M1
	$\int 3y^2 + 2y$ $\int y$ $\int y$ $\frac{dy}{y} + \int (3y+2) dy$	At least one term correctly followed through	A1 ft
	$=\frac{1}{2}\ln(3y^2+2y)-\frac{5}{2}\ln y+\frac{5}{2}\ln(3y+2)\{+c\}$	$\frac{1}{2}\ln(3y^2+2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y+2)$ with correct bracketing, simplified or un-simplified	A1 cao
		· · · · · · · · · · · · · · · · · · ·	[6]

ريسا مالية Online Maths ring

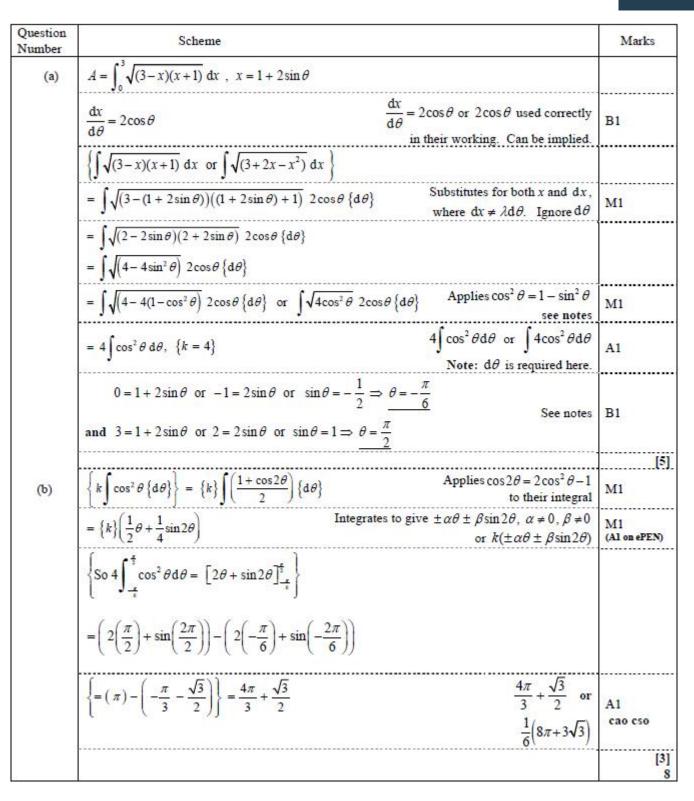
			Onun
	Scheme	Notes	
(i) Vay 4	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y}{y(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y$	$\overline{)}^{dy}$	
	$= \int \frac{3}{(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} $	dy	
	$\frac{4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \implies 4 = A(3y+2) + B$	By See notes	M1
	$y(3y+2) y (3y+2)$ $y=0 \Rightarrow 4=2A \Rightarrow A=2$	At least one of their $A = 2$ or their $B = -6$	Al
	$y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$	Both their $A = 2$ and their $B = -6$	A1
		Integrates to give at least one of either $\frac{C}{(3y+2)} \rightarrow \pm \alpha \ln(3y+2) \text{ or } \frac{A}{y} \rightarrow \pm \lambda \ln y \text{ or }$ $\frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2),$ $A \neq 0, B \neq 0, C \neq 0$	MI
	$\int 3y + 2 = \int y = \int (3y + 2) = -$	At least one term correctly followed through	A1 ft
	$= \ln(3y+2) - 2\ln y + 2\ln(3y+2) \{+c\}$	ln(3y+2) - 2ln y + 2ln(3y+2) with correct bracketing, simplified or un-simplified	Al cao
			[

	Alternative methods for B1M1M1A1 in (ii)(a)		
(ii)(a) Way 2	$\left\{x = 4\sin^2\theta \Longrightarrow\right\} \frac{dx}{d\theta} = 8\sin\theta\cos\theta$		B1
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \{\mathrm{d}\theta\}$	As before	M1
	$= \int \sqrt{\frac{\sin^2 \theta}{(1-\sin^2 \theta)}} \cdot 8\cos \theta \sin \theta \left\{ \mathrm{d}\theta \right\}$		
	$= \int \frac{\sin\theta}{\sqrt{(1-\sin^2\theta)}} \cdot 8\sqrt{(1-\sin^2\theta)} \sin\theta \left\{ d\theta \right\}$		
	$= \int \sin\theta \cdot 8\sin\theta \left\{ d\theta \right\}$	Correct method leading to $\sqrt{(1-\sin^2\theta)}$ being cancelled out	M1
	$=\int 8\sin^2\theta \mathrm{d}\theta$	$\int 8\sin^2\theta \mathrm{d}\theta \text{including } \mathrm{d}\theta$	A1 cso
(ii)(a) Way 3	$\left\{x = 4\sin^2\theta \Longrightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\sin 2\theta$	As in Way 1	B1
	$x = 4\sin^2\theta = 2 - 2\cos 2\theta , 4 - x = 2 + 2\cos 2\theta$		
	$\int \sqrt{\frac{2-2\cos 2\theta}{2+2\cos 2\theta}} \cdot 4\sin 2\theta \left\{ \mathrm{d}\theta \right\}$		M1
	$= \int \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 + 2\cos 2\theta}} \cdot \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 - 2\cos 2\theta}} 4\sin 2\theta \left\{ \mathrm{d}\theta \right\} = \int \frac{2 - 2\theta}{\sqrt{4 - 4\theta}} \mathrm{d}\theta$	$\frac{\cos 2\theta}{\cos^2 2\theta} \cdot 4\sin 2\theta \left\{ d\theta \right\}$	
	$= \int \frac{2 - 2\cos 2\theta}{2\sin 2\theta} \cdot 4\sin 2\theta \left\{ d\theta \right\} = \int 2(2 - 2\cos 2\theta) \cdot \left\{ d\theta \right\}$	Correct method leading to $\sin 2\theta$ being cancelled out	M1
	$= \int 8\sin^2\theta \mathrm{d}\theta$	$\int 8\sin^2\theta \mathrm{d}\theta \;\;\mathrm{including}\;\mathrm{d}\theta$	A1 cso

www.online mathsteaching.co.uk

Q9.

Question Number	Scheme	Marks
	May mark (a) and (b) together	100
(a)	Expands to give $10x^{\frac{3}{2}} - 20x$	B1
	Integrates to give $\frac{10}{\frac{5}{2}} x^{\frac{5}{2}} + \frac{-20'' x^2}{2} (+c)$	M1 A1ft
	Simplifies to $4x^{\frac{5}{2}} - 10x^2 (+c)$	Alcao (4)
(b)	Use limits 0 and 4 either way round on their integrated function (may only see 4 substituted)	M1
	Use limits 4 and 9 either way round on their integrated function	dM1
	Obtains either ± -32 or ± 194 needs at least one of the previous M marks for this to be awarded	A1
	(So area = $\left \int_{0}^{4} y dx \right + \int_{4}^{9} y dx$) i.e. 32 + 194, = 226	ddM1,A1 (5) [9]
Al: M (b) Ml: (d dMl: (rrect unsimplified follow through for both terms of their integration. Does not need $(+c)$ ist be simplified and correct– allow answer in scheme or $4x^{2\frac{1}{2}} - 10x^2$. Does not need $(+c)$ oes not depend on first method mark) Attempt to substitute 4 into their integral (however obtained must not be differentiated) or seeing their evaluated number (usually 32) is enough – do not need minus zero. depends on first method mark in (a)) Attempt to subtract either way round using the limits 4 and $4x^{2\frac{1}{2}} - Bx^{2\frac{1}{2}} - Bx^{2$	to see
Al: At or of ddMl: la	$A \times 9^{\frac{5}{2}} - B \times 9^2$ with $A \times 4^{\frac{5}{2}} - B \times 4^2$ is enough – or seeing 162 –(-32) {but not 162 – 32 } least one of the values (32 and 194) correct (needs just one of the two previous M marks in (b)) may see 162 + 32 + 32 or 162 + 64 or may be implied by correct final answer if not evaluated un working Adds 32 and 194 (may see 162 + 32 + 32 or may be implied by correct final answer if not evaluated st line of working). This depends on everything being correct to this point.	til last line
Common 194 seen a	Final answer of 226 not (-226) errors: $4 \times 4^{\frac{5}{2}} - 10 \times 4^{2} + 4 \times 9^{\frac{5}{2}} - 10 \times 9^{2} - 4 \times 4^{\frac{5}{2}} - 10 \times 4^{2} = \pm 162$ obtains M1 M1 A0 (neither nd final answer incorrect) then M0 A0 so 2/5 ect limits to obtain -32 + 162 + 32 = +/-162 is M1 M1 A1 (32 seen) M0 A0 so 3/5	32 nor
Special ca	se: In part (b) Uses limits 9 and 0 = 972 - 810 - 0 = 162 M0 M1 A0 M0A0 scores 1/5	


Question Number	Scheme	Marks
(a)	$y = 4x - x e^{\frac{1}{2}x}, \ x \ge 0$ $\left\{ y = 0 \implies 4x - x e^{\frac{1}{2}x} = 0 \implies x(4 - e^{\frac{1}{2}x}) = 0 \implies \right\}$	
	$e^{\frac{1}{2}x} = 4 \implies x_{\lambda} = 4 \ln 2$ Attempts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$ in terms of $\pm \lambda \ln \mu$ where $\mu > 0$	M1
	$4\ln 2 \operatorname{cao} (\operatorname{Ignore} x = 0)$	A1 [2]
	$\left\{ \int x e^{\frac{1}{2}x} dx \right\} = 2x e^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{ dx \}$ $\alpha x e^{\frac{1}{2}x} - \beta \int e^{\frac{1}{2}x} \{ dx \}, \alpha > 0, \beta > 0$	MI
(b)	$\{\int xe^{x} dx\} = 2xe^{x} - \int 2e^{x} \{dx\}$ $2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}, \text{ with or without } dx$	A1 (MI on ePEN)
	$= 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \{+c\} \qquad 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \text{ o.e. with or without } +c$	A1
(c)	$\left\{ \int 4x dx \right\} = 2x^2 \qquad \qquad 4x \to 2x^2 \text{ or } \frac{4x^2}{2} \text{ o.e.}$	[3] B1
	$\left\{\int_{0}^{4\ln 2} (4x - xe^{\frac{1}{2}x}) dx\right\} = \left[2x^{2} - \left(2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}\right)\right]_{0}^{4\ln 2 \text{ or half or their limits}}$	
	$= \left(2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 4e^{\frac{1}{2}(4\ln 2)}\right) - \left(2(0)^2 - 2(0)e^{\frac{1}{2}(0)} + 4e^{\frac{1}{2}(0)}\right)$ See notes	M1
	$= (32(\ln 2)^2 - 32(\ln 2) + 16) - (4)$	
	$= 32(\ln 2)^2 - 32(\ln 2) + 12$ $32(\ln 2)^2 - 32(\ln 2) + 12$, see notes	A1
		[3] 8

	Question Notes	
(a)	Ml	Attempts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$ in terms of $\pm \lambda \ln \mu$ where $\mu > 0$
	Al	$4\ln 2$ cao stated in part (a) only (Ignore $x = 0$)
(b)	NOT E	Part (b) appears as MIMIAI on ePEN, but is now marked as MIAIAI.
	M1	Integration by parts is applied in the form $\alpha x e^{\frac{1}{2}x} - \beta \int e^{\frac{1}{2}x} \{dx\}$, where $\alpha > 0, \beta > 0$.
		(must be in this form) with or without dx
	Al	$2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}$ or equivalent, with or without dx . Can be un-simplified.
	Al	$2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}$ or equivalent with or without + c. Can be un-simplified.
	Note	You can also allow $2e^{\frac{1}{2}x}(x-2)$ or $e^{\frac{1}{2}x}(2x-4)$ for the final A1.
	isw	You can ignore subsequent working following on from a correct solution.
	SC	<u>SPECIAL CASE</u> : A candidate who uses $u = x$, $\frac{dv}{dx} = e^{\frac{1}{2}x}$, writes down the correct "by parts"
		formula, but makes only one error when applying it can be awarded Special Case M1. (Applying their v counts for one consistent error.)

<u>Online </u> Maths
ina

(c)	Bl	$4x \rightarrow 2x^2$ or $\frac{4x^2}{2}$ oe
	MI	Complete method of applying limits of their x_A and 0 to all terms of an expression of the form $\pm Ax^2 \pm Bx e^{\frac{1}{2}x} \pm Ce^{\frac{1}{2}x}$ (where $A \neq 0, B \neq 0$ and $C \neq 0$) and subtracting the correct way round.
	Note	Evidence of a proper consideration of the limit of 0 is needed for M1.
	Note	So subtracting 0 is M0. In16 or 2In4 or equivalent is fine as an upper limit.
	Al	A correct three term exact quadratic expression in ln2. For example allow for A1 • 32(ln2) ² - 32(ln2) + 12
		• $8(2\ln 2)^2 - 8(4\ln 2) + 12$
		• $2(4\ln 2)^2 - 32(\ln 2) + 12$
		• $2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 12$
	Note	Note that the constant term of 12 needs to be combined from $4e^{\frac{1}{2}(4\ln 2)} - 4e^{\frac{1}{2}(0)}$ o.e.
	Note	Also allow $32 \ln 2(\ln 2 - 1) + 12$ or $32 \ln 2 \left(\ln 2 - 1 + \frac{12}{32 \ln 2} \right)$ for A1.
	Note	Do not apply "ignore subsequent working" for incorrect simplification. Eg: $32(\ln 2)^2 - 32(\ln 2) + 12 \rightarrow 64(\ln 2) - 32(\ln 2) + 12$ or $32(\ln 4) - 32(\ln 2) + 12$
	Note	Bracketing error: $32 \ln 2^2 - 32(\ln 2) + 12$, unless recovered is final A0.
	Note	Notation: Allow $32(\ln^2 2) - 32(\ln 2) + 12$ for the final A1.
	Note	5.19378 without seeing $32(\ln 2)^2 - 32(\ln 2) + 12$ is A0.
	Note	5.19378 following from a correct $2x^2 - \left(2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}\right)$ is M1A0.
	Note	5.19378 from no working is M0A0.

Q11.

		Question Notes
(a)	Bl	$\frac{dx}{d\theta} = 2\cos\theta$. Also allow $dx = 2\cos\theta d\theta$. This mark can be implied by later working.
	Note	You can give B1 for $2\cos\theta$ used correctly in their working.
	MI	Substitutes $x = 1 + 2\sin\theta$ and their dx (from their rearranged $\frac{dx}{d\theta}$) into $\sqrt{(3-x)(x+1)} dx$.
	Note	Condone bracketing errors here.
	Note	$dx \neq \lambda d\theta$. For example $dx \neq d\theta$.
	Note	Condone substituting $dx = \cos\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 2\cos\theta$ or $dx = 2\cos\theta d\theta$
	M1	Applies either
	201940	• $1 - \sin^2 \theta = \cos^2 \theta$
		• $\lambda - \lambda \sin^2 \theta$ or $\lambda (1 - \sin^2 \theta) = \lambda \cos^2 \theta$
		• $4 - 4\sin^2\theta = 4 + 2\cos 2\theta - 2 = 2 + 2\cos 2\theta = 4\cos^2\theta$
		to their expression where λ is a numerical value.
	Al	Correctly proves that $\int \sqrt{(3-x)(x+1)} dx$ is equal to $4 \int \cos^2 \theta d\theta$ or $\int 4\cos^2 \theta d\theta$
	Note	All three previous marks must have been awarded before A1 can be awarded.
	Note	Their final answer must include $d\theta$.
	Note	You can ignore limits for the final A1 mark.
	Bl	Evidence of a correct equation in $\sin \theta$ or $\sin^{-1} \theta$ for both x-values leading to both θ values. Eg
		• $0 = 1 + 2\sin\theta$ or $-1 = 2\sin\theta$ or $\sin\theta = -\frac{1}{2}$ which then leads to $\theta = -\frac{\pi}{6}$, and
		• $3 = 1 + 2\sin\theta$ or $2 = 2\sin\theta$ or $\sin\theta = 1$ which then leads to $\theta = \frac{\pi}{2}$
	Note	Allow B1 for $x = 1 + 2\sin\left(-\frac{\pi}{6}\right) = 0$ and $x = 1 + 2\sin\left(\frac{\pi}{2}\right) = 3$
	Note	Allow B1 for $\sin \theta = \left(\frac{x-1}{2}\right)$ or $\theta = \sin^{-1}\left(\frac{x-1}{2}\right)$ followed by $x = 0, \ \theta = -\frac{\pi}{6}; \ x = 3, \ \theta = \frac{\pi}{2}$
(b)	NOTE	Part (b) appears as MIAIAI on ePEN, but is now marked as MIMIAI.
50.534	M 1	Writes down a correct equation involving $\cos 2\theta$ and $\cos^2 \theta$
		Eq: $\cos 2\theta = 2\cos^2 \theta - 1$ or $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$ or $\lambda \cos^2 \theta = \lambda \left(\frac{1 + \cos 2\theta}{2}\right)$
		and applies it to their integral. Note: Allow M1 for a correctly stated formula (via an
	200000	incorrect rearrangement) being applied to their integral.
	M1	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$, $\alpha \neq 0$, $\beta \neq 0$
		(can be simplified or un-simplified).
	Al	A correct solution in part (b) leading to a "two term" exact answer.
		Eg: $\frac{4\pi}{3} + \frac{\sqrt{3}}{2}$ or $\frac{8\pi}{6} + \frac{\sqrt{3}}{2}$ or $\frac{1}{6}(8\pi + 3\sqrt{3})$
	Note	5.054815 from no working is M0M0A0.
	Note	Candidates can work in terms of k (note that k is not given in (a)) for the M1M1 marks in part (b).
		e 7
	Note	If they incorrectly obtain $4\int_{-\pi}^{\pi} \cos^2\theta d\theta$ in part (a) (or guess $k = 4$) then the final A1 is available

رکیا مگمگ Online Maths Teaching

Q12.

Question Number	Scheme	Marks	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^{-\frac{1}{2}} + x\sqrt{x}$		
	$x\sqrt{x} = x^{\frac{3}{2}}$ $x^{n} \to x^{n+1}$	B1	
		M1	
	$y = \frac{6}{\frac{1}{2}}x^{\frac{1}{2}} + \frac{x^{\frac{5}{2}}}{\frac{5}{2}}(+c)$	A1, A1	
	Use $x = 4$, $y = 37$ to give equation in c , $37 = 12\sqrt{4} + \frac{2}{5}(\sqrt{4})^5 + c$	M1	
	$\Rightarrow c = \frac{1}{5}$ or equivalent eg. 0.2	A1	
	$(y) = 12x^{\frac{1}{2}} + \frac{2}{5}x^{\frac{5}{2}} + \frac{1}{5}$	A1	
		(7 marks)	

B1
$$x\sqrt{x} = x^{\frac{3}{2}}$$
. This may be implied by $+\frac{x^{\frac{5}{2}}}{5}$ oe in the subsequent work.
M1 $x^n \to x^{n+1}$ in at least one case so see either $x^{\frac{1}{2}}$ or $x^{\frac{5}{2}}$ or both

A1 One term integrated correctly. It does not have to be simplified Eg. $\frac{6}{\frac{1}{2}}x^{\frac{1}{2}}$ or $+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}$.

No need for +c

A1 Other term integrated correctly. See above. No need to simplify nor for +c. Need to see $\frac{6}{\frac{1}{2}}x^{\frac{1}{2}} + \frac{x^{\frac{5}{2}}}{\frac{5}{2}}$ or a simplified correct version

- M1 Substitute x = 4, y = 37 to produce an equation in c.
- A1 Correctly calculates $c = \frac{1}{5}$ or equivalent e.g. 0.2

A1 cso
$$y = 12x^{\frac{1}{2}} + \frac{2}{5}x^{\frac{5}{2}} + \frac{1}{5}$$
. Allow $5y = 60x^{\frac{1}{2}} + 2x^{\frac{5}{2}} + 1$ and accept fully simplified equivalents.
e.g. $y = \frac{1}{5}(60x^{\frac{1}{2}} + 2x^{\frac{5}{2}} + 1)$, $y = 12\sqrt{x} + \frac{2}{5}\sqrt{x^5} + \frac{1}{5}$

Q13.

Number	Scheme		Marks
	$\int_{0}^{4} \frac{1}{2 + \sqrt{(2x+1)}} \mathrm{d}x , u = 2 + \sqrt{(2x+1)}$		
	$\frac{\mathrm{d}u}{\mathrm{d}x} = (2x+1)^{-\frac{1}{2}} \text{or} \frac{\mathrm{d}x}{\mathrm{d}u} = u-2$	her $\frac{\mathrm{d}u}{\mathrm{d}x} = \pm K(2x+1)^{\frac{1}{2}}$ or $\frac{\mathrm{d}x}{\mathrm{d}u} = \pm \lambda(u-2)$	M1
	$\frac{dx}{dx} = (2x+1)^{-1} \text{or} \frac{du}{du} = u - 2$	Either $\frac{du}{dx} = (2x+1)^{-\frac{1}{2}}$ or $\frac{dx}{du} = (u-2)$	A1
	$\left\{ \int \frac{1}{2 + \sqrt{(2x+1)}} \mathrm{d}x \right\} = \int \frac{1}{u} (u-2) \mathrm{d}u$	Correct substitution (Ignore integral sign and du).	A1
	$=\int \left(1-\frac{2}{u}\right) du$	An attempt to divide each term by u .	dM1
		$\pm Au \pm B\ln u$	ddM1
	$= u - 2 \ln u$	$u - 2 \ln u$	A1 ft
	$\{\text{So} [u-2\ln u]_3^5\} = (5-2\ln 5) - (3-2\ln 3)$	Applies limits of 5 and 3 in u or 4 and 0 in x in their integrated function and subtracts the correct way round.	M1
	$= 2 + 2\ln\left(\frac{3}{5}\right)$	$2+2\ln\left(\frac{3}{5}\right)$	cuo coo
			[8
	Notes for Q	uestion	
	M1: Also allow $du = \pm \lambda \frac{1}{(u-2)} dx$ or $(u-2)d$	$du = \pm \lambda dx$	
	Note: The expressions must contain du and A1: Also allow $du = \frac{1}{(u-2)}dx$ or $(u-2)du = 3$	d dx. They can be simplified or un-simplified $\pm \lambda dx$	
	A1: Also allow $du = \frac{1}{(u-2)}dx$ or $(u-2)du = 2$ Note: The expressions must contain du and	$\pm \lambda dx$ d dx. They can be simplified or un-simplified	
	A1: Also allow $du = \frac{1}{(u-2)}dx$ or $(u-2)du = 1$ Note: The expressions must contain du and A1: $\int \frac{1}{u}(u-2) du$. (Ignore integral sign and d	$\pm \lambda dx$ d dx. They can be simplified or un-simplified	
	A1: Also allow $du = \frac{1}{(u-2)}dx$ or $(u-2)du = 2$ Note: The expressions must contain du and	±λdx d dx. They can be simplified or un-simplified hu). revious M1 mark being awarded.	
	A1: Also allow $du = \frac{1}{(u-2)}dx$ or $(u-2)du = 1$ Note: The expressions must contain du and A1: $\int \frac{1}{u}(u-2) du$. (Ignore integral sign and du dM1: An attempt to divide each term by u . Note that this mark is dependent on the prince that this mark can be implied by late ddM1: $\pm Au \pm B \ln u$, $A \neq 0$, $B \neq 0$ Note that this mark is dependent on the true that this mark is dependent on the true that the second	±λdx d dx. They can be simplified or un-simplified lu). revious M1 mark being awarded. er working. wo previous M1 marks being awarded.	
	A1: Also allow $du = \frac{1}{(u-2)}dx$ or $(u-2)du = 3$ Note: The expressions must contain du and A1: $\int \frac{1}{u}(u-2) du$. (Ignore integral sign and du dM1: An attempt to divide each term by u . Note that this mark is dependent on the print Note that this mark can be implied by late ddM1: $\pm Au \pm B \ln u$, $A \neq 0$, $B \neq 0$ Note that this mark is dependent on the tot A1ft: $u - 2 \ln u$ or $\pm Au \pm B \ln u$ being correct M1: Applies limits of 5 and 3 in u or 4 and 0 in way round.	$\pm \lambda dx$ d dx. They can be simplified or un-simplified du). revious M1 mark being awarded. er working. wo previous M1 marks being awarded. thy followed through, $A \neq 0, B \neq 0$ x in their integrated function and subtracts the	
	A1: Also allow $du = \frac{1}{(u-2)}dx$ or $(u-2)du = 3$ Note: The expressions must contain du and A1: $\int \frac{1}{u}(u-2) du$. (Ignore integral sign and du dM1: An attempt to divide each term by u . Note that this mark is dependent on the print Note that this mark can be implied by lated dM1: $\pm Au \pm B \ln u$, $A \neq 0$, $B \neq 0$ Note that this mark is dependent on the the A1ft: $u - 2\ln u$ or $\pm Au \pm B \ln u$ being correct M1: Applies limits of 5 and 3 in u or 4 and 0 in	$\pm \lambda dx$ d dx. They can be simplified or un-simplified du). revious M1 mark being awarded. er working. wo previous M1 marks being awarded. thy followed through, $A \neq 0, B \neq 0$ x in their integrated function and subtracts the	

	Notes for Question Continued
ctd	Note: $\int \frac{1}{u} (u-2) du = u - 2 \ln u \text{ with no working is } 2^{nd} M1, 3^{rd} M1, 3^{rd} A1.$
	but Note: $\int \frac{1}{u} (u-2) du = (u-2) \ln u$ with no working is 2^{nd} M0, 3^{rd} M0, 3^{rd} A0.

www.onlinemathsteaching.co.uk

estion mber	Scheme	Marks
(a)	1.0981	B1 cao
(b)	Area $\approx \frac{1}{2} \times 1$; $\times [0.5 + 2(0.8284 + \text{their } 1.0981) + 1.3333]$	B1; <u>M1</u>
	$=\frac{1}{2} \times 5.6863 = 2.84315 = 2.843$ (3 dp) 2.843 or awrt 2.843	A1
(c)	$\left\{u = 1 + \sqrt{x}\right\} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{\mathrm{d}x}{\mathrm{d}u} = 2(u-1)$	[3 <u>B1</u>
(()		<u>D1</u>
	$\left\{ \int \frac{x}{1+\sqrt{x}} dx = \right\} \int \frac{(u-1)^2}{u} \cdot 2(u-1) du \qquad \qquad \int \frac{(u-1)^2}{u} \cdot \cdots \cdot \frac{(u-1)^2}{u} \cdot \frac{(u-1)^2}{u} \cdot \cdots \cdot \frac{(u-1)^2}{u} \cdot (u$	M1
	$\int \frac{(u-1)^2}{u} \cdot 2(u-1) du = \int \frac{(u-1)^2}{u} \cdot 2(u-1) du$	A1
	$= 2 \int \frac{(u-1)^3}{u} du = \{2\} \int \frac{(u^3 - 3u^2 + 3u - 1)}{u} du$ Expands to give a "four term" cubic in <i>u</i> . Eg: $\pm Au^3 \pm Bu^2 \pm Cu \pm D$	M1
	= {2} $\int \left(u^2 - 3u + 3 - \frac{1}{u} \right) du$ An attempt to divide at least three terms in <i>their cubic</i> by <i>u</i> . See notes.	M1
	$= \{2\} \left(\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u\right) \qquad	A1
	$\begin{bmatrix} 2u^3 \\ 2u^3 \end{bmatrix}$	
	Area(R) = $\left[\frac{2u^3}{3} - 3u^2 + 6u - 2\ln u\right]_2^2$	
	$= \left(\frac{2(3)^3}{3} - 3(3)^2 + 6(3) - 2\ln 3\right) - \left(\frac{2(2)^3}{3} - 3(2)^2 + 6(2) - 2\ln 2\right)$ Applies limits of 3 and 2 in <i>u</i> or 4 and 1 in <i>x</i> and subtracts either way round.	M1
	$= \frac{11}{3} + 2\ln 2 - 2\ln 3 \text{or} \frac{11}{3} + 2\ln\left(\frac{2}{3}\right) \text{ or } \frac{11}{3} - \ln\left(\frac{9}{4}\right), \text{ etc} \qquad \begin{array}{c} \text{Correct exact answer} \\ \text{or equivalent.} \end{array}$	A1
		[
(a)	B1: 1.0981 correct answer only. Look for this on the table or in the candidate's working.	1
(b)	B1 : Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$	
	2 2	
	M1: For structure of trapezium rule []	

Note: Working must be seen to demonstrate the use of the trapezium rule. <u>Note</u>: actual area is 2.85573645...

<u>Note:</u> Award B1M1 A1 for $\frac{1}{2}(0.5 + 1.3333) + (0.8284 + their 1.0981) = 2.84315$

Bracketing mistake: Unless the final answer implies that the calculation has been done correctly

Award B1M0A0 for $\frac{1}{2} \times 1 + 0.5 + 2(0.8284 + \text{their } 1.0981) + 1.3333$ (nb: answer of 6.1863).

Online Maths

$$\begin{array}{|c|c|c|c|c|} \hline \begin{array}{c} \text{Award B1M0A0 for } \frac{1}{2} < 1 \ (0.5 + 1.333) + 2 (0.8284 + ther 1.0901) (the answer of 4.76965). \end{array} \end{array}$$

$$\begin{array}{c} \hline \begin{array}{c} \text{(b) etd} & \frac{dlemmatry method for puri (1b): Addue pulnowhuld trapecial Area = 1x \left[\frac{0.5 + 0.8284}{2} + \frac{0.8284 + 1.0081}{2} + \frac{1.0981 + 1.3333}{2} \right] = 2.84315 \\ \text{B1: 1 and a divisor of 2 on all terms inside brackets. \\ \text{M1: First and late ordinates one and two of the middle ordinates twice inside brackets ignoring the 2. \\ \text{M1: First and late ordinates to 2.843 \\ \text{M1: Tists and late ordinates one and two of the middle ordinates twice inside brackets ignoring the 2. \\ \text{M1: } \frac{dx}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \ \text{or} \ du = \frac{1}{2\sqrt{x}} \ dx \ or 2\sqrt{5} \ du = dx \ or \ dx = 2(u-1) \ du \ or \ \frac{dx}{du} = 2(u-1) \ oe. \\ 1^{H} \text{M1: } \frac{1}{1+\sqrt{x}} \ becoming \ \frac{(u-1)^2}{u} \ (lignore integral sign). \\ 1^{H} \text{A1 (B1 on egen): } \frac{x}{1+\sqrt{x}} \ becoming \ \frac{(u-1)^2}{u} \ (2uore integral sign). \\ 1^{H} \text{M1: Expands to give a "four term" (obset in u, \pm 4dv \pm 2bv^2 \pm 0u \pm 2D) \\ where \ dv \ 0, \ bv \ 0, \ C \ on \ D \ bv \ 0 \ \ \text{The cubic does not need to be simplified for this mark. \\ 3^{H} \text{M1: Expands to give a "four term" (obset in u, \pm 4dv \pm 2bv^2 \pm 0u \pm 2D) \\ where \ dv \ 0, \ bv \ 0, \ C \ 0 \ \text{M2 or } 0 \ \text{m2 or one mignore the integral sign } 1 \ \text{m2 or one mignore the integral sign } 1 \ \text{m3 or } 2 \ \frac{1}{2} \ \text{m3 or } \frac{1}{2} + 3u - 10u \\ 3^{H} \text{M1: Some evidace of limits of 3 and 2 in u and subtracting either way round. \\ 3^{H} \text{M1: Some evidace of limits of 3 and 2 in u and subtracting either way round. \\ 3^{H} \text{M1: Exact answer of } \frac{1}{3} + 2\ln 2 \ 2 \ \int \left(\frac{u^2 - 2u}{2} \ + \frac{3}{2} \ + \frac{2}{2} \ \left(\frac{2}{3} \ \right) \ \text{m3 matrix}^{H} \ \text{M1: mark} \\ \begin{array}{c} 22 \int \left(\frac{(u-1)^2}{u} \ (u-1) \ du = \left\{ 2 \ \right) \int \left(\frac{(u-2)}{u} \ (u-1) \ du \\ = \left\{ 2 \ \right) \int \left(\frac{(u-1)^2}{u} \ - \left\{ 1 + \sqrt{x} \ \right\}^2 \ + \left\{ (1 + \sqrt{x}) \ - 2\ln(1 + \sqrt{x}) \ \right\}_1^{H} \\ \end{array} \\ = \left\{ 2 \ \left(\frac{(u-1)^2}{3} - 3(1 + \sqrt{x})^2 + 6(1 + \sqrt{x}) \ - 2\ln(1 + \sqrt{x}) \ \right\}_1^{H} \\ = \left\{ 2 \ \left(\frac{(u-1)^2}{u$$

$$\begin{aligned} \frac{\text{Alternative method for the final 5 marks in part (b)}}{\int \frac{(u-1)^3}{u} du}, & \begin{cases} u^u = u^{-1} & \Rightarrow \frac{d^u u^u}{dx} = -u^{-2} \\ \frac{dv}{dx} = (u-1)^3 & \Rightarrow v = \frac{(u-1)^4}{4} \end{cases} \\ = \frac{(u-1)^4}{4u} - -\frac{1}{4} \int \frac{(u-1)^4}{u^2} du \\ = \frac{(u-1)^4}{4u} + \frac{1}{4} \int \frac{u^4 - 4u^3 + 6u^2 - 4u + 1}{u^2} du \\ = \frac{(u-1)^4}{4u} + \frac{1}{4} \int u^2 - 4u + 6 - \frac{4}{u} + \frac{1}{u^2} du \\ = \frac{(u-1)^4}{4u} + \frac{1}{4} \int u^2 - 4u + 6 - \frac{4}{u} + \frac{1}{u^2} du \\ = \frac{(u-1)^4}{4u} + \frac{1}{4} \int \frac{u^3}{3} - 2u^2 + 6u - 4\ln u - \frac{1}{u} \end{pmatrix} \\ \text{A1: Correct Integration.} \\ \int_2^3 \frac{(u-1)^3}{u} du = \left[\frac{(u-1)^4}{4u} + \frac{u^3}{12} - \frac{u^2}{2} + \frac{3u}{2} - \ln u - \frac{1}{4u} \right]_2^3 \\ = \left(\frac{16}{12} + \frac{27}{12} - \frac{9}{2} + \frac{9}{2} - \ln 3 - \frac{1}{12} \right) - \left(\frac{1}{8} + \frac{8}{12} - \frac{4}{2} + \frac{6}{2} - \ln 2 - \frac{1}{8} \right) \\ \text{M1} \\ = (7 - \ln 3) - \left(\frac{5}{3} - \ln 2 \right) \\ = \frac{11}{6} + \ln \frac{2}{3} \\ \text{Area}(R) = 2 \int_2^3 \frac{(u-1)^3}{u} du = 2 \left(\frac{11}{6} + \ln \frac{2}{3} \right) \\ \text{A1} \end{aligned}$$

Q15.

Question Number	Scheme	Marks
(a)	0.73508	B1 cao
(b)	Area $\approx \frac{1}{2} \times \frac{\pi}{8}$; $\times [0 + 2(\text{their } 0.73508 + 1.17157 + 1.02280) + 0]$	[1] B1 <u>M1</u>
	$= \frac{\pi}{16} \times 5.8589 = 1.150392325 = 1.1504 \ (4 \text{ dp}) \qquad \text{awrt } 1.1504$	A1 [3]
(c)	$\{u = 1 + \cos x\} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x$	<u>B1</u>
	$\left\{\int \frac{2\sin 2x}{(1+\cos x)} \mathrm{d}x = \right\} \int \frac{2(2\sin x \cos x)}{(1+\cos x)} \mathrm{d}x \qquad	B1
	$= \int \frac{4(u-1)}{u} (-1) du \left\{ = 4 \int \frac{(1-u)}{u} du \right\}$	M1
	$= 4 \int \left(\frac{1}{u} - 1\right) \mathrm{d}u = 4 \left(\ln u - u\right) + c$	dM1
	$= 4\ln(1 + \cos x) - 4(1 + \cos x) + c = 4\ln(1 + \cos x) - 4\cos x + k $ AG	A1 cso [5]
(d)	$= \left[4\ln\left(1 + \cos\frac{\pi}{2}\right) - 4\cos\frac{\pi}{2} \right] - \left[4\ln\left(1 + \cos\theta\right) - 4\cos\theta \right] $ Applying limits $x = \frac{\pi}{2}$ and $x = 0$ either way round.	М1
	$= [4\ln 1 - 0] - [4\ln 2 - 4]$	
	$ \pm 4(1 - \ln 2) \text{ or} $ = 4 - 4ln 2 {= 1.227411278} $\pm (4 - 4\ln 2) \text{ or awrt } \pm 1.2, $	A1
	however found.	
	Error = $ (4 - 4\ln 2) - 1.1504 $ awrt ±0.077	A.1
	$= 0.0770112776 = 0.077 (2sf)$ or awrt $\pm 6.3(\%)$	A1 cso [3]
(a)	B1: 0.73508 correct answer only. Look for this on the table or in the candidate's working.	12
(b)	B1 : Outside brackets $\frac{1}{2} \times \frac{\pi}{8}$ or $\frac{\pi}{16}$ or awrt 0.196	
	M1: For structure of trapezium rule []; (0 can be implied).	
	A1: anything that rounds to 1.1504 <u>Bracketing mistake</u> : Unless the final answer implies that the calculation has been done correct	tle
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8} + 2$ (their 0.73508 + 1.17157 + 1.02280) (nb: answer of 6.0552).	Juy
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8}$ (0 + 0) + 2(their 0.73508 + 1.17157 + 1.02280) (nb: answer of 5.8589))).
	Alternative method for part (b): Adding individual trapezia	
	Area $\approx \frac{\pi}{8} \times \left[\frac{0 + 0.73508}{2} + \frac{0.73508 + 1.17157}{2} + \frac{1.17157 + 1.02280}{2} + \frac{1.02280 + 0}{2} \right] = 1.15$	50392325
	B1: $\frac{\pi}{8}$ and a divisor of 2 on all terms inside brackets.	
	M1: One of first and last ordinates, two of the middle ordinates inside brackets ignoring the 2. A1: anything that rounds to 1.1504	
(c)	B1: $\frac{du}{dx} = -\sin x$ or $du = -\sin x dx$ or $\frac{dx}{du} = \frac{1}{-\sin x}$ oe.	
	$du - \sin x$	

B1: For seeing, applying or implying $\sin 2x = 2\sin x \cos x$.

M1: After applying substitution candidate achieves $\pm k \int \frac{(u-1)}{u} (du)$ or $\pm k \int \frac{(1-u)}{u} (du)$.

Allow M1 for "invisible" brackets here, eg: $\pm \int \frac{(\lambda u - 1)}{u} (du)$ or $\pm \int \frac{(-\lambda + u)}{u} (du)$, where λ is a positive constant.

dM1: An attempt to divide through each term by u and $\pm k \int \left(\frac{1}{u} - 1\right) du \rightarrow \pm k (\ln u - u)$ with/without

+ c. Note that this mark is dependent on the previous M1 mark being awarded.

<u>Alternative method</u>: Candidate can also gain this mark for applying integration by parts followed by a correct method for integrating $\ln u$. (See below).

A1: Correctly combines their +c and -4 together to give $4\ln(1 + \cos x) - 4\cos x + k$

As a minimum candidate must write either $4\ln(1 + \cos x) - 4(1 + \cos x) + c \rightarrow 4\ln(1 + \cos x) - 4\cos x + k$

or
$$4\ln(1 + \cos x) - 4(1 + \cos x) + k \rightarrow 4\ln(1 + \cos x) - 4\cos x + k$$

Note: that this mark is also for a correct solution only.

Note: those candidates who attempt to find the value of k will usually achieve A0.

M1: Substitutes limits of $x = \frac{\pi}{2}$ and x = 0 into $\left\{4\ln(1 + \cos x) - 4\cos x\right\}$ or their answer from part (c) and subtracts the either way round. Note that: $\left[4\ln\left(1 + \cos\frac{\pi}{2}\right) - 4\cos\frac{\pi}{2}\right] - [0]$ is M0.

A1: $4(1-\ln 2)$ or $4-4\ln 2$ or awrt 1.2, however found.

This mark can be implied by the final answer of either awrt ± 0.077 or awrt ± 6.3 A1: For either awrt ± 0.077 or awrt ± 6.3 (for percentage error). Note this mark is for a correct solution only. Therefore if there if a candidate substitutes limits the incorrect way round and final achieves (usually fudges) the final correct answer then this mark can be withheld. Note that awrt 6.7 (for percentage error) is A0.

Alternative method for dM1 in part (c)

$$\frac{Alternative method for dM1 in part (c)}{\int \frac{(1-u)}{u} du = \left((1-u)\ln u - \int -\ln u \, du\right) = \left((1-u)\ln u + u\ln u - \int \frac{u}{u} \, du\right) = \left((1-u)\ln u + u\ln u - u\right)}$$
or $\int \frac{(u-1)}{u} du = \left((u-1)\ln u - \int \ln u \, du\right) = \left((u-1)\ln u - \left(u\ln u - \int \frac{u}{u} \, du\right)\right) = ((u-1)\ln u - u\ln u + u)$
So dM1 is for $\int \frac{(1-u)}{u} \, du$ going to $((1-u)\ln u + u\ln u - u)$ or $((u-1)\ln u - u\ln u + u)$ oe.
Alternative method for part (d)
M1A1 for $\left\{4\int_{2}^{1}\left(\frac{1}{u}-1\right)du =\right\}4\left[\ln u - u\right]_{2}^{1} = 4\left[(\ln 1-1) - (\ln 2-2)\right] = 4(1-\ln 2)$
Alternative method for part (d): Using an extra constant λ from their integration.
 $\left[4\ln\left(1+\cos\frac{\pi}{2}\right)-4\cos\frac{\pi}{2}+\lambda\right] - \left[4\ln(1+\cos 0) - 4\cos 0+\lambda\right]$

 λ is usually -4, but can be a value of k that the candidate has found in part (d).

Note: The extra constant λ should cancel out and so the candidate can gain all three marks using this method, even the final A1 cso.

(d)

Q16.

Question Number	Scheme	Marks	
(a)	$x^{2} + 2x + 2 = 10 \Rightarrow x^{2} + 2x - 8 = 0$ (so $(x+4)(x-2) = 0$) $\Rightarrow x = \dots$	M1	
	x = -4, 2	A1 (2)	
(b) Way 1	$\int \left(x^2 + 2x + 2\right) dx = \frac{x^3}{3} + \frac{2x^2}{2} + 2x(+C)$	M1A1A1	
	$\left[\frac{x^3}{3} + \frac{2x^2}{2} + 2x\right]_{*-4^*}^{*2^*} = \left(\frac{8}{3} + \frac{8}{2} + 4\right) - \left(-\frac{64}{3} + \frac{32}{2} - 8\right) (= 24)$	M1	
	Rectangle: $10 \times (2 - 4) = 60$	B1 cao	
	R = "60" - "24"	M1	
	= 36	A1 (7) Total 9	
(b) Way 2	$\int (8 - x^2 - 2x) dx = 8x - \frac{x^3}{3} - \frac{2x^2}{2} (+C)$	M1 A1ft A1	
	$\left[8x - \frac{x^3}{3} - \frac{2x^2}{2}\right]_{*-4^*}^{*2^*} = \left(16 - \frac{8}{3} - 4\right) - \left(-32 + \frac{64}{3} - 16\right) = (9.3 - (-26.7))$	M1	
	Implied by final answer of 36 after correct work	B1	
	$10 - (x^2 + 2x + 2) = 8 - x^2 - 2x, = 36$	M1, A1	
	Notes for Question		
(a)	M1 Set the curve equation equal to 10 and collect terms. Solves quadratic to $x =$		
(b)	A1 cao : Both values correct – allow $A = -4$, $B = 2$ M1: One correct integration		
(0)	A1: Two correct integrations(ft slips subtracting in Way 2)		
	A1: All 3 terms correct (penalise subtraction errors here in Way 2)		
	M1: Substitute their limits from (a) into the integrated function and subtract (either way round)		
	B1: Way 1: Find area under the line by integration or area of rectangle - should be 60 here (no		
	follow through) Way 2: (implied by final correct answer in second method)		
	M1: Subtract one area from the other (implied by subtraction of functions in second method)- award		
	even after differentiation		
	A1: Must be 36 not -36. Special case 1: Combines both methods. Uses Way 2 integration, but continues after reaching "36" to		
	subtract "36" from rectangle giving answer as "24" This loses final M1 A1		
	Special case 2: Integrates (x^2+2x-8) between limits -4 and 2 to get -36 and then changes sign		
	and obtains 36. Do not award final A mark - so M1A1A1M1B1M1A0		
	If the answer is left as -36, then M1A1A1M1B0M1A0		
	N.B. Allow full marks for modulus used earlier in working e.g. $\int_{0}^{2} x^{2} + 2x - 2dx - \int_{0}^{2} 1$	Och	

ļ	1		·		
Method 1 5 (a)	Puts $10 - x = 10x - x^2 - 8$ and rearranges to give three term quadratic	Or puts $y=10(10-y)-(10-y)^2-8$ and rearranges to give three term quadratic	M1		
	Solves their " $x^2 - 11x + 18 = 0$ " using	Solves their " $y^2 - 9y + 8 = 0$ " using	M1		
	acceptable method as in general principles	acceptable method as in general principles to			
	to give $x =$ Obtains $x = 2$, $x = 9$ (may be on	give $y =$ Obtains $y = 8$, $y = 1$ (may be on diagram)	A1		
	diagram or in part (b) in limits) Substitutes their x into a given equation to give $y =$ (may be on diagram)	Substitutes their <i>y</i> into a given equation to give $x =$ (may be on diagram or in part (b))	M1		
	<i>y</i> = 8, <i>y</i> = 1	x = 2, x = 9	A1 (5)		
(b)	$\int (10x - x^2 - 8) \mathrm{d}x = \frac{10x^2}{2} - \frac{x^3}{3} - 8x \left\{ + x \right\}$	<u>_</u> }	M1 A1 A1		
	$\left[\frac{10x^2}{2} - \frac{x^3}{3} - 8x\right]_2^9 = (\dots) - (\dots)$				
	$=90 - \frac{4}{3} = 88\frac{2}{3} \text{ or } \frac{266}{3}$				
	Area of trapezium = $\frac{1}{2}(8+1)(9-2) = 31.5$				
	So area of <i>R</i> is $88\frac{2}{3} - 31.5 = 57\frac{1}{6}$ or $\frac{343}{6}$				
			(7) 12		
			marks		
Notes (a)	First M1 : See scheme Second M1 : See notes relating to solving quadratics Third M1 : This may be awarded if one substitution is made				
	Two correct Answers following tables of	values, or from Graphical calculator are $5/5$			
(b)	Just one pair of correct coordinates – no working or from table is M0M0A0M1A0 M1: $x^n \rightarrow x^{n+1}$ for any one term. 1 st A1: at least two out of three terms correct 2 nd A1: All three correct dM1: Substitutes 9 and 2 (or limits from part(a)) into an "integrated function" and subtracts, either way round				
	(NB: If candidate changes all signs to get $\int_{(-10x + x^{'} + 8) dx} = -\frac{10x^{'}}{2} + \frac{x^{'}}{3} + 8x \{+c\}$ This is M1 A1 A1				
	Then uses limits dM1 and trapezium is B1				
		integration for final M1A1 so $-88\frac{2}{3} - 31.5$ is N			
	triangle $\frac{1}{2} \times 8 \times 8 - \frac{1}{2}$ or rectangle plus trian	y correct method (could be integration) or triangl gle [may be implied by correct 57 1/6]	e minus		
		11: Their Area under curve – Their Area under line (if integrate both need same limits)			
A1: Accept 57.16recurring but not 57.16 PTO for Alternative method					

			(Onli	ျို ဂိုင်ကြိ ne Ma
Method 2 for (b)	Area of R $= \int_{2}^{9} (10x - x^{2} - 8) - (10 - x) dx$ $\int_{2}^{9} -x^{2} + 11x - 18 dx$ $= -\frac{x^{3}}{3} + \frac{11x^{2}}{2} - 18x \{+c\}$ $\left[-\frac{x^{3}}{3} + \frac{11x^{2}}{2} - 18x \right]_{2}^{9} = (\dots) - (\dots)$ This mark is implied by final answer whin See above working (allow bracketing err mark for (b) here: $40.5 - (-16\frac{2}{3})$	ors) to decide to award 3 rd M1	M1 A1 dM1 B1 M1 A1	
				(7)
Special case of above	$\int_{2}^{9} x^{2} - 11x + 18 dx = \frac{x^{3}}{3} - \frac{11x^{2}}{2} + 18x \{+c\}$		M1A1A	1
method	$\left[\frac{x^3}{3} - \frac{11x^2}{2} + 18x\right]_2^9 = (\dots) - (\dots)$		DM1	
	This mark is implied by final answer	which rounds to 57.2 (not -57.2)	B1	
	Difference of functions implied (see a	bove expression)	M1	
	$40.5 - (-16\frac{2}{3})$	$=57\frac{1}{6}$ cao	A1	
				(7)
Special Case 2	Integrates expression in <i>y</i> e.g. " y^2 – M1 in part (b) and no other marks. (It area)	-		
Notes	Take away trapezium again having us Common Error: Integrates $-x^2 + 9x - 18$ is likely to be Integrates $2 - 11x - x^2$ is likely to e M Writing $\int_{2}^{9} (10x - x^2 - 8) - (10 - x) dx$	e M1A1A0dM1B0M1A0 1A0A0dM1B0M1A0		