Aul AAA Online Maths Teaching

Mark Scheme

Q1.

Question Number	Scheme	Marks
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 M1 A1 DM1 A1
	N.B. They may use a different variable, other than d , in their moments equations e.g. say they use $x = SG$ consistently, they can score all the marks for their two equations and if they eliminate x correctly, DM1 A1 (for M), and, if they found x correctly, then added 0.5 to obtain d , the other A1 also.	
	First M1 for moments about S (need correct no. of terms, so if they don't realise that the reaction at T is zero it's M0) to give an equation in d and M only. First A1 for a correct first equation in d and M only. (A1 for both g's	
	or no g's but A0 if one g is missing) N.B. They may use 2 equations and eliminate to obtain their equation in d and M only e.g. $M(A)$ 0.5 R_S = 30 gd and (^) R_S = 30 g + M_S and then eliminate R_S . The M mark is only earned once they have produced an equation in d and M only, with all the usual rules about correct no. of terms etc applying to all the equations they use to obtain it.	
	Second M1 for moments about T (need correct no. of terms, so if they don't realise that the reaction at S is zero it's M0) to give an equation in d and M only Second A1 for a correct second equation in d and M only. (A1 for both	
	g's or no g's but A0 if one g is missing) N.B. They may use 2 equations and eliminate to obtain their equation in d and M only e.g. $M(B)$ $2R_T = 30g(6 - d)$ and $(^)$ $R_T = 30g + Mg$ and then eliminate R_T . The M mark is only earned once they have produced an equation in d and M only, with all the usual rules about correct no. of terms etc applying to all the equations they use to obtain it.	

Third M1, dependent on 1 st and 2 nd M marks, for eliminating either M	
or d to produce an equation in either d only or M only.	
Third A1 for $(d=)$ 1.2 oe (N.B. Neither this A mark nor the next one	
can be awarded if there are any errors in the equations.)	
Beware: If one g is missing consistently from each of their equations,	
they can obtain $d = 1.2$ but award A0	
Fourth A1 for $(M=)$ 42	
Scenario 1: Below are the possible equations, (if they don't use $M(S)$),	
any two of which can be used, by eliminating R_S , to obtain an equation in d and M only, for the first M1.	
N.B. If R_T appears in any of these and doesn't subsequently become zero then it's M0.	
$M(A) = 0.5R_S = 30gd$	
$M(B)$ 5.5 $R_S = 30g(6-d) + 6Mg$	
$M(T)$ 3.5 $R_S = 30g(4-d) + 4Mg$	
$(^{\wedge}) \qquad R_S = 30g + Mg$	
Scenario 2: Below are the possible equations, (if they don't use $M(T)$), any two of which can be used, by eliminating R_T , to obtain an equation in d and M only, for the second M1.	
N.B. If R_S appears in any of these and doesn't subsequently become zero then it's M0.	
$M(A) \qquad 4R_T = 30gd + 6Mg$	
$M(B)$ $2R_T = 30g(6-d)$	
$M(S)$ 3.5 $R_T = 30g(d - 0.5) + 5.5Mg$	
$(^{\circ}) \qquad R_T = 30g + Mg$	

Question Number	Scheme	Ma	arks
(a)	$T_A + T_C = 85g$	50 NO	
	OR $M(A)$, $25g \times 2.5 + 60g \times 5 = 4.5 \times T_C$	M1 A1	
	OR $M(C)$, $T_A \times 4.5 + 60g \times 0.5 = 25g \times 2$		
	OR $M(B)$, $T_4 \times 5 + T_C \times 0.5 = 25g \times 2.5$		
	OR $M(G)$, $T_A \times 2.5 + 60g \times 2.5 = 2 \times T_C$	M1 A1	
	$T_A = \frac{40g}{9} = 44$ N or 43.6N; $T_C = \frac{725g}{9} = 790$ N or 789 N	A1; A1	(6)
(b)	$\mathbf{M}(C), \ 25g \times 2 = Mg \times 0.5$	M1 A1	
(i)	M = 100	A1	
(ii)	$T_c = 25g + 100g$	M1 A1	
	$T_c = 125g \ (1200 \ \text{or} \ 1230) \text{N}$	B1	(6) 12
	Notes		(-)
(a)	First M1 for a moments or vertical resolution equation, with correct no. of terms and dimensionally correct. First A1 for a correct equation. Second M1 for a moments equation, with correct no. of terms and dimensionally correct. Second A1 for a correct equation. Third A1 for 44 (N) or 43.6 (N) or 40g/9 Fourth A1 for 790 (N) or 789 (N) or 725g/9 Deduct 1 mark for inexact multiples of g N.B. If they assume that both tensions are the same, can only score max M1 in (a) for M(A) or M(C). If a vertical resolution is used, please give marks for this equation FIRST. If not, enter marks for each moments equation in the order in which they appear.		

(b) SCHEME CHANGE

B1 BECOMES THE FOURTH A1

First M1 for a moments equation with $T_A = 0$

First A1 for a correct equation

Second A1 for M = 100

Second M1 for a(nother) moments or vertical resolution equation with $T_A = 0$

Third A1 for a correct equation

Fourth A1 (B1) for $T_C = 125g$ or 1230 (N) or 1200 (N)

N.B. Some candidates may need to solve 2 simult. equations in M and T_C and so will earn the 'equation' marks before they earn Second and Fourth A (B) marks.

If a vertical resolution is used, please give marks for this equation SECOND. If not, enter marks for each moments equation in the order in which they appear.

The possible equations are:

 $T_C = 25g + Mg$

M(C), $25g \times 2 = Mg \times 0.5$

M(A), $25g \times 2.5 + 5Mg = 4.5 T_C$

M(B), $25g \times 2.5 = T_C \times 0.5$

M(G), $T_C \times 2 = Mg \times 2.5$

Any two of these can each earn M1A1 (M0 if incorrect no. of terms)

Then Second A1 for M = 100

And Fourth A1 (B1) for $T_C = 125g$ or 1230 or 1200

N.B. No marks in (b) if they use any answers from (a) or M = 60

Question Number	Scheme	Marks
a	Resolving vertically: $T + 2T (= 3T) = W$	M1A1
	Moments about B: $2 \times 2T = (d-1)W$	M1A1
	Substitute and solve for d: $2 \times 2T = (d-1)3T$	DM1
	$d = \frac{7}{3} \text{(m)}$	A1 (6)
b	Moments about C: $(T_B \times 2) + (kW \times 1) = W \times \frac{2}{3}$	M1A1
	$T_{\mathcal{B}} = W \frac{\left(2 - 3k\right)}{6}$ or equivalent	A1 (3)
	solving $T_B \ge 0$ or $T_B > 0$ for k .	M1
c	$0 < k \le 2/3$ or $0 < k < 2/3$ only	A1 (2)
		[11]

Notes for Question

Question (a)

N.B. If Wg is used, mark as a misread.

First M1 for an equation in W and T and possibly d (either resolve vertically or moments about any point other than the centre of mass of the rod), with usual rules.

First A1 for a correct equation.

Second M1 for an equation in W and T and possibly d (either resolve vertically or moments about any point other than the centre of mass of the rod), with usual rules.

Second A1 for a correct equation.

N.B. The above 4 marks can be scored if their d is measured from a different point

Third M1, dependent on first and second M marks, for solving for d

Third A1 for d = 7/3, 2.3 (m) or better

N.B. Alternative

If a single equation is used (see below) by taking moments about the centre of mass of the rod, 2T(3 - d) = T(d - 1), this scores M2A2 (-1 each error)

Third M1, dependent on first and second M marks, for solving for d

Third A1 for d = 7/3

Question (b)

First M1 for producing an equation in T_B and W only, either by taking moments about C, or using two equations and eliminating

First A1 for a correct equation

Second A1 for W(2-3k)/6 oe.

N.B. M0 if they use any information about the tension(s) from part (a).

Question (c)

M1 for solving $T_B \ge 0$ or $T_B > 0$ for k.

A1 for $0 < k \le 2/3$ or 0 < k < 2/3 only.

N.B.

T = 0 = k = 2/3 then answer is M0.

If they also solve $T_C \ge 0$ or $T_C > 0$, can still score M1 and possibly A1.

Q4.

Question Number	Scheme	Marks
(a)	$M(D)$, $8R = (80g \times 6) + (200g \times 4)$ R = 160g, 1600 , 1570	M1 A1 A1 (3)
(b)	(\uparrow), $2S = 80g + 200g$ S = 140g, 1400, 1370	M1 A1 (2)
(c)	$M(B)$, $Sx + (S \times 10) = (80g \times 8) + (200g \times 6)$ 140x + 1400 = 640 + 1200 140x = 440	M1 A2
	$X = \frac{22}{7}$	A1 (4) 9

Q5.

Question Number	Scheme	Marks
(a)	$M(Q)$, $50g(1.4-x)+20g \times 0.7 = T_p \times 1.4$	M1 A1
3-40-50	$T_p = 588 - 350x$ Printed answer	A1 (3)
(b)	$M(P)$, $50gx + 20g \times 0.7 = T_Q \times 1.4$ or $R(\uparrow)$, $T_P + T_Q = 70g$	M1 A1
	$T_Q = 98 + 350x$	A1 (3)
(c)	Since $0 \le x \le 1.4$, $98 \le T_p \le 588$ and $98 \le T_Q \le 588$	M1 A1 A1
(d)	98 + 350x = 3 (588 - 350x)	(3) M1
	x = 1.19	DM1 A1 (3)

Question Number	Scheme	Marks
(a)	PQ	0
	A 2m 1	3 m B
	▼ Mg	
	→ xm →	
	$M(P), 50g \times 2 = Mg \times (x-2)$	M1 A1
	$M(Q), 50g \times 3 = Mg \times (12 - x)$	M1 A1
(i)	M = 25 (kg)	DM 1 A1
(ii)	x = 6 (m)	DM 1 A1
		(3
(b)	A 2m X X B 25g 50g	3 m B
	$(\uparrow)R + R = 25g + 50g$	M1 A1 f
	$M(A)$, $2R+12R = 25g \times 6 + 50g \times AX$	M1 A1 f
	AX = 7.5 (m)	DM 1 A1
		[14