Cull AAA Online Maths Teaching

Mark Scheme

Q1.

Question Number	Scheme		Marks
	N(0.2n, 0.16n)	B1: Mean = $0.2n$ and Var = $0.16n$ oe this may be awarded if they appear in the standardisation as $0.2n$ and either $0.16n$ or $\sqrt{0.16n}$	B1
	$P\left(Z > \frac{55.5 - 0.2n}{\sqrt{0.16n}}\right) = 0.0401$	M1: Using a continuity correction either 55.5 or 54.5	M1
	$\frac{55.5 - 0.2n}{\sqrt{0.16n}} = 1.75$	B1: Using a $z = \operatorname{awrt} \pm 1.75$ M1: Standardising using either 55.5, 54.5 or 55 and equal to a z value. Follow through their mean and variance. If they have not given the mean and Var earlier then they must be correct A1: A correct equation. May be awarded for $\frac{55.5 - 0.2n}{\sqrt{0.16n}} = 1.75$ Condone use of an inequality sign rather than an equals sign	B1M1A1
	$0.2n + 0.7\sqrt{n} - 55.5 = 0$	M1d: This is dependent on the previous method mark being awarded. Using either the quadratic formula or completing the square or factorising or any correct method to solve their 3 term equation. If they write the formula down then allow a slip. If no formula written down then it must be correct for their equation. May be implied by correct answer or √n = 15 or 342.25 NB you may award this mark if they use 54.5 for awrt 14.9, -18.4, 221 or 337 55 for awrt -18.4, 14.9,223 or -117 If the answer is not one of these then the method for solving their 3 term equation must be seen.	M1d
	$\sqrt{n} = 15$	A1: Allow 15 or -18.5 do not need to see n or \sqrt{n} . Condone $n = 15$ or $n = -18.5$	A1
	n = 225	A1 : cao 225 do not need to see n or \sqrt{n}	A1 (8)

Alternative method for last 3 marks $(0.2n - 55.5)^2 = (-0.7\sqrt{n})^2$		
$0.04n^2 - 22.69n + 3080.25 = 0$	M1 solving 3 term quadratic in n as above	
n = 225 or $1369/4$	A1 either 225 or 1369/4 or 342.25	11 10 10 10 10
n = 225	A1must select 225	Total 8

Q2.

Question Number	Scheme		Marks
(a)	$z = \frac{53 - 50}{2}$ Attempt to stand	lardise	M1
	P(X > 53) = 1 - P(Z < 1.5) 1-probability required can	n be implied	B1
	=1-0.9332 =0.0668		A1 (3)
(b)	$P(X \le x_0) = 0.01$		M1
	$P(X \le x_0) = 0.01$ $\frac{x_0 - 50}{2} = -2.3263$		M1 B1
	$x_0 = 45.3474$ awrt	t 45.3 or 45.4	M1 A1 (5)
(c)	P(2 weigh more than 53kg and 1 less) = $3 \times 0.0668^2 (1 - 0.0668)$		B1 M1 A1ft
	= 0.012492487	awrt 0.012	A1 (4)
			(12 marks)

Q3.

Question Number	Scheme	Marks
(a)	n is large and p close to 0.5	B1B1 (2
(b)	There would be no pea seeds left	B1 (1)
(c)	$H_0: p = 0.55 H_1: p \neq 0.55$	B1 (1)
(d)	$X \sim N(121, 54.45)$ $P(X \ge 134.5) = P\left(Z \ge \frac{134.5 - 121}{\sqrt{54.45}}\right)$ or $\pm \frac{x - 0.5 - 121}{\sqrt{54.45}} = 1.96$ $= P(Z \ge 1.8295)$	B1 M1M1A1
	= 1 - 0.9664 $= 0.0336/0.0337$ $x = 135.96$	A1
	Accept H ₀ not in CR, not significant The <u>company's claim</u> is justified or <u>55</u> % of its pea <u>seeds germinate</u>	M1 A1cso
	Alternative $X \sim N(99, 54.45)$ $P(X \le 85) = P\left(Z \le \frac{85.5 - 99}{\sqrt{54.45}}\right) \text{ or } \pm \frac{x + 0.5 - 99}{\sqrt{54.45}} = 1.96$	B1 M1 M1 A1
	$= P(Z \ge 1.8295)$ $= 1 - 0.9664$ $= 0.0336/0.0337$ $x = 107.5$	MIMIA
	Accept H ₀ not in CR, not significant The company's claim is justified or 55% of its pea seeds germinate Notes	M1 Alcso [11
(a)	B1 accept $n > 50$ (or any number bigger than 50) B1 p close to 0.5 NB Do not accept $np > 5$, $nq > 5$.	
(b)	Must have the idea of no peas left. They must mention either pea or seeds.	
(c)	B1 both hypotheses correct. Must use p or π and 0.55 oe. Accept the hypothese	eses in part (d)
(d)	B1 correct mean and Var, may be seen in the standardiation formula as 121	

7.38 to 2dp or implied by a correct answer

M1 for attempting a continuity correction (Method 1:135/85 \pm 0.5 / Method 2:x \pm 0.5)

M1 for standardising using their mean and their standard deviation and using either Method 1 [134.5, 135, 135.5, 85, 85.5 or 84.5 accept $\pm z$.] Method 2 [$(x \pm 0.5)$ and equal to a $\pm z$ value]

A1 correct z value awrt
$$\pm 1.83$$
 or $\pm \frac{134.5 - 121}{\sqrt{54.45}} \left(\frac{85.5 - 99}{\sqrt{54.45}} \right)$ or $\pm \frac{x - 0.5 - 121}{\sqrt{54.45}} = 1.96$

$$\left(\pm \frac{x + 0.5 - 99}{\sqrt{54.45}} = 1.96\right)$$
 or (allow 1.6449 if 1 tail test in (c))

A1 awrt 0.0336/0.0337 or awrt 136 (allow 126 if one tail test in (c)) or a comparison of awrt1.83 with 1.96 (1.6449)

M1 A correct statement. Accept H₀, oe if a 2-tailed test in (c), reject H₀, oe if a 1-tailed test in (c). Allow for a correct contextual statement. Do not allow contradictions of non-contextual statements.

Al A correct contextual statement to include words in bold/underlined for a 2-tailed test. This is not a follow through mark.

NB if finding P(X=135) they can get B1 M1 M1 A0 A0 M0 A0

Question	Scheme	Marks	AOs
(a)	$\frac{24.63-25}{\sigma'} = -1.0364$	M1	3.1b
	$[\sigma =]0.357$ (must come from compatible signs)	A1	1.1b
	P(D > k) = 0.4 or P(D < k) = 0.6	B1	1.1b
	$\frac{k-25}{0.357} = 0.2533$	M1	3.4
	k = awrt 25.09	A1	1.1b
		(5)	
(b)	$[Y \sim B(200, 0.45) \rightarrow] W \sim N(90, 49.5)$	B1	3.3
	$P(Y < 100) \approx P(W < 99.5) \left[= P\left(Z < \frac{99.5 - 90}{\sqrt{49.5}}\right) \right]$	M1	3.4
	= 0.9115 awrt <u>0.912</u>	A1	1.1b
	59	(3)	
(c)	$H_0: \mu = 25$ $H_1: \mu < 25$	B1	2.5
	$[\overline{D} \sim] N\left(25, \frac{0.16^2}{20}\right)$	M1	3.3
	$P(\overline{D} < 24.94)[= P(Z < -1.677)] = 0.046766$	A1	3.4
	p = 0.047 < 0.05 or $z = -1.677 < -1.6449or 24.94 < 24.94115or reject H_0 in the critical region/significant$	M1	1.1b
	There is sufficient evidence to support Hannah's belief.	A1	2.2b
		(5)	
		(1	3 marks)

	Notes
(a)	 M1: for standardising 24.63, 25 and 'σ' (ignore label) and setting = to z where 1 < z < 2 A1: [σ =] awrt 0.36. Do not award this mark if signs are not compatible. B1: for either correct probability statement (may be implied by correct answer) this mark may be scored for a correct region shown on a diagram M1: for a correct expression with z = awrt 0.253 (may be implied by correct answer) A1: awrt 25.09 (Correct answer with no incorrect working scores 5 out of 5)
(b)	B1: setting up normal distribution approximation of binomial N(90, 49.5) (may be implied by a correct answer) Look out for e.g. $\sigma = \frac{3\sqrt{22}}{2}$ or $\sigma = \text{awrt } 7.04$ M1: attempting a probability using a continuity correction i.e. $P(W < 100.5)$, $P(W < 99.5)$ or $P(W < 98.5)$ condone \leq (The continuity correction may be seen in a standardisation). A1: awrt 0.912 [Note: 0.911299 from binomial scores 0 out of 3]
(c)	 B1: for both hypotheses in terms of μ M1: selecting suitable model must see N(ormal), mean 25, sd = 0.16/√20 (o.e.) or var = 4/3125 (o.e.) Condone N(25, 0.16/√20) if 0.16/√20 then used as s.d. A1: p value = awrt 0.047 or test statistic awrt -1.68 or CV awrt 24.941 (any of these values imply the M1 provided they do not come from Normal mean = 24.94) M1: a correct comparison (including compatible signs) or correct non-contextual conclusion (f.t. their p value, test statistic or critical value in the comparison) M1 may be implied by a correct contextual statement NB Any contradictory non contextual statements/comparisons score M0A0 e.g. 'p < 0.05, not significant' A1: correct conclusion in context mentioning Hannah's belief or the mean amount/liquid in each bottle is now less than 25ml (dep on M1A1M1)

Q5.

Scheme Marks AOS				Onune i
$P(L > 50.98) = 0.025$ $P(L > 50.98 - \mu) = 1.96$ $\mu = 50$ $P(49 < L < 50.75)$ $P(49 < L < 50.75)$ $P(49 < L < 50.75)$ $P(5)$ $P(5)$ $P(5)$ $P(7)$ $P(8)$ P	uestion	Scheme	Marks	AOs
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(a)	49 50.75		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		P(L > 50.98) = 0.025	B1cao	3.4
$P(49 < L < 50.75)$ $= 0.9104$ awrt 0.910 A1ft 1.1b (5) (b) $S = \text{number of strips that cannot be used so } S \sim B(10, 0.090)$ M1 3.3 $= P(S \le 3) = 0.991166$ awrt 0.991 A1 1.1b (2) (c) $H_0: \mu = 50.1$ $H_1: \mu > 50.1$ $\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$ M1 3.3 $P(\overline{X} > 50.4) = 0.0264$ A1 A1 A1 A1 There is insufficient evidence that the mean length of strips is greater than 50.1 A1 A1 A1 A2.2b		$\therefore \frac{50.98 - \mu}{0.5} = 1.96$	M1	1.1b
$= 0.9104 \text{awrt } \underline{0.910} \qquad \text{A1ft} \qquad 1.1b$ (5) (b) $S = \text{number of strips that cannot be used so } S \sim B(10, 0.090) \qquad M1 \qquad 3.3$ $= P(S \leqslant 3) = 0.991166 \text{awrt } 0.991 \qquad \text{A1} \qquad 1.1b$ (2) (c) $H_0: \mu = 50.1 \qquad H_1: \mu > 50.1 \qquad B1 \qquad 2.5$ $\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right) \text{and} \overline{X} > 50.4 \qquad M1 \qquad 3.3$ $P(\overline{X} > 50.4) = 0.0264 \qquad \text{A1} \qquad 3.4$ $p = 0.0264 > 0.01 \text{or} z = 1.936 < 2.3263 \text{and not} \text{significant} \qquad \text{A1} \qquad 1.1b$ There is insufficient evidence that the <u>mean length of strips is greater than 50.1</u>		$\therefore \mu = 50$	A1cao	1.1b
(b) $S = \text{number of strips that cannot be used so } S \sim B(10, 0.090)$ M1 3.3 $= P(S \leq 3) = 0.991166$ awrt 0.991 A1 1.1b (2) (2) (c) $H_0: \mu = 50.1$ $H_1: \mu > 50.1$ B_1 2.5 $\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$ M1 3.3 $P(\overline{X} > 50.4) = 0.0264$ A1 3.4 $p = 0.0264 > 0.01 \text{ or } z = 1.936 < 2.3263 \text{ and not significant}}$ There is insufficient evidence that the <u>mean length</u> of strips is greater than 50.1		P(49 < L < 50.75)	M1	3.4
(b) $S = \text{number of strips that cannot be used so } S \sim B(10, 0.090)$ M1 3.3 $= P(S \le 3) = 0.991166$ awrt 0.991 A1 1.1b (2) (2) (c) $H_0: \mu = 50.1$ $H_1: \mu > 50.1$ B1 2.5 $\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$ M1 3.3 $P(\overline{X} > 50.4) = 0.0264$ A1 3.4 $p = 0.0264 > 0.01 \text{ or } z = 1.936 < 2.3263 \text{ and not significant}}$ A1 1.1b There is insufficient evidence that the <u>mean length</u> of strips is <u>greater than 50.1</u>		= 0.9104 awrt <u>0.910</u>	A1ft	1.1b
$= P(S \le 3) = 0.991166 \text{ awrt } 0.991 $ A1 1.1b (2) (2) (c) $H_0: \mu = 50.1$ $H_1: \mu > 50.1$ B1 2.5 $\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$ M1 3.3 $P(\overline{X} > 50.4) = 0.0264$ A1 3.4 $p = 0.0264 > 0.01 \text{ or } z = 1.936 < 2.3263 \text{ and not significant}$ A1 1.1b There is insufficient evidence that the <u>mean length</u> of strips is <u>greater than 50.1</u> A1 2.2b			(5)	
(c) $H_0: \mu = 50.1$ $H_1: \mu > 50.1$ $B1$ 2.5 $\overline{X} \sim N \left(50.1, \frac{0.6^2}{15} \right)$ and $\overline{X} > 50.4$ $M1$ 3.3 $P(\overline{X} > 50.4) = 0.0264$ $A1$ 3.4 $p = 0.0264 > 0.01$ or $z = 1.936 < 2.3263$ and not significant $z = 1.936 < 2.3263$ and not $z = 1.936 < 2.3263$ $z = 1.936$ $z $	(b)	$S =$ number of strips that cannot be used so $S \sim B(10, 0.090)$	M1	3.3
(c) $H_0: \mu = 50.1$ $H_1: \mu > 50.1$ $B1$ 2.5 $\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$ $M1$ 3.3 $P(\overline{X} > 50.4) = 0.0264$ $A1$ 3.4 $p = 0.0264 > 0.01$ or $z = 1.936 < 2.3263$ and not significant $z = 1.936 < 2.3263$ and not $z = 1.16$ z		$= P(S \le 3) = 0.991166$ awrt 0.991	A1	1.1b
$\overline{X} \sim N \left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$ M1 3.3 $P(\overline{X} > 50.4) = 0.0264$ A1 3.4 $p = 0.0264 > 0.01$ or $z = 1.936 < 2.3263$ and not significant A1 1.1b There is insufficient evidence that the <u>mean length</u> of strips is greater than 50.1			(2)	
$P(\overline{X} > 50.4) = 0.0264 \qquad A1 \qquad 3.4$ $p = 0.0264 > 0.01 \text{ or } z = 1.936 < 2.3263 \text{ and not significant} \qquad A1 \qquad 1.1b$ There is insufficient evidence that the <u>mean length</u> of strips is greater than 50.1	(c)	$H_0: \mu = 50.1$ $H_1: \mu > 50.1$	B1	2.5
p = 0.0264 > 0.01 or $z = 1.936 < 2.3263$ and not significant There is insufficient evidence that the <u>mean length</u> of strips is greater than 50.1 A1 1.1b		$\overline{X} \sim \mathbf{N} \left(50.1, \frac{0.6^2}{15} \right) \text{and} \overline{X} > 50.4$	M1	3.3
There is insufficient evidence that the <u>mean length</u> of strips is greater than 50.1 A1 1.10 A2.2b		$P(\overline{X} > 50.4) = 0.0264$	A1	3.4
greater than 50.1		- A	A1	1.1b
(5)			A1	2.2b
1 v v v v v v v v v v v v v v v v v v v			(5)	

Notes:

(a)

1st M1: for standardizing with μ and 0.5 and setting equal to a z value (|z| > 1)

2nd M1: for attempting the correct probability for strips that can be used

2nd A1ft: awrt 0.910 (allow ft of their μ)

(b)

M1: for identifying a suitable binomial distribution

A1: awrt 0.991 (from calculator)

(c)

B1: hypotheses stated correctly

M1: for selecting a correct model (stated or implied)

1st A1: for use of the correct model to find p = awrt 0.0264 (allow z = awrt 1.94)

2nd A1: for a correct calculation, comparison and correct statement

3rd A1: for a correct conclusion in context mentioning "mean length" and 50.1

Q6.

Qu	Scheme	Marks	AO
(a)	[Let $N = \text{height from region } A$; $P(N > 180) =] 0.24937 awrt 0.249$	B1	1.1b
7.44	The state of the s	(1)	- 111
(b)	$H_0: \mu = 175.4 H_1: \mu \neq 175.4$	B1	2.5
	[S = height from region B] $\overline{S} \sim N\left(175.4, \frac{6.8^2}{52}\right)$ Allow $\sigma^2 = \text{awrt } 0.889$	M1	3.3
	$[P(\overline{S} > 177.2)] = 0.02814$	A1	3.4
	[0.028 > 0.025, Not sig, do not reject H ₀] Insufficient evidence to support student's claim	A1	2.2b
		(4)	
(c)	[p-value = 2×0.02814 =] 0.05628 in range $0.056 \sim 0.06$ or $5.6(\%) \sim 6(\%)$	B1ft (1)	1.2
		(6 mark	(s)

	Notes
(a)	B1 for awrt 0.249
(b)	B1 for both hypotheses correct in terms of μ (See below for one-tail test)
	M1 for selecting the correct model, may be implied by standardisation using correct values or may be implied by a correct value in 1st A1 e.g.(Prob =) 0.028 or awrt 0.972, (Z =) 1.9(08) (CV=) 177.25
	Condone use of S (or any other letter) instead of \overline{S}
	Condone use of $\overline{S} \sim N\left(177.2, \frac{6.8^2}{52}\right)$ but this will lose 2 nd A mark
	1 st A1 for probability of awrt 0.028 (allow 0.03 if P($\overline{S} > 177.2$) is seen)
	Condone 1 - 0.02814 = 0.9718(awrt 0972) only if clearly compared with 0.975
ALT	Allow $Z = 1.9(088)$ and comparison with 1.96 (or better: calc gives 1.95996)
	or CR of $[\bar{S}]$ 177.248 (awrt 177.25) Allow $[\bar{S}] > 177.248$ (awrt 177.25)
	Implied by diagram or correct interpretation of inequality with their CV
	(Ignore any attempt at a lower CR for \bar{S})
	2 nd A1 (dep on 1 st A1 and use of correct model. Use of N(177.2,) scores A0)
	for a conclusion using context: e.g. does not support student's claim
	or e.g. insufficient evidence of a difference in heights
	Do not allow 2 nd A mark for contradictory statements
	e.g. "significant" so "no support for claim"
(c)	B1ft for answer in range 0.056~0.06 or 5.6%~6% (Ranges are inclusive, condone missing %) (can ft their probability, provided < 0.5, from part (b) but not 0.025 leading to 5%)
NB	One-tail test [Max of 3/5 for (b) and (c)]
	In (b) B0 (hypotheses) M1(model as above) 1 st A1[for probability or Z compared with 1.6449 or
	CR $\left[\overline{S}\right]$ or > 176.95 (awrt 177)] 2^{nd} A1 for conclusion in context that supports claim or
	"heights of men from B is different from/greater than from A"
	In (c) B0

Question	Scheme	Ma	rks
(a)	$[z=]\pm\left(\frac{150-162}{7.5}\right)$	Mı	
	[z=]-1.6	AI	
	[Z=]-1.6 [P(F>150) = P(Z>-1.6) =] = 0.9452(0071) awrt <u>0.945</u>	A1	(3)
(b)	$z = \pm 0.2533$ (or better seen)	Bı	
	$(\pm)\frac{s-162}{7.5} = 0.2533 (47)$	M1	
	s = 163.9 awrt <u>164</u>	A1	(3)
(c)	$z = \pm 1.2816$ (or better seen) $\frac{162 - \mu}{9} = -1.2815515$	B1 M1 A1	
	$\mu = 173.533$ awrt <u>174</u>	Ai	(4)
			[1
	Notes		
	Allow use of symmetry and therefore 174 instead of 150 1st A1 for -1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.9 2nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 – 0.9452 therefore answer only 3/3	945(2) i n award	s A1.
(b)	 1st A1 for -1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.9 2nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 - 0.9452 there	n award	s A1.
(b)	 1st A1 for -1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.9 2nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 - 0.9452 there. Correct answer only 3/3 B1 for (z=) ± 0.2533 (or better) seen. Giving z = ± 0.25 or ± 0.253 scores B0 here but may get M1A1 	n award	s A1. 1 A0
(b) (c)	 1st A1 for −1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.9 2nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 − 0.9452 there Correct answer only 3/3 B1 for (z =) ± 0.2533 (or better) seen. Giving z = ± 0.25 or ± 0.253 scores B0 here but may get M1A1 M1 for standardising with s (o.e.), 162 and 7.5, allow ±, and setting equal to a z only allow 0.24 ≤ z ≤ 0.26 Condone e.g. 160 for 162 etc A1 for awrt 164 (Correct answer only scores B0M1A1) B1 for (z =) ± 1.2816 (or better) seen. Allow awrt ± 1.28 if B0 scored in (b) for z for attempting to standardise with 162, 9 and μ, and setting equal to a z valuable 1.26 < z < 1.31. Allow ± here so signs don't have to be compatible. 1st A1 for a correct equation with compatible signs and 1.26 < z < 1.31 	n award value = awrt <u>+</u> ie wher	0.25
23.5	 1st A1 for −1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.9 2nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 − 0.9452 there	value = awrt± ie wher A1	(0.25 e
23.5	 1st A1 for −1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.9 2nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 − 0.9452 there	value = awrt± ie wher A1	(0.25 e
23.5	 1st A1 for −1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.9 2nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 − 0.9452 there Correct answer only 3/3 B1 for (z =) ± 0.2533 (or better) seen. Giving z = ± 0.25 or ± 0.253 scores B0 here but may get M1A1 M1 for standardising with s (o.e.), 162 and 7.5, allow ±, and setting equal to a z only allow 0.24 ≤ z ≤ 0.26 Condone e.g. 160 for 162 etc A1 for awrt 164 (Correct answer only scores B0M1A1) B1 for (z =) ± 1.2816 (or better) seen. Allow awrt ± 1.28 if B0 scored in (b) for z for attempting to standardise with 162, 9 and μ, and setting equal to a z valuation 1.26 < z < 1.31. Allow ± here so signs don't have to be compatible. 1st A1 for a correct equation with compatible signs and 1.26 < z < 1.31 2nd A1 for awrt 174 (Correct answer only scores B0M1A1A1). Dependent on 1st 	value = awrt <u>+</u> ie wher A1 re is cle	0.25 e aar A1A

Q8.

Question	Scheme	Marks
(a)	$[P(M < 145) =] P(Z < \frac{145 - 150}{10})$	M1
	= P(Z < -0.5) or P(Z > 0.5)	A1
	$= \mathbf{awrt} \ \underline{0.309}$	A1 (3)
(b)	$[P(B>115) = 0.15 \Rightarrow] \frac{115-100}{d} = 1.0364$ $\underline{d = 14.5} \qquad (Calc gives 1.036433)$ $\underline{d = 14.5}$	M1B1A1 A1 (4)
(c)	$[P(X>\mu+15 \mid X>\mu-15) =] \frac{P(X>\mu+15)}{P(X>\mu-15)}$	M1
	$=\frac{0.35}{1-0.35}$	A1
	$=\frac{7}{13}$ or <u>awrt 0.538</u>	A1 (3)
		[10]
		110
914	Notes Condone poor use of notation if a correct line appears later.	
(a)		stead of 145
(a) (b)	Condone poor use of notation if a correct line appears later. M1 for standardising with 145, 150 and 10. Allow \pm and use of symmetry so 155 in 1 st A1 for $P(Z < -0.5)$ or $P(Z > 0.5)$ i.e. a z value of \pm 0.5 and a correct region ind	istead of 145
85.00	Condone poor use of notation if a correct line appears later. M1 for standardising with 145, 150 and 10. Allow \pm and use of symmetry so 155 in 1 st A1 for $P(Z < -0.5)$ or $P(Z > 0.5)$ i.e. a z value of \pm 0.5 and a correct region ind 2 nd A1 for awrt 0.309 Answer only is 3/3 M1 for $\pm \frac{115-100}{d} = z$ where $ z > 1$ Condone MR of $\mu = 150$ instead of 100 for B1 for a standardised expression = \pm 1.0364 (do not allow for use of 1 – 1.0364) 1 st A1 for $z = \text{awrt } 1.04$ and compatible signs i.e. a correct equation with $z = \text{awrt } 1.04$	istead of 145 icated
85.5	Condone poor use of notation if a correct line appears later. M1 for standardising with 145, 150 and 10. Allow \pm and use of symmetry so 155 in 1st A1 for $P(Z < -0.5)$ or $P(Z > 0.5)$ i.e. a z value of \pm 0.5 and a correct region ind 2nd A1 for awrt 0.309 Answer only is 3/3 M1 for $\pm \frac{115-100}{d} = z$ where $ z > 1$ Condone MR of $\mu = 150$ instead of 100 for B1 for a standardised expression $= \pm 1.0364$ (do not allow for use of $1 - 1.0364$)	istead of 145 icated
(b)	Condone poor use of notation if a correct line appears later. M1 for standardising with 145, 150 and 10. Allow \pm and use of symmetry so 155 in 1st A1 for $P(Z < -0.5)$ or $P(Z > 0.5)$ i.e. a z value of \pm 0.5 and a correct region ind 2nd A1 for awrt 0.309 Answer only is $3/3$ M1 for $\pm \frac{115-100}{d} = z$ where $ z > 1$ Condone MR of $\mu = 150$ instead of 100 for B1 for a standardised expression $= \pm 1.0364$ (do not allow for use of $1 - 1.0364$) 1st A1 for $z = awrt 1.04$ and compatible signs i.e. a correct equation with $z = awrt 1.04$ A1 for awrt 14.5 (allow awrt 14.4 if $z = awrt 1.04$ is seen) Answer only of awrt 14.473 scores M1B1A1A1 Answer only of awrt 14.48 scores M1B0A1A1	istead of 145 icated r M1B1only
(b) Calc	 Condone poor use of notation if a correct line appears later. M1 for standardising with 145, 150 and 10. Allow ± and use of symmetry so 155 in 1st A1 for P(Z < -0.5) or P(Z > 0.5) i.e. a z value of ± 0.5 and a correct region ind 2nd A1 for awrt 0.309 Answer only is 3/3 M1 for ± 115-100/d = z where z > 1 Condone MR of μ = 150 instead of 100 for B1 for a standardised expression = ± 1.0364 (do not allow for use of 1 - 1.0364) 1st A1 for z = awrt 1.04 and compatible signs i.e. a correct equation with z = awrt 1.04 2nd A1 for awrt 14.5 (allow awrt 14.4 if z = awrt 1.04 is seen) Answer only of awrt 14.473 scores M1B1A1A1 Answer only of awrt 14.48 scores M1B0A1A1 M1 for a correct ratio expression need P(X > μ + 15) on numerator. Allow use of May be implied by next line. 	istead of 145 icated r M1B1only

Q9.

		The state of the s		rice materia
Qu		eme	Marks	AOs
(a)	$[P(L < 7.902) = 0.025 \Rightarrow] \frac{7.902 - 8}{x} =$	-1.96 oe	M1	3.4
	[x =]0.05*	A1cso*	1.1b
	SC B1(mark as M0A1) for $\frac{7.902-8}{0.05}$ =	-1.96 ⇒ 0.024998		
			(2)	
(b)	$P(7.94 \le L \le 8.09) = 0.8490$	awrt 0.849	B1	1.1b
7 7			(1)	
(c)	[P(L < 7.94) =] 0.115069(awrt 0.115)	or $[P(L > 8.09) =] 0.03593 (awrt 0.036)$	B1	1.1b
	P(L < 7.94) = 0.115069 (awrt 0.115)	& $[P(L > 8.09) =] 0.03593$ (awrt 0.036)	B1	1.1b
	Expected income per 500 rods = \sum (Inc. (500×"0.849"×0.5)+(500×"0.1150" Expected profit per rod = \sum (Profit×profit) (Profit × profit) (Profit × profit) (Profit × profit) (Profit × profit) (Profit) (Prof	'×0.05)+(500×"0.03593"×0.4) or obability)	М1	3.4
	Expected profit per 500 rods $500 \times \sum (Profit \times probability) \text{ or } \sum (Inc.)$ = $500 \times "0.2446"$ or = "22	tome × probability × 500) – 500 × 0.2 $(2.3"-500 \times 0.2)$	M1d	3.1b
	=[£]122.3	awrt [£]122	A1	1.1b
			(5)	
(d)	Let X ~ B(200, 0.015)		M1	3.3
	P(X≤5) =	$P(X \geqslant 6) =$	M1	1.1b
	0.9176	0.0824	A1	1.1b
	Manufacturer is unlikely to achieve their aim since 0.9176 < 0.95	Manufacturer is unlikely to achieve their aim since 0.0824 > 0.05	A1ft	2.4
			(4)	

16		Notes:	100	(12 marks)
(a)	Using the normal distribution to set up equation. Allow σ for x and awrt ± 1.96			
	Al* cso For a correct expression for x followed by 0.05 or 0.05000 No incorrect working seen			ring seen
(b)	Bl	awrt 0.849		
(c)	Bl	awrt 0.115 (Implied by awrt 57.5 for number of rods) or awrt 0.036 (Implied by awrt 18 for number of rods)		
	Bl	awrt 0.115 (Implied by awrt 57.5 for number of rods) and awrt 0.036 (Implied by awrt 18 for number of rods)		
	M1	Correct method to find the total income of 500 rods. Attempt at all 3 with at least two correct and no extras or Correct method to find sum of all three profits with at least two of 30, -15 or 20 correct. May work in pence but need to be consistent. Allow awrt 24.5 or 0.245		
	Mld	Dep on previous method for finding profit for 500 rods. May work in pence but need to be consistent. Allow "0.2446"×500 or "their income" for 500 rods – 500 × 0.2 (accept 499 or 501)		
	Al	All previous marks must be awarded for awrt 122 awrt 12200p NB if uses any integer values for numbers of rods then it is A0 other than for 18 for $L \ge 8.09$		
(d)	Ml	Selecting the appropriate model. May be seen or used. Allow B(200,0.985) or Po(3) Condone B(0.015, 200) or B(0.985, 200).		
	M1	Writing or using $P(X \le 5)$ Do not accept $P(X < 6)$ unless found $P(X \le 5)$	Writing or using $P(X \ge 6)$ Do $P(X > 5)$ unless found $P(X \ge 6)$	500
	Al	0.92 (Poisson 0.916)	0.08 or better	
	Alft	Need at least one of the method marks to be awarded. Correct conclusion with the comparison (may be in words). Ft "their $p = 0.9176$ " as long as $p > 0.9$ If "their 0.9176 " 0.95 must be unlikely If "their 0.9176 " 0.95 they must say be likely To ft the alternative then $p < 0.1$		