البياً مُصْمُ Online Maths Teaching

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
(a)	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = \right\} 2x^2 - 7x - 4$	M1	1.1b
	$\left(dx \right)^{2x}$	A1	1.1b
		(2)	
(b)	Attempts to solve $\left\{\frac{dy}{dx} = \right\} 2x^2 - 7x - 4 \dots 0$ e.g., $(2x+1)(x-4) = 0$ leading to $x = \dots$ and $x = \dots$	M1	1.1b
	Correct critical values $x = -\frac{1}{2}, 4$	A1	1.1b
	Chooses inside region for their critical values	dM1	1.1b
	Accept either $-\frac{1}{2} < x < 4$ or $-\frac{1}{2} \le x \le 4$	A1	1.1b
		(4)	

Notes:

(a)

M1: Decreases the power of x by one for at least one of their terms. Look for $x^n \rightarrow ... x^{n-1}$ Allow for $5 \rightarrow 0$

$$\mathbf{A1:} \quad \left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \right\} 2x^2 - 7x - 4$$

(b)

M1: Sets their $\frac{dy}{dx}$...0 where ... may be an equality or an inequality and proceeds to find two values for x from a 3TQ using the usual rules. This may be implied by their critical values.

A1: Correct critical values $x = -\frac{1}{2}$, 4

These may come directly from a calculator and might only be seen on a sketch.

dM1: Chooses the inside region for their critical values.

A1: Accept either
$$-\frac{1}{2} < x < 4$$
 or $-\frac{1}{2} \le x \le 4$ but not, e.g., $-\frac{1}{2} < x \le 4$ Condone, e.g., $x > -\frac{1}{2}$, $x < 4$ or $x > -\frac{1}{2}$ and $x < 4$ or $x < -\frac{1}{2}$ or $x \in \left(-\frac{1}{2}, 4\right)$ or $x \in \left[-\frac{1}{2}, 4\right]$

Note: You may see $x < -\frac{1}{2}$, x < 4 in their initial work before $-\frac{1}{2} < x < 4$. Condone this so long as it is clear that the $-\frac{1}{2} < x < 4$ is their final answer.

Question Number	Scheme	Marks	Notes
(a)	Integrate: $\mathbf{v} = (t^3 - 2t^2)\mathbf{i} + (3t^2 - 5t)\mathbf{j} + \mathbf{C}$	M1	At least 3 powers going up. Condone errors in constants. Must be two separate component equations if not in vector form. Could be in column vector form. Allow with no "+ C" -1 each integration error. i.e. All correct A1A1
		A2	1 error A1A0, 2 or more errors A0A0 Allow with no "+ C"
	$t = 3 : \mathbf{v} = 9\mathbf{i} + 12\mathbf{j} + \mathbf{C} = 11\mathbf{i} + 10\mathbf{j}$ $\mathbf{C} = 2\mathbf{i} - 2\mathbf{j}$	DM1	Substitute given values to find C. Dependent on the previous M mark
	$\mathbf{v} = (t^3 - 2t^2 + 2)\mathbf{i} + (3t^2 - 5t - 2)\mathbf{j}$	A1 (5)	Correct velocity (any equivalent form)
(b)	Parallel to $\mathbf{i} \implies 3t^2 - 5t - 2 = 0$	M1	Set j component of their v equal to zero and solve for t Correct answers imply method, but incorrect answers need to show method clearly.
	(3t+1)(t-2) = 0, $t = 2$	A1	Correct only. Ignore $-\frac{1}{3}$ if present.
	No. office variables of freeze	DM1	Substitute their t to find v. Dependent on the previous M mark.
	$ \mathbf{v} = 8 - 8 + 2 = 2 \text{ (m s}^{-1})$	A1 (4)	The answer must be a scalar – the Q asks for speed. Results from negative t must be rejected.
		[9]	- 00

Question Number	Scheme	Marks	Notes
(a)	$\mathbf{a} = \frac{\mathbf{d}\mathbf{v}}{\mathbf{d}t} = 6t\mathbf{i} + (4 - 2t)\mathbf{j}$ When $t = 1$, $\mathbf{a} = 6\mathbf{i} + 2\mathbf{j}$	M1 A1 DM1	Differentiate v to obtain a . Accept column vector or i and j components dealt with separately. Substitute $t = 1$ into their a . Dependent on 1^{st} M1
	$ \mathbf{a} = \sqrt{6^2 + 2^2} = \sqrt{40} = 6.32 \text{ (m s}^2\text{)}$	DM1 A1 (5)	Use of Pythagoras to find the magnitude of their a. Allow with their t. Dependent on 1st M1 Accept awrt 6.32, 6.3 or exact equivalents.
(b)	$\mathbf{r} = \int (3t^2 - 1)\mathbf{i} + (4t - t^2)\mathbf{j} dt$ $= (t^3 - t + C)\mathbf{i} + (2t^3 - \frac{1}{3}t^3 + D)\mathbf{j}$ $t = 0, \mathbf{r} = \mathbf{i} \Rightarrow C = 1, D = 0$ When $t = 3, \mathbf{r} = 25\mathbf{i} + 9\mathbf{j}$ (m)	M1 A1 DM1 DM1 A1	Integrate v to obtain r Condone C , D missing Use $t = 0$, $\mathbf{r} = \mathbf{i}$ to find $C \& D$ Substitute $t = 3$ with their $C \& D$ to find \mathbf{r} . Dependent on both previous Ms. cao. Must be a vector.
		(5) 10	

Question	Scheme	Marks	AO
(a)	Differentiate v	M1	1.1a
	$(\mathbf{a} =)6\mathbf{i} - \frac{15}{2}t^{\frac{1}{2}}\mathbf{j}$	A1	1.1b
	$= 6i - 15j \text{ (m s}^{-2})$	A1	1.1b
		(3)	
(b)	Integrate v	M1	1.1a
	$(\mathbf{r} =) (\mathbf{r}_0) + 3t^2 \mathbf{i} - 2t^{\frac{5}{2}} \mathbf{j}$	A1	1.1b
	= $(-20\mathbf{i} + 20\mathbf{j}) + (48\mathbf{i} - 64\mathbf{j}) = 28\mathbf{i} - 44\mathbf{j} \text{ (m)}$	A1	2.2a
		(3)	
		(6)	

Ma	rks	Notes
		N.B. Accept column vectors throughout and condone missing brackets in working but they must be there in final answers
a	M1	Use of $\mathbf{a} = \frac{d\mathbf{v}}{dt}$ with attempt to differentiate (both powers decreasing by 1) M0 if \mathbf{i} 's and \mathbf{j} 's omitted and they don't recover
	A1	Correct differentiation in any form
	A1	Correct and simplified. Ignore subsequent working (ISW) if they go on and find the magnitude.
b	M1	Use of $\mathbf{r} = \int \mathbf{v} dt$ with attempt to integrate (both powers increasing by 1) M0 if \mathbf{i} 's and \mathbf{j} 's omitted and they don't recover
	A1	Correct integration in any form. Condone ro not present
	A1	Correct and simplified.

Q5.

Q	Scheme	Marks	Notes
a	Horizontal motion: $x = 3t$	B1	
8	Vertical motion: $y = 4t - \frac{g}{2}t^2$	M1	Correct use of <i>suvat</i> . Condone sign error(s)
	5.500 5	A1	
	$\left(y = 4 \times \frac{x}{3} - \frac{g}{2} \times \frac{x^2}{9}\right), \lambda = -\left(\frac{4\lambda}{3} - \frac{g\lambda^2}{18}\right)$	M1	Use $y = -x$ and form an equation in one variable
	$, \frac{7\lambda}{3} = \frac{g\lambda^2}{18}$	М1	solve for λ
	$\lambda = \frac{42}{g}$ or 4.3 (4.29)	A1 (6)	Not $\frac{30}{7}$
alta	Horizontal motion: $x = 3t$	B1	
	Vertical motion: $y = 4t - \frac{g}{2}t^2$	M1	Correct use of <i>suvat</i> . Condone sign error(s)
	1000 52	A1	
	$\Rightarrow -3t = 4t - \frac{1}{2}gt^2, \left(t = \frac{14}{g}\right)$	M1	Use $y = -x$ and form an equation in one variable
	$\lambda = 3t$	M1	Solve for λ
	$\lambda = 4.3$ (4.29)	A1 (6)	- H1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b	At A: $v \rightarrow 3 \text{ (m s}^{-1})$	B1	
	$v \uparrow 4-g \times \frac{14}{g}$	M1	Complete method using <i>suvat</i> to find $v \uparrow$ with their t or λ
	$=-10 (\text{m s}^{-1})$	A1	Accept +10 with direction confirmed by diagram
	Speed = $\sqrt{\left(\text{their }10\right)^2 + \left(3\right)^2}$	DM1	Dependent on the first M1 in (b)
	$=\sqrt{109} \text{ (m s}^{-1}\text{)}$	A1	(10.4) Allow for $v \uparrow = 10$
5-	$\tan^{-1}\left(\frac{\text{their }10}{3}\right) \text{ or } \tan^{-1}\left(\frac{3}{\text{their }10}\right)$	DM1	Use trig to find a relevant angle. Dependent on the first M1 in (b)
	Direction = 73.3° below the horizontal	Al	(1.28 radians) Accept direction 3i – 10. Do not accept a bearing
3		(7)	
Alt b	Loss in GPE: $mg\lambda = 42m$	B1	
	Gain in KE: $\frac{1}{2}mv^2 - \frac{1}{2}m \times 25$	M1	Terms must be dimensionally correct. Condone sign error.
8		Al	
	Solve for v: $42 = \frac{1}{2}v^2 - \frac{25}{2}$	M1	
	$v = \sqrt{109}$	Al	
-	$v\cos\theta = 3$	M1	Use trig, to find a relevant angle
	θ = 73.3° below the horizontal	A1 (7)	Accept correct angle marked correctly on a diagram.
		[13]	

Question	Scheme	Marks	AOs
(a)	Multiply out and differentiate wrt to time (or use of product rule i.e. must have two terms with correct structure)	M1	1.1a
	$v = 2t^3 - 3t^2 + t$	A1	1.16
	$2t^3 - 3t^2 + t = 0$ and solve: $t(2t - 1)(t - 1) = 0$	DM1	1.1b
	$t=0$ or $t=\frac{1}{2}$ or $t=1$; any two	A1	1.1b
	All three	A1	1.16
		(5)	
(b)	Find x when $t = 0, \frac{1}{2}, 1 \text{ and } 2: (0, \frac{1}{32}, 0, 2)$	M1	2.1
	Distance = $\frac{1}{32} + \frac{1}{32} + 2$	M1	2.1
	$2\frac{1}{16}$ (m) oe or 2.06 or better	A1	1.16
		(3)	
(c)	$x = \frac{1}{2}t^2(t-1)^2$	M1	3.1a
	$\frac{1}{2}$ perfect square so $x \ge 0$ i.e. never negative	A1 cso	2.4
		(2)	

Notes:	
(a)	
M1:	Must have 3 terms and at least two powers going down by 1
A1:	A correct expression
DM1:	Dependent on first M, for equating to zero and attempting to solve a cubic
A1:	Any two of the three values (Two correct answers can imply a correct method)
Al:	The third value
(b)	
M1:	For attempting to find the values of x (at least two) at their t values found in (a) or at $t=2$
or e	quivalent e.g. they may integrate their v and sub in at least two of their t values
M1:	Using a correct strategy to combine their distances (must have at least 3 distances)
A1: 2	$2\frac{1}{16}$ (m) oe or 2.06 or better
(c)	
Ml: I	dentify strategy to solve the problem such as:
(i)	writing x as $\frac{1}{2}$ × perfect square
(ii)	
(111	or using calculus i.e. identifying min points on x-t graph.

or using x-t graph.

Al cso: Fully correct explanation to show that $x \ge 0$ i.e. never negative

Question	Scheme	Marks	AOs
(a)	Put $t = 2$ in v and use Pythagoras: $\sqrt{12^2 + (-6\sqrt{2})^2}$	M1	3.1a
	$\sqrt{216}$, $6\sqrt{6}$ or 15 or better (m s ⁻¹)	A1	1.1b
		(2)	
(b)	Differentiate v wrt t to obtain a	M1	3.4
	$6t\mathbf{i} - 3t^{\frac{1}{2}}\mathbf{j}$ oe (m s ⁻²) isw	A1	1.1b
		(2)	
(c)	Integrate v wrt t to obtain r	M1	3.4
	$\mathbf{r} = t^3 \mathbf{i} - 4t^{\frac{3}{2}} \mathbf{j} \ (+\mathbf{C})$	A1	1.1b
	$(\mathbf{i} - 4\mathbf{j}) = 4^3 \mathbf{i} - 4 \times 4^{\frac{3}{2}} \mathbf{j} + \mathbf{C}$	M1	3.1a
	(-62i+24j) (m) isw e.g. if they go on to find the distance.	A1	1.1b
		(4)	

a	M1	Need square root but -ve sign not required. Allow i's and/or j's to go missing from their v at $t = 2$, provided they have applied Pythagoras correctly.
	A1	cao N.B. Correct answer with no working can score 2 marks.
b	M1	Both powers decreasing by 1. Allow a column vector. M0 if i or j is missing but allow recovery in (b).
	A1	cao. Do not accept a column vector.
c	M1	Both powers increasing by 1 M0 if i or j is missing but allow recovery.
	A1	(r =) not required
	M1	Putting $\mathbf{r} = (\mathbf{i} - 4\mathbf{j})$ and $t = 4$ into their displacement vector expression which must have C (allow C) to give an equation in C only, seen or implied. Must have attempted to integrate v for this mark to be available. N.B. C does not need to be found and this is a method mark, so allow slips.
	A1	cao

Q8.

Question	Scheme	Marks	AOs
(i)(a)	Integrate a wrt t to obtain velocity	M1	3.4
	$\mathbf{v} = (t - 2t^2)\mathbf{i} + \left(3t - \frac{1}{3}t^3\right)\mathbf{j} \ (+\mathbf{C})$	A1	1.1b
	$8i - \frac{28}{3}j \ (m \ s^{-1})$	A1	1.1b
		(3)	
(i)(b)	Equate i component of v to zero	M1	3.1a
	$t - 2t^2 + 36 = 0$	A1ft	1.1b
	t = 4.5 (ignore an incorrect second solution)	A1	1.1b
		(3)	
(ii)	Differentiate r wrt to t to obtain velocity	M1	3.4
	$\mathbf{v} = (2t - 1)\mathbf{i} + 3\mathbf{j}$	A1	1.1b
	Use magnitude to give an equation in t only	M1	2.1
	$(2t-1)^2 + 3^2 = 5^2$	A1	1.1b
	Solve problem by solving this equation for t	M1	3.1a
	t = 2.5	A1	1.1b
		(6)	

Notes: A	Notes: Accept column vectors throughout				
(i)(a)	M1	At least 3 terms with powers increasing by 1 (but M0 if clearly just multiplying by t)			
	A1	Correct expression			
	A1	Accept 8i-9.3j or better. Isw if speed found.			
(i)(b)	M1	Must have an equation in t only (Must have integrated to find a velocity vector)			
	A1 ft	Correct equation follow through on their v but must be a 3 term quadratic			
	A1	cao			
(ii)	M1	At least 2 terms with powers decreasing by 1 (but M0 if clearly just dividing by t)			
	A1	Correct expression			
	M1	Use magnitude to give an equation in t only, must have differentiated to find a velocity (M0 if they use $\sqrt{x^2 - y^2}$)			
	A1	Correct equation $\sqrt{(2t-1)^2+3^2}=5$			
	M1	Solve a 3 term quadratic for t which has come from differentiating and using a magnitude. This M mark can be implied by a correct answer with no working.			
	A1	2.5			