Online Maths Teaching

Mark Scheme

Q1.

Scheme	Marks	
At rest when $v = 0$: $(2t^2 - 9t + 4) = 0$	M1	
= (2t-1)(t-4),	DM1	Solve for t. Dependent on the previous M1
$t = \frac{1}{2}, 4$	A1	Incorrect answers with no method shown score M0A0
	[3]	
$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 4t - 9$	M1	Differentiate v to obtain a (at least one power of t going down)
	A1	Correct derivative
$t = 5, a = 11 (m s^{-2})$	A1	
	[3]	
$s = \int v dt = \frac{2}{3}t^3 - \frac{9}{2}t^2 + 4t(+C)$	M1	Integrate v to obtain s (at least one power of t going up)
	A1	
Use of $t = 0$, $t = \frac{1}{2}$, $t = 4$, $t = 5$ (and $t = 0, s = 15$) as limits in integrals	DM1	Correct strategy for their limits - requires subtraction of the negative distance. Dependent on the previous M1 and at least one positive solution for t in (0,5) from (a)
$\left[\frac{2}{3}t^{3} - \frac{9}{2}t^{2} + 4t(+15)\right]_{0}^{\frac{1}{2}}$ $-\left[\frac{2}{3}t^{3} - \frac{9}{2}t^{2} + 4t(+15)\right]_{\frac{1}{2}}^{\frac{4}{2}}$ $+\left[\frac{2}{3}t^{3} - \frac{9}{2}t^{2} + 4t(+15)\right]_{4}^{\frac{5}{2}}$	A1	NB: $\int_{0}^{5} v dt$ scores M0A0A0
	Scheme At rest when $v = 0$: $(2t^2 - 9t + 4) = 0$ = (2t - 1)(t - 4), $t = \frac{1}{2}, 4$ $a = \frac{dv}{dt} = 4t - 9$ $t = 5, a = 11 (\text{m s}^{-2})$ $s = \int v dt = \frac{2}{3}t^3 - \frac{9}{2}t^2 + 4t (+C)$ Use of $t = 0, t = \frac{1}{2}, t = 4, t = 5$ (and $t = 0, s = 15$) as limits in integrals $\left[\frac{2}{3}t^3 - \frac{9}{2}t^2 + 4t(+15)\right]_0^1$ $-\left[\frac{2}{3}t^3 - \frac{9}{2}t^2 + 4t(+15)\right]_1^4$	Scheme Marks At rest when $v = 0: (2t^2 - 9t + 4) = 0$ M1 $= (2t-1)(t-4),$ DM1 $t = \frac{1}{2}, 4$ A1 $t = \frac{1}{2}, 4$ [3] $a = \frac{dv}{dt} = 4t - 9$ M1 $t = 5, a = 11 (m s^{-2})$ A1 $t = 5, a = 11 (m s^{-2})$ A1 $s = \int v dt = \frac{2}{3}t^3 - \frac{9}{2}t^2 + 4t(+C)$ M1 Use of $t = 0, t = \frac{1}{2}, t = 4, t = 5$ (and $t = 0, s = 15$) as limits in integrals DM1 $\left[\frac{2}{3}t^3 - \frac{9}{2}t^2 + 4t(+15)\right]_0^1$ A1 $\left[\frac{2}{3}t^3 - \frac{9}{2}t^2 + 4t(+15)\right]_1^1$ A1

Q2.

(a)	$a = 4t^{3} - 12t$ Convincing attempt to integrate $v = t^{4} - 6t^{2}(+c)$ Use initial condition to get $v = t^{4} - 6t^{2} + 8(\text{ms}^{-1}).$	M1 A1 A1	
	Use initial condition to get $v = i - 6i + 8$ (ins.).		(3)
(b)	Convincing attempt to integrate $s = \frac{t^5}{5} - 2t^3 + 8t(+0)$ Integral of their v	M1 A1ft	
		_	(2)
(c)	Set their $v = 0$ Solve a quadratic in t^2	M1 DM1 A1	
	$(t^2-2)(t^2-4) = 0 \Rightarrow$ at rest when $t = \sqrt{2}, t = 2$	AI	(3) [8]

Q3.

Question Number	Scheme	Marks
(a)	$0 \le t \le 4$: a = 8 - 3t $a = 0 \Rightarrow t = 8/3 s$	M1 DM1
	$\rightarrow v = 8.\frac{8}{3} - \frac{3}{2} \left(\frac{8}{3}\right)^2 = \frac{32}{3} \text{ (m/s)}$	DM1 A1
	second M1 dependent on the first, and third dependent on the second.	(4)
(b)	$s = 4t^2 - t^3/2$	M1
	t = 4: $s = 64 - 64/2 = 32 m$	M1 A1
(c)	$t > 4$: $v = 0 \implies t = \underline{8s}$	B1 (1)
(d)	Either $t > 4$ $s = 16t - t^2 (+ C)$	M1
	$t=4, s=32 \rightarrow C = -16 \Rightarrow s = 16t - t^2 - 16$	M1 A1
	$t = 10 \rightarrow s = 44 \text{ m}$	M1 A1
	But direction changed, so: $t = 8$, $s = 48$	M1
	Hence total dist travelled = $48 + 4 = 52 \text{ m}$	DM1 A1 (8)
	Or (probably accompanied by a sketch?) $1 (0, 1) = 0$	
	t=4 v=8, t=8 v=0, so area under line = $\frac{1}{2} \times (8-4) \times 8$	M1A1A1
	t=8 v=0, t=10 v=-4, so area above line = $\frac{1}{2} \times (10-8) \times 4$	M1A1A1
	$\therefore \text{ total distance} = 32(\text{from b}) + 16 + 4 = \frac{52 \text{ m.}}{2}$	M1A1 (8)

Or M1, A1 for t > 4 $\frac{dv}{dt} = -2$, =constant t=4, v=8; t=8, v=0; t=10, v=-4 M1, A1 $s = \frac{u+v}{2}t = \frac{32}{2}t$, =16 working for t = 4 to t = 8 M1, A1 $s = \frac{u+v}{2}t = \frac{-4}{2}t$, =-4 working for t = 8 to t = 10 M1, A1 total = 32+14+4, =52 M1 Differentiate to obtain acceleration DM1 set acceleration. = 0 and solve for t DM1 use their t to find the value of v A1 32/3, 10.7oro better OR using trial an improvement: M1 Iterative method that goes beyond integer values M1 Establish maximum occurs for t in an interval no bigger than 2.5 <t <3.5 M1 Establish maximum occurs for t in an interval no bigger than 2.6 <t < 2.8 A1 Or M1 Find/state the coordinates of both points where the curve cuts the x axis. DM1 Find the midpoint of these two values. M1A1 as above. Or M1 Convincing attempt to complete the square: $8t - \frac{3t^2}{2} = -\frac{3}{2}(t - \frac{8}{3})^2 + \frac{3}{2} \times \frac{64}{9}$ DM1 substantially correct DM1 Max value = constant term A1 CSO M1 Integrate the correct expression DM1 Substitute t = 4 to find distance (s=0 when t=0 - condone omission / ignoring of constant of integration) A1 32(m) only B1 t = 8 (s) only M1 Integrate 16-2t M1 Use t=4, s= their value from (b) to find the value of the constant of integration. or 32 + integral with a lower limit of 4 (in which case you probably see these two marks occurring with the next two. First A1 will be for 4 correctly substituted.) A1 $s = 16t - t^2 - 16$ or equivalent M1 substitute t = 10A1 44 M1 Substitute t = 8 (their value from (c)) DM1 Calculate total distance (M mark dependent on the previous M mark.) A1 52 (m) OR the candidate who recognizes v = 16 - 2t as a straight line can divide the shape into two triangles: M1 distance for t = 4 to t = candidates's 8 = 1/2 x change in time x change in speed. A1 8-4 A1 8-0 M1 distance for t = their 8 to t = $10 = \frac{1}{2} x$ change in time x change in speed. A1 10-8 A1 0-(-4) M1 Total distance = their (b) plus the two triangles (=32 + 16 + 4). A1 52(m) NB: This order on epen grid (the A's and M's will not match up.)

Question	Scheme	Marks	AOs	Notes
(a)	$v = 12 + 4t - t^2 = 0$ and solving	М1	3.1a	Equating v to 0 and solving the quadratic If no evidence of solving, and at least one answer wrong, M0
	t = 6 (or - 2)	A1	1.1b	6 but allow -2 as well at this stage
	Differentiate v wrt t	M1	1.1a	For differentiation (both powers decreasing by 1)
	$(a = \frac{\mathrm{d}v}{\mathrm{d}t} =) 4 - 2t$	A1	1.1b	Cao; only need RHS
	When $t = 6$, $a = -8$; Magnitude is 8 (m s ⁻²)	A1	1.1b	Substitute in $t = 6$ and get 8 (m s ⁻²) as the answer . Must be positive . (A0 if two answers given)
		(5)		
(b)	Integrate v wrt t	M1	3.1a	For integration (at least two powers increasing by 1)
	$(s=)12t+2t^2-\frac{1}{3}t^3(+C)$	A1	1.1b	Correct expression (ignore C) only need RHS Must be used in part (b)
	$t = 3 \implies$ distance = 45 (m)	A1	1.1b	Correct distance. Ignore units
0		(3)		
		(8)	marks)	

Q.	Scheme	Marks	Notes
a	$v = 0 \Longrightarrow 3t^2 - 16t + 21 = 0$	M1	Set $v = 0$ and attempt to solve
	$v = 0 \Longrightarrow 3t^2 - 16t + 21 = 0$ ((3t-7)(t-3) = 0) $t_1 = \frac{7}{3}, t_2 = 3$	A1	
-		(2)	
b	$a = \frac{\mathrm{d}}{\mathrm{d}t} \left(3t^2 - 16t + 21 \right)$	M1	Differentiate v to obtain a
	= 6 <i>t</i> - 16	A1	
	= 6t - 16 $t = t_1, a = 6 \times \frac{7}{3} - 16 = -2 \text{ (m s}^{-2})$ Magnitude 2 (m s^{-2})	A1	No errors seen. Must be positive - the Q asks for magnitude.
		(3)	
c	$s = \int \left(3t^2 - 16t + 21\right) \mathrm{d}t$	M1	Integrate v to find s
ĺ	$=t^{3}-8t^{2}+21t(+C)$	A1	
	$\pm \left(\left(3^3 - 8 \times 9 + 21 \times 3 \right) - \left(\left(\frac{7}{3} \right)^3 - 8 \times \frac{49}{9} + 21 \times \frac{7}{3} \right) \right)$	M1	Correct use of their limits
	$s = 0.148$ (m) $\left(\frac{4}{27}\right)$	A1	Final answer must be positive. 0.15 or better
		(4)	
d	Return to $O \Longrightarrow s = 0 = t(t^2 - 8t + 21)$	B1	seen or implied
	Discriminant of quadratic = $64 - 4 \times 21(= -20) < 0$	M1	Or equivalent. *given answer so must show some evidence of method*
	No real roots \Rightarrow does not return to O	A1	Sufficient correct working to justify *given answer*
		(3)	
dalt	Travels away until $t_1 = \frac{7}{3}$, turns back at $t_2 = 3$ then turns away again	M1	Complete story
	s ₃ =18	B1	Seen or implied
	Complete argument	A1	
		(3)	
dalt	Distance time graph	B1	
	Locate min turning point	M1	
	Complete argument	A1	
		(3)	
		[12]	0

Question	Scheme	Marks	AOs
(a)	Multiply out and differentiate wrt to time (or use of product rule i.e. must have two terms with correct structure)	M1	1.1a
	$v = 2t^3 - 3t^2 + t$	Al	1.1b
	$2t^3 - 3t^2 + t = 0$ and solve: $t(2t-1)(t-1) = 0$	DM1	1.1b
	$t=0$ or $t=\frac{1}{2}$ or $t=1$; any two	A1	1.1b
	All three	A1	1.1b
		(5)	
(b)	Find x when $t = 0, \frac{1}{2}, 1 \text{ and } 2: (0, \frac{1}{32}, 0, 2)$	M1	2.1
	Distance = $\frac{1}{32} + \frac{1}{32} + 2$	M1	2.1
		A1	1.1b
		(3)	
(c)	$x = \frac{1}{2}t^2(t-1)^2$	M1	3.1a
	$\frac{1}{2}$ perfect square so $x \ge 0$ i.e. never negative	A1 cso	2.4
		(2)	
		(10 n	narks)

		దిదిది Online Mat
Notes:		ing
(a)		-
Ml:	Must have 3 terms and at least two powers going down by 1	
A1:	A correct expression	
DM1:	Dependent on first M, for equating to zero and attempting to solve a cubic	
A1:	Any two of the three values (Two correct answers can imply a correct method)	
Al:	The third value	
(b)		
Ml: F	or attempting to find the values of x (at least two) at their t values found in (a) or at $t=2$	2
or eq	uivalent e.g. they may integrate their v and sub in at least two of their t values	
Ml: U	Using a correct strategy to combine their distances (must have at least 3 distances)	
A1: 2	$\frac{1}{16}$ (m) of or 2.06 or better	
(c)		
Ml: Id	entify strategy to solve the problem such as:	
(i)	writing x as $\frac{1}{2}$ × perfect square	
(ii)	or using x values identified in (b).	
(111)		
(iv)	or using x -t graph.	

Al cso : Fully correct explanation to show that $x \ge 0$ i.e. never negative

 کرسا