

Exam Questions - Chapter 11 Vectors (AS)

Q1.

[In this question the unit vectors i and j are due east and due north respectively.] A stone slides horizontally across ice.

Initially the stone is at the point $A(-24\mathbf{i} - 10\mathbf{j})$ m relative to a fixed point O.

After 4 seconds the stone is at the point B(12i + 5j) m relative to the fixed point O.

The motion of the stone is modelled as that of a particle moving in a straight line at constant speed.

Using the model,

- (a) prove that the stone passes through O,
- (b) calculate the speed of the stone.

(2)

(3)

(Total for question = 5 marks)

Q2.

Relative to a fixed origin O

- the point A has coordinates (3, -8)
- the point *B* is such that $\overrightarrow{AB} = -5\mathbf{i} + 2\mathbf{j}$
- (a) Find the exact value of $|\overrightarrow{OB}|$

(3)

(b) Find the size of angle OAB, giving your answer in degrees to one decimal place.

(3)

(Total for question = 6 marks)

Q3.

Given that the point A has position vector $4\mathbf{i} - 5\mathbf{j}$ and the point B has position vector $-5\mathbf{i} - 2\mathbf{j}$,

(a) find the vector \overrightarrow{AB} ,

(2)

(b) find \overrightarrow{AB}

Give your answer as a simplified surd.

(2)

(Total for question = 4 marks)

Q4.

The triangle \overrightarrow{PQR} is such that $\overrightarrow{PQ} = 3\mathbf{i} + 5\mathbf{j}$ and $\overrightarrow{PR} = 13\mathbf{i} - 15\mathbf{j}$

(a) Find \overrightarrow{QR}

(2)

(b) Hence find $|\overrightarrow{QR}|$ giving your answer as a simplified surd.

(2)

The point S lies on the line segment QR so that QS:SR = 3:2

(c) Find \overrightarrow{PS}

(2)

(Total for question = 6 marks)

Q5.

• B

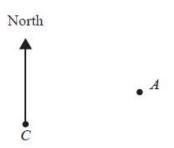


Figure 1

Figure 1 is a sketch showing the position of three phone masts, A, B and C.

The masts are identical and their bases are assumed to lie in the same horizontal plane.

From mast C

- mast A is 8.2 km away on a bearing of 072°
- mast B is 15.6 km away on a bearing of 039°
- (a) Find the distance between masts A and B, giving your answer in km to one decimal place.

(3)

An engineer needs to travel from mast A to mast B.

(b) Give a reason why the answer to part (a) is unlikely to be an accurate value for the distance the engineer travels.

(1)

(Total for question = 4 marks)

ြို့ပူ။ ဝိဝိဝိ Online Maths Teaching

(2)

(2)

(4)

Q6.

Relative to a fixed origin O,

- point P has position vector 9i 8j
- point Q has position vector 3i 5j
- (a) Find \overrightarrow{PQ}

Given that R is the point such that $\overrightarrow{QR} = 9\mathbf{i} + 18\mathbf{j}$

(b) show that angle $PQR = 90^{\circ}$

Given also that S is the point such that $\overrightarrow{PS} = 3\overrightarrow{QR}$

(c) find the exact area of PQRS

(Total for question = 8 marks)

Q7.

Relative to a fixed origin O

- point A has position vector 10i 3j
- point B has position vector –8i + 9j
- point C has position vector –2i + pj where p is a constant
- (a) Find \overrightarrow{AB}

(2)

(b) Find $|\overrightarrow{AB}|$ giving your answer as a fully simplified surd.

(2)

Given that points A, B and C lie on a straight line,

- (c) (i) find the value of p,
 - (ii) state the ratio of the area of triangle AOC to the area of triangle AOB.

(3)

(Total for question = 7 marks)

Q8.

Given that the point A has position vector $3\mathbf{i} - 7\mathbf{j}$ and the point B has position vector $8\mathbf{i} + 3\mathbf{j}$,

(a) find the vector \overline{AB} .

(2)

(b) Find \overline{AB} . Give your answer as a simplified surd.

(2)

(Total for question = 4 marks)

Q9.

(i) Two non-zero vectors, **a** and **b**, are such that

$$|\mathbf{a} + \mathbf{b}| = |\mathbf{a}| + |\mathbf{b}|$$

Explain, geometrically, the significance of this statement.

(1)

- (ii) Two different vectors, ${\bf m}$ and ${\bf n}$, are such that $|{\bf m}|=3$ and $|{\bf m}-{\bf n}|=6$
 - The angle between vector \boldsymbol{m} and vector \boldsymbol{n} is 30°

Find the angle between vector \mathbf{m} and vector $\mathbf{m} - \mathbf{n}$, giving your answer, in degrees, to one decimal place.

(4)

(Total for question = 5 marks)