

Mark Scheme

Q1.

Question Number	Scheme	Marks
(a)	The random variable $H \sim$ height of females	
	$P(H > 170) = P(Z > \frac{170 - 160}{8}) = [= P(Z > 1.25)]$	M1
	=1-0.8944	M1
	= 0.1056 (calc 0.1056498) awrt 0.106 (accept 10.6%)	A1 (3
(b)	$P(H > 180) = P(Z > \frac{180 - 160}{8})$ [=1-0.9938]	M1
	= 0.0062 (calc 0.006209) awrt 0.0062 or $\frac{31}{5000}$	A1
	$[P(H>180 H>170)] = \frac{0.0062}{0.1056}$	M1
	= 0.0587 (calc 0.0587760) awrt 0.0587 or 0.0588	A1 (4
(c)	$P(H > h H > 170) (= 0.5)$ or $\frac{P(H > h)}{P(H > 170)} (= 0.5)$	M1
	$[P(H > h)] = 0.5 \times "0.1056" = 0.0528 \text{ (calc } 0.0528249) or } [P(H < h)] = 0.9472$	A1ft
	$\frac{h-160}{8} = 1.62 \text{ (calc } 1.6180592)$	M1 B1
	h = awrt 173 cm awrt 173	A1 (5)
		Total 12
	Notes	
(a)	1 st M1 for attempt at standardising with 170, 160 and 8. Allow \pm i.e. for $\pm \frac{170-160}{8}$	
2	2^{nd} M1 for attempting $1-p$ where $0.8 . Correct answer only 3/3$	
	1 st M1 for standardising with 180, 160 and 8 1 st A1 for 0.0062 seen, maybe seen as part of another expression/calculation.	
2	2 nd M1 using conditional probability with denom = their (a) and num < their denom. <u>Values</u> needed. 2 nd A1 for awrt 0.0587 or 0.0588. Condone 5.87% or 5.88% or 31/528	
	Correct answer only 4/4	
(c)	st M1 for a correct conditional probability statement. Either line and don't insist on 0.5, ft (a)	
1	1^{5t} A1ft for $[P(H > h)] = 0.5 \times their(a)$ Award M1A1ft for correct evaluation of $0.5 \times their(a)$ or sight of 0.0528 or better	
	2^{nd} M1 for attempt to standardise (±) with 160 and 8 and set equal to $\pm z$ value (1.56 < $ z $ < 1.68)	
	B1 for (z =) awrt ± 1.62 (seen)	
	2 nd A1 for awrt 173 but dependent on both M marks.	

Question Number	Scheme	Mar	ks
(a)	24 and 28 (above the mean)	B1	
	0.80 For 0.80 and 0.05 (clearly indicated)	B1	(2)
(b)	15%	B1	(1)
(c)(i)	$\frac{(28-\mu)}{\sigma} = 1.64(49)$ or $\frac{(24-\mu)}{\sigma} = 0.84(16)$	M1	
	0.8416 and 1.6449 seen	B1	
	$\mu = 28 - 1.64(49)\sigma$, $\mu = 24 - 0.84(16)\sigma$	A1,A1	
(ii)	$24-0.8416\sigma = 28-1.6449\sigma$ eliminating μ or σ	M1	
	$\sigma = 4.9794597$ awrt 4.98	A1	
	$\mu = 19.809286$ awrt 19.8	A1	
(d)	$z = \frac{(12-19.8')}{4.97'}$	M1	(7)
	(4.97) $P(Z < -1.57) = 1 - P(Z < 1.57)$	dM1	
	1 - 0.9418 = 0.0582 awrt 0.06	A1	(3)
		[Total	13]

	Notes
(a)	1 st B1 24 and 28 labelled on the horizontal axis above the mean in the correct order. They must clearly indicate where 24 and 28 are on the horizontal axis.
(b)	2 nd B1 for clear, correct labelling of probabilities. Must be associated with correct <u>area</u> . B1 for 15% or 0.15 NB 0.15% is B0
(c)	1st M1 for $\frac{\pm (28 - \mu)}{\sigma} = z_1$ or $\frac{\pm (24 - \mu)}{\sigma} = z_2$ where $ z_1 > 1.5$ and $ z_2 < 1$
	Condone $z_2 = 0.8$
	B1 for both values 0.8416 and 1.6449 or better seen. Calc: 0.8416212, 1.644853 1 st A1 for $\mu = 28 - 1.64(49)\sigma$ or any correct arrangement (allow 1.64 ~1.65 inclusive)
	2^{nd} A1 for $\mu = 24 - 0.84(16)\sigma$ or any correct arrangement (allow 0.84 or better)
	2^{nd} M1 for an attempt to solve simultaneous equations by eliminating μ or σ
	3^{rd} A1 for awrt 4.98 (Condone $\sigma = 5$ or awrt 5.0 if B0 scored)
SC	4th A1 for awrt 19.8
SC	For use of 0.84 and 1.64 giving $\sigma = 5$ and $\mu = \text{awrt } 19.8$ score M1B0A1A1M1A1A
(d)	or 0.84 and 1.65 giving σ = awrt 4.94 and μ = awrt 19.9 score M1B0A1A1M1A1A1
	1 st M1 for standardising with 12, their μ and σ provided σ >0
	If σ < 0 from their equations in (c) allow M1 if they use $ \sigma $
	2^{nd} dM1 for $1-P(Z < 1.57)$ dependent on the 1^{st} M1 being scored i.e. leads to prob < 0.5
	A1 for awrt 0.06 from correct working

Question	Scheme		Marks
(a)(i)	$P(A) = P(Z > 1.1) = 1 - 0.8643 = \underline{0.1357}$	(accept awrt 0.136)	B1
(ii)	P(B) = P(Z > -1.9) = 0.9713	(accept awrt 0.971)	B1
(iii)	P(C) = [P(-1.5 < Z < 1.5)] = 0.9332 - (1 - 0.9332)	9332) or (0.9332 – 0.5) × 2	M1
	= <u>0.</u> 9	8664 (accept awrt 0.866)	A1
(iv)	$P(A \cup C) = P(Z > -1.5)$ or $P(Z < 1.5)$ or	.8664"-(0.9332-0.8643) 0.9332 (accept awrt 0.933)	M1 A1
(b)	$[P(X > w X > 28) =] \frac{P(X > w)}{P(X > 28)} = [0.625]$		(6) M1
	$P(X > 28) = P\left(Z > \frac{28 - 21}{5}\right) = P(Z > 1.4) = [0.$	0808 calc: 0.80756]	M1
	$P(X>w) = 0.0808 \times 0.625 $ (= 0.0505) or (P(2)	Y < w) = 0.9495)	A1
	$\frac{w-21}{5} = 1.64$		M1 B1
	3	$w = \text{awrt } \underline{29.2}$	A1
			(6) (12 marks)

	Notes
	Mark final answer here so in (ii) 0.9713 followed by 1 – 0.9713 is B0 but for rounding errors e.g. 29.245 followed by 29.3 apply ISW and award for 29.245
(a)(iii)	M1 for correct expression with probability values. Correct ans implies M1A1
(iv)	M1 for a correct addition formula with <u>some</u> correct substitution (or correct ft) or P(Z > -1.5) (o.e) or for a fully correct expression with correct probabilities A1 for 0.9332 (accept 0.933) Correct answer only is M1A1
(b)	M1 for correct expression for conditional probability- must have $P(X > w)$ as num' May be implied by $P(X > w) = 0.625 \times (\text{any probability})$
1 st 3 marks	M1 for standardising 28 with 21 and 5 Allow \pm (May be implied by 0.0808 [or awrt 0.081] seen in correct position) A1 for $P(X > w) = 0.0808 \times 0.625$ or $P(X > w) = 0.0505$ or $P(X < w) = 0.9495$) This A1 depends on both Ms but seeing $P(X > w) = 0.0808 \times 0.625$ scores M1M1A1 Allow $P\left(Z > \frac{w - 21}{5}\right)$ instead of $P(X > w)$ for these first 3 marks M1 for standardising w with 21 and 5 (allow \pm) and setting equal to a z -value $ z > 1$ Allow any letter instead of w B1 for 1.64 (or better) used correctly. [Calculator gives: 1.6402851] A1 allow awrt 29.2

Q4.

Question Number	Scheme	Marks
(a)	127-100 15	M1
	So $P(L > 127) = P(Z > 1.8)$ or $1 - P(Z < 1.8)$ o.e. = $1 - 0.9641 = \underline{0.0359}$ (awrt $\underline{0.0359}$)	A1 A1
(b)	$\frac{d-100}{15} = -1.2816 \text{(Calculator gives } -1.2815515\text{)}$	M1, B1
	d = 80.776 (awrt <u>80.8</u>)	A1 (3
(c)	Require $P(L > 133 \mid L > 127)$	M1
	$= \left[\frac{P(L > 133)}{P(L > 127)} \right] = \frac{P(Z > 2.2)}{P(L > 127)}$	dM1
	$= \left[\frac{1 - 0.9861}{1 - 0.9641} \right] = \frac{0.0139}{[0.0359]}$	A1
	= 0.3871 = awrt 0.39	A1
S.C.	An attempt at P($L \le 133 \mid L \ge 127$) that leads to awrt 0.61 (M0M1A0A0)	(4
	Notes	1
(a)	M1 for attempting to standardise with 127, 100 and 15 . Allow ±	
	1 st A1 for Z>1.8. Allow a diagram but must have 1.8 and correct area indicated. Must have the Z so P(L>127) with or without a diagram is insufficient. May be implied by 0.0359 2 nd A1 for awrt 0.0359 (calc. gives 0.035930266). Correct ans only 3/3. M1A0A1 not poss.	
(b)	M1 for an attempt to standardise with 100 and 15 and set = ± any z value (z for z = ± 1.2816 (or better) seen anywhere [May be implied by 80.776() for awrt 80.8 (can be scored for using 1.28 but then they get M1B0A1) The 80.8 must follow from correct working.	72) or better seen]
Calc	If answer is awrt 80.8 and awrt 80.777 or 80.776 or better seen then awar If answer is awrt 80.8 or 80.77 then award M1B0A1 (unless of course $z = 1$.	
(c)	1 st M1 for clear indication of correct conditional probability or attempt at correct So clear attempt at $\frac{P(L>133)}{P(L>127)}$ is sufficient for the 1 st M1	rect ratio
	2^{nd} dM1 dependent on 1 st M1 for P($L > 133$) leading to P($Z > 2.2$). 1^{st} A1 for 0.0139 or better seen coming from P($Z > 2.20$). Dependent on both 2^{nd} A1 for awrt 0.39. Both Ms required	h Ms
ALT		

Q5.

Question Number	Scheme	Marks
(a)	$(z=\pm)\frac{15-16.12}{1.6}(=-0.70)$	M1
	P(Z < -0.70) = 1 - 0.7580	M1
	= 0.2420 (awrt 0.242)	A1
	0.2120	(:
		ζ.
(b)	$f_{\rm D}(T_{\rm col}) = 0.20$; $f_{\rm col} = 0.12$	M1 A1
	$[P(T \le t) = 0.30 \text{ implies}]$ $z = \frac{t - 16.12}{1.6} = -0.5244$	
	t-16.12	M1
	$\frac{t-16.12}{1.6} = -0.5244 \implies t = 16.12 - 1.6 \times "0.5244"$	
	t = awrt 15.28 (allow awrt 15.28/9)	A1
	(410.4 411.7 20.2 2)	(4
		,
	Notes	
	Allow slips e.g. 16.2 for 16.12 for 1st M1 in (a) and (b)	
	Allow steps e.g. 10.2 for 10.12 for 1 Wil in (a) and (b)	
(a)	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow +	
(a)		
(a)	1 st M1 for standardising expression with 15, 16.12 and 1.6 - allow ±	
(a)	1 st M1 for standardising expression with 15, 16.12 and 1.6 - allow ± 2 nd M1 for 1 - a probability (> 0.5) from tables or calculator based on th	
(a)	1 st M1 for standardising expression with 15, 16.12 and 1.6 - allow ± 2 nd M1 for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3	eir standardise
	1 st M1 for standardising expression with 15, 16.12 and 1.6 - allow ± 2 nd M1 for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of	eir standardise
(a) (b)	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow ± 2nd M1 for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of 1st M1 for standardising with t (o.e.), 16.12 and 1.6, allow ±, and setting	eir standardise
	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow ± 2nd M1 for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of 1st M1 for standardising with t (o.e.), 16.12 and 1.6, allow ±, and setting value	eir standardise
	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow \pm 2nd M1 for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value 1st A1 for an equation with $z = \pm 0.5244$ or better	eir standardise
	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow ± 2nd M1 for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of 1st M1 for standardising with t (o.e.), 16.12 and 1.6, allow ±, and setting value	eir standardise
	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow \pm for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value 1st A1 for an equation with $z = \pm 0.5244$ or better e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0)	eir standardised t g equal to a z
	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow \pm 2nd M1 for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value 1st A1 for an equation with $z = \pm 0.5244$ or better	eir standardised t g equal to a z
	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow \pm for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value 1st A1 for an equation with $z = \pm 0.5244$ or better e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0) 2nd M1 for solving their linear equation as far as $t = a \pm b \times 1.6$. Not dep M1	eir standardised t g equal to a z
	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow \pm for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value 1st A1 for an equation with $z = \pm 0.5244$ or better e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0) 2nd M1 for solving their linear equation as far as $t = a \pm b \times 1.6$. Not dep M1	eir standardised t g equal to a z
	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow \pm for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value 1st A1 for an equation with $z = \pm 0.5244$ or better e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0) 2nd M1 for solving their linear equation as far as $t = a \pm b \times 1.6$. Not dep M1 e.g. solving $\frac{t-16.12}{1.6} = 0.3$ to give $t = 16.12 + 1.6 \times 0.3$ scores this	eir standardised t g equal to a z endent on 1st
	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow \pm for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value 1st A1 for an equation with $z = \pm 0.5244$ or better e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0) 2nd M1 for solving their linear equation as far as $t = a \pm b \times 1.6$. Not dep M1	eir standardised t g equal to a z endent on 1st
	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow \pm 2nd M1 for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of 1st M1 for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value 1st A1 for an equation with $z = \pm 0.5244$ or better e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0) 2nd M1 for solving their linear equation as far as $t = a \pm b \times 1.6$. Not dep M1 e.g. solving $\frac{t-16.12}{1.6} = 0.3$ to give $t = 16.12 + 1.6 \times 0.3$ scores this Allow $\frac{t-16.12}{1.6^2} = 0.3$ to give $t = 16.12 + 1.6 \times 0.3$ to score M1 to	eir standardised t g equal to a z endent on 1st
	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow \pm 2nd M1 for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of 1st M1 for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value 1st A1 for an equation with $z = \pm 0.5244$ or better e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0) 2nd M1 for solving their linear equation as far as $t = a \pm b \times 1.6$. Not dep M1 e.g. solving $\frac{t-16.12}{1.6} = 0.3$ to give $t = 16.12 + 1.6 \times 0.3$ scores this Allow $\frac{t-16.12}{1.6^2} = 0.3$ to give $t = 16.12 + 1.6^2 \times 0.3$ to score M1 to 2nd A1 dependent on both M marks. Allow awrt 15.28 or awrt 15.29	eir standardised t g equal to a z endent on 1st
	1st M1 for standardising expression with 15, 16.12 and 1.6 - allow \pm 2nd M1 for 1 - a probability (> 0.5) from tables or calculator based on the value Correct answer only scores 3/3 In part (b) they can use any letter or symbol instead of 1st M1 for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value 1st A1 for an equation with $z = \pm 0.5244$ or better e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0) 2nd M1 for solving their linear equation as far as $t = a \pm b \times 1.6$. Not dep M1 e.g. solving $\frac{t-16.12}{1.6} = 0.3$ to give $t = 16.12 + 1.6 \times 0.3$ scores this Allow $\frac{t-16.12}{1.6^2} = 0.3$ to give $t = 16.12 + 1.6 \times 0.3$ to score M1 to	eir standardised t g equal to a z endent on 1st

Question Number	Scheme	Marks
(a)	$P(X > 168) = P\left(Z > \frac{168 - 160}{5}\right)$	M1
	= P(Z > 1.6)	A1
	= 0.0548 awrt 0.0548	A1
	-0.0540	(3)
(b)	$P(X < w) = P\left(Z < \frac{w - 160}{5}\right)$ $w - 160$	M1 B1
	$\frac{w-160}{5} = -2.3263$	Accordance 1
	w = 148.37 awrt 148	A1 (2)
(c)	160	M1 (3)
(c)	$\frac{160 - \mu}{\sigma} = 2.3263$	B1
		-
	$\frac{152 - \mu}{\pi} = -1.2816$	B1
	$160 - \mu = 2.3263\sigma$	
	$152 - \mu = -1.2816\sigma$	
	$8 = 3.6079 \sigma$	M1
	$\sigma = 2.21$ awrt 2.22	A1
	$\mu = 154.84$ awrt 155	A1 (6
		[12]
(a)	<u>Notes</u>	
(a)	M1 for an attempt to standardize 168 with 160 and 5 i.e. $\pm \left(\frac{168-160}{5}\right)$ 1st A1 for P(Z > 1.6) or P(Z < -1.6) ie z = 1.6 and a correct inequality or 1. diagram Correct answer to (a) implies all 3 marks	
(b)	(** 160)	
	M1 for attempting $\pm \left(\frac{w-160}{5}\right)$ = recognizable z value $(z > 1)$	
	M1 for attempting $\pm \left(\frac{w-160}{5}\right)$ = recognizable z value (z > 1) B1 for $z = \pm 2.3263$ or better. Should be $z =$ or implied so: 1 – 2.3263 =	$\frac{w-160}{5}$ is M0B0
2-2	B1 for $z = \pm 2.3263$ or better. Should be $z =$ or implied so: $1 - 2.3263 =$ A1 for awrt 148. This may be scored for other z values so M1B0A1 is post For awrt 148 only with no working seen award M1B0A	ssible 1
(c)	B1 for $z = \pm 2.3263$ or better. Should be $z =$ or implied so: $1 - 2.3263 =$ A1 for awrt 148. This may be scored for other z values so M1B0A1 is possible.	ssible 1
(c)	B1 for $z = \pm 2.3263$ or better. Should be $z =$ or implied so: $1-2.3263 = -4.1$ for awrt 148. This may be scored for other z values so M1B0A1 is positive. For awrt 148 only with no working seen award M1B0A M1 for attempting to standardize 160 or 152 with μ and σ (allow \pm) and ($ z >1$) 1st B1 for awrt ± 2.33 or ± 2.32 seen	ssible 1
(c)	B1 for $z=\pm 2.3263$ or better. Should be $z=$ or implied so: $1-2.3263=-41$ for awrt 148. This may be scored for other z values so M1B0A1 is positive. For awrt 148 only with no working seen award M1B0A M1 for attempting to standardize 160 or 152 with μ and σ (allow \pm) and ($ z >1$) 1st B1 for awrt ± 2.33 or ± 2.32 seen 2nd B1 for awrt ± 1.28 seen 2nd M1 for attempt to solve their two linear equations in μ and σ leading to	ssible 1 equate to z value
(c)	B1 for z = ± 2.3263 or better. Should be z = or implied so:1-2.3263 = A1 for awrt 148. This may be scored for other z values so M1B0A1 is possible. For awrt 148 only with no working seen award M1B0A M1 for attempting to standardize 160 or 152 with μ and σ (allow ±) and (z >1) 1st B1 for awrt ± 2.33 or ± 2.32 seen 2nd B1 for awrt ± 1.28 seen 2nd M1 for attempt to solve their two linear equations in μ and σ leading to one variable	ssible 1 equate to z value
(c)	B1 for $z=\pm 2.3263$ or better. Should be $z=$ or implied so: $1-2.3263=-41$ for awrt 148. This may be scored for other z values so M1B0A1 is possible. For awrt 148 only with no working seen award M1B0A M1 for attempting to standardize 160 or 152 with μ and σ (allow \pm) and ($ z >1$) 1st B1 for awrt ± 2.33 or ± 2.32 seen 2nd B1 for awrt ± 1.28 seen 2nd M1 for attempt to solve their two linear equations in μ and σ leading to one variable 1st A1 for σ = awrt 2.22. Award when 1st seen	ssible 1 equate to z value to equation in jus
(c)	B1 for z = ± 2.3263 or better. Should be z = or implied so:1-2.3263 = A1 for awrt 148. This may be scored for other z values so M1B0A1 is possible. For awrt 148 only with no working seen award M1B0A M1 for attempting to standardize 160 or 152 with μ and σ (allow ±) and (z >1) 1st B1 for awrt ± 2.33 or ± 2.32 seen 2nd B1 for awrt ± 1.28 seen 2nd M1 for attempt to solve their two linear equations in μ and σ leading to one variable	ssible 1 equate to z value to equation in just

Question Number	Scheme	Marks
(a)	$[P(T > 20) =] P(Z > \frac{20 - 18}{5})$	M1
	P(Z > 0.4) = 1 - 0.6554	M1
	= 0.3446 or awrt 0.345	A1 (3)
(b)	Require $P(T \ge 20 \mid T \ge 15)$ or $\frac{P(T \ge 20)}{P(T \ge 15)}$	M1
	$\frac{\text{"(a)"}}{P(Z > \frac{15-18}{5})} = \frac{\text{"(a)"}}{P(Z > -0.6)}, = \frac{\text{"0.3446"}}{0.7257} \text{ or } \frac{\text{"0.345"}}{0.726}$	M1, A1ft
	= 0.47485= awrt <u>0.475</u>	A1
(c)	$P(T > d \mid T > 15) = 0.5 \underline{\text{or}} P(T < d \mid T > 15) = 0.5$ $P(T > d) \underline{\text{or}} P(15 < T < d) = 0.5 \times 0.7257 = [0.36285]$ $P(T < d) = 0.63715$	M1 A1ft M1
	So $\frac{d-18}{5} = 0.35$ (calculator gives 0.35085)	A1
	d = 19.754 = awrt 19.8	A1cso
	(Accept 19 mins 45(secs) or 19:45 but 19.45 is A0)	[12]

3	Notes
(a)	1st M1 for standardising with 20, 18 and 5. Accept ±
5,115,000,11	2^{nd} M1 for attempting $1-p$ [where $0.5 \le p \le 0.7$]. Beware $1-0.4$ (or their z value) is M0
	A1 for awrt 0.345 (Correct ans only 3/3)
(b)	1 st M1 for either correct conditional probability statement (allow "in words" or any letter except Z) 1 st M1 can be implied by 2 nd M1 so a mark of M0M1 should not be given.
	2 nd M1 for using their (a) on num. and attempting to standardise P(T>15) (no ±) on denom. Num.>Deno. is M0
	Allow one digit transcription errors from (a) e.g. 0.3464 or 0.3466 etc for 2nd M1 and 1st A1ft
	1st A1ft for their 0.3446 on numerator and denominator of 0.7257 (or better: 0.7257469)
	provided Num < Denom. Allow 0.726 on the denominator
	Sight of $\frac{"0.3446"}{0.7257 \text{ or } 0.726}$ will score M1M1A1ft
	2 nd A1 for awrt 0.475
(c)	1 st M1 for a correct conditional probability statement that includes the 0.5
******	1 st A1ft for $P(T \ge d)$ or $P(15 \le T \le d) = 0.5 \times \text{their } P(T \ge 15) \text{ [provided } P(T \ge 15) \ge 0.5 \text{]}$
	Follow through (3sf) their $P(T > 15) = 0.7257$ or better from part (b). (Allow 0.726)
	Sight of $0.5 \times$ their $0.7257 = "0.36285"$ or better scores 1 st M1 and 1 st A1ft (Allow 0.363)
	$2^{\text{nd}} \text{ M1 (dep on } 1^{\text{st}} \text{ M1) for } P(T < d) = 1 - \text{``0.36285''} \text{ or ``0.36285''} + 1 - \text{``0.7257''}$
	= [0.6371~0.6372]
	Sight of their 0.63715 or better (calc: 0.637126) scores first 3 marks (Allow 0.637)
	2^{nd} A1 for $\frac{d-18}{5} = 0.35$ (or better) (Calc could give 0.350788)
	3^{rd} A1cso for ($d = $) awrt 19.8 (accept 19.7 not awrt 19.7) Must come from correct work.
Beware!	$0.5 \times 0.7257 = 0.36285$ and using this (instead of 0.35) as z value leads to 19.8 but is A0A0

Question Number	Scheme	Marks
(a)	$[T \sim N (240, 40^2)$ require $P(T > 300)]$	80
	$P\left(Z > \frac{300 - 240}{40}\right)$	M1
	=1-P(Z<1.5) or $1-0.9332$	M1
	= awrt <u>0.0668</u> or 6.68%	A1
	5 - O	(3)
(b)	$[P(T < n) = 0.20 \Rightarrow] \frac{n - 240}{40} = -0.8416$	M1 B1
	n = awrt 206 minutes	A1
		(3)
(c)	$[P(W < \mu - 30 \mid W < \mu) =] \frac{P(W < \mu - 30)}{P(W < \mu)}$	M1
	$=\frac{1-0.82}{0.50}$	A1
	= 0.36	A1cao
		(3)
		[9 marks]

0	Notes
(a)	1 st M1 for standardising with 300, 240 and 40. May be implied by use of 1.5 Allow ± 2 nd M1 for 1 – P(Z < "1.5") i.e. a correct method for finding P(Z > "1.5") e.g. 1 – p where 0.5 < p < 0.99 A1 for awrt 0.0668 (Answer only 3/3)
(b)	 M1 for an attempt to standardise with 240, 40 and n and set = ± z (0.8 < z < 0.9) B1 for z = ± 0.8416 (or better) used as a z value. Do not allow for 1 - 0.8416 Calc gives 0.8416212[May be implied by awrt 206.34, give B1 as well as A1 if seen] A1 for awrt 206 (can be scored for using a z value of 0.84 or even 0.85) Must follow from correct working but a range of possible z values are OK
Ans only	If answer is awrt 206 score M1B0A1 (unless of course z = 0.8416 seen) but awrt 206.34 scores 3/3
(c)	M1 for the correct ratio expression (Not $P([W < 30 - \mu] \cap [W < \mu])$) on numerator)
	Condone use of Z instead of W only if they later get a correct numerical ratio otherwise M0 However they may write $P\left(Z < \frac{-30}{\sigma}\right)$ etc which is of course fine 1^{st} A1 for a correct numerical ratio
Use tables	May see use of $z = 0.92$ or better (calc: 0.9153650) or $\sigma = 32.6 \sim 32.8$ allow:
ALT	$1^{\text{st}} \text{ M1 for } \frac{P(Z < -0.92)}{P(Z < 0)} \text{ and } 1^{\text{st}} \text{ A1 for } \frac{1 - 0.8212}{0.5} \text{ or } \frac{0.1788}{0.5}$
	2^{nd} A1 for 0.36 or an exact equivalent e.g. $\frac{9}{25}$ (Answer only M1A1A0)
	The final answer of 0.36 <u>must</u> come from exact values; 0.36 rounded from 0.3576 etc is A0
a.	

Question Number	Scheme	Marks
(a)	bell shaped, must have inflexions 154,172 on axis 5% and 30%	B1 B1 B1 (3)
(b)	P(X < 154) = 0.05 $\frac{154 - \mu}{\sigma} = -1.6449$ or $\frac{\mu - 154}{\sigma} = 1.6449$ $\mu = 154 + 1.6449 \sigma$ **given**	M1 B1 A1 cso
(c)	$172 - \mu = 0.5244\sigma$ or $\frac{172 - \mu}{\sigma} = 0.5244$ (allow $z = 0.52$ or better here but must be in an equation) Solving gives $\sigma = 8.2976075$ (awrt 8.30) and $\mu = 167.64873$ (awrt 168)	B1 M1 A1 A1
(d)	P(Taller than 160cm) = $P\left(Z > \frac{160 - \mu}{\sigma}\right)$ = $P(Z < 0.9217994)$	(4) M1 B1
	= 0.8212 awrt 0.82	(3) Total [13]
(a)	2 nd B1 for 154 and 172 marked but 154 must be < μ and 172 > μ. But μ need not be marked. Allow for ^{154-μ} / _σ and ^{172-μ} / _σ marked on appropriate sides of the peak. 3 rd B1 the 5% and 30% should be clearly indicated in the correct regions i.e. LH tail and RH tail.	
(b)	M1 for $\pm \frac{(154 - \mu)}{\sigma} = z$ value (z must be recognizable e.g. 1.64, 1.65, 1.96 but NOT 0.5199 etc) B1 for ± 1.6449 seen in a line before the final answer. A1cso for no incorrect statements (in μ , σ) equating a z value and a probability or incorrect signs e.g. $\frac{154 - \mu}{\sigma} = 0.05$ or $\frac{154 - \mu}{\sigma} = 1.6449$ or $P(Z < \frac{\mu - 154}{\sigma}) = 1.6449$	
(c)	 for a correct 2nd equation (NB 172 - μ = 0.525σ is B0, since z is incorrect) for solving their two linear equations leading to μ = or σ = 1st A1 for σ = awrt 8.30, 2nd A1 for μ = awrt 168 [NB the 168 can come from false working. These A marks require use of correct equation from (b), and a z value for "0.5244" in (c)] NB use of z = 0.52 will typically get σ = 8.31 and μ = 167.67 and score B1M1A0A1 No working and both correct scores 4/4, only one correct scores 0/4 Provided the M1 is scored the A1s can be scored even with B0 (e.g. for z = 0.525) 	
(d)	M1 for attempt to standardise with 160, their μ and their σ (> 0). Even allow with symbols μ and σ . B1 for $z = \operatorname{awrt} \pm 0.92$ No working and a correct answer can score 3/3 provided σ and μ are correct to 2sf.	