Online Maths Teaching

Mark Scheme Q1.

یزا.					
Question Number	Scheme	e		Notes	Mar
	$x = 3\theta \sin \theta$, $y = \sec^3 \theta$, $0 \le \theta < \frac{\pi}{2}$				92
(a)	{When $y = 8$,} $8 = \sec^3 \theta \Rightarrow \cos^3 \theta = \frac{1}{8} \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{1}{8}$ $k \text{ (or } x) = 3\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{3}\right)$		$\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$	Sets $y = 8$ to find θ and attempts to substitute their θ into $x = 3\theta \sin \theta$	9 M1
	so k (or x) = $\frac{\sqrt{3}\pi}{2}$			$\frac{\sqrt{3}\pi}{2}$ or $\frac{3\pi}{2\sqrt{3}}$	A1
	Note: Obtaining two val	lue for k wi	thout accepting the		
(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sin\theta + 3\theta\cos\theta$			$3\theta \sin \theta \rightarrow 3\sin \theta + 3\theta \cos \theta$ Can be implied by later working	1 B1
	$\left\{ \int y \frac{\mathrm{d}x}{\mathrm{d}\theta} \left\{ \mathrm{d}\theta \right\} \right\} = \int (\sec^3 \theta) (3\sin \theta + \cos^3 \theta) (3\sin \theta) = \int (\sin^3 \theta) (3\sin \theta) d\theta$	$-3\theta\cos\theta$)	$\mathrm{d} heta \}$	Applies $\left(\pm K \sec^3 \theta\right) \left(\text{their } \frac{dx}{d\theta}\right)$ Ignore integral sign and $d\theta$; $K \neq 0$	(Time
8	$=3\int\theta\sec^2\theta+\tan\theta\sec^2\theta\mathrm{d}\theta$	Ac		result no errors in their working, e.g bracketing or manipulation error al sign and $d\theta$ in their final answe	s. A1
	$x = 0$ and $x = k \implies \underline{\alpha = 0}$ and $\beta = \underline{\beta}$,	or evidence of $0 \to 0$ and $k \to \frac{\pi}{3}$	22
100	Note: The work fo	or the final	B1 mark must be se		
(c) Way	$\frac{1}{1} \left\{ \int \theta \operatorname{sec}^2 \theta \mathrm{d}\theta \right\} = \theta \tan \theta - \int \tan \theta$	{d <i>0</i> }	where $g(\theta)$ is $g(\theta) = their$ de	$\int \sec^2 \theta d\theta. \text{ [Note: } g(\theta) \neq \sec^2 \theta]$ pendent on the previous M mark $\Rightarrow A\theta \tan \theta - B \int \tan \theta, A > 0, B > 0$	M1
	$= \theta \tan \theta - \ln(\sec \theta)$ or $= \theta \tan \theta + \ln(\cot \theta)$	$\cos \theta$) λ		or $\theta \sec^2 \theta \to \theta \tan \theta - \int \tan \theta$ $-\ln(\sec \theta)$ or $\theta \tan \theta + \ln(\cos \theta)$ or $\lambda \ln(\sec \theta)$ or $\lambda \theta \tan \theta + \lambda \ln(\cos \theta)$	A1
	Note: Condone down	2007 (000)	20 10 11 10		
	Note: Condone θ sec $\left\{\int \tan\theta \sec^2\theta d\theta\right\}$			$d \sec^2 \theta \to \pm C \tan^2 \theta \text{ or } \pm C \sec^2 \theta$	M1
	$= \frac{1}{2} \tan^2 \theta \text{ or } \frac{1}{2} \sec^2 \theta$ or $\frac{1}{2u^2} \text{ where } u = \cos \theta$ or $\frac{1}{2} u^2 \text{ where } u = \tan \theta$		or $0.5u^{-2}$, where u or $\lambda \tan \theta \sec^2 \theta$	$\frac{1}{2\cos^2\theta}$ or $\tan^2\theta - \frac{1}{2}\sec^2\theta$ = $\cos\theta$ or $0.5u^2$ where $u = \tan\theta$	A1
	$\left\{\operatorname{Area}(R)\right\} = \left[3\theta \tan \theta - 3\ln(\sec \theta) + \frac{3}{2}\right]$	$ an^2 \theta \Big _0^{\frac{\pi}{3}} \text{ or } \Big[$	$3\theta \tan \theta - 3\ln(\sec \theta) +$	$\frac{3}{2}\sec^2\theta\Big]_0^{\frac{\pi}{5}}$	
	$= \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 + \frac{3}{2}(3)\right)$	20-2			
	$=\frac{9}{2}+\sqrt{3}\pi-3\ln 2$ or	$\frac{9}{2}$ + $\sqrt{3}\pi$ +	$3\ln\left(\frac{1}{2}\right) \text{ or } \frac{9}{2} + \sqrt{3}\pi$	$r - \ln 8$ or $\ln \left(\frac{1}{8} e^{\frac{2}{2} + i5\pi} \right)$	A1 o.e.
					[6] 12

Question Number		Scheme	Notes	Marks
(c)	Way 2 fo	or the first 5 marks: Applying integ	gration by parts on $\int (\theta + \tan \theta) \sec^2 \theta d\theta$	
Way 2	$\int (\theta \sec^2$	$\theta + \tan \theta \sec^2 \theta) d\theta = \int (\theta + \tan \theta) \sec^2 \theta$	$ \frac{du}{d\theta} = 1 + \sec^2 \theta $ $ \frac{du}{d\theta} = 1 + \sec^2 \theta $ $ \frac{dv}{d\theta} = \sec^2 \theta \implies v = \tan \theta = g(\theta) $	
	$h(\theta)$ and	$g(\theta)$ are trigonometric functions in	θ and $g(\theta) = \text{their } \left[\sec^2 \theta d\theta. \text{ [Note: } g(\theta) \neq \sec^2 \theta \right]$	
			$A(\theta + \tan \theta)g(\theta) - B \left[(1 + h(\theta))g(\theta), A > 0, B > 0 \right]$	M1
	= (\theta + ta			dM1
	$= (\theta + ta)$	$\tan \theta$) $\tan \theta - \int (\tan \theta + \tan \theta \sec^2 \theta) \{ d\theta \}$	θ	
		$\tan \theta$) $\tan \theta - \ln(\sec \theta) - \int \tan \theta \sec^2 \theta$	(A + top A) top A In(con A) = =	A1
			$\tan\theta \sec^2\theta \rightarrow \pm C\tan^2\theta \text{ or } \pm C\sec^2\theta$	M1
	1	$\tan \theta$) $\tan \theta - \ln(\sec \theta) - \frac{1}{2} \tan^2 \theta$ + $\tan \theta$) $\tan \theta - \ln(\sec \theta) - \frac{1}{2} \sec^2 \theta$ etc	$(\theta + \tan \theta) \tan \theta - \frac{1}{2} \tan^2 \theta$ or $(\theta + \tan \theta) \tan \theta - \frac{1}{2} \sec^2 \theta$	A1
	Note	Allow the first two marks in part (c) for $\theta \tan \theta - \int \tan \theta$ embedded in their working	
	Note		(c) for $\theta \tan \theta - \ln(\sec \theta)$ embedded in their working	
	Note	Allow 3 rd M1 2 nd A1 marks for eith	her $\tan^2 \theta - \frac{1}{2} \tan^2 \theta$ or $\tan^2 \theta - \frac{1}{2} \sec^2 \theta$	
			Question Notes	
(a)	Note	Allow M1 for an answer of $k = av$	wrt 2.72 without reference to $\frac{\sqrt{3}\pi}{2}$ or $\frac{3\pi}{2\sqrt{3}}$	
	Note	Allow M1 for an answer of $k = 3\left(\arccos(\frac{1}{2})\right)\sin\left(\arccos(\frac{1}{2})\right)$ without reference to $\frac{\sqrt{3}\pi}{2}$ or $\frac{3}{2}$		
	Note	E.g. allow M1 for $\theta = 60^{\circ}$, leadin	g to $k = 3(60)\sin(60)$ or $k = 90\sqrt{3}$	-200 (1500)

		Question Notes Continued
(b)	Note	To gain A1, $d\theta$ does not need to appear until they obtain $3\int (\theta \sec^2 \theta + \tan \theta \sec^2 \theta) d\theta$
	Note	For M1, their $\frac{dx}{d\theta}$, where their $\frac{dx}{d\theta} \neq 3\theta \sin \theta$, needs to be a trigonometric function in θ
	Note	Writing $\int (\sec^3 \theta)(3\sin \theta + 3\theta\cos \theta) = 3\int (\theta \sec^2 \theta + \tan \theta \sec^2 \theta)d\theta$ is sufficient for B1M1A1
	Note	Writing $\frac{dx}{d\theta} = 3\sin\theta + 3\theta\cos\theta$ followed by writing $\int y \frac{dx}{d\theta} d\theta = 3\int (\theta \sec^2\theta + \tan\theta \sec^2\theta) d\theta$ is sufficient for B1M1A1
	Note	The final A mark would be lost for $\int \frac{1}{\cos^3 \theta} 3\sin\theta + 3\theta\cos\theta = 3\int (\theta \sec^2 \theta + \tan\theta \sec^2 \theta) d\theta$ [lack of brackets in this particular case].
	Note	Give 2 nd B0 for $\alpha = 0$ and $\beta = 60^{\circ}$, without reference to $\beta = \frac{\pi}{3}$
(c)	Note	A decimal answer of 7.861956551 (without a correct exact answer) is A0.
	Note	First three marks are for integrating $\theta \sec^2 \theta$ with respect to θ
	Note	Fourth and fifth marks are for integrating $\tan \theta \sec^2 \theta$ with respect to θ
	Note	Candidates are not penalised for writing $\ln \sec \theta$ as either $\ln (\sec \theta)$ or $\ln \sec \theta$
	Note	$\theta \sec^2 \theta \rightarrow \theta \tan \theta + \ln(\sec \theta)$ WITH NO INTERMEDIATE WORKING is M0M0A0
	Note	$\theta \sec^2 \theta \rightarrow \theta \tan \theta - \ln(\cos \theta)$ WITH NO INTERMEDIATE WORKING is M0M0A0
	Note	$\theta \sec^2 \theta \rightarrow \theta \tan \theta - \ln(\sec \theta)$ WITH NO INTERMEDIATE WORKING is M1M1A1
	Note	$\theta \sec^2 \theta \rightarrow \theta \tan \theta + \ln(\cos \theta)$ WITH NO INTERMEDIATE WORKING is M1M1A1
	Note	Writing a correct $uv - \int v \frac{du}{dx}$ with $u = \theta$, $\frac{dv}{d\theta} = \tan \theta$, $\frac{du}{d\theta} = 1$ and $v = \text{their } g(\theta)$ and making one error in the direct application of this formula is $1^{\text{st}} M1$ only.

	one error in the direct application of this form	nuia is 1 M1 only.	
(c)	Alternative method for finding $\int \tan \theta \sec^2 \theta d\theta$		
	$\begin{cases} u = \tan \theta & \Rightarrow \frac{du}{d\theta} = \sec^2 \theta \\ \frac{dv}{d\theta} = \sec^2 \theta & \Rightarrow v = \tan \theta \end{cases}$ $\int \tan \theta \sec^2 \theta d\theta = \tan^2 \theta - \int \tan \theta \sec^2 \theta d\theta$ $\Rightarrow 2 \int \tan \theta \sec^2 \theta d\theta = \tan^2 \theta$		
	$\int \tan \theta \sec^2 \theta d\theta = \frac{1}{2} \tan^2 \theta$	$\tan \theta \sec^2 \theta \text{ or } \to \pm C \tan^2 \theta$	M
	₩./	$\tan\theta\sec^2\theta \to \frac{1}{2}\tan^2\theta$	A
	or $\begin{cases} u = \sec \theta & \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}\theta} = \sec \theta \tan \theta \\ \frac{\mathrm{d}v}{\mathrm{d}\theta} = \sec \theta \tan \theta & \Rightarrow v = \sec \theta \end{cases}$		
	$\Rightarrow \int \tan \theta \mathrm{scc}^2 \theta \mathrm{d}\theta = \mathrm{scc}^2 \theta - \int \mathrm{scc}^2 \theta \tan \theta \mathrm{d}\theta$ $\Rightarrow 2 \int \tan \theta \mathrm{scc}^2 \theta \mathrm{d}\theta = \mathrm{scc}^2 \theta$		
	f. a 2010 1 20	$\tan\theta\sec^2\theta \text{ or } \to \pm C\sec^2\theta$	M
	$\int \tan \theta \sec^2 \theta d\theta = \frac{1}{2} \sec^2 \theta$	$\tan\theta \sec^2\theta \rightarrow \frac{1}{2}\sec^2\theta$	A:

Question Number	Scheme		Marks
(a)	$\left[x = \ln(t+2), \ y = \frac{1}{t+1}\right], \Rightarrow \frac{dx}{dt} = \frac{1}{t+2}$	Must state $\frac{dx}{dt} = \frac{1}{t+2}$	В1
	Area(R) = $\int_{\ln 2}^{\ln 4} \frac{1}{t+1} dx$; = $\int_{0}^{2} \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) dt$	Area = $\int \frac{1}{t+1} dx$. Ignore limits.	M1;
	$J_{lm2} t+1 \qquad J_0(t+1)(t+2)$	$\int \left(\frac{1}{t+1}\right) \times \left(\frac{1}{t+2}\right) dt$. Ignore limits.	A1 AG
	Changing limits, when: $x = \ln 2 \implies \ln 2 = \ln(t+2) \implies 2 = t+2 \implies t = 0$ $x = \ln 4 \implies \ln 4 = \ln(t+2) \implies 4 = t+2 \implies t = 2$	changes limits $x \rightarrow t$ so that $\ln 2 \rightarrow 0$ and $\ln 4 \rightarrow 2$	B1
	Hence, Area(R) = $\int_0^2 \frac{1}{(t+1)(t+2)} dt$		[4]
(b)	$\left(\frac{1}{(t+1)(t+2)}\right) = \frac{A}{(t+1)} + \frac{B}{(t+2)}$	$\frac{A}{(t+1)} + \frac{B}{(t+2)}$ with A and B found	M1
	1 = A(t+2) + B(t+1)		
	Let $t=-1$, $1=A(1)$ \Rightarrow $\underline{A=1}$ Let $t=-2$, $1=B(-1)$ \Rightarrow $B=-1$	Finds both A and B correctly. Can be implied. (See note below)	A1
	$\int_{0}^{2} \frac{1}{(t+1)(t+2)} dt = \int_{0}^{2} \frac{1}{(t+1)} - \frac{1}{(t+2)} dt$		
	$= \left[\ln(t+1) - \ln(t+2)\right]_0^2$	Either $\pm a \ln(t+1)$ or $\pm b \ln(t+2)$ Both ln terms correctly ft.	dM1 A1√
	$= (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	Substitutes both limits of 2 and 0 and subtracts the correct way round.	ddM1
	$= \ln 3 - \ln 4 + \ln 2 = \ln 3 - \ln 2 = \ln \left(\frac{3}{2}\right)$	$\frac{\ln 3 - \ln 4 + \ln 2 \text{ or } \ln \left(\frac{3}{4}\right) - \ln \left(\frac{1}{2}\right)}{\text{ or } \ln 3 - \ln 2 \text{ or } \ln \left(\frac{3}{2}\right)}$	A1 aef isw
		(must deal with ln 1)	[6]
Takes ou	Writing down $\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)}$	$+\frac{1}{(t+2)}$ means first M1A0 in (b).	
	Writing down $\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)}$	$-\frac{1}{(t+2)}$ means first M1A1 in (b).	

Question Number	Scheme		Marks	in
	$x = \ln(t+2), \qquad y = \frac{1}{t+1}$			
(c)	$e^x = t + 2 \implies t = e^x - 2$	Attempt to make $t =$ the subject giving $t = e^x - 2$	M1 A1	
	$y = \frac{1}{e^x - 2 + 1} \implies y = \frac{1}{e^x - 1}$	Eliminates t by substituting in y giving $y = \frac{1}{e^x - 1}$	dM1 A1 [4]	l
Aliter	$t+1=\frac{1}{y} \implies t=\frac{1}{y}-1 \text{ or } t=\frac{1-y}{y}$	Attempt to make $t =$ the subject	M1	
Way 2	$y(t+1)=1 \implies yt+y=1 \implies yt=1-y \implies t=\frac{1-y}{y}$	Giving either $t = \frac{1}{y} - 1$ or $t = \frac{1 - y}{y}$	A1	
	$x = \ln\left(\frac{1}{y} - 1 + 2\right) \text{or} x = \ln\left(\frac{1 - y}{y} + 2\right)$	Eliminates t by substituting in x	dM1	
	$x = \ln\left(\frac{1}{y} + 1\right)$			
	$e^x = \frac{1}{y} + 1$			
	$e^x - 1 = \frac{1}{y}$			
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	A1	1
(d)	Domain: $\underline{x > 0}$	$\underline{x>0}$ or just >0	B1 [1]	18
			15 marks	E

Question Number	Scheme		Marks
Aliter (c) Way 3	$\mathbf{e}^x = t + 2 \implies t + 1 = \mathbf{e}^x - 1$	Attempt to make $t+1 =$ the subject giving $t+1 = e^x -1$	M1 A1
	$y = \frac{1}{t+1} \implies y = \frac{1}{e^x - 1}$	Eliminates <i>t</i> by substituting in <i>y</i> giving $y = \frac{1}{e^x - 1}$	dM1 A1 [4]
Aliter (c) Way 4	$t+1=\frac{1}{y} \implies t+2=\frac{1}{y}+1 \text{ or } t+2=\frac{1+y}{y}$	Attempt to make $t + 2 =$ the subject Either $t + 2 = \frac{1}{y} + 1$ or $t + 2 = \frac{1 + y}{y}$	M1 A1
	$x = \ln\left(\frac{1}{y} + 1\right)$ or $x = \ln\left(\frac{1+y}{y}\right)$	Eliminates t by substituting in x	dM1
	$x = \ln\left(\frac{1}{y} + 1\right)$		
	$e^x = \frac{1}{y} + 1 \implies e^x - 1 = \frac{1}{y}$		
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	A1 [4]

Question Number	Scheme	Marks
5.	Working parametrically:	
	$x = 1 - \frac{1}{2}t$, $y = 2^t - 1$ or $y = e^{t \ln 2} - 1$	
(a)	$\{x=0 \Rightarrow\} 0=1-\frac{1}{2}t \Rightarrow t=2$ Applies $x=0$ to obtain a value for t .	M1
	When $t = 2$, $y = 2^2 - 1 = 3$ Correct value for y.	A1 [2]
(b)	$\{y = 0 \Rightarrow\} 0 = 2^t - 1 \Rightarrow t = 0$ Applies $y = 0$ to obtain a value for t . (Must be seen in part (b)).	M1
	When $t = 0$, $x = 1 - \frac{1}{2}(0) = 1$ $x = 1$	A1
(c)	$\frac{dx}{dt} = -\frac{1}{2}$ and either $\frac{dy}{dt} = 2^t \ln 2$ or $\frac{dy}{dt} = e^{t \ln 2} \ln 2$	[2] B1
	u Z u u u	
	$\frac{dy}{dx} = \frac{2^t \ln 2}{-\frac{1}{2}}$ Attempts their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$.	M1
	At A , $t = "2"$, so $m(\mathbf{T}) = -8 \ln 2 \Rightarrow m(\mathbf{N}) = \frac{1}{8 \ln 2}$ Applies $t = "2"$ and $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1
	$y-3=\frac{1}{8\ln 2}(x-0)$ or $y=3+\frac{1}{8\ln 2}x$ or equivalent. See notes.	M1 A1 oe
(d)	Area(R) = $\int (2^t - 1) \cdot (-\frac{1}{2}) dt$ Complete substitution for both y and dx	[5] M1
	$x = -1 \rightarrow t = 4$ and $x = 1 \rightarrow t = 0$	B1
	Either $2^t \to \frac{2^t}{\ln 2}$	
	$= \left\{-\frac{1}{2}\right\} \left(\frac{2^t}{\ln 2} - t\right) \qquad \text{or } \left(2^t - 1\right) \to \frac{(2^t)}{\pm \alpha(\ln 2)} - t$	M1*
	or $(2^t - 1) \rightarrow \pm \alpha (\ln 2)(2^t) - t$	
	$\left(2^{t}-1\right) \to \frac{2^{t}}{\ln 2} - t$	A1
	$\begin{bmatrix} 1 & 2' & 2' \end{bmatrix}$ 1((1) (16 4)) Depends on the previous method mark.	13.61*
	$\left\{-\frac{1}{2}\left[\frac{2^t}{\ln 2} - t\right]_4^0\right\} = -\frac{1}{2}\left(\left(\frac{1}{\ln 2}\right) - \left(\frac{16}{\ln 2} - 4\right)\right)$ Depends on the previous method mark. Substitutes their changed limits in t and subtracts either way round.	dM1*
	$= \frac{15}{2 \ln 2} - 2$ $\frac{15}{2 \ln 2} - 2$ or equivalent.	A1
		[6]

- **M1:** Applies x = 0 and obtains a value of t. 5. (a)
 - **A1:** For $y = 2^2 1 = 3$ or y = 4 1 = 3

Alternative Solution 1:

- **M1:** For substituting t = 2 into either x or y.
- **A1:** $x = 1 \frac{1}{2}(2) = 0$ and $y = 2^2 1 = 3$

- Alternative Solution 2: M1: Applies y = 3 and obtains a value of t.
- **A1:** For $x = 1 \frac{1}{2}(2) = 0$ or x = 1 1 = 0.

Alternative Solution 3:

- M1: Applies y = 3 or x = 0 and obtains a value of t.
- **A1:** Shows that t = 2 for both y = 3 and x = 0.
- (b) **M1:** Applies y = 0 and obtains a value of t. Working must be seen in part (b).
 - **A1:** For finding x = 1.
 - **Note:** Award M1A1 for x = 1.
- **B1:** Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ correct. This mark can be implied by later working. (c)
 - **M1:** Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt} \times \frac{1}{\text{their}\left(\frac{dx}{dt}\right)}$. Note: their $\frac{dy}{dt}$ must be a function of t.
 - **M1:** Uses their value of t found in part (a) and applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$
 - **M1:** y-3= (their normal gradient)x or y= (their normal gradient)x+3 or equivalent.
 - **A1:** $y-3=\frac{1}{8 \ln 2}(x-0)$ or $y=3+\frac{1}{8 \ln 2}x$ or $y-3=\frac{1}{\ln 256}(x-0)$ or $(8 \ln 2)y-24 \ln 2=x$ or $\frac{y-3}{(x-0)} = \frac{1}{8 \ln 2}$. You can apply isw here.
 - Working in decimals is ok for the three method marks. B1, A1 require exact values.
- M1: Complete substitution for both y and dx. So candidate should write down $\int (2^t 1) \cdot (their \frac{dx}{dt})$ (d)
 - **B1:** Changes limits from $x \to t$. $x = -1 \to t = 4$ and $x = 1 \to t = 0$. Note t = 4 and t = 0 seen is B1.
 - M1*: Integrates 2^t correctly to give $\frac{2^t}{\ln 2}$
 - ... or integrates $(2^t 1)$ to give either $\frac{(2^t)}{\pm \alpha (\ln 2)} t$ or $\pm \alpha (\ln 2)(2^t) t$.
 - **A1:** Correct integration of $(2^t 1)$ with respect to t to give $\frac{2^t}{\ln 2} t$.

dM1*: Depends upon the previous method mark.

- Substitutes their limits in t and subtracts either way roun
- **A1:** Exact answer of $\frac{15}{2 \ln 2} 2$ or $\frac{15}{\ln 4} 2$ or $\frac{15 4 \ln 2}{2 \ln 2}$ or $\frac{7.5}{\ln 2} 2$ or $\frac{15}{2} \log_2 e 2$ or equivalent.

Questio				٦
n	Scheme		Marks	
Number				
5.	Alternative: Converting to a Cartesian equation: $t = 2 - 2x \implies y = 2^{2-2x} - 1$			٦
	$t = 2 - 2x \implies y = 2^{2-2x} - 1$			
(a)	$\{x=0 \Rightarrow\} y=2^2-1$	Applies $x = 0$ in their Cartesian	M1	
(a)		equation	IVII	
	y = 3	to arrive at a correct answer of 3.	A1	
		A 1: 0 414	[2]	
(b)	$\left\{y=0 \Rightarrow\right\} 0 = 2^{2-2x} - 1 \Rightarrow 0 = 2 - 2x \Rightarrow x = \dots$	Applies $y = 0$ to obtain a value for	M1	
(0)	$(y-0) \rightarrow (0-2) \rightarrow (0-2$	(Must be seen in part (b)).	IVII	
	x = 1	(what we seen in part (b)). $x = 1$	A1	
			[2]	1
	dy (22)	$\pm \lambda 2^{2-2x}, \ \lambda \neq 1$	M1	
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2(2^{2-2x})\ln 2$	$-2(2^{2-2x})\ln 2$ or equivalent	A1	
		() 1		
	At A, $x = 0$, so $m(T) = -8 \ln 2 \implies m(N) = \frac{1}{8 \ln 2}$	Applies $x = 0$ and $m(N) = \frac{-1}{m(T)}$	MI	
	$y-3=\frac{1}{8 \ln 2}(x-0)$ or $y=3+\frac{1}{8 \ln 2}x$ or			
	01112	As in the original scheme.	M1 A1 oe	
	equivalent.			.
	f(-2.2) -	Form the integral of their Cartesian	[5]	j
(d)	$Area(R) = \int (2^{2-2x} - 1) dx$	equation of C .	M1	
	al.	For $2^{2-2x} - 1$ with limits of $x = -1$ and		
	$=\int_{1}^{1}(2^{2-2x}-1)dx$		B1	
	J -1,	$x = 1$. Ie. $\int_{-1}^{1} (2^{2-2x} - 1)$		
		Either $2^{2-2x} \to \frac{2^{2-2x}}{-2\ln 2}$		
		$-2\ln 2$		
	(2 ^{2-2x}	or $(2^{2-2x}-1) \to \frac{2^{2-2x}}{+\alpha(\ln 2)} - x$	M1*	
	$=\left(\frac{2^{2-2x}}{-2\ln 2}-x\right)$	±α (m 2)		
	(-21112)	or $(2^{2-2x} - 1) \rightarrow \pm \alpha (\ln 2)(2^{2-2x}) - x$		
		or $(2^{2-2x} - 1) \rightarrow \pm \alpha (\ln 2)(2^{2-2x}) - x$ $(2^{2-2x} - 1) \rightarrow \frac{2^{2-2x}}{-2 \ln 2} - x$		
		$(2 -1) \rightarrow {-2 \ln 2} - x$	A1	
	$\left[\left[2^{2-2x} \right]^{1} \right] \left(\left(1 \right) \right) \left(16 \right) \right]$	Depends on the previous method		
	$\left\{ \left[\frac{2^{2-2x}}{-2\ln 2} - x \right]_{-1}^{1} \right\} = \left(\left(\frac{1}{-2\ln 2} - 1 \right) - \left(\frac{16}{-2\ln 2} + 1 \right) \right)$	mark.	dM1*	
	(c), (c),	Substitutes limits of -1 and their x_B	divii	
	L	and subtracts either way round.		
	$=\frac{15}{2\ln 2}-2$	$\frac{15}{2 \ln 2}$ – 2 or equivalent.	A1	
	2 111 2	2 iii 2	[6]	
			15	
(d)	Alternative method: In Cartesian and applying	u=2-2x		
I	l to see			
	Area(R) = $\int (2^u - 1) \{ dx \}$, where $u = 2 - 2x$ M0 :	Unless a candidate writes $\int (2^{2-2x} - 1)^{-x}$	$\{dx\}$	
		n apply the "working parametrically" ma	ark scheme.	
	$= \int_{4} (2^{n} - 1)(-\frac{1}{2}) \{ du \}$			
1	I .			- 1

Question Number	Scheme	Marks
(a)	Note: You can mark parts (a) and (b) together. $x = 4t + 3$, $y = 4t + 8 + \frac{5}{2t}$	
	$\frac{dx}{dt} = 4, \frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$ Both $\frac{dx}{dt} = 4$ or $\frac{dt}{dx} = \frac{1}{4}$ and $\frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$	B1
	So, $\frac{dy}{dx} = \frac{4 - \frac{5}{2}t^{-2}}{4} \left\{ = 1 - \frac{5}{8}t^{-2} = 1 - \frac{5}{8t^2} \right\}$ Candidate's $\frac{dy}{dt}$ divided by a candidate's $\frac{dx}{dt}$	M1 o.e.
	{When $t = 2$, } $\frac{dy}{dx} = \frac{27}{32}$ or 0.84375 cao	A1
	Way 2: Cartesian Method	[3]
	$\frac{dy}{dx} = 1 - \frac{10}{(x-3)^2}$ $\frac{dy}{dx} = 1 - \frac{10}{(x-3)^2}$, simplified or un-simplified.	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \lambda \pm \frac{\mu}{(x-3)^2}, \lambda \neq 0, \mu \neq 0$	M1
	{When $t = 2, x = 11$ } $\frac{dy}{dx} = \frac{27}{32}$ or 0.84375 cao	A1
	Way 3: Cartesian Method	[3]
	$\frac{dy}{dx} = \frac{(2x+2)(x-3)-(x^2+2x-5)}{(x-3)^2}$ Correct expression for $\frac{dy}{dx}$, simplified or un-simplified.	B1
	$\left\{ = \frac{x^2 - 6x - 1}{(x - 3)^2} \right\} \qquad \frac{dy}{dx} = \frac{f'(x)(x - 3) - 1f(x)}{(x - 3)^2},$ where $f(x) = \text{their } "x^2 + ax + b", g(x) = x - 3$	M1
	{When $t = 2, x = 11$ } $\frac{dy}{dx} = \frac{27}{32}$ or 0.84375 cao	A1
(b)	$\left\{t = \frac{x-3}{4} \Rightarrow \right\} y = 4\left(\frac{x-3}{4}\right) + 8 + \frac{5}{2\left(\frac{x-3}{4}\right)}$ Eliminates t to achieve an equation in only x and y	[3] M1
	$y = x - 3 + 8 + \frac{10}{x - 3}$	•••••
	$y = \frac{(x-3)(x-3) + 8(x-3) + 10}{x-3} or y(x-3) = (x-3)(x-3) + 8(x-3) + 10$ See notes	dM1
	or $y = \frac{(x+5)(x-3)+10}{x-3}$ or $y = \frac{(x+5)(x-3)}{x-3} + \frac{10}{x-3}$	
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3}, \{a = 2 \text{ and } b = -5\}$ $y = \frac{x^2 + 2x - 5}{x - 3} \text{or } a = 2 \text{ and } b = -5$ Correct algebra leading to	A1 cso
		[3] 6

Question Number	Scheme	Marks
(b)	Alternative Method 1 of Equating Coefficients $y = \frac{x^2 + ax + b}{x - 3} \Rightarrow y(x - 3) = x^2 + ax + b$ $y(x - 3) = (4t + 3)^2 + 2(4t + 3) - 5 = 16t^2 + 32t + 10$ $x^2 + ax + b = (4t + 3)^2 + a(4t + 3) + b$	
	$(4t+3)^2 + a(4t+3) + b = 16t^2 + 32t + 10$ Correct method of obtequation in only	MI
	t: $24+4a=32 \Rightarrow a=2$ Equates their coefficient finds both $a=$ at $a=2$ and $a=2$ and $a=2$ and $a=3$	dM1
(b)	Alternative Method 2 of Equating Coefficients	[3]
(-)	$\left\{t = \frac{x-3}{4} \Rightarrow \right\} \ y = 4\left(\frac{x-3}{4}\right) + 8 + \frac{5}{2\left(\frac{x-3}{4}\right)}$ Eliminates t to an equation in only	M1
	$y = x - 3 + 8 + \frac{10}{x - 3} \implies y = x + 5 + \frac{10}{(x - 3)}$ $\underline{y(x - 3)} = (x + 5)(x - 3) + 10 \implies x^2 + ax + b = \underline{(x + 5)(x - 3) + 10}$	dM1
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3}$ or equating coefficients to give $a = 2$ and $b = -5$ $y = \frac{x^2 + 2x - 5}{x - 3}$ or $a = 2$ and $a = 2$	

		Question Notes
(a)	B1	$\frac{dx}{dt} = 4$ and $\frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$ or $\frac{dy}{dt} = \frac{8t^2 - 5}{2t^2}$ or $\frac{dy}{dt} = 4 - 5(2t)^{-2}(2)$, etc.
	Note	$\frac{dy}{dt}$ can be simplified or un-simplified.
	Note	You can imply the B1 mark by later working.
	M1	Candidate's $\frac{dy}{dt}$ divided by a candidate's $\frac{dx}{dt}$ or $\frac{dy}{dt}$ multiplied by a candidate's $\frac{dt}{dx}$
	Note	M1 can be also be obtained by substituting $t = 2$ into both their $\frac{dy}{dt}$ and their $\frac{dx}{dt}$ and then
		dividing their values the correct way round.
	Al	27/32 or 0.84375 cao
(b)	M1 dM1	Eliminates t to achieve an equation in only x and y. dependent on the first method mark being awarded. Either: (ignoring sign slips or constant slips, noting that k can be 1)
		• Combining all three parts of their $x-3+\overline{8}+\frac{10}{x-3}$ to form a single fraction with a
		common denominator of $\pm k(x-3)$. Accept three separate fractions with the same denominator.
		• Combining both parts of their $\underline{x+5} + \left(\frac{10}{x-3}\right)$, (where $\underline{x+5}$ is their $4\left(\frac{x-3}{4}\right) + 8$)
		to form a single fraction with a common denominator of $\pm k(x-3)$. Accept two separa fractions with the same denominator.
		• Multiplies both sides of their $y = \underline{x-3} + 8 + \left(\frac{10}{x-3}\right)$ or their $y = \underline{x+5} + \left(\frac{10}{x-3}\right)$ by
	Note	$\pm k(x-3)$. Note that all terms in their equation must be multiplied by $\pm k(x-3)$. Condone "invisible" brackets for dM1.
	Al	Correct algebra with no incorrect working leading to $y = \frac{x^2 + 2x - 5}{x - 3}$ or $a = 2$ and $b = -5$
	Note	Some examples for the award of dM1 in (b):
		dM0 for $y = x - 3 + 8 + \frac{10}{x - 3}$ $\rightarrow y = \frac{(x - 3)(x - 3) + 8 + 10}{x - 3}$. Should be+8(x-3)+
		dM0 for $y = x - 3 + \frac{10}{x - 3} \rightarrow y = \frac{(x - 3)(x - 3) + 10}{x - 3}$. The "8" part has been omitted.
		dM0 for $y = x + 5 + \frac{10}{x - 3} \rightarrow y = \frac{x(x - 3) + 5 + 10}{x - 3}$. Should be + 5(x - 3) +
		dM0 for $y = x + 5 + \frac{10}{x - 3}$ $\rightarrow y(x - 3) = x(x - 3) + 5(x - 3) + 10(x - 3)$. Should be just 10.
	Note	$y = x + 5 + \frac{10}{x - 3}$ $\rightarrow y = \frac{x^2 + 2x - 5}{x - 3}$ with no intermediate working is dM1A1.

Question	Scheme	Marks	AOs
(a)(i)	$y \times \frac{dx}{dt} = 5\sin 2t \times 6\cos t$ or $5 \times 2\sin t \cos t \times 6\cos t$	M1	1.2

(a)(ii)	$\int 5\sin 2t \times 6\cos t dt = \int 60\sin t \cos^2 t dt$ $(Area =) \int_0^{\frac{\pi}{2}} 60\sin t \cos^2 t dt *$	A1*	
(a)(ii)		AI.	2.1*
(a)(ii)		(3)	
3	$\int 60 \sin t \cos^2 t dt = -20 \cos^3 t$	M1 A1	1.1b 1.1b
4	Area = $\left[-20\cos^3 t\right]_0^{\frac{\pi}{2}} = 0 - (-20) = 20$ *	A1*	2.1
		(3)	
(b)	$5\sin 2t = 4.2 \Rightarrow \sin 2t = \frac{4.2}{5}$	M1	3.4
	t = 0.4986, 1.072	A1	1.1b
	Attempts to finds the x values at both t values	dM1	3.4
	$t = 0.4986 \Rightarrow x = 2.869$ $t = 1.072 \Rightarrow x = 5.269$	A1	1.1b
	Width of path = 2.40 metres	A1	3.2a
		(5)	

Notes:

(a)(i)

M1: Attempts to multiply y by $\frac{dx}{dt}$ to obtain $A \sin 2t \cos t$ but may apply $\sin 2t = 2 \sin t \cos t$ here

dM1: Attempts to use $\sin 2t = 2\sin t \cos t$ within an integral which may be implied by

e.g.
$$A \int \sin 2t \times \cos t \, dt = \int k \sin t \cos^2 t \, dt$$

Al*: Fully correct work leading to the given answer.

This must include $\sin 2t = 2 \sin t \cos t$ or e.g. $5 \sin 2t = 10 \sin t \cos t$ seen <u>explicitly</u> in their proof and a correct intermediate line that includes an integral sign and the "dt"

Allow the limits to just "appear" in the final answer e.g. working need not be shown for the limits.

(a)(ii)

M1: Obtains $\int 60 \sin t \cos^2 t \, dt = k \cos^3 t$. This may be attempted via a substitution of $u = \cos t$ to obtain

$$\int 60 \sin t \cos^2 t \, dt = ku^3$$

A1: Correct integration $-20\cos^3 t$ or equivalent e.g. $-20u^3$

A1*: Rigorous proof with all aspects correct including the correct limits and the 0-(-20) and

not just:
$$-20\cos^3\frac{\pi}{2} - (-20\cos^30) = 20$$

(b)

M1: Uses the given model and attempts to find value(s) of t when $\sin 2t = \frac{4.2}{5}$. Look for $2t = \sin^{-1} \frac{4.2}{5} \Rightarrow t = ...$

A1: At least one correct value for t, correct to 2 dp. FYI t = 0.4986..., 1.072... or in degrees t = 28.57..., 61.42...

dM1: Attempts to find TWO distinct values of x when $\sin 2t = \frac{4.2}{5}$. Condone poor trig work and allow this mark if 2 values of x are attempted from 2 values of t.

A1: Both values correct to 2 dp. NB x = 2.869..., 5.269...

Or may take Cartesian approach

$$5\sin 2t = 4.2 \Rightarrow 10\sin t\cos t = 4.2 \Rightarrow 10\frac{x}{6}\sqrt{1 - \frac{x^2}{36}} = 4.2 \Rightarrow x^4 - 36x^2 + 228.6144 = 0 \Rightarrow x = 2.869..., 5.269...$$

M1: For converting to Cartesian form A1: Correct quartic M1: Solves quartic A1: Correct values

A1: 2.40 metres or 240 cm

Allow awrt 2.40 m or allow 2.4m (not awrt 2.4 m) and allow awrt 240 cm. Units are required.

Q6.

Question Number	Scheme	Marks
	$x = 4\sin\left(t + \frac{\pi}{6}\right), y = 3\cos 2t, 0, t < 2\pi$	
(a)	$\frac{dx}{dt} = 4\cos\left(t + \frac{\pi}{6}\right). \frac{dy}{dt} = -6\sin 2t$	B1 B1
	So, $\frac{dy}{dx} = \frac{-6\sin 2t}{4\cos\left(t + \frac{\pi}{6}\right)}$	B1√ oc
(b)	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \right\} - 6\sin 2t = 0$	[3] M1 oe
	@ $t = 0$, $x = 4\sin\left(\frac{\pi}{6}\right) = 2$, $y = 3\cos 0 = 3 \rightarrow (2,3)$	M1
	@ $t = \frac{\pi}{2}$, $x = 4\sin\left(\frac{2\pi}{3}\right) = \frac{4\sqrt{3}}{2}$, $y = 3\cos\pi = -3 \to (2\sqrt{3}, -3)$	
	@ $t = \pi$, $x = 4\sin\left(\frac{7\pi}{6}\right) = -2$, $y = 3\cos 2\pi = 3 \rightarrow (-2, 3)$	
	@ $t = \frac{3\pi}{2}$, $x = 4\sin\left(\frac{5\pi}{3}\right) = \frac{4(-\sqrt{3})}{2}$, $y = 3\cos 3\pi = -3 \rightarrow (-2\sqrt{3}, -3)$	A1A1A1
		[5] 8

(a) B1: Either one of
$$\frac{dx}{dt} = 4\cos\left(t + \frac{\pi}{6}\right)$$
 or $\frac{dy}{dt} = -6\sin 2t$. They do not have to be simplified.

B1: Both
$$\frac{dx}{dt}$$
 and $\frac{dy}{dt}$ correct. They do not have to be simplified.

Any or both of the first two marks can be implied.

Don't worry too much about their notation for the first two B1 marks.

B1: Their
$$\frac{dy}{dt}$$
 divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt} \times \frac{1}{\text{their} \left(\frac{dx}{dt}\right)}$. Note: This is a follow through mark.

Alternative differentiation in part (a)

$$x = 2\sqrt{3}\sin t + 2\cos t \Rightarrow \frac{dx}{dt} = 2\sqrt{3}\cos t - 2\sin t$$

$$y = 3(2\cos^2 t - 1) \implies \frac{dy}{dt} = 3(-4\cos t \sin t)$$

or
$$y = 3\cos^2 t - 3\sin^2 t$$
 $\Rightarrow \frac{dy}{dt} = -6\cos t \sin t - 6\sin t \cos t$

or
$$y = 3(1 - 2\sin^2 t) \Rightarrow \frac{dy}{dt} = 3(-4\cos t \sin t)$$

(b) M1: Candidate sets their numerator from part (a) or their $\frac{dy}{dt}$ equal to 0.

Note that their numerator must be a trig function. Ignore $\frac{dx}{dt}$ equal to 0 at this stage.

M1: Candidate substitutes a found value of t, to attempt to find either one of x or y.

The first two method marks can be implied by ONE correct set of coordinates for (x, y) or (y, x) interchanged.

A correct point coming from NO WORKING can be awarded M1M1.

A1: At least TWO sets of coordinates.

A1: At least THREE sets of coordinates.

A1: ONLY FOUR correct sets of coordinates. If there are more than 4 sets of coordinates then award A0.

Note: Candidate can use the diagram's symmetry to write down some of their coordinates.

Note: When $x = 4\sin\left(\frac{\pi}{6}\right) = 2$, $y = 3\cos 0 = 3$ is acceptable for a pair of coordinates.

Also it is fine for candidates to display their coordinates on a table of values.

Note: The coordinates must be exact for the accuracy marks. Ie (3.46..., -3) or (-3.46..., -3) is A0.

Note: $\frac{dy}{dx} = 0 \Rightarrow \sin t = 0$ ONLY is fine for the first M1, and potentially the following M1A1A0A0.

Note: $\frac{dy}{dx} = 0 \Rightarrow \cos t = 0$ ONLY is fine for the first M1 and potentially the following M1A1A0A0.

Note: $\frac{dy}{dx} = 0 \Rightarrow \sin t = 0 & \cos t = 0$ has the potential to achieve all five marks.

Note: It is possible for a candidate to gain full marks in part (b) if they make sign errors in part (a).

(b) An alternative method for finding the coordinates of the two maximum points,

Some candidates may use $y = 3\cos 2t$ to write down that the y-coordinate of a maximum point is 3.

They will then deduce that t = 0 or π and proceed to find the x-coordinate of their maximum point. These candidates will receive no credit until they attempt to find one of the x-coordinates for the maximum point.

M1M1: Candidate states
$$y = 3$$
 and attempts to substitute $t = 0$ or π into $x = 4\sin\left(t + \frac{\pi}{6}\right)$.

M1M1 can be implied by candidate stating either (2,3) or (2,-3).

Note: these marks can only be awarded together for a candidate using this method.

A1: For both (2,3) or (-2,3).

A0A0: Candidate cannot achieve the final two marks by using this method. They can, however, achieve these marks by subsequently solving their numerator equal to 0.

Question Number	Schomo		Marks	
(a) (b)	At A , $x = -1 + 8 = 7$ & $y = (-1)^2 = 1 \Rightarrow A(7,1)$ $x = t^3 - 8t$, $y = t^2$,	A(7,1)	B1	
	$\frac{dx}{dt} = 3t^2 - 8, \frac{dy}{dt} = 2t$ $\therefore \frac{dy}{dx} = \frac{2t}{3t^2 - 8}$ At A, $m(T) = \frac{2(-1)}{3(-1)^2 - 8} = \frac{-2}{3 - 8} = \frac{-2}{-5} = \frac{2}{5}$	Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ Correct $\frac{dy}{dx}$ Substitutes for t to give any of the four underlined oe:	M1 A1	
	$\frac{3(-1)^2 - 3}{T} = \frac{3 - 3}{5} = \frac{-3}{5}$ $\text{T: } y - (\text{their 1}) = m_T \left(x - (\text{their 7}) \right)$ $\text{or } 1 = \frac{2}{5}(7) + c \implies c = 1 - \frac{14}{5} = -\frac{9}{5}$ $\text{Hence T: } y = \frac{2}{5}x - \frac{9}{5}$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses $y = (\text{their gradient})x + "c".$	dM1	
1	gives T: $2x - 5y - 9 = 0$ AG	2x - 5y - 9 = 0	A1 cs	
(c)	$2(t^3 - 8t) - 5t^2 - 9 = 0$	Substitution of both $x = t^3 - 8t$ and $y = t^3$ into T	M1	
	$2t^{3} - 5t^{2} - 16t - 9 = 0$ $(t+1)\{(2t^{2} - 7t - 9) = 0\}$ $(t+1)\{(t+1)(2t-9) = 0\}$	A realisation that $(t+1)$ is a factor.	dM1	
	$\left\{t = -1 \text{ (at } A)\right\} \ t = \frac{9}{2} \text{ at } B$	$t = \frac{9}{2}$	A1	
	$x = \left(\frac{9}{2}\right)^2 - 8\left(\frac{9}{2}\right) = \frac{729}{8} - 36 = \frac{441}{8} = 55.125 \text{ or awrt } 55.1$	Candidate uses their value of t to find either the x or y coordinate	ddM1	
	$y = \left(\frac{9}{2}\right)^2 = \frac{31}{4} = 20.25 \text{ or awrt } 20.3$ Hence $B\left(\frac{441}{8}, \frac{81}{4}\right)$	One of either x or y correct. Both x and y correct. awrt	A1 A1	
			[1	