

Mark Scheme

Q1.

Question		Scheme	Marks	AOs
(a)	$\mathbf{r} \bullet \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} =$	$ = \begin{pmatrix} 5 \\ -3 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} $	M1	1.1b
	3x - y + 2	z = 10	A1	2.5
			(2)	2.2
(b)	$ \left(\begin{array}{c}3\\-1\\2\end{array}\right) $	$\begin{pmatrix} -1 \\ -5 \\ 3 \end{pmatrix} = 8$	B1	1.1b
	$\sqrt{(3)^2 + (-1)^2}$	$(-1)^2 + (2)^2$. $\sqrt{(-1)^2 + (-5)^2 + (3)^2} \cos \alpha = "-3 + 5 + 6"$	M1	1.1b
	$\theta = 90^{\circ} - 10^{\circ}$	$\arccos\left(\frac{8}{\sqrt{14}.\sqrt{35}}\right) \text{ or } \sin\theta = \frac{8}{\sqrt{14}.\sqrt{35}}$	M1	2.1
	$\theta = 21.2^{\circ}$	(1 dp) * cso	A1*	1.1b
			(4)	
(c)	3(7 – λ) –	$(3-5\lambda)+2(-2+3\lambda)=10 \Rightarrow \lambda=$	M 1	3.1a
	$\lambda = -\frac{1}{2}$		A1	1.1b
	$\overline{OX} = \begin{bmatrix} & & \\ & & \\ & & \\ & - & \\ & & $	$ \begin{pmatrix} 7\\3\\2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1\\-5\\3 \end{pmatrix} = \begin{pmatrix} \dots\\\dots\\\dots\\\dots \end{pmatrix} $	M1	1.1b
	X(7.5, 5.5	5, -3.5)	A1ft	1.1b
	A		(4)	
			100	marks)
2		Question Notes	,	
(a)	M1	Attempts to apply the formula $\mathbf{r.n} = \mathbf{a.n}$		
	A1	Correct Cartesian notation. e.g. $3x - y + 2z = 10$ or $-3x + y$	-2z = -10	
	Note	Do not allow final answer given as $r \cdot (3i - j + 2k) = 10$, o.e.		
(b)	B1	$\overline{OA} \cdot \mathbf{n} = 8$		
and a second	M1	An attempt to apply the correct dot product formula between n		
	M1	Depends on previous M mark. Applies the dot product formula	to find the ang	le
	Atk	between Π and l . 21.2° cso		
(c)	A1* M1	Substitutes l into Π and solves the resulting equation to give	2=	
(1)	A1	$\lambda = -\frac{1}{2}$ o.e.	~	
	M1	Depends on previous M mark. Substitutes their λ into l and fin the coordinates.	ids at least one	of
	A1ft	$(7.5, 5.5, -3.5)$ but follow through on their value of λ .		

Question	Scheme	Marks	AOs
(a)	Need k component to be zero at ground, so $0.84 + 0.8\lambda - \lambda^2 = 0 \Rightarrow \lambda =$	M1	1.1b
	$\lambda = -\frac{3}{5}, \frac{7}{5}, \text{ but } \lambda \ge 0 \text{ so } \lambda = \frac{7}{5}$	A1	1.1b
		(2)	
(b)	Direction is $(9-4.6\times1.4)\mathbf{i}+15\mathbf{j}+(0.8-2\times1.4)$ = 2.56 $\mathbf{i}+15\mathbf{j}-2\mathbf{k}$ or $\frac{64}{25}\mathbf{i}+15\mathbf{j}-2\mathbf{k}$	B1ft	2.2a
		(1)	

(c)	Direction perpendicular to ground is $a\mathbf{k}$, so angle to perpendicular is given by $(\cos\theta) = \frac{a\mathbf{k}.(2.56\mathbf{i}+15\mathbf{j}-2\mathbf{k})}{a \times 2.56\mathbf{i}+15\mathbf{j}-2\mathbf{k} }$ or $\frac{\begin{pmatrix} 2.56\\15\\-2 \end{pmatrix} \cdot \begin{pmatrix} 0\\0\\a \end{pmatrix}}{\begin{vmatrix} 2.56\\15\\-2 \end{vmatrix} a}$		
	or angle between $\begin{pmatrix} 2.56\\15\\-2 \end{pmatrix}$ and $\begin{pmatrix} 2.56\\15\\0 \end{pmatrix}$ is given by $(\cos\theta) = \frac{\begin{pmatrix} 2.56\\15\\-2 \end{pmatrix} \begin{pmatrix} 2.56\\15\\-2 \end{pmatrix} \begin{pmatrix} 2.56\\15\\0 \end{pmatrix}}{\begin{vmatrix} 2.56\\15\\15\\-2 \end{vmatrix} \begin{pmatrix} 2.56\\15\\0 \end{pmatrix}}$	M1	1.1
	$=\frac{-2}{\sqrt{2.56^2+15^2+(-2)^2}} (=-0.130)$ Or $=\frac{231.5536}{\sqrt{2.56^2+15^2+(-2)^2}\sqrt{2.56^2+15^2+(0)^2}} = 0.991$	M1	1.1
	90° - arccos('-0.130') = -7.48 or arccos(0.991)	ddM1	3.1
	So the tennis ball hits ground at angle of 7.5° (1d.p.) cao	A1	3.2
	Alternative Finds the length of the vector in the ij plane = $\sqrt{2.56^2 + 15^2}$	M1	1.1
	$\tan\theta = \frac{2}{\sqrt{2.56^2 + 15^2}}$	M1	1.1
	$\theta = \arctan\left(\frac{2}{\sqrt{2.56^2 + 15^2}}\right)$ or $\theta = 90 - \arctan\left(\frac{\sqrt{2.56^2 + 15^2}}{2}\right)$	ddM1	3.1

www.onlinemathsteaching.co.uk

Q2.

			رکیا Online M
	So the tennis ball hits ground at angle of 7.5° (1d.p.)	A1	3.2a
		(4)	
(d)	In same plane as net when $\mathbf{r} \cdot \mathbf{j} = 0$, $\begin{pmatrix} -4.1 + 9\lambda - 2.3\lambda^2 \\ -10.25 + 15\lambda \\ 0.84 + 0.8\lambda - \lambda^2 \end{pmatrix} \bullet \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ leading to $-10.25 + 15\lambda = 0 \Rightarrow \lambda =$ $\begin{pmatrix} = \frac{41}{60} = 0.683333 \end{pmatrix}$	M1	3.1b
	So is at position $\left(-4.1+9\times\frac{41}{60}-2.3\left(\frac{41}{60}\right)^{2}\right)\mathbf{i}+0\mathbf{j}+\left(0.84+0.8\times\frac{41}{60}-\left(\frac{41}{60}\right)^{2}\right)\mathbf{k}$	M1	1.1b
	= awrt 0.976i + awrt 0.920k or = awrt 0.976i + 0.92k (to 3 s.f.) or = awrt 0.976i + $\frac{3311}{3600}$ k	A1	1.1b
		(3)	
(e)	Modelling as a line, height of net is 0.9m along its length so as $0.92 > 0.9$ the ball will pass over the net according to the model.	B1ft	3.2a
		(1)	
(f)	Identifies a suitable feature of the model that affects the outcome	M1	3.2b
	 And uses it to draw a compatible conclusion. For example The ball is not a particle and will have diameter/radius, therefore it will hit the net and not pass over. As above, but so the ball will clip the net but it's momentum will take it over as it is mostly above the net. The model says that the ball will clear the net by 2cm which may be smaller than the balls diameter The net will not be a straight line/taut so will not be 0.9m high, so the ball will have enough clearance to pass over the net. 	A1	2.2b
		(2)	

الريا مُصْصُ Online Maths Teaching

Notes:

Accept any alternative vector notations throughout.
(a)
M1: Attempts to solve the quadratic from equating the k component to zero.
A1: Correct value, must select positive root, so accept 1.4 oe.
Correct answer only M1 A1
(b)
B1ft: For (2.56,15,-2) o.e or follow through (9-4.6×' λ',15,0.8-2×' λ') for their λ.
(c)
M1: Recognises the angle between the perpendicular and direction vector is needed, and identifies

the perpendicular as ak for any non-zero a (including 1), and attempts dot product

Alternatively recognises the dot product of (2.56, 15, -2) and (2.56, 15, 0)M1: Applies the dot product formula $\frac{a \cdot b}{|a||b|}$ correctly between *any* two vectors, but must have dot product and modulus evaluated. ddM1: Dependent on both previous marks. A correct method to proceed to the required angle, usually 90° – $\arccos(-0.130...)$ as shown in scheme but may e.g. use $\sin \theta$ instead of $\cos \theta$ in formula. Alternatively is using dot product of (2.56,15,-2) and (2.56,15,0) finds arccos(0.991...) Al: For 7.5° cao Alternative M1: Finds the length of the vector in the ij plane. M1: Finds the tan of any angle the ddM1: Dependent on both previous marks. Finds the required angle Al: For 7.5° cao (d) M1: Attempts to find value of λ that gives zero j component. M1: Uses their value of λ in the equation of the path to find position. Al: Correct position. (e) Blft: States that 0.920 > 0.9 so according to the model the ball will pass over the net. Follow through on their k component and draws an appropriate conclusion. May stay the value of k > 10.92 (f) M1: There must be some reference to the model to score this mark. See scheme for examples. It is likely to be either the ball is not a particle, or the top of the net is not a straight line. Accept references to the ball crossing a long way from the middle. Do not accept reasons such as "there may be wind/air resistance" as these are not referencing the given model. A1: For a reasonable conclusion based on their reference to the model. For example The ball is not a particle; therefore, it will not go over the net is M1A0 as not explained why - needs reference to radius/diameter

Question	Scheme	Marks	AOs
(a)	Any two of: $\begin{cases} \pm k \overrightarrow{AB} = \pm k (5\mathbf{i} + 25\mathbf{j} + 5\mathbf{k}), \\ \pm k \overrightarrow{AC} = \pm k (-15\mathbf{i} + 15\mathbf{j} - 10\mathbf{k}), \\ \pm k \overrightarrow{BC} = \pm k (-20\mathbf{i} - 10\mathbf{j} - 15\mathbf{k}) \end{cases}$	M1	3.3
	Let normal vector be $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ $(a\mathbf{i} + b\mathbf{j} + c\mathbf{k}) \bullet (\mathbf{i} + 5\mathbf{j} + \mathbf{k}) = 0, (a\mathbf{i} + b\mathbf{j} + c\mathbf{k}) \bullet (-3\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}) = 0$ $\Rightarrow a + 5b + c = 0, -3a + 3b - 2c = 0 \Rightarrow a =, b =, c =$ Alternative: cross product $\begin{vmatrix} 1 & 5 & 1 \\ -3 & 3 & -2 \end{vmatrix} = (-10 - 3)\mathbf{i} - (-2 + 3)\mathbf{j} + (3 + 15)\mathbf{k}$	M1	1.1b
	$\mathbf{n} = k\left(-13\mathbf{i} - \mathbf{j} + 18\mathbf{k}\right)$	A1	1.1b
	$(-13i - j + 18k) \bullet (10i + 5j - 50k) =$	M1	1.1b
	$\mathbf{r} \cdot (13\mathbf{i} + \mathbf{j} - 18\mathbf{k}) = 1035 \text{ o.e. } \mathbf{r} \cdot (-13\mathbf{i} - \mathbf{j} + 18\mathbf{k}) = -1035$ $\mathbf{r} \cdot (325\mathbf{i} + 25\mathbf{j} - 450\mathbf{k}) = 25875$	Al	2.5
		(5)	
(b)	Attempts the scalar product between their normal vector and the vector k and uses trigonometry to find an angle	M1	3.1b
	$(-13\mathbf{i} - \mathbf{j} + 18\mathbf{k}) \bullet \mathbf{k} = -18 = \sqrt{13^2 + 1^2 + 18^2} \cos \alpha$	M1	1.1b
	$\cos \alpha = \frac{-18}{\sqrt{494}} \Rightarrow \alpha = 144.08 \Rightarrow \theta = 36^{\circ}$	A1	3.2a
		(3)	
(c)	Distance required is $ \lambda $ where $\begin{pmatrix} 13\\1\\-18 \end{pmatrix} \cdot \begin{pmatrix} 5\\12\\\lambda \end{pmatrix} = 1035$	M1	3.4
	$ \lambda = 53.2 \mathrm{m}$	A1	1.1b
		(2)	

		C	لم م اnline Maths
(d)	 E.g. The mineral layer will not be perfectly flat/smooth and will not form a plane The mineral layer will have a depth and this should be taken into account 	B1	3.5b
		(1)	
		(11	marks)
	Notes	7.8031.0	
M1: Atter vector pro A1: A cor M1: Appl A1: Corre (b) M1: Real applies it M1: Form A1: Corre (c) M1: Uses vertically A1: Corre (d)	rect normal vector ies $\mathbf{r.n} = d$ with their normal vector and a point in the plane to find a value ext equation (allow any multiple) ises the scalar product between their from part (a) and a vector parallel to and uses trigonometry to find an angle as the scalar product between their from part (a) and a vector parallel to	ue for <i>d</i> o k and k	50

ഺൄ

Question	Scheme	Marks	AOs
(a)	$\overline{AB} = \begin{pmatrix} 9\\4\\11 \end{pmatrix} - \begin{pmatrix} -3\\1\\-7 \end{pmatrix} \left\{ = \begin{pmatrix} 12\\3\\18 \end{pmatrix} \right\} \text{ or } \mathbf{d} = \begin{pmatrix} 4\\1\\6 \end{pmatrix}$	M1	3.1a
	$\left\{ \overrightarrow{OF} = \mathbf{r} = \right\} \begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} + \lambda \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix}$	M1	1.1b
	$\left\{ \overrightarrow{OF} \cdot \overrightarrow{AB} = 0 \Longrightarrow \right\} \begin{pmatrix} -3 + 12\lambda \\ 1 + 3\lambda \\ -7 + 18\lambda \end{pmatrix} \cdot \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix} = 0$	M1	1.1b
	$\Rightarrow -36 + 144\lambda + 3 + 9\lambda - 126 + 324\lambda = 0 \Rightarrow 477\lambda - 159 = 0$		
	$\Rightarrow \lambda = \frac{1}{3}$	A1	1.1b
	$\left\{ \overrightarrow{OF} = \right\} \begin{pmatrix} -3\\1\\-7 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 12\\3\\18 \end{pmatrix} = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$ and minimum distance = $\sqrt{(1)^2 + (2)^2 + (-1)^2}$	M1	3.1a
	$=\sqrt{6}$ or 2.449	A1	1.1b
	> 2, so the octopus is not able to catch the fish F .	A1ft	3.2a
		(7)	
(b)	E.g. Fish F may not swim in an exact straight line from A to B . Fish F may hit an obstacle whilst swimming from A to B . Fish F may deviate his path to avoid being caught by the octopus.	B1	3.5b
		(1)	
(c)	E.g. Octopus is effectively modelled as a particle – so we may need to look at where the octopus's mass is distributed. Octopus may during the fish F 's motion move away from its fixed location at O .	B1	3.5b
		(1)	
		(9	marks)

			ر کریا Online Math
Question	Scheme	Marks	AOs
(a) ALT 1	$\overline{AB} = \begin{pmatrix} 9\\4\\11 \end{pmatrix} - \begin{pmatrix} -3\\1\\-7 \end{pmatrix} \left\{ = \begin{pmatrix} 12\\3\\18 \end{pmatrix} \right\} \text{ or } \mathbf{d} = \begin{pmatrix} 4\\1\\6 \end{pmatrix}$	M1	3.1a
	$\begin{cases} \overline{OA} = \begin{pmatrix} -3\\1\\-7 \end{pmatrix} \text{ and } \overline{AB} = \begin{pmatrix} 12\\3\\18 \end{pmatrix} \Rightarrow \begin{cases} -3\\1\\-7 \end{pmatrix} \bullet \begin{pmatrix} 12\\3\\18 \end{pmatrix}$	M1	1.1b
	$\cos\theta \left\{ = \frac{\overrightarrow{OA} \cdot \overrightarrow{AB}}{\left \overrightarrow{OA}\right \cdot \left \overrightarrow{AB}\right } \right\} = \frac{\pm \left(\begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} \cdot \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix} \right)}{\sqrt{(-3)^2 + (1)^2 + (-7)^2} \cdot \sqrt{(12)^2 + (3)^2 + (18)^2}}$	dM1	1.1b
	$\left\{\cos\theta = \frac{-36+3-126}{\sqrt{59}.\sqrt{477}} = \frac{-159}{\sqrt{59}.\sqrt{477}}\right\}$		
	$\theta = 161.4038029$ or 18.59619709 or $\sin \theta = 0.3188964021$	A1	1.1b
	minimum distance = $\sqrt{(-3)^2 + (1)^2 + (-7)^2} \sin(18.59619709)$	dM1	3.1a
	$=\sqrt{6}$ or 2.449	A1	1.1b
	> 2, so the octopus is not able to catch the fish <i>F</i> .	A1ft	3.2a
		(7)	

(a) ALT 2	$\overline{AB} = \begin{pmatrix} 9 \\ 4 \\ 11 \end{pmatrix} - \begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} \left\{ = \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix} \right\} \text{ or } \mathbf{d} = \begin{pmatrix} 4 \\ 1 \\ 6 \end{pmatrix}$	M1	3.1a
	$\left\{\overline{OF} = \mathbf{r} = \right\} \begin{pmatrix} -3\\1\\-7 \end{pmatrix} + \lambda \begin{pmatrix} 12\\3\\18 \end{pmatrix}$	M1	1.1b
	$\left \overline{OF}\right ^{2} = (-3 + 12\lambda)^{2} + (1 + 3\lambda)^{2} + (-7 + 18\lambda)^{2}$	dM1	1.1b
	$= 9 - 72\lambda + 144\lambda^{2} + 1 + 6\lambda + 9\lambda^{2} + 49 - 252\lambda + 324\lambda^{2}$		
	$= 477\lambda^2 - 318\lambda + 59$	A1	1.1b
	$= 53(3\lambda - 1)^2 + 6$	dM1	3.1a
	minimum distance = $\sqrt{6}$ or 2.449	A1	1.1b
	> 2, so the octopus is not able to catch the fish F .	A1ft	3.2a
		(7)	

		Online Math
		Question Notes
(a)	M1	Attempts to find $\overrightarrow{OB} - \overrightarrow{OA}$ or $\overrightarrow{OA} - \overrightarrow{OB}$ or the direction vector d .
	M1	Applies $\overline{OA} + \lambda$ (their \overline{AB} or their \overline{BA} or their d) or equivalent.
	M1	Depends on previous M mark. Writes down
		(their \overrightarrow{OF} which is in terms of λ)•(their \overrightarrow{AB}) = 0. Can be implied.
	A1	Lambda is correct. e.g. $\lambda = \frac{1}{3}$ for $\overline{AB} = \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix}$ or $\lambda = 1$ for $\mathbf{d} = \begin{pmatrix} 4 \\ 1 \\ 6 \end{pmatrix}$
	M1	Depends on previous M mark. Complete method for finding \overline{OF} .
	A1	$\sqrt{6}$ or awrt 2.4
	A1ft	Correct follow through conclusion, which is in context with the question.
(a)	M1	Attempts to find $\overline{OB} - \overline{OA}$ or $\overline{OA} - \overline{OB}$ or the direction vector d .
ALT 1	M1	Realisation that the dot product is required between \overrightarrow{OA} and their \overrightarrow{AB} . (o.e.)
	M1	Depends on previous M mark. Applies dot product formula between \overrightarrow{OA} and their
	A1 M1 A1 A1ft	\overline{AB} . (o.e.) $\theta = \operatorname{awrt} 161.4 \text{ or awrt} 18.6 \text{ or } \sin \theta = \operatorname{awrt} 0.319$ Depends on previous M mark. (their OA)sin(their θ) $\sqrt{6}$ or awrt 2.4 Correct follow through conclusion, which is in context with the question.
(a)	M1	Attempts to find $\overrightarrow{OB} - \overrightarrow{OA}$ or $\overrightarrow{OA} - \overrightarrow{OB}$ or the direction vector d .
ALT 2	M1	Applies $\overrightarrow{OA} + \lambda$ (their \overrightarrow{AB} or their \overrightarrow{BA} or their d) or equivalent.
	M1	Depends on previous M mark. Applies Pythagoras by finding $\left \overline{OF}\right ^2$, o.e.
	A1	$\left \overline{OF}\right ^2 = 477\lambda^2 - 318\lambda + 59$
	M1	Depends on previous M mark. Method of completing the square or differentiating their $\left \overline{OF}\right ^2$ w.r.t. λ .
	A1	$\sqrt{6}$ or awrt 2.4
	A1ft	Correct follow through conclusion, which is in context with the question.
(b)	B1	An acceptable criticism for fish F , which is in context with the question.
(c)	B1	An acceptable criticism for the octopus, which is in context with the question.

Question	Scheme	Marks	AOs	
(a)	Attempts the scalar product between the direction of W and the normal to the road and uses trigonometry to find an angle.	M1	3.1a	
	$\left(\begin{pmatrix} 1\\2\\-3 \end{pmatrix} - \begin{pmatrix} -1\\-1\\-3 \end{pmatrix} \bullet \begin{pmatrix} 3\\-5\\-18 \end{pmatrix} = -9 \text{ or } \left(\begin{pmatrix} -1\\-1\\-3 \end{pmatrix} - \begin{pmatrix} 1\\2\\-3 \end{pmatrix} \right) \bullet \begin{pmatrix} 3\\-5\\-18 \end{pmatrix} = 9$	M1 A1	1.1b 1.1b	
	$\sqrt{(2)^{2} + (3)^{3} + (0)^{2}} \sqrt{(3)^{2} + (-5)^{3} + (-18)^{2}} \cos \alpha = "-9"$ $\theta = 90 - \arccos\left(\frac{9}{\sqrt{13}\sqrt{358}}\right) \text{ or } \theta = \arcsin\left(\frac{9}{\sqrt{13}\sqrt{358}}\right)$ Angle between pipe and road = 7.58° (3sf) or 0.132 radians (3sf) (Allow -7.58° or - 0.132 radians)	M1 A1	1.1b 3.2a	
	El Anteriora (2014) El Caleman (2014) El Statuta (2014) El Caleman (2014)	(5)		

(b)	$W : \begin{pmatrix} -1 \\ -1 \\ -3 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} \text{ or } \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$	B1ft	1.1b
	$C \operatorname{to} W : \left\{ \begin{pmatrix} -1 \\ -1 \\ -3 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix} \right\} \operatorname{or} \left\{ \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix} \right\}$	M1	3.4
	$\begin{pmatrix} 2t \\ 3t+1 \\ -3 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = 0 \Rightarrow t = \dots \text{ or } \begin{pmatrix} 2+2\lambda \\ 4+3\lambda \\ -3 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = 0 \Rightarrow \lambda = \dots$	M1	3.1b
	$\frac{(2t)^2 + (3t+1)^2 + (-3)^2 = \dots \text{ or } (2+2t)^2 + (4+3t)^2 + (-3)^2 = \dots}{t = -\frac{3}{13} \text{ or } \lambda = -\frac{16}{13} \Rightarrow (C \text{ to } W)_{\min} \text{ is } -\frac{6}{13} \text{ i} + \frac{4}{13} \text{ j} - 3\text{ k}}$	2	
	or $(2t)^{2} + (3t+1)^{2} + (-3)^{2} = 13\left(t + \frac{3}{13}\right)^{2} + \frac{121}{13}$		
	or $(2+2t)^{2} + (4+3t)^{2} + (-3)^{2} = 13\left(\lambda + \frac{16}{13}\right)^{2} + \frac{121}{13}$ or	A1	1.1b
	$\frac{d((2t)^{2} + (3t+1)^{2} + (-3)^{2})}{dt} = 0 \Rightarrow t = -\frac{3}{13} \Rightarrow C \text{ to } W \text{ is } -\frac{6}{13} \mathbf{i} + \frac{4}{13} \mathbf{j} - 3\mathbf{k}$ Or $\frac{d((2+2t)^{2} + (4+3t)^{2} + (-3)^{2})}{dt} = 0 \Rightarrow t = -\frac{16}{13} \Rightarrow (C \text{ to } W)_{\min} \text{ is } -\frac{6}{13} \mathbf{i} + \frac{4}{13} \mathbf{j} - 3\mathbf{k}$		
	$\frac{dt}{dt} = \sqrt{\left(-\frac{6}{13}\right)^2 + \left(\frac{4}{13}\right)^2 + \left(-3\right)^2} \text{ or } d = \sqrt{\frac{121}{13}}$	ddM1	1.1b

www.onlinemathsteaching.co.uk

Shortest length of pipe needed is 305 or 305 cm or 3.05 m	A1	0/0 3.2a	وریا مانده Maths Teaching
Shortest length of pipe needed is 505 of 505 cm of 5.05 m	and a day of	5.2a	-
	(6)		
	(11	marks)	-
Notes			-
(a) M1: Realises the scalar product between the direction of <i>W</i> and the normal to the and so applies it and uses trigonometry to find an angle M1: Calculates the scalar product between $\pm \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} - \begin{pmatrix} -1 \\ -1 \\ 2 \\ 1 \end{pmatrix}$ and $\pm \begin{pmatrix} 3 \\ -5 \\ 19 \end{pmatrix}$ (Allow			
long as the intention is clear)			
A1: $\begin{pmatrix} 2\\3\\0 \end{pmatrix} \bullet \begin{pmatrix} 3\\-5\\-18 \end{pmatrix} = -9 \text{ or } \begin{pmatrix} -2\\-3\\0 \end{pmatrix} \bullet \begin{pmatrix} 3\\-5\\-18 \end{pmatrix} = 9 \text{ or } \begin{pmatrix} 2\\3\\0 \end{pmatrix} \bullet \begin{pmatrix} -3\\5\\18 \end{pmatrix} = 9 \text{ or } \begin{pmatrix} -2\\-3\\0 \end{pmatrix} \bullet \begin{pmatrix} -3\\5\\18 \end{pmatrix}$	= -9		
 M1: A fully complete and correct method for obtaining the acute angle A1: Awrt 7.58° or awrt 0.132 radians (must see units). Do not isw and withhold extra answers are given. (b) 			
B1ft: Forms the correct parametric form for the pipe W . Follow through their direct W from part (a). M1: Identifies the need to and forms a vector connecting C to W using a parametric M1: Uses the model to form the scalar product of C to W and the direction of W to of their parameter or finds the distance C to W or $(C \text{ to } W)^2$ in terms of their parameter A1: Correct vector or correct completion of the square ddM1: Correct use of Pythagoras on their vector CW or appropriate method to find	ic form : o find the meter	for <i>W</i> e value	
distance between the point and the pipe. Dependent on both previous method in 1200		Juest	

A1: Correct length for the required section of pipe is 305 or 305 cm or 3.05 m

Alternatives for part (b):

(b) Way 2	$\mathbf{AC} = \begin{pmatrix} 0\\1\\-3 \end{pmatrix}, \mathbf{AB} = \begin{pmatrix} 2\\3\\0 \end{pmatrix}$	B1ft	1.1b
	$\mathbf{AC.AB} = \begin{pmatrix} 0\\1\\-3 \end{pmatrix} \begin{pmatrix} 2\\3\\0 \end{pmatrix} = 3$	M1	3.4
	$\Rightarrow \cos CAB = \frac{3}{\sqrt{10}\sqrt{13}} \Rightarrow CAB = \dots$	M1	3.1b
	<i>CAB</i> = 74.74°	A1	1.1b
Γ	$d = \sqrt{10} \sin 74.74^{\circ}$	ddM1	1.1b
	Shortest length of pipe needed is 305 or 305 cm or 3.05 m	A1	3.2a
2 <u>0</u>		(6)	

	وريسا محص Online Math
Notes	g
 (b) B1ft: Forms the correct vectors. Follow through their direction vector for W from part (a). M1: Identifies the need to and forms the scalar product between AC and AB M1: Uses the model to form the scalar product and uses this to find the angle CAB A1: Correct angle ddM1: Correct method using their values or appropriate method to find the shortest distance between the point and the pipe. Dependent on both previous method marks. A1: Correct length for the required section of pipe is 305 or 305 cm or 3.05 m 	

(b) Way 3	$\mathbf{AC} = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, \mathbf{AB} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$	B1ft	1.1b
	$\mathbf{AC} \times \mathbf{AB} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -1 & 3 \\ 2 & 3 & 0 \end{vmatrix} = \begin{pmatrix} -9 \\ 6 \\ 2 \end{pmatrix}$	M1	3.4
	$\left \mathbf{AC} \times \mathbf{AB}\right = \sqrt{9^2 + 6^2 + 2^2} = \dots$	M1	3.1b
	=11	A1	1.1b
	$d = \frac{11}{ \mathbf{AB} } = \frac{11}{\sqrt{2^2 + 3^2}} = \dots$	ddM1	1.1b
	Shortest length of pipe needed is 305 or 305 cm or 3.05 m	A1	3.2a
		(6)	
	Notes		
	 (b) B1ft: Forms the correct vectors. Follow through their direction vector for W from part (a). M1: Identifies the need to and forms the vector product between AC and AB M1: Uses the model to find the magnitude of their vector product A1: Correct value ddM1: Correct method using their values or appropriate method to find the shortest distance between the point and the pipe. Dependent on both previous method marks. A1: Correct length for the required section of pipe is 305 or 305 cm or 3.05 m 		

Question	Scheme	Marks	AOs
(a)	$ \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = 3\{+0\} - 3 $	M1	1.1b
	= 0 therefore the lines are perpendicular.	A1	2.4
		(2)	
(b)	$\mathbf{r} \bullet \begin{pmatrix} 1\\2\\-3 \end{pmatrix} = \begin{pmatrix} -2\\2\\0 \end{pmatrix} \bullet \begin{pmatrix} 1\\2\\-3 \end{pmatrix} = \dots \{2\}$	M1	1.1b
	x + 2y - 3z = 2 o.e.	A1	2.5
		(2)	
(c)	3+2(1)-3(1)=2 (therefore lies on the plane)	B1	1.1b
		(1)	

(d)	$ \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} $		
	$ \begin{pmatrix} p \\ q \\ r \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} $ leading to $q = 3 - 2\mu$ $r = 2 + 3\mu$	M1	3.1a
	$(p-3)^{2} + (q-1)^{2} + (r-1)^{2} = (2\sqrt{5})^{2}$ $((2+\mu)-3)^{2} + ((3+2\mu)-1)^{2} + ((2-3\mu)-1)^{2} = (2\sqrt{5})^{2}$ $(-1+\mu)^{2} + (2+2\mu)^{2} + (1-3\mu)^{2} = 20$ or $(p-3)^{2} + (q-1)^{2} + (r-1)^{2} = (2\sqrt{5})^{2}$ $((2-\mu)-3)^{2} + ((3-2\mu)-1)^{2} + ((2+3\mu)-1)^{2} = (2\sqrt{5})^{2}$ $(-1-\mu)^{2} + (2-2\mu)^{2} + (1+3\mu)^{2} = 20$	M1	3.1a
	$14\mu^2 - 14 = 0$ o.e	A1	1.1b
	Solves their quadratic $\{\mu = -1 \text{ or } \mu = 1\}$	M1	1.1b
	Uses $\mu = -1$ Using $\mu = 1$	ddM1	1.1b

رکیا مکمک Online Maths hing

		Online
$p = 2 + (-1) = \dots$ $p = 2 - (1) = \dots$		- îîc
$q = 3 + 2(-1) = \dots$ or $q = 3 - 2(1) = \dots$		
$r = 2 - 3(-1) = \dots$ $r = 2 + 3(1) = \dots$		
(1, 1, 5) only	A1	3.2a
	(6)	
Alternative $ AX = \sqrt{(3-2)^2 + (1-3)^2 + (1-2)^2} = \sqrt{6}$	M1	3.1a
Correctly uses Pythagoras to find the length of XB $ XB = \sqrt{(2\sqrt{5})^2 - 6} = \sqrt{14}$	M1	3.1a
Find the magnitude of the direction vector and compares to the length of XB to find a value for μ	M1	1.1b
$\mu = -1 \text{ or } \mu = 1$	A1	1.1b
Uses $\mu = -1$ $p = 2 + (-1) = \dots$ $q = 3 + 2(-1) = \dots$ or $r = 2 - 3(-1) = \dots$ $p = 2 - (1) = \dots$ $p = 2 - (1) = \dots$ $r = 2 + 3(1) = \dots$	ddM1	1.1b
(1, 1, 5) only	A1	3.2a
	(6)	
	(11	marks

Notes:	
(a)	
M1: Applies the dot product to the direction vectors. Minimum requirement is 3 - 3	
A1: Shows that the dot product = 0 and concludes that the lines are perpendicular.	
(b)	
M1: Applies $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \dots \text{ or } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \dots$	
A1: Correct Cartesian equation $x+2y-3z=2$ 0.e.	
Note: $\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} = 2$ is M1A0	
(c)	
B1: See scheme, no conclusion required	
(d)	
M1: Uses the point of intersection to find the coordinates of B as functions of a parameter	
M1: Uses the distance between the point A and the point B to form an equation for their parameter of	only.

A1: Correct simplified quadratic equation

M1: Solves their quadratic equation to find a value for μ

ddM1: Dependent on the first two method marks. Uses any one of their values for their parameter to find the coordinates of *B*, it need not be the correct one.

A1: Correct coordinates for B, condone as a vector, if seen (3, 5, -1) must be disregarded

Alternative

M1: Finds the length AX

M1: Uses Pythagoras to find the length of XB

NOTE the change in order of the M1 and A1

M1: Find the length of the direction vector and compares to find a value for μ

A1: A correct values for μ

ddM1: Dependent on the first two method marks. Uses any one of their values for their parameter to find the coordinates of *B*, it need not be the correct one.

A1: Correct coordinates for B, condone as a vector, if seen (3, 5, -1) must be disregarded

Online Maths

Question	Scheme	Marks	AOs
	$(\mathbf{r} =) \begin{pmatrix} -2+\lambda \\ 5-\lambda \\ 4-3\lambda \end{pmatrix} \text{ or } \begin{pmatrix} -2 \\ 5 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix} \text{ (oe)}$	M1	1.1b
	So meet if $\begin{pmatrix} -2+\lambda \\ 5-\lambda \\ 4-3\lambda \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = -7 \Rightarrow (-2+\lambda) \times 1 + (5-\lambda) \times -2 + (4-3\lambda) \times 1 = -7$	M1 A1	3.1a 1.1b
	$\Rightarrow 0\lambda - 8 = -7 \Rightarrow -8 = -7$ a contradiction so no intersection	A1ft	2.3
	Hence l is parallel to Π but not in it.	A1cso	3.2a
		(5)	
		(5	marks

	Notes		
	M1 Forms a parametric form for the line. Allo		
	M1 Substitutes into the equation of the plane		e
	Cartesian form of plane to substitute into.		
	A1 Correct equation in λ		
	A1ft Simplifies and derives a contradiction and		not
	meet. Follow through in their initial equat - contradiction so no intersection if λ disa		-1
	- line lies in plane if a tautology is arrived		al
	- meet in a point if a solution for λ is foun		
	But do not allow for incorrect simplific		ıl
	equation in λ		
	Note that a miscopy/misread of 7 instead	of -7 can therefore score a	
	maximum of M1M1A0A1A0.		
	A1cso Correct deduction from correct working.	-	
	statements in their working. You may see		ne 1s
Alt 1	parallel before/after deducing there is no i		main
AIT I	Note that some may attempt a mix of the main sche scheme unless Alt 1 would score higher.	enie and Alt 1. Mark under	mam
	(1)(1)		26 No
	$\begin{vmatrix} 1 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ -2 \end{vmatrix} = 1 \times 1 + (-1) \times (-2) + (-3) \times 1 = 0$		
		M1	3.1a
	(-3)(1)	3	3
	Hence l is parallel to Π	A1	1.1b
	(-2,5,4) on l, but $(1)(-2) + (-2)(5) + 1(4) = -8$	M1	1.1b
	$-8 \neq -7$ so $(-2, 5, 4)$ is not on the plane.	A1ft	2.3
	Hence l is (parallel to Π but) not in the plane.	Alcso	3.2a
		(5)	
		(5	marks

Alt 1 Notes		
M1	Attempts the dot product between the two direction vectors.	
A1	Shows dot product is zero and makes the correct deduction that line is parallel to plane.	
M1	Finds a point on l and substitutes into the equation of Π (vector or Cartesian)	
A1ft	Simplifies and derives a contradiction – follow through their equation, so if arrive at a tautology, they should deduce the line is in the plane.	
A1cso	Correct deduction from correct working but may be split across working.	

Question	Scheme	Marks	AOs		
Alt 2	Attempts to solve $\frac{x+2}{1} = \frac{y-5}{-1} = \frac{z-4}{-3}$ and $x-2y+z = -7$ simultaneously – eliminates one variable for M mark.	M1	3.1a		
	e.g. $y = -(x+2)+5 = -x+3 \Rightarrow x-2(-x+3)+z = -7 \Rightarrow 3x+z = -7$ (oe)	¹ A1	1.1b		
	Solves reduced equations, e.g. $-3(x+2) = z - 4 \Rightarrow 3x + z = -2$ and $3x + z = -1 \Rightarrow (3x + z) - (3x + z) = -2 - (-1)$	M1	1.1b		
	$\Rightarrow 0 = -1$ a contradiction so no intersection	A1ft	2.3		
	Hence l is parallel to Π but not in it.	A1cso	3.2a		
2		(5)			
	(5 marks)				
	Alt 2 notes				
	M1 Attempts to solve the Cartesian equation of the line plane equation to eliminate one variable for the M. A1 Correct elimination of their chosen variable. (E.g may -2x-2y-2 = -7 etc)	LAN (BATA) IN	102100		
	 M1 Solves the reduced equations in two variables A1ft and derives a contradiction/line and plane do not may their result, so may reach a tautology and deduce lies in solution and deduce meet in a point. A1cso Correct deduction from correct working. 		-		

Question	Scheme	Marks	AOs
(a)	Finds any two vectors $\pm \overrightarrow{LM}$, $\pm \overrightarrow{LN}$ or $\pm \overrightarrow{MN}$ $\pm \begin{pmatrix} 8\\1\\1 \end{pmatrix}$ or $\pm \begin{pmatrix} 4\\3\\1 \end{pmatrix}$ or $\pm \begin{pmatrix} -4\\2\\0 \end{pmatrix}$ two out of three values correct is sufficient to imply the correct method	M1	3.3
	Applies the vector equation of the plane formula $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$ Where a is any coordinate from L, M & N and vectors b and c come from an attempt at finding any two vectors that lie on the plane.	M1	1.1b
	A correct equation for the plane $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$ $\mathbf{a} = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} \text{ or } \begin{pmatrix} 6 \\ -2 \\ 0 \end{pmatrix} \text{ or } \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ $\mathbf{b} \text{ and } \mathbf{c} \text{ are any two vectors from } \pm \begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix} \text{ or } \pm \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix} \text{ or } \pm \begin{pmatrix} -4 \\ 2 \\ 0 \end{pmatrix}$	A1	1.1b
		(3)	

(b)(i) (ii)	$\begin{array}{c} \text{`their'} \\ \textbf{b} \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix} \\ \textbf{AND} \\ \text{`their'} \\ \textbf{c} \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix} \end{array}$	Alternative 1 Finds 'their b' - 'their c' or vice versa and applies the dot product with $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$ AND one of their b or c	Alternative 2 Applies 'their' b. $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ AND 'their' c. $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and solves to find values of x, y and z	Alternative 3 Applies the dot product between their answer to part (a) and the vector $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$	M1	1.1b
	Show that both therefore the lay perpendicular	dot product(s) = 0 wn is	Alternative 1 Shows results is parallel to $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$ therefore the lawn is perpendicular	Alternative 2 Achieves the value 2 and concludes as a constant therefore the lawn is perpendicul ar	A1	2.4
			per – using the cross neir b' and 'their c' a		M1	1.1b

Online Maths eaching

°∕√≡l

compares with the vector $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$ to show parallel or applies the dot product formula with the vector $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$ to show parallel		
Concludes parallel therefore the lawn is perpendicular	A1	2.4
Attempts $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix} = \mathbf{a} \cdot \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$ where $\mathbf{a} = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}$ or $\begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ Allow $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix} = \mathbf{a} \cdot \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$ for this mark	M1	1.1
x + 2y - 10z = 2 or $x + 2y - 10z - 2 = 0$	A1	1.1
	(4)	

(c)	Finds the vector \overrightarrow{PQ} or \overrightarrow{QP} and uses it as the direction vector in the formula $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$	M1	3.3
	Two out three values correct is sufficient to imply the correct method $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$ where $\mathbf{a} = \begin{pmatrix} -10 \\ 8 \\ 2 \end{pmatrix}$ or $\begin{pmatrix} 6 \\ 4 \\ 3 \end{pmatrix}$ and $\mathbf{d} = \pm \begin{pmatrix} 16 \\ -4 \\ 1 \end{pmatrix}$	A1	1.16
		(2)	
(d)	For example: The lawn will not be flat The washing line will not be straight	B1	3.5b
		(1)	
(e)	Applies the distance formula $\frac{\left (2\times1)+5\times2+(2.75\times-10)-2\right }{\sqrt{1^2+2^2+(-10)^2}}$	M1	3.4
	= 1.71 m or 171 cm	A1	2.28
		(2)	
(f)	Must have an answer to part (e). Compares their answer to part (e) with 1.5 m and makes an appropriate comment about the model that is consistent with their answer to part (e). If their answer to part (e) is close to 1.5 (e.g. 1.4 to 1.6) they must compare and conclude that the model therefore is good If their answer to part (e) is significantly different to 1.5 they must compare and conclude that the model therefore it is not a good model.	B1ft	3.5a
		(1)	
		(13)	marks

اسین محکم Online Mati
Notes:
(a) M1: Finds any two vectors $\pm \overrightarrow{LM}$, $\pm \overrightarrow{LN}$ or $\pm \overrightarrow{MN}$ by subtracting relevant vectors. Two out three values correct is sufficient to imply the correct method M1: Applies the vector equation of the plane formula $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$ where a is any point on the plane and the vectors b and c are any two from their $\pm \overrightarrow{LM}$, $\pm \overrightarrow{LN}$ or $\pm \overrightarrow{MN}$ A1: Any correct equation for the plane. Must start with $\mathbf{r} =$
(b)(i)
M1: Applies the dot product between their vectors b AND c with the vector $\begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$
A1: Shows both dot products = 0 and concludes that the lawn is perpendicular to the vector $\begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$
(b)(i) Alternative 1 M1: Applies the dot product between their vector $\mathbf{b} - \mathbf{c}$ AND one of their vectors \mathbf{b} or \mathbf{c} with the vector $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$ A1: Shows both dot products = 0 and concludes that the lawn is perpendicular to the vector $\begin{pmatrix} 1\\ 2 \end{pmatrix}$
A1: Shows both dot products = 0 and concludes that the lawn is perpendicular to the vector $\begin{bmatrix} 2 \\ -10 \end{bmatrix}$
(b)(i) Alternative 2 M1: Applies the dot product between their vectors b and c $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and attempts to find values of x, y and z (1)
A1: Shows results is parallel to $\begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$ therefore the lawn is perpendicular
(b)(i) Alternative 3 M1: Applies the dot product between their answer to part (a) and the vector $\begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}$
A1: Achieves the value 2 and concludes as a constant therefore the lawn is perpendicular
(b)(i) Outside Specification for this paper – using the cross product
M1: Finds the cross product between 'their b' and 'their c' and shows parallel to $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$
A1: Concludes parallel therefore the lawn is perpendicular

(b)(ii)

M1: Applies the formula $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$ where $\mathbf{n} = \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$ and $\mathbf{a} = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}$ or $\begin{pmatrix} 6 \\ -2 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$
Al: Correct Cartesian equation of the plane
Note: If no method is shown then it must be correct to score M1 A1, if incorrect scores M0 A0. Lool at part (i) to see if there is any method as long as it if used in (ii)
(c)
M1: Finds the vector \overrightarrow{PQ} or \overrightarrow{QP} and uses it as the direction vector in the formula. $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$. Two out three values correct is sufficient to imply the correct method A1: A correct equation including $\mathbf{r} =$
(d)
B1: States an acceptable limitation of the model for the lawn or washing line
(e)
M1: Applies the distance formula using the point (2, 5, 2.75) and the normal vector $\begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$
Al: 1.71 m or 171 cm
(f)
Blft: Compares their answer to part (e) with 1.5 and makes an assessment of the model with a reason

with no contradictory statements.

Question	Scheme	Marks	AOs
(a)	Direction: $\pm (3i+4j-2k-(-2i-8j-3k))$	M1	1.1b
	e.g. $\mathbf{r} = 3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k} + \lambda(5\mathbf{i} + 12\mathbf{j} + \mathbf{k})$ $\mathbf{r} = -2\mathbf{i} - 8\mathbf{j} - 3\mathbf{k} + \lambda(5\mathbf{i} + 12\mathbf{j} + \mathbf{k})$	A1	2.5
		(2)	
(b)	$z = 0 \Longrightarrow -2 + \lambda = 0 \Longrightarrow \lambda = 2 \Longrightarrow \mathbf{C} = \dots$	M1	1.1b
	$\lambda = 2 \Rightarrow C$ is (13, 28, 0)	A1	1.1b
		M1 A1 (2) M1	
(c)	(5i+12j+k)[$(2i+4j-2k) = 10+48-2$	M1	3.1b
	$56 = \sqrt{5^2 + 12^2 + 1^2} \sqrt{2^2 + 4^2 + 2^2} \cos \theta \Rightarrow \cos \theta = \frac{56}{\sqrt{170}\sqrt{24}}$	M1	1.1b
	$\Rightarrow \theta = \text{awrt } 28.8^{\circ}$	A1	1.1b
		(3)	

1 33		25	
(d)	$\mathbf{P}_{1} - \mathbf{P}_{2} = 3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k} + \lambda(5\mathbf{i} + 12\mathbf{j} + \mathbf{k}) - (\mathbf{i} + 3\mathbf{j} - \mathbf{k} + \mu(2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}))$ or $\mathbf{P}_{1} - \mathbf{P}_{2} = -2\mathbf{i} - 8\mathbf{j} - 3\mathbf{k} + \lambda(5\mathbf{i} + 12\mathbf{j} + \mathbf{k}) - (\mathbf{i} + 3\mathbf{j} - \mathbf{k} + \mu(2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}))$	M1	3.4
	$((5\lambda - 2\mu + 2)\mathbf{i} + (12\lambda - 4\mu + 1)\mathbf{j} + (\lambda + 2\mu - 1)\mathbf{k})\Box(5\mathbf{i} + 12\mathbf{j} + \mathbf{k}) = 0$ $\begin{pmatrix} 2 + 5\lambda - 2\mu \\ 1 + 12\lambda - 4\mu \\ -1 + \lambda + 2\mu \end{pmatrix} \bullet \begin{pmatrix} 5 \\ 12 \\ 1 \end{pmatrix}$ $\Rightarrow 170\lambda - 56\mu = -21$ AND $((5\lambda - 2\mu + 2)\mathbf{i} + (12\lambda - 4\mu + 1)\mathbf{j} + (\lambda + 2\mu - 1)\mathbf{k})\Box(2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}) = 0$ $\begin{pmatrix} 2 + 5\lambda - 2\mu \\ 1 + 12\lambda - 4\mu \\ -1 + \lambda + 2\mu \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}$ $\Rightarrow 56\lambda - 24\mu = -10$	M1	3.1b
	$170\lambda - 56\mu = -21, 56\lambda - 24\mu = -10 \Longrightarrow \lambda =\left(\frac{7}{118}\right), \ \mu =\left(\frac{131}{236}\right)$ If using $\mathbf{r} = -2\mathbf{i} - 8\mathbf{j} - 3\mathbf{k} + \lambda (5\mathbf{i} + 12\mathbf{j} + \mathbf{k})$ this leads to parameters of $\lambda =\left(\frac{125}{118}\right), \ \mu =\left(\frac{131}{236}\right)$ Either $\mathbf{P}_1 - \mathbf{P}_2 =\left(\frac{70}{59}\mathbf{i} - \frac{30}{59}\mathbf{j} + \frac{10}{59}\mathbf{k}\right)$ or $ \mathbf{P}_1 - \mathbf{P}_2 =$	M1	3.4

Online Maths

8	$\left[\mathbf{p} - \mathbf{p} \right] = \left[\left(\frac{70}{2} \right)^2 + \left(\frac{30}{2} \right)^2 + \left(\frac{10}{2} \right)^2 \right]$	13.61	1 11
	$\left \mathbf{P}_{1}-\mathbf{P}_{2}\right =\sqrt{\left(\frac{76}{59}\right)+\left(\frac{56}{59}\right)+\left(\frac{16}{59}\right)}=\dots$	dM1	1.1b
	Awrt 1.3{0} m or $\frac{10\sqrt{59}}{59}$ m units required	A1	3.2a
		(5)	

Alternative 1	MI	34
$P_{1} - P_{2} = 3i + 4j - 2k + \lambda(5i + 12j + k) - (i + 3j - k + \mu(2i + 4j - 2k))$ Finds $\begin{pmatrix} 5\\12\\1 \end{pmatrix} \times \begin{pmatrix} 2\\4\\-2 \end{pmatrix} =\{-28i + 12j - 4k\}$ $\begin{pmatrix} 2+5\lambda-2\mu\\1+12\lambda-4\mu\\-1+\lambda+2\mu \end{pmatrix} = M \begin{pmatrix} -28\\12\\-4 \end{pmatrix}$ Or $\begin{pmatrix} x\\y\\z \end{pmatrix} \cdot \begin{pmatrix} 5\\12\\1 \end{pmatrix} = 5x + 12y + z = 0$ And $\begin{pmatrix} x\\y\\z \end{pmatrix} \cdot \begin{pmatrix} 2\\4\\-2 \end{pmatrix} = 2x + 4y - 2z = 0$ Leding to a vector e.g. $\begin{pmatrix} 7\\-3\\1 \end{pmatrix}$	M1 M1	3.4 3.1b
(1) $2+5\lambda-2\mu = -28M$ $1+12\lambda-4\mu = 12M \implies \lambda = \dots \left(\frac{7}{118}\right), \ \mu = \dots \left(\frac{131}{236}\right), \left\{M = -\frac{5}{118}\right\}$ $-1+\lambda+2\mu = -4M$ $\mathbf{P}_1 - \mathbf{P}_2 = \dots \left(\frac{70}{59}\mathbf{i} - \frac{30}{59}\mathbf{j} + \frac{10}{59}\mathbf{k}\right)$	M1	3.4
$\left \mathbf{P}_{1} - \mathbf{P}_{2}\right = \sqrt{\left(\frac{70}{59}\right)^{2} + \left(\frac{30}{59}\right)^{2} + \left(\frac{10}{59}\right)^{2}}$	dM1	1.1b
Awrt 1.3 {0} m or $\frac{10\sqrt{59}}{59}$ m units required	A1	3.2a
	(5)	2.4
Alternative 2 outside the spec	M1	3.4

مُحْمُ

Online Maths hina

$\mathbf{r} = \begin{pmatrix} 3\\ 4\\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 5\\ 12\\ 1 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 1\\ 3\\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ 4\\ -2 \end{pmatrix}$ $\begin{pmatrix} 3\\ 4\\ -2 \end{pmatrix}$ $\begin{pmatrix} 3\\ 4\\ -2 \end{pmatrix} - \begin{pmatrix} 1\\ 3\\ -1 \end{pmatrix} = \begin{pmatrix} 2\\ 1\\ -1 \end{pmatrix}$ $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & 12 & 1\\ 2 & 4 & -2 \end{vmatrix} = \mathbf{i}(-24 - 4) - \mathbf{j}(-10 - 2) + \mathbf{k}(20 - 24)$ $= -28\mathbf{i} + 12\mathbf{j} - 4\mathbf{k}$ And $\begin{pmatrix} 2\\ 1\\ -4 \end{pmatrix} = -56 + 12 + 4 = \dots \{-40\}$ $\begin{vmatrix} -28\mathbf{i} + 12\mathbf{j} - 4\mathbf{k} \end{vmatrix} = \sqrt{(-28)^2 + 12^2 + (-4)^2} = \dots \{\sqrt{944}\}$ $dM1 3.1b$ $ \mathbf{P}_1 - \mathbf{P}_2 = \left \frac{-40}{\sqrt{944}}\right $ $M1 1.1b$ Awrt 1.3 {0} m or $\frac{10\sqrt{59}}{59}$ m units required $A1 3.2a$			Ontine
$\begin{vmatrix} 5 & 12 & 1 \\ 2 & 4 & -2 \end{vmatrix} = \mathbf{i}(-24-4) - \mathbf{j}(-10-2) + \mathbf{k}(20-24) \\ = -28\mathbf{i} + 12\mathbf{j} - 4\mathbf{k} \\ \text{And} \\ \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -28 \\ 12 \\ -4 \end{pmatrix} = -56 + 12 + 4 = \dots \{-40\} \\ \end{vmatrix} $ M1 3.4 $\begin{vmatrix} -28\mathbf{i} + 12\mathbf{j} - 4\mathbf{k} \end{vmatrix} = \sqrt{(-28)^2 + 12^2 + (-4)^2} = \dots \{\sqrt{944}\} $ dM1 3.1b $\begin{vmatrix} \mathbf{P}_1 - \mathbf{P}_2 = \left \frac{-40}{\sqrt{944}} \right $ M1 1.1b $A \operatorname{wrt} 1.3\{0\} \operatorname{m} \operatorname{or} \frac{10\sqrt{59}}{59} \operatorname{m} \operatorname{units required} $ A1 3.2a			
$\begin{aligned} -28\mathbf{i}+12\mathbf{j}-4\mathbf{k} &= \sqrt{(-28)^2 + 12^2 + (-4)^2} = \dots \left\{\sqrt{944}\right\} & \text{dM1} & 3.1\mathbf{b} \\ \mathbf{P}_1 - \mathbf{P}_2 &= \left \frac{-40}{\sqrt{944}}\right & \text{M1} & 1.1\mathbf{b} \\ \\ \text{Awrt } 1.3\{0\} \text{ m or } \frac{10\sqrt{59}}{59} \text{ m units required} & \text{A1} & 3.2\mathbf{a} \end{aligned}$	$\begin{vmatrix} 5 & 12 & 1 \\ 2 & 4 & -2 \end{vmatrix} = \mathbf{i}(-24-4) - \mathbf{j}(-10-2) + \mathbf{k}(20-24)$ $= -28\mathbf{i} + 12\mathbf{j} - 4\mathbf{k}$	M1	3.4
Awrt 1.3{0} m or $\frac{10\sqrt{59}}{59}$ m units required A1 3.2a	$ -28\mathbf{i}+12\mathbf{j}-4\mathbf{k} = \sqrt{(-28)^2 + 12^2 + (-4)^2} = \dots \{\sqrt{944}\}$	dM1	3.1b
Awrt 1.3{0} m or $\frac{10\sqrt{59}}{59}$ m units required A1 3.2a	$\left \mathbf{P}_{1}-\mathbf{P}_{2}\right =\left \frac{-40}{\sqrt{944}}\right $	M1	1.1b
	Awrt 1.3{0} m or $\frac{10\sqrt{59}}{59}$ m units required	A1	3.2a
(5) (12 marks)		(5)	

(a)

Notes

M1: Subtracts the given coordinates either way round, 2 correct values implies method, and uses as their direction vector.

A1: For a correct equation. Allow any equivalent correct equations but must use the correct notation, starts with r = ..., can be using column vectors

(b)

M1: Uses z = 0 in their P_1 equation to find a value for their parameter and uses this to find the other coordinates.

A1: Deduces the correct coordinates, condone written as a vector.

(c)

M1: Realises the scalar product between their direction from part (a) and the direction vector extracted from the P_2 equation is required and calculates its value

M1: Completes the method and at least reaches a value for cosine of the angle. Must be attempting to use the direction vectors

A1: Correct acute angle

(d)

M1: Uses the model to form a general vector connecting the two pipes, condone sign slips if the intention is clear. Condone use of the same parameter for this mark. They will be unable to score any more marks

M1: Recognises that the scalar product between the general vector and the directions of the lines = 0 and uses this to form 2 simultaneous equations in terms of their parameters. Follow through on their line from part (a)

M1: Attempts to solve the simultaneous equations, writing a value for each parameter is sufficient.

Then uses the values of their parameters in the model and either

- shows the shortest vector connecting the 2 lines
- proceeds to a distance with no incorrect working seen.

dM1: Uses their values of their parameters to find the vector which if not correct must be stated and then finds the modulus of their shortest vector to find the shortest distance. Maybe implied by a correct answer. Dependent on previous method mark.

A1: Awrt 1.3(0) m

Alternative 1

M1: Uses the model to form a general vector connecting the two pipes, condone sign slips if the intention is clear.

M1: Finds the normal vector to the direction vectors by any method and sets the general equation of the line equal to a multiple of the normal vector.

M1: Attempts to solve the simultaneous equations, writing a value for each parameter is sufficient.

Then uses the values of their parameters in the model and either

- shows the shortest vector connecting the 2 lines
- proceeds to a distance with no incorrect working seen.

dM1: Uses their values of their parameters to find the vector which if not correct must be stated and then finds the modulus of their shortest vector to find the shortest distance. Maybe implied by a correct answer. Dependent on previous method mark.

A1: Awrt 1.3(0) m

Alternative 2 outside spec

M1: Using their equations to find the vector between the coordinates (a - c)

M1: Find the cross product of their directions $(\mathbf{b} \times \mathbf{d})$ and finds the dot product of their

 $(\mathbf{a}-\mathbf{c})\bullet(\mathbf{b}\times\mathbf{d})$

M1: Finds their b×d

M1: Uses
$$\frac{(\mathbf{a} - \mathbf{c}) \cdot (\mathbf{b} \times \mathbf{d})}{|\mathbf{b} \times \mathbf{d}|}$$

A1: Awrt 1.3(0) m.

Online Maths rhing

Question	Scheme	Marks	AOs
(a)	Note: Allow alternative vector forms throughout, e.g row vectors, i, j, k notation $\mathbf{b} = \pm \begin{bmatrix} 300\\ 300\\ -50 \end{bmatrix} - \begin{pmatrix} -300\\ 400\\ -150 \end{bmatrix} = \pm \begin{pmatrix} 600\\ -100\\ 100 \end{bmatrix}$	M1	1.1b
	$\begin{bmatrix} (-50) & (-150) \end{bmatrix} (100) \\ \text{So } \mathbf{r} = \begin{pmatrix} -300 \\ 400 \\ -150 \end{pmatrix} + \lambda \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix} \text{ oe } \begin{bmatrix} e.g. \ \mathbf{r} = \begin{pmatrix} 300 \\ 300 \\ -50 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ -1 \\ 1 \end{pmatrix} \end{bmatrix}$	A1	2.5
2		(2)	
(b)(i)	<i>k</i> = 200	B1	2.2a
	If <i>M</i> is the point on mountain, and <i>X</i> a general point on the line then eg. $\overrightarrow{MX} = \begin{pmatrix} -300\\400\\-150 \end{pmatrix} + \lambda \begin{pmatrix} 600\\-100\\100 \end{pmatrix} - \begin{pmatrix} 100\\k\\100 \end{pmatrix} = \begin{pmatrix} -400+600\lambda\\400-k-100\lambda\\-250+100\lambda \end{pmatrix} = \begin{pmatrix} -400+600\lambda\\200-100\lambda\\-250+100\lambda \end{pmatrix}$ May be in terms of <i>k</i> or with <i>k</i> = 200 used.	M1	3.1b
	e.g. $\begin{pmatrix} -400 + 600\lambda \\ 200 - 100\lambda \\ -250 + 100\lambda \end{pmatrix} \bullet \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix} = 0 \Longrightarrow \lambda = \dots$	dM1	1.1b
	So e.g. $\overline{OX} = \begin{pmatrix} -300 \\ 400 \\ -150 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix} = \dots$	M1	3.4
	So coordinates of X are (150, 325, -75) Accept as $\begin{pmatrix} 150\\ 325\\ -75 \end{pmatrix}$	A1	1.1b
		(5)	
(ii)	Length of tunnel is $\sqrt{(150-100)^2 + (325-200)^2 + (-75-100)^2} =$	M1	1.1b
	Awrt 221m from correct working, so λ must have been correct. (Must include units)	A1	1.1b
		(2)	

مَمَمَ
Online Maths

		0.000.0000
$\left \frac{\overrightarrow{OP}}{OQ} \right = \sqrt{(-300)^2 + 400^2 + (-150)^2} \approx 522$ $\left \frac{\overrightarrow{OQ}}{OQ} \right = \sqrt{300^2 + 300^2 + 50^2} \approx 427$	M1	1.1b
New tunnel length is significantly shorter than these values so it is likely that the company will decide to build the accessway. Reason and conclusion needed.	A1ft	2.2b
	(2)	
 E.g. The mountainside is not likely to be flat so a plane may not be a good model. The tunnel and/or pipeline will not have negligible thickness so modelling as lines may not be appropriate. A shortest length tunnel may not be possible, or most practical, as the strata of the rock in the mountain have not been considered by the model. 	B1	3.5b
	(1)	2
(12 mark		
	$\left \overline{OQ} \right = \sqrt{300^2 + 300^2 + 50^2} \approx 427$ New tunnel length is significantly shorter than these values so it is likely that the company will decide to build the accessway. Reason and conclusion needed. E.g. The mountainside is not likely to be flat so a plane may not be a good model. The tunnel and/or pipeline will not have negligible thickness so modelling as lines may not be appropriate. A shortest length tunnel may not be possible, or most practical, as the strata of the rock in the mountain have not been considered by the	$ \overrightarrow{OQ} = \sqrt{300^2 + 300^2 + 50^2} \approx 427$ M1New tunnel length is significantly shorter than these values so it is likely that the company will decide to build the accessway. Reason and conclusion needed.A1ft(2)E.g. The mountainside is not likely to be flat so a plane may not be a good model. The tunnel and/or pipeline will not have negligible thickness so modelling as lines may not be appropriate. A shortest length tunnel may not be possible, or most practical, as the strata of the rock in the mountain have not been considered by the model.B1(1)

		Notes
(a)	M1	Attempts the direction between positions P and Q . If no method shown, two correct entries imply the method.
	A1	A correct equation in the correct form. Any point on the line may used, and any non-zero multiple of the direction. Must begin $r =$
(b)		Note: mark part (b) as a whole.
(i)	B1	Correct value of k deduced.
	M1	Realises the need to find the distance from the point on the mountain to a general point on the line.
	dM1	Takes the dot product with the direction vector of line and sets to zero and proceeds to find a value of λ . If working with k as well, allow for finding either λ in terms of k or k in terms of λ .
	M1	Substitutes their λ into their line equation. (This may not have come from correct work, but the method is for using the line equation here.) May be implied by two out of three correct coordinates for their λ
		Note: May omit this step and substitute λ into \overline{MX} . This gains M0 here, but can
	A1	gain M1A1 in (ii) for finding the length of MX. Correct point.
(b)(ii)	M1	Uses the distance formula with their point and M , or with their \overrightarrow{MX} from (i). (May be implied by two out of three correct coordinates for their λ)
	A1	Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m
(c)	M1	Calculates the two distances OP and OQ.
	Alft	Makes an appropriate conclusion for their tunnel length, but distances <i>OP</i> and <i>OQ</i> must be correct. A reason and a conclusion is needed.
		Accept for reason e.g "significantly shorter" or "tunnel is more than 100m less than either existing accessway", as these act as a comparative judgement. But do not accept just "shorter" or just inequalities given with no comparative evidence.
(d)	B1	Any appropriate criticism of the model given. The model must be referred to in some way – e.g. criticise the straightness/thickness of line, flatness of plane or lack of taking strata etc of mountain into account (as e.g this means line may not be straight). Note: reference to measurements not being correct is NOT a limitation of the model.

For reference Some of the other common equations/values of λ in (b)(i) are: $(-400+6\lambda)$ -300 6 (100) MX = 400 $+\lambda$ -1 200 = $200 - \lambda \Rightarrow \lambda = 75$ (100) (1) $(-250 + \lambda)$ -150 300) 600 (100) 200+600A $| \Rightarrow \lambda = -\frac{1}{2}$ $\overline{MX} = |300| + \lambda |-100|$ $200 = 100 - 100\lambda$ -50 100 100 -150+1002 300) 6) 100) 200+62) $MX = |300| + \lambda |-1|$ $100 - \lambda \Rightarrow \lambda = -25$ 200 = $-150 + \lambda$ -50) 1) (100) (If the negative direction vectors are used in any case, the value of λ is just the negative of the above.) See Appendix for some alternatives to part (b)

ر م م

ng