BEYOND THE CARNOT LIMIT: PERPETUAL HEAT FLOW IN GRAVITATIONAL AND ROTATIONAL NON-EQUILIBRIUM SYSTEMS

Matt Western

Emmetec Research

AIM AND INTRODUCTION

- Aim: To accelerate research into perpetual heat flow systems.
- Growing commercial interest in partnering and funding further research into this topic.
- Please reach out if you are interested.

PERPETUAL HEAT FLOW SYSTEM DEFINITION

A perpetual heat flow system is a thermodynamic system in which a continuous internal flow of heat is maintained in a non-equilibrium steady state, induced by external acceleration fields—such as gravity or rotation—that generate and sustain stable temperature gradients within the system.

CAN A GRAVITATIONAL FIELD SUSTAIN A TEMPERATURE GRADIENT IN A MEDIUM?

- Loschmidt proposed that gravity would induce a **stable temperature gradient in a gas**, as particle kinetic energy must decrease with height due to energy conservation.
- Maxwell claimed the **temperature of a gas must remain uniform** to be in thermal equilibrium.
- Maxwell assumed the gas column was a thermal reservoir, so internal gradients would enable work from a single reservoir violating classical interpretations of the second law.
- Maxwell claimed solids exhibit uniform temperature at equilibrium, and therefore gases must too otherwise, connecting a gas and solid column could enable a continuous heat flow and enable work extraction due to differing gradients.

Fig. 1: Gravity and Temperature Concept

EXPERIMENTAL EVIDENCE FOR GRAVITY INDUCED TEMPERATURE GRADIENTS

- Studies have measured temperature gradients in solid, liquid, and gas mediums under gravity with the systems at a steady state with no net mass flow.
- Temperature gradients under gravity can be produced.
- Differing mediums produce differing temperature gradients under gravity.
- Hatsopoulos–Keenan framework generalises the second law to nonequilibrium conditions, permitting stationary non-equilibrium states; enables properties like temperature to vary with position, assuming no net mass flux and no entropy production.
- Under this framework, gravity can sustain a temperature gradient in a medium as a stable non-equilibrium steady state, consistent with the second law.
- Could mediums with different temperature gradients be connected to enable a perpetual heat flow?

Medium	Temperature Gradient
Water	0.04 K·m ⁻¹
Air-Sawdust mixture	2.2 K⋅m ⁻¹
Potassium Iodide	0.02 K⋅m ⁻¹

GRAVITATIONAL PERPETUAL HEAT FLOW SYSTEM CONCEPT

- A first medium has a temperature gradient under gravity such that T₁ > T₂
- A second medium has a different temperature gradient under gravity such T₄ > T₃
- At height $h_1: T_1 > T_4 \rightarrow$ heat flows from the first medium to the second.
- At height $h_2: T_3 > T_2 \rightarrow$ heat flows from the second medium to the first.
- Any heat returning to the first medium at h₂ being redistributed throughout the first medium to maintain the temperature gradient.
- Heat engines (CE) placed at h₁ and h₂ could extract work from the heat flowing between the two mediums.
- Simulated using existing models.

GRAVITY INDUCED TEMPERATURE GRADIENT MODELS

Equilibrium (classical thermodynamics — solids)

- Assumes a classical equilibrium system under gravity with:
 - no net mass flow
 - no microscopic energy redistribution
 - no net heat or energy flux
- Temperature gradient over a finite height arises from the balance of gravitational potential and internal thermal energy, resulting in a state of **maximum entropy** under gravity.

$$\frac{\Delta T}{\Delta h} = -\frac{(1+\alpha T)g}{C_p}$$

- Using thermal expansion coefficient, *α*, and specific heat capacity, *C_p*.
- Aligns well with experimental results for **solids**, where heat transfer is dominated by **lattice vibrations (phonons)** rather than particle motion.

Non-equilibrium (kinetic model — gases)

- Assumes a non-equilibrium steady state system under gravity, with:
 - no net mass flow
 - microscopic energy redistribution
- The temperature gradient over a finite height arises from balancing the **downward kinetic energy flux** Φ_{KE} induced by gravity, with the **upward conductive heat flux**, determined by the medium's thermal conductivity, k.

$$\frac{\Delta \mathbf{T}}{\Delta \mathbf{h}} \approx \frac{\Phi_{\mathrm{KE}}}{\mathbf{k}} \qquad where \ \Phi_{\mathrm{KE}} = \frac{-cg^2M^2\rho_0}{6RT}$$

- Using molar mass, M, temperature, T, molecular speed, c, and molar density, ρ_0 .
- Aligns well with experimental results for **gases-based systems**, where **molecular motion** dominates heat transfer.

SIMULATION VALIDATION: GRAVITATIONAL INDUCED TEMPERATURE GRADIENT

- 2D simulation uses Fourier's Law with an added gravitational temperature gradient term: $\Delta T_g = \frac{\Delta T}{\Delta h}$
- Classical thermodynamic model applied to solids; non-equilibrium kinetic model applied to gases.

$$q = \frac{\left[k(T_1 - T_2) - \Delta T_g d\right]}{d}$$

- Validation through replication of experimental results.
- Insulated medium divided into 1 m² segments, initially at 300 K.
- System evolved to a steady-state with a gravity-induced temperature gradient, and balanced internal heat flux (Fig 3).
- Results match prior experimental data (Table 2).

Air-Sawdust]	Potas	sium Io	odide	
2	290.10				299.91		
2	292.30				299.93		
2	294.50				299.95		
2	296.70				299.97		
2	298.90				299.99		
Э	301.10				300.01		
Э	303.30				300.03		
Э	305.50				300.05		
3	307.70				300.07		
З	309.90				300.09		

Fig. 3: Simulation Single Column Validation

Table 2: Simulation and Prior Research Comparison

	Air-Sawdust	Potassium Iodide
Prior Research	2.2 K⋅m ⁻¹	$0.02 \text{ K} \cdot \text{m}^{-1}$
Simulation	2.2 K·m ⁻¹	$0.02 \text{ K} \cdot \text{m}^{-1}$

GRAVITATIONAL PERPETUAL HEAT FLOW SYSTEM SIMULATION

in2					_	
	294.29	+	295.28		h ₂	
	295.52		296.29			
	296.75		297.30			
	297.98		298.31			
	299.21		299.32			
	300.44		300.33			
	301.67		301.34			
	302.90		302.35			
	304.13		303.36			
	305.36	>	304.37		h ₁	
Fig. 4: Air-Sawdust left column and						
Potassium Iodide right column Simulation						
Temperature Results						

 Q_{in1}

- Simulation extended to two mediums in thermal communication under gravity (Air-Sawdust and Potassium Iodide).
- Simulation results show a **stable internal heat flow** is established, forming a **non-equilibrium steady state** with stable temperature gradients.
- Work can be extracted via heat engines placed at h₁ and h₂, driven by internal heat flow between the mediums.
- When $Q_{in1} = W_1$ and $Q_{in2} = W_2$, the total heat input equals the total work output, allowing the system to maintain steady-state operation with stable temperature gradients.

 $Q_{in1} + Q_{in2} = W_1 + W_2$

• Although each heat engine cannot exceed the Carnot limit, the overall system can convert all added heat into work under ideal (reversible) conditions.

PERPETUAL HEAT FLOW SYSTEM WITH UNIFORM TEMPERATURE GRADIENT

	290.10	· +	300.00	h ₂
	292.30		300.00	
	294.50		300.00	
	296.70		300.00	
	298.90		300.00	
	301.10		300.00	
	303.30		300.00	
	305.50		300.00	
	307.70		300.00	
	309.90	· >	300.00	h ₁

- Heat engine efficiency can be improved by increasing the temperature difference between the mediums at **h**₁ and **h**₂.
- In this simulation (Fig. 5), the **gravitational temperature gradient** was eliminated in one medium, creating a **uniform temperature medium**; achieved through convection, radiation, or by using an open system.
- Heat exchange with the Air-Sawdust mixture was balanced (heat rejected at h₁ equalled heat added at h₂) to maintain its temperature gradient.
- As a result, the temperature differences at h₁ and h₂ increased, compared to systems where both mediums develop gradients – enabling greater work output and heat engine efficiency over a smaller height using a uniform temperature

Fig. 5: Air-Sawdust mixture in left column with constant temperature gradient on the right Simulation Temperature Results

THE THERMAL CONDUCTIVITY LIMIT

Fig. 6: Temperature Gradient Vs Thermal Conductivity

- System power output should also be considered in practical systems, which is influenced by:
 - temperature gradient
 - heat flow rate through the medium.
- Gravitational temperature gradient reduces as thermal conductivity increases (Fig. 6)
- Imposing dimensional constraints on practical systems.
- Experimental evidence has shown that temperature gradients measured in solids under gravity can be replicated under rotational acceleration.

ROTATIONAL PERPETUAL HEAT FLOW SYSTEM CONCEPT: TWO MEDIUMS

- Two mediums rotated about a centre point establish different temperature gradients.
- No net mass flow occurs within the solid medium (no change in rotational KE).
- At radial distance $r_1: T_1 > T_4 \rightarrow$ heat flows from the first medium to the second.
- At radial distance $r_2: T_3 > T_2 \rightarrow$ heat flows from the second medium to the first.
- Heat engines (CE) placed at r₁ and r₂ could extract work from the heat flowing between the two mediums.

Fig. 7: Two Medium Rotational Concept

ROTATIONAL PERPETUAL HEAT FLOW SYSTEM CONCEPT: SINGLE MEDIUM

- A medium rotated about a centre point establish a temperature gradient.
- No net mass flow occurs within the solid medium (no change in rotational KE).
- Heat flows from T₁ to T₂ through a stationary heat engine outside the rotating frame, allowing work extraction W_{out} from the gradient.
- Heat rejected from the heat engine is added at T_2 .
- Heat added to the system, Q_{in} and redistributed throughout the solid medium via conduction, without mass movement.

Fig. 8: Single Medium Rotational Concept

SIMULATING A ROTATIONAL TEMPERATURE GRADIENT

Fig. 9: Simulated radial temperature distribution in Potassium Iodide at 40 rad/s, showing steep temperature gradients under rotation • A modified **Classical thermodynamic model** and **Non-equilibrium kinetic model** were used to simulate temperature gradients under rotation:

$$\frac{\Delta T}{\Delta r} = -\frac{(1+\alpha T)\omega^2 r}{C_p} \qquad \qquad \frac{\Delta T}{\Delta r} \approx \frac{\Phi_{KE}}{k} \quad where \ \Phi_{KE} = \frac{-cM^2 P r^2 \omega^4}{6R^2 T^2}$$

- Simulations are **consistent with experimental results for solids** under rotation; experimental data for gases under rotation does not currently exist.
- 2D simulations for solids show that rotation induces significantly larger temperature gradients than gravity—up to 37.41 K·m⁻¹ at 40 rad/s, compared to 0.02 K·m⁻¹ under gravity.
- Rotation enables **high-conductivity materials** to sustain temperature gradients compatible with existing heat engine technologies.
- The total heat input Q_{in} equals the total work output W_{out} allowing the system to maintain steady-state operation with stable temperature gradients.

$$Q_{in} = W_{out}$$

PERPETUAL HEAT FLOW SYSTEM SUMMARY

- Temperature gradients have been experimentally measured in solid, liquid, and gas mediums.
- Simulations show a system could achieve a **perpetual heat flow**, enabling **100% efficiency under reversible conditions** without violating the second law.
- Rotational systems can achieve larger temperature gradients than gravity-based systems, potentially allowing greater power output.
- Future work will require interdisciplinary collaboration, including:
 - further modelling validation
 - experimental validation
 - proof-of-concept systems
- Potentially leading to **new energy harvesting technologies**.