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Amultimodalneuralnetworkwithgradient
blending improves predictions of survival
and metastasis in sarcoma
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The objective of this study is to develop a multimodal neural network (MMNN) model that analyzes
clinical variables andMRI images of a soft tissue sarcoma (STS) patient, to predict overall survival and
risk of distant metastases. We compare the performance of this MMNN to models based on clinical
variables alone, radiomics models, and an unimodal neural network. We include patients aged 18 or
older with biopsy-proven STS who underwent primary resection between January 1st, 2005, and
December 31st, 2020 with complete outcome data and a pre-treatment MRI with both a T1 post-
contrast sequence and a T2 fat-sat sequence available. A total of 9380 MRI slices containing
sarcomas from 287 patients are available. Our MMNN accepts the entire 3D sarcoma volume from T1
and T2 MRIs and clinical variables. Gradient blending allows the clinical and image sub-networks to
optimally converge without overfitting. Heat maps were generated to visualize the salient image
features. OurMMNNoutperformed all othermodels in predicting overall survival and the risk of distant
metastases. The C-Index of our MMNN for overall survival is 0.77 and the C-Index for risk of distant
metastases is 0.70. The provided heat maps demonstrate areas of sarcomas deemedmost salient for
predictions. Our multimodal neural network with gradient blending improves predictions of overall
survival and risk of distant metastases in patients with soft tissue sarcoma. Future work enabling
accurate subtype-specific predictions will likely utilize similar end-to-end multimodal neural network
architecture and require prospective curation of high-quality data, the inclusion of genomic data, and
the involvement of multiple centers through federated learning.

Soft tissue sarcoma (STS) accounts for 1% of adult malignancies but com-
prises over 70 distinct subtypes with varying biology, genetics, clinical
characteristics, and disease prognoses1. Over time, the treatment of patients
with STS has started to shift from a relatively homogenous approach to
therapy that is more tailored to the relevant subtype2. However, 5-year
survival has largely plateaued over the past 3 decades at around 65–70% and
new innovations in matching patients to optimal treatments are needed to
further improve outcomes3.

An example of tailored therapy in STS is the use of systemic
chemotherapy in addition to wide surgical resection and radiation

therapy2. While not indicated for all STS patients, the decision by a
multidisciplinary tumor board to use chemotherapy is influenced by
the predicted aggressivity of a patient’s sarcoma, and thus the patient’s
risk of developing metastases1. Furthermore, the postoperative sur-
veillance of STS patients, commonly with CT scans of the chest, is more
intensive in the first two years after surgery when the average risk of
developing a metastasis is highest4,5. A current randomized trial is
investigating if intensive surveillance regimens increase patient sur-
vival by detecting metastases sooner and offering the opportunity for
earlier intervention4. However, the ideal surveillance regimen may be
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one tailored to a patient’s perspectives and individualized risk of
metastases6.

Some nomograms, such as the ‘Sarculator’7, have been developed to
help guide management by predicting the risk of metastases and overall
survival in patients with extremity or retroperitoneal STS. It is externally
validated8 but is based on only 4 clinical variables (patient age, tumor size,
tumor grade, and tumor subtype). Previous nomograms from Memorial
Sloan Kettering Cancer Center (MSKCC) which predict local recurrence9

and overall survival10 have been similarly based on only clinical variables.
These tools are increasingly used in practice, yet they capture aggregate
median data and not individual granular data. The creator of Sarculator
himself stated in an editorial that nomograms such as his “represent the
mean outcome of patients but individual variability cannot be caught”11.
Importantly, data from other modalities are not incorporated into these
nomograms. 3Dmagnetic resonance imaging (MRI) scans of sarcoma are a
rich sourceof data that can be used inmodelling but have not been routinely
incorporated into sarcoma nomograms. MRIs can provide individualized
data for eachpatient including important tumor features suchas vascularity,
necrosis, peritumoral edema, and heterogeneity. The inclusion of rich data
like MRIs in prediction models – thus advancing from unimodal to mul-
timodal models, may result in predictions accurate enough to enable indi-
vidualized treatment of sarcoma patients.

Radiomics is onemethod of extracting features from image data.With
radiomics, a predetermined set of human-engineered features such as tex-
ture, heterogeneity, and size are extracted from the image. The best com-
bination of these features is then related to the outcome in question12,13. In
contrast, deep learning methods using convolutional neural networks
(CNNs) are able to learn the optimal features from the images directly, they
are not limited by a pre-specified set of features whichmay not capture all of
the salient information13,14. Recent comparisons of the performance of
radiomics and CNNs on the same datasets have shown that CNNs are not
only more accurate but achieve better results on external validation15,16.
Thus, while advantages of radiomics include easier implementation, being
computationally inexpensive, and standardization based on the Image
Biomarker Standardization Initiative (IBSI)17, neural network-based tech-
niques are likely to be superior in capturing important individualized fea-
tures from MRI data which then generalize to patients from other
institutions.

Recently, neural networkmethods have been used to predict the grade
of sarcoma based on imaging alone18, predict the risk ofmetastases based on
imaging alone14, or provide histologic diagnosis based on imaging19. How-
ever, none of these models were multimodal, their sample sizes were gen-
erally small (N = 51) and lacked a hold-out test set14, or they predict a
diagnosis among a limited set of possibilities, as opposed to the entire
breadth of sarcoma subtypes20. Whereas multimodal AI is of greater
importance in soft tissue sarcoma due to the low prevalence and many
subtypes21, to our knowledge there is nomultimodal AImodel that analyzes
MRIdataand clinical variables topredict thepatient-important outcomesof
overall survival or the risk of distant metastases.

The objective of this study is to develop a multimodal neural network
(MMNN) model that analyzes clinical variables as well as MRI images of a
sarcoma, to predict an STS patient’s overall survival and risk of distant
metastases.Wecompare theperformanceof thismultimodalmodel toother
models based on clinical variables alone, radiomicsmodels, and a unimodal
neural network model.

Results and Discussion
Our cohort includes 287patientswith biopsy-confirmed soft tissue sarcoma
from ages 18-91 (IQR 45–68) and 121/287 (42%) of patients are female
[Table 1]. The list of included subtypes is Table 2. The median follow-up
time was 4.1 years / 1511 days (IQR 2.2–7.3 years). In our cohort, 86/287
patients (30%) died from their disease during the follow-up period while
111/287 (38.7%) developed distant metastases. Not every patient who
developed metastases died during their follow-up period.

Predictions
Our end-to-endMMNN, which combines images features from T1 and T2
MRIs andclinical features, outperformedall othermodels inpredictingboth
outcomes, overall survival and the risk of distant metastases [Table 3]. The
C-Index and standard deviation (SD) of our MMNN for overall survival is
0.769 (SD 0.126), with a Brier score of 0.30. This represents an absolute
increase of 9% in AUC compared to the next best-performing model. The
C-Index and SD of ourMMNN for predicting the risk of distantmetastases
is 0.699 (SD 0.092), with a Brier score of 0.27, which represents an absolute
increase of 6% in AUC compared to the next best-performing model. A lift
in performance was seen when clinical variables were added to unimodal
image features in both the neural network and radiomics models. Gradient
blending resulted in the optimal use of specific losses across epochs [Fig. 1].
Without the implementation of gradient blending, the predictive perfor-
mance of our MMNN was comparable to the other models we evaluated.
Smoothed ROC curves and calibration plots are provided in Fig. 2. The
larger clinical model only performed slightly better than the model using
Sarculator variables.

Model Interpretability
Representative examples of the heatmaps obtained from our test set are
depicted in Fig. 3. We provide examples of correctly predicted low-risk and
high-risk patients, as well as examples of when the model was wrong. In all
cases, the model deemed pixels within the tumor volume as most relevant.
There were no cases where the model considered the empty padded pixels
on the periphery as the most salient in its predictions.

Discussion
Our results demonstrate the increased predictive capability of multimodal
models that utilize image data in addition to previously validated clinical
variables. This is thefirst end-to-endmultimodal neural network in thefield
of soft tissue sarcoma that predicts overall survival and the risk of distant
metastases. Given the rarity of sarcoma, the use of multimodal data in
prediction algorithms is essential to overcoming the limits of small sample
sizes compared to other types of cancer.

Our model includes several notable advances in neural network
methodology. Firstly, we implemented gradient blending between our
image and clinical variable subnetworks. This ensures that one subnetwork
does not overfit while the other subnetworks are still converging. Further-
more, we are among the first to acquire heat maps from the image sub-
network of a multimodal model trained with gradient blending22.

Performance compared to other models without image features
Our MMNN outperformed the Sarculator feature model for both predic-
tions of overall survival (C-index 0.769 vs 0.654) and distant metastases (C-
Index 0.699 vs 0.618). Another available nomogram to predict overall
survival in sarcoma patients, PERSARC, is based on a Cox Proportional
hazards model using six clinical variables23. Despite a larger patient popu-
lation (766), their C-Index for overall survival is lower at 0.67723. While
subsequent studies demonstrated that a multidisciplinary tumor board can
change their systemic treatment recommendations based on PERSARC
predictions24, and that the patients predicted to be at highest risk by the
PERSARC model benefitted from the addition of chemotherapy (11%
increase in 5 year survival)25, it is unlikely that the ultimate predictionmodel
used to guide the management of sarcoma patients and enable precision
medicine will be based on clinical variables alone or features extracted by
radiomics. Our work demonstrates the added benefit of including image
data and the superiority of neural networks over radiomics in extracting
relevant image features. It is worth noting that our unimodal DenseNet
model performed less accurately than a simpler model based on the four
Sarculator clinical variables. This is likely due to our sample size. The
demonstrated advances in prediction capability are due to the multimodal
nature of ourwork, and the implementation of gradient blendingwhichwas
crucial to properly combining the inputs from different modalities.
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Performance compared to other models incorporating image
features
While Sarculator and PERSARCare among themost well-known, validated
and utilized prediction models in sarcoma, recently, several studies using
radiomics for image feature extraction have been published and are well
summarized in a review by Crombé et al. 12. Despite some radiomics studies
reporting C-indices >0.9, many of the studies were not IBSI compliant26–29,
had a sample size of 50 patients or less27,29,30, and lacked a hold-out or
independent test-set26,29,31,32. For instance, Crombe et al. used radiomics
features to predict metastasis-free survival inmyxoid liposarcomas29.While
they report a C-index of 0.94, their sample size was 35 patients, they did not
have an independent test set and were not IBSI compliant29,33. Moreover,
despite many radiomics studies adhering to IBSI standards, recent research
has shown that these studies often struggle to generalize across different
centers, even with IBSI compliance34.

However, an excellent use of combined radiomics features and deep
learning features was demonstrated by Liu et al. in predicting local recur-
rence risk in sarcoma patients35. While only 40% of their patients had
contrast-enhancedMRIs, thus necessitating two different test sets, Liu et al.
achieved impressive performance in predicting local recurrence (C-Index of

0.766 for non-enhancedMRIs and 0.722 for enhancedMRIs). However, the
presence of ki67, a cellular marker of proliferation in sarcoma, out-
performed both of their models in predicting local recurrence35,36. In con-
trast, there is no known singlemarker able to predict overall survival and the
risk of distant metastases with such accuracy.

Compared to previous studies extracting image features in sarcoma,
our study contains one harmonized cohort where all patients have the same
MRI sequences. Moreover, our sample size is larger, our deep learning
MMNN analyzes 3D MRI data and does not rely on handcrafted features,
and we have a hold-out test set. We are also the first to describe the use of
gradient blending,which is crucial formultimodalAI. These features render
models such as ours more likely to generalize well to patients from other
institutions.Moreover, ourmodel is the first end-to-endmultimodal neural
network in sarcoma. Previously, Esteva et al. published amultimodalmodel
to predict the risk ofmetastases and overall survival in patientswith prostate
cancer37. However, they only used deep learning to extract image features
and then predicted their outcomes with a separate classical machine algo-
rithm (CatBoost)37,38. Because their model was not end-to-end deep learn-
ing, their deep learning subnetwork that extracted image features did not
undergo further supervised learningwhile predicting outcomes. In contrast,

Table 1 | Patient demographics in entire cohort and in the training, test and validation sets

Missing Overall TRAIN SET VALID SET TEST SET
n 287 199 44 44

Age, mean (SD) 0 55.7 (17.4) 55.2 (17.1) 59.0 (19.3) 54.7 (16.7)

Sex, n (%) F 0 122 (42.5) 81 (40.7) 25 (56.8) 16 (36.4)

M 165 (57.5) 118 (59.3) 19 (43.2) 28 (63.6)

Tumor Size, median [Q1,Q3] 0 9.0 [6.1,12.0] 9.0 [6.2,11.8] 9.0 [6.7,12.1] 8.4 [5.7,13.0]

Tumor Depth, n (%) Superficial 0 28 (9.8) 23 (11.6) 2 (4.5) 3 (6.8)

Deep to fascia 259 (90.2) 176 (88.4) 42 (95.5) 41 (93.2)

Tumor Grade, n (%) Low Grade 0 21 (7.3) 16 (8.0) 2 (4.5) 3 (6.8)

High Grade 266 (92.7) 183 (92.0) 42 (95.5) 41 (93.2)

Tumor Volume (cm^3),
median [Q1,Q3]

0 284.1 [82.4,694.3] 292.5 [84.1,668.3] 284.6 [81.8,830.6] 250.3 [77.3,757.9]

Follow up Time,
median [Q1,Q3]

0 1511.0 [819.0,2680.0] 1577.0 [821.5,2741.0] 1413.5 [729.2,2307.2] 1423.0 [835.0,2529.5]

Location, n (%) Axial 0 40 (13.9) 27 (13.6) 8 (18.2) 5 (11.4)

Lower Extremity 194 (67.6) 136 (68.3) 31 (70.5) 27 (61.4)

Upper Extremity 53 (18.5) 36 (18.1) 5 (11.4) 12 (27.3)

Chemo (Neoadjuvant), n (%) False 0 193 (67.2) 131 (65.8) 30 (68.2) 32 (72.7)

True 94 (32.8) 68 (34.2) 14 (31.8) 12 (27.3)

RT Type, n (%) Pre-op 0 132 (46.0) 96 (48.2) 16 (36.4) 20 (45.5)

Post-op 155 (54.0) 103 (51.8) 28 (63.6) 24 (54.5)

Margin, n (%) Negative (R0) 1 259 (90.6) 181 (91.0) 41 (93.2) 37 (86.0)

R1 26 (9.1) 17 (8.5) 3 (6.8) 6 (14.0)

R2 1 (0.3) 1 (0.5)

Length of Surgery,
median [Q1,Q3]

0 3.5 [2.5,5.5] 3.5 [2.5,5.8] 3.4 [2.5,5.1] 3.2 [2.0,5.5]

Necrosis, median [Q1,Q3] 13 0.3 [0.1,0.7] 0.3 [0.1,0.7] 0.3 [0.1,0.8] 0.3 [0.1,0.7]

Vital Status, n (%) Dead 0 201 (70.0) 139 (69.8) 32 (72.7) 30 (68.2)

Alive 86 (30.0) 60 (30.2) 12 (27.3) 14 (31.8)

Local Recurrence, n (%) No 0 259 (90.2) 180 (90.5) 39 (88.6) 40 (90.9)

Yes 28 (9.8) 19 (9.5) 5 (11.4) 4 (9.1)

Distant Mets, n (%) No 0 176 (61.3) 118 (59.3) 28 (63.6) 30 (68.2)

Yes 111 (38.7) 81 (40.7) 16 (36.4) 14 (31.8)

Breakdownof train, test and val sets.TumorGrade: Grade is basedon the final pathology report. LowGrade=Grade 1.HighGrade=Grade 2, 3, or dedifferentiated. The 21 LowGrade sarcomas include 17
myxoid liposarcomas with round cell component <5%, two extraskeletal myxoid chondrosarcomas and two solitary fibrous tumors.
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given our end-to-end neural network architecture, the image subnetwork
continues to learn throughout the entire model training process. Moreover,
this end-to-end neural network architecture permittedmodel explainability
through heat maps and allowed for gradient blending.

Ability to influence personalized medicine and future directions
Given that almost every sarcoma patient obtains anMRI prior to treatment
and the clinical variables we used are validated and routinely collected, our
MMNN has low barriers to external validation and adoption. Currently,
there is significant variation between centers in North America and inter-
nationally in which chemotherapy is offered to STS patients39, if at all, and
how STS patients are followed after surgery40.

OurMMNNisnotdesigned topredictwhich chemotherapy regimen is
most suitable for a patient. However, patientswith a higher predicted risk of

metastases aremore likely to be treatedwith chemotherapy and survival has
been demonstrated to be better, in some but not all studies, if treatmentwith
chemotherapy is initiated when the lung metastases are smaller41. Notably,
the ideal chemotherapy regimen for a particular STS subtype can be difficult
to determine2, but several systematic reviews42,43 and a recent networkmeta-
analysis44 have demonstrated increased overall survival in certain STS
populations when chemotherapy is added to surgery and radiation therapy.
What ismissing from all previous studies is an individualized predicted risk
ofmetastases that can guide the decision of amultidisciplinary tumor board
to use chemotherapy.

Regarding ideal post-operative surveillance for early identification of
metastases, a single-center trial from India showed no survival benefit to
more intensive surveillance (3months compared to every 6months)45, and a
multicenter trial is underway to investigate this question with a more gen-
eralizable population4. However, other outcomes such as patient anxiety
from intensive surveillance, radiation exposure from CT scans, and patient
and hospital expenses must be weighed as well. When STS patients were
surveyed on their surveillance preferences, many expressed concern about
radiation exposure, cost, and anxiety related to intensive surveillance6.
Rather than determining one optimal surveillance regimen for all STS
patients, there is likely a role for individualized surveillance regimens based
on individualized risk of metastases.

In terms of limitations, our deep learning model required manual
segmentationmasks to determine a region of interest (ROI). Only the pixels

Table 2 | Included sarcoma histologic subtypes

OVERALL
n (%)

TRAIN
SET
n (%)

VALID
SET
n (%)

TEST
SET
n (%)

HISTOLOGIC SUBTYPE 287 199 44 44

Undifferentiated
Pleomorphic Sarcoma

87 (30.5) 61 (30.7) 15 (35.7) 11 (25.0)

Myxofibrosarcoma 63 (22.1) 40 (20.1) 13 (31.0) 10 (22.7)

Myxoid Liposarcoma 33 (11.6) 24 (12.1) 3 (7.1) 6 (13.6)

Synovial sarcoma 35 (12.3) 23 (11.6) 3 (7.1) 9 (20.5)

Liposarcoma 22 (7.7) 16 (8.0) 2 (4.8) 4 (9.1)

Leiomyosarcoma 8 (2.8) 5 (2.5) 1 (2.4) 2 (4.5)

Rhabdomyosarcoma 6 (2.1) 5 (2.5) 1 (2.4)

Myxoinflammatory
Fibroblastic sarcoma

6 (2.1) 4 (2.0) 2 (4.8)

MPNST 5 (1.8) 2 (1.0) 3 (7.1)

Ewings of soft tissue 4 (1.4) 4 (2.0)

Solitary Fibrous Tumor 4 (1.4) 4 (2.0)

Extraskeletal Myxoid
Chondrosarcoma

4 (1.4) 2 (1.0) 2 (4.5)

Extraskeletal
Osteosarcoma

3 (1.1) 3 (1.0)

ASPS 2 (0.7) 2 (1.0)

Spindle cell sarcoma 2 (0.7) 2 (1.0)

Clear cell sarcoma 1 (0.3) 1 (2.4)

Epithelioid sarcoma 1 (0.3) 1 (1.5)

Fibrosarcoma 1 (0.3) 1 (1.0)

Subtype is based on the final pathology report.

Table 3 | Performance of different models on predicting overall survival and risk of distant metastases

Model C-Index (SD) for predicting
Overall Survival

C-Index (SD) for predicting
Distant Metastases

Number of Trainable
Parameters

Floating Point
Operations (FLOPs)

Sarculator7 variables (RSF) 0.654 (0.109) 0.618 (0.106) 4 –

Sarculator7 variables (CoxPH) 0.614 (0.117) 0.631 (0.097) – –

Larger clinical model (RSF) 0.655 (0.111) 0.639 (0.108) 11 –

Radiomics model (RSF) 0.532 (0.116) 0.541 (0.099) 200 –

Radiomics + Clinical (RSF) 0.582 (0.112) 0.558 (0.108) 211 –

Radiomics+Clinical (CoxPHwith
ElasticNet penalty)

0.707 (0.095) 0.658 (0.085) 21 (Overall survival) 30
(Distant Metastases)

Unimodal DenseNet 0.553 (0.081) 0.562 (0.068) 4194,304 (2 x 128 x 128 × 128) 97,538,861,056

Multimodal Neural Network 0.769 (0.126) 0.699 (0.092) 4194,315 (2 x 128 x 128
× 128)+ 11

97,538,863,848

Fig. 1 | Gradient Blending. This diagram indicates the relative weighting of mod-
ality losses that are contributed to the overall loss over the course of training. The
relative weightings are initially uniform and are adjusted every 5 epochs according to
their relative overfitting to generalization ratios.
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in the ROI, representing the tumor volume and immediate periphery, were
analyzed by the model. Important contextual information that is not con-
tained in the ROI includes the proximity of important neurovascular
structures46, the full extent of peritumoral edema47, nearby bones, or the
locationof a tumordeep in thepelvis rather than the extremity (although the
location is captured as a clinical variable). Future versions of our MMNN
will explore including the entire MRI slice as this contextual information
may provide more accurate risk predictions for other important outcomes
such as local recurrence or surgical complications48.

While our sample size is larger than almost all previous studies using
image features to predict outcomes in sarcoma patients, it is smaller than
previous models which used only clinical variables; we were limited by
including patients with specific MRI sequences available. We compensate
for the smaller sample size by using richer data sources21. The inclusion of
MRI data in our prediction algorithm renders it more difficult to provide a
web-based app similar to those based just on clinical variables such as
Sarculator and PERSARC, as users would have to upload T1 and T2MRIs.

Given the rapid rate of advances in AI algorithms and the rare pre-
valence of sarcomas, themost likely factor limiting thepredictive accuracyof
multimodal models in STS is the availability of high-quality prospective
data. While current sarcoma prediction models require the inclusion of
many STS subtypes in order to obtain an adequate sample size, subtype-
specific predictionmodels would be ideal1. Ultimately, to achieve the goal of
the most accurate predictions to guide patient management, multi-center
international collaboration and prospective data collection is required.
Currently, only around 2% of machine learning research uses prospective
data49. Federated learning would allow multicenter collaboration while
preserving patient privacy50. Furthermore, future multimodal models could
also incorporate genomic information in addition to image data51. Genomic
information is being collected more routinely in sarcoma patients and is

likely to explain some of the remaining variability in the outcomes of our
patients.

In conclusion, our multimodal neural network with gradient blending
improves predictions of overall survival and the risk of distantmetastases in
patients with soft tissue sarcoma. Future work should focus on enabling
accurate subtype-specific predictions to further individualize sarcoma
patient management. The future deep learning AI models that guide the
management of our patients are likely to incorporate end-to-end neural
networks, gradient blending, prospective curation of high-quality data, the
inclusion of genomic data, and the involvement ofmultiple centers through
federated learning.

Methods
Patients
We retrospectively analyzed our prospectively maintained database of
sarcoma patients at Memorial Sloan Kettering Cancer Center. All patients
aged 18 or older with biopsy-confirmed non-retroperitonealmalignant STS
who underwent primary resection at MSKCC between January 1st, 2005,
and December 31st, 2020 were reviewed. We included all patients with
complete outcome data and anMRIwithT1 post-contrast fast-sat sequence
andaT2 fat-sat sequences acquiredprior to initiationof radiation therapyor
chemotherapy. Radiation therapy (RT) and MRI protocols were standar-
dized at MSKCC as of 2002, which limits heterogeneity52. The data set
includes information on patient characteristics (demographics, medical
history, and smoking status), tumor characteristics (sarcoma subtype,
tumor size and volume, location, grade, stage, margin status, and margin
size), and adjuvant therapy variables (overall RT dose and fractions, and the
use tumor-directed chemotherapyor immunotherapy clinical trials or novel
agents to control for confounding factors). The grade of every sarcoma
included in this study was determined by histopathological analysis of the

Fig. 2 | Smoothed ROC curves and calibration plots for our MMNN in predicting overall survival and the risk of distant metastases.
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resection specimen and ranged from low grade (1) to dedifferentiated (4).
Grade 2, 3, and 4 tumors are grouped together as “High Grade”, consistent
with previous work from our institution andAmerican Joint Committee on
Cancer (AJCC) guidelines10,53,54.We obtained approval for this project from
the Institutional Review Board of MSKCC (16-1123).

Image acquisition, definition of volumes of interest, and
preprocessing
All T1 post-contrast and T2 fatsat MRIs were deidentified and stored on
XNAT v1.8 for training of our models. Information on MRI parameters is
included in Supplementary Material. Segmentation of the entire sarcoma
volume of interest (VOI) was performed by AB through the Open Health
Imaging Foundation (OHIF) viewer v 3.3 (Cancer Research UK, London,
England). The entire 3D sarcomavolumewas included for eachMRIof each
patient. A fellowship-trained attending musculoskeletal oncology radi-
ologist (SS) segmented a portion of the MRIs to calculate intraclass corre-
lation coefficients (0.92, 95%CI 0.912-0.928) and Dice coefficients55 (0.911,
95% CI 0.898-0.922). Preprocessing of the MRI data included N4 bias
correction as well as z-score normalization to control for differences in the
acquisition parameters of these sequences56. A total of 9380 MRI slices

containing sarcomas in 287 patients are available for analysis. The same set
of preprocessed images were used in the radiomics models, the unimodal
DenseNet and the MMNN.

Clinical variable models
A model using the same variables (features) as Sarculator7 (patient age,
tumor size, tumor grade, andhistological subtype)was constructed.We also
developed a larger clinicalmodel based on11 total features includingpatient
sex, tumor location (axial, upper extremity, or lower extremity), tumor
volume, depth (above or below fascia), the use of neo-adjuvant chemo, the
presence of metastases at presentation, and whether radiation therapy was
delivered in the neoadjuvant or adjuvant setting, in addition to the four
Sarculator features. The clinical models were built using Random Survival
Forest (RSF) and CoxPH. RSF was used because it is fully non-parametric,
handles interaction effects between features automatically, and is very
effective in high-dimensional settings such as this.

Radiomics models
A total of 100 radiomics features were extracted with PyRadiomics 3.0.1 for
each T1 and T2 MRI57, of which 98 obtained an ICC > 0.9 and the others

Fig. 3 | Heatmaps using the GradCAMmethod on
our test set. Representative T2 fat sat axial slices of
four test set patients in our study (patients which
were never encountered during model training) are
displayed. The corresponding heat map from the
same patient was pulled from the image subnetwork
of the MMNN model. The merged image is pro-
vided. In all cases, the model deemed pixels within
the tumor volume as most relevant. a Patient pre-
dicted to have very low risk of death and metastases,
survived with no development of metastases over a
10-year follow-up period. (Low predicted risk,
model correct). b Patient predicted to have high risk
of death and metastases, perished shortly after
developing metastases 1.2 years after surgery. (High
predicted risk, model correct). c Patient predicted to
have high risk of metastases, did not develop
metastases in 3.8 years of follow-up (High predicted
risk, model wrong). d Among patients who devel-
oped metastases in our test set, this patient had the
lowest predicted risk. The model was correct in all
other predictions indicating a lower risk of distant
metastases. (Low-intermediate predicted risk,
model incorrect since patient developed metastases
two years after surgery).
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were >0.8. The T1 and T2 features of each patient were combined using
concatenation, a side-to-side merging, for a total of 200 radiomics features
for each patient. We first used RSF to predict our outcomes based on the
extracted features. For the Radiomics + Clinical model, the radiomics
features were combined with the larger clinical model variables using
concatenation, for a total of 211 features for each patient. Subsequently, a
regularized CoxPHmodel using the clinical and radiomics featureswas also
constructed. Dimensionality reduction was trialed with different methods.
The Elastic Net model, which combines the subset selection property of
LASSO with the regularization strength of the Ridge model by using a
weighted combination of L1 and L2 regularization, performed the best. The
strength of the regularization was determined by using 5-fold CV and
optimizing the concordance index. Standard deviation values for the
C-indices were estimated using Bootstrap on the predicted values. The
CLEAR and CLAIM checklists are available in Supplementary Material.

Neural network models
OurMMNN[Fig. 4] accepts theT1 andT2MRIs in their native resolution
through an image subnetwork consisting of a 2-channelDenseNet-12158,59

[Fig. 4B].TheT1 andT2 sequences aremasked and cropped to contain the
tumor volume and immediate perilesional area, resized to a pre-
determined spatial resolution, and concatenated along the channel
dimension to be fed through the image subnetwork. Early fusion is used to
combine data from T1 and T2 image modalities, but is not used to
combine image and clinical modalities due to the differing dimensional-
ities of thedata. In theMMNN, late blendingof the image featureswith the
clinical features occurs through concatenation. Clinical variables are
analyzed in a parallel deep neural network [Fig. 4A] and this information
is concatenated with the image features. A fully connected layer analyzes
the combinedmultimodal features before outputting the predicted risk of
each of our outcomes. This architecture represents end-to-end deep

Fig. 4 | Architecture of our multimodal neural network model. A deep neural
network (A) will interpret the 11 clinical variables and a 2-channel convolutional
neural network (DenseNet-121) analyzes theMRI input (B). Image features fromT1
and T2 MRI sequences are extracted by the convolutional neural network and this
information is concatenated along with the features extracted from the clinical
variables. Analysis of the combined feature set is used to predict the risk of distant
metastases and overall survival. Gradient blending is used to moderate the weight
updates between modalities. Dashed lines are used to indicate connections that are
only present during training to facilitate Gradient Blending. 1A: Clinical Subnet-
workModel. A deep neural network is implemented to extract features from a vector
of clinical variables corresponding to the patient. Numbers under the linear layers
correspond to the number of output features for those linear layers. The clinical
model extracts 12 features that will be used for themultimodal prediction. 1B: Image
Subnetwork Model. T1 post contrast and T2 fat-sat MRI sequences are con-
catenated along the channel dimension prior to being fed through a 2-channel

DenseNet-121 model. Twelve features are extracted for use in the multimodal
prediction. The numbers in each dense block correspond to the number of dense
layers within that dense block. The architecture presented is representative of a 3-
dimensional, 2-channel densenet-121 with 12 output neurons. Because the model is
being used as a feature extractor rather than a classifier, the size of the output layer is
a tunable parameter and not limited to the number of predictions made by the
multimodal output head. 1C: Dense Block– Dense blocks consists of a series of
dense layers. Within each dense block, the resolution of the feature map is constant.
This allows all dense layers within a dense block to contain feed-forward bypass
connections to every other dense layer in that dense block. These features are con-
catenated at the input of each dense layer. Transition layers are placed between
dense blocks. Transition layers use 1x1x1 convolutions to act as channel pooling
layers, reducing the number of feature maps by a factor of 2. In addition, stride 2
average pooling layers are used which reduce the resolution in all spatial dimensions
by a factor of 2.
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learning, without the use of radiomics or classical machine learning.
Image augmentation was applied at training time and included vertical
and horizontal flip, random rotation, and random zoom. Augmentations
were jointly applied to the 2-channel T1+ T2 image, rather than sepa-
rately to T1 and T2 images. This is to preserve the colocation of spatial
features in each channel under spatial transformation. No augmentation
or perturbation is applied to clinical variables. Because all MRI slices are
integrated into a 3D volumetric representation in preprocessing, and
because T1 and T2 images are stacked prior to being provided to the
neural network, the neural network sees all image data for a patient
simultaneously. Therefore, the model makes a single prediction per
patient, and no aggregation strategies are needed. A separate unimodal
DenseNet-121, equivalent to the image subnetwork of the MMNN, was
also constructed. Models were constructed using Python version 3.960.

Gradient blending
Gradient blending61 is used to moderate the loss contributions of the dif-
ferent modalities during the training of multimodal neural networks.
During training, gradient blending uses the overfitting to generalization
ratios of each modality to promote losses from subnetworks that are gen-
eralizing well to the validation set, while downweighting losses from sub-
networks that are overfitting the training set. This enables the simultaneous,
end-to-end trainingof two separatemodel architectures thatwould typically
converge and overfit at different rates. Model selection during training is
performedconsidering only the unweighted contribution of themultimodal
head to the loss function.Themodel checkpointwith the lowest value for the
unweighted multimodal component of the loss function over the course of
training is selected for evaluation.

Model training
The image model parameters for both the MMNN and the unimodal
DenseNet model are initialized using a pre-trained self-supervised
DenseNet-121 trained on the BHB-10k dataset consisting of neurological
MRIs62. Parameters in the clinical subnetwork and all output heads are
randomly initialized. A CoxPH loss function63 was used. This controls for
the different follow-up times of our patients and allows for predictions at
any time point for future patients being evaluated by our model. The
training was performed for 200 epochs, with a batch size of 8, OneCycle
learning rate scheduler64, and Stochastic Gradient Descent with Nesterov
Momentum65.

Model interpretation
Visualization of the features extracted by the image model was obtained
using the Grad-CAM methodology66. We extract the heat maps from the
final convolutional layer in the image subnetwork of themultimodal neural
network model. The heat maps show the areas of the original image that
most contribute to the features extracted by the image model.

Statistical analysis and model evaluation
We used a 70/15/15 train/test/val split stratified by tumor volume, location,
and whether radiation was administered preoperatively or postoperatively.
The predictive ability of the model is assessed by the C-Index, which cor-
responds to the time-dependent area under theROCcurve67,68. TheC-Index
represents the proportion of included patients whose survival times can be
ordered such that the subject with higher predicted survival actually sur-
vived longer. It is a bettermeasure than raw accuracy for unbalanced classes.
The performance of eightmodels– threemodelswith clinical variables only,
a unimodal radiomics model, two multimodal radiomics models, a unim-
odal neural network model, and a multimodal neural network model, were
compared.

Data availability
The data that support the findings of this study are not openly available due
to reasons of sensitivity and patient privacy. They are available from the
corresponding author upon reasonable request and institutional review.

Data are located in controlled access data storage at Memorial Sloan Ket-
tering Cancer Center.

Code availability
The code that supports the multimodal neural network with gradient
blending is openly available on github at https://github.com/DigITs-AIML/
MMNN_STS. The terms of use are included in the repository.
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