Concept Mapping 4 Concepts of Nobel Prize in Physics (Superconductors & Related Achievements)

By

Dr.Kumuda Gururao

Social Media Technologist n Learning Consultant

www.advisor2u.com

(Former Chief Learning Officer at Alpha Group of Institutions) www.alphagroup.edu

Reach the author, Dr.Kumuda Gururao at www.advisor2u.com

'Concept Mapping 4 Concepts of Nobel Prize in Physics' at www.cmaps4physics.com

Summary of the book

The book expounds the concepts of **Superconductors & Related Achievements** for which Nobel Prizes have been given. The above concepts are illustrated through Concept Mapping, a strategy that enhances meaningful learning.

The book starts from the **discovery of superconductivity** by Kamerlingh Onnes and **proceeds** to **explain** its behaviour due to **Cooper Pairs**. The phenomenon of **tunnelling** that occurs in superconductors for which Nobel Prize was awarded in 1973.is also elucidated Then the phenomenon of High Temperature Superconductor (**HTSC**) which can be achieved by using certain oxides is also explained.

The formation of **superfluid** and its presence in **helium 3** is illustrated. The condensation of helium 3 in a complicated manner is described on the basis of superconductivity in metals and superfluidity of helium 4.

The different methods to cool and trap atoms with laser light for which Nobel Prize was awarded in 1997 were described. These methods led to Bose Einstein Condensation in dilute gases. Finally the concept of **Super Atom**, **Various Techniques** involved in **producing low temperatures** and the **prospects** of **Bose Einstein Condensation** for which Nobel Prize was given in 2001 were also explained.

Since Concept Mapping is proved to promote meaningful learning the author believes that the book would promote meaningful learning of **superconductors** and **related achievements**.

Contents

Chapter 1 : Introduction

1.1 What is Learning?	11
1.2 Concept Mapping	11
1.3 Concept Mapping in Present Context	12

Chapter 2 : Concepts of Nobel Laureates through Concept Mapping

2.1 Matter at Low Temperature : Concepts of Nobel Prize in Physics for the year 1913

2.1.1. Introduction	15
2.1.2. Achievement of Low Temperatures by Kamerlingh Onnes	16
2.1.3. Effects of Low Temperature	18
2.1.4. Superconductivity	20

2.2 The Theory of Liquid Helium : Concepts of Nobel Prize in Physics for the year 1962

2.2.1. Introduction	22
2.2.2. New State of Liquid Helium	23
2.2.3. Properties of Superfluid according to Landau	25
2.2.4. Properties of Helium-3	27

2.3 Theory of Superconductivity : Concepts of Nobel Prize in Physics for the year 1972

2.3.1. Introduction	29
2.3.2. Principle of Superconductivity	30
2.3.3. Superconductivity due to Cooper Pairs	32
2.3.4. Applications of Superconductors	34

'Concept Mapping 4 Concepts of Nobel Prize in Physics' at	
www.cmaps4physics.com	

2.4 Tunnelling in Superconductors : Concepts of Nobel Prize in Physics for the year 1973

2.4.1. Introduction	36
2.4.2. Laws of Modern Physics	37
2.4.3. Initial Discovery of Tunnelling Effect	39
2.4.4. Superconductor on the basis of Tunnelling Effect	41
2.4.5. Josephson Effect	43
2.4.6. Applications of Tunnelling Effect	45
2.4.7. Applications of Josephson Effect	47

2.5 Helium II - The Superfluid : Concepts of Nobel Prize in Physics for the year 1978

2.5.1. Introduction	49
2.5.2. Helium II - The Superfluid	50

2.6 High Temperature Superconductivity - Concept of Nobel Prize in Physics for the year 1987

2.6.1. Introduction	52
2.6.2. Meissner Effect	53
2.6.3. High Temperature Superconductor	55

2.7 Superfluidity in Helium-3 : Concept of Nobel Prize in Physics for the year 1996

57
58
60
62
63
66
68
70
72

Reach the author, Dr.Kumuda Gururao at www.advisor2u.com

2.8 Development of Methods to Cool and Trap Atoms with Laser Light : Concepts of Nobel Prize in Physics for the year 1997

2.8.1. Introduction	76
2.8.2. Principle of Optical Molasses	77
2.8.3. Slowing down Atoms with Photons	79
2.8.4. Doppler Cooling and Optical Molasses	81
2.8.5. Magneto Optical Trap	83
2.8.6. Zeeman Slower	85
2.8.7. Optical Lattice	87
2.8.8. Formation of Dark State	89
2.8.9. Velocity Distribution at Recoil Temperature	91
2.8.10. Applications Round the Corner	93

2.9 Bose Einstein Condensation in Dilute Gases : Concepts of Nobel Prize in Physics for the year 2001

2.9.1. Introduction	95
2.9.2. Nobel Laureates of 2001	96
2.9.3. Types of Particles	98
2.9.4. New State of Matter - Bose Einstein Condensation	100
2.9.5. Super Atom	102
2.9.6. Magneto Optical Trap to exceed Doppler Limit	104
2.9.7. Evaporative Cooling of Alkali Atoms	106
2.9.8. Reality of Bose Einstein Condensation (BEC)	108
2.9.9. Prospects of Bose Einstein Condensation	110

Chapter 3 : Conclusion

3.1 Effectiveness of Concept Manning	114
J.1 Enectiveness of Concept Mapping	114