File: 16627 23 August 2023 Revision: 1

RETAINING WALL DESIGN

932 Whangarei Heads Road, Whangarei

(Rahuikuri A2C Block)

1.0 Introduction

RS Eng Ltd (RS Eng) has been engaged by Steve Morris to complete a geotechnical investigation of his property (Rahuikuri A2C Block) for the design of soldier piles, to mitigate the risk of potential slope instability affecting the existing building, due to its limited setback from the steep slopes.

2.0 Site Description

This 0.42ha property is located on the southern side of Whangarei Heads Road, approximately 780m east of its intersection with Pepi Road. The property sits on an elevated plateau feature at the foot of a dominant spur to the northwest. A dwelling exists atop the plateau near the crest of the steep slopes. The property slopes gently to the northwest before dropping off steeply to the south. Ground coverage is currently mown lawn with the slope bush clad.

Figure 1: Rahuikuri A2C Block (Source: RS ENG GIS).

3.0 Desk Study

3.1 Site Geology

The GNS 1:250,000 scale New Zealand Geology Web Map indicates that the property is located within an area that is underlain by Waipapa Group, which has been described as follows: *"Volcaniclastic sandstone and argillite with tectonically included basalt, chert and siliceous argillite."*

4.0 Field Investigation

Two Engineers from this office visited the property on 19 April 2023 to undertake a walkover inspection three Scala Penetrometer tests and three hand augers.

The walkover inspection observed a cut approximately 1.5m high and 10m long between the dwelling and the crest of the cliff. Fill was noted in the cut face. A recent slope failure had occurred on the steep slopes near the southwestern corner of the dwelling.

The hand augers were dug to a maximum depth of 2.3m BGL (below ground level). Shear Vane readings were taken at regular intervals throughout the hand augers, observing In Situ Shear Strengths from 100kPa up to and exceeding 195kPa in natural ground and generally less than 100kPa and as low as 28kPa in fill material. Soil and rock descriptions are in general accordance with the New Zealand Geotechnical Society guideline.

The Scala Penetrometer tests were performed at the base of HA01 and at the surface on the cut platform in natural ground, achieving a minimum of 7 blows/100mm between 1.5-2.1m, increasing in density with depth.

5.0 Subsoil Conditions

Interpretation of subsurface conditions is based on the investigations shown on the drawings in Appendix A. The conditions are summarised below.

- 0.3-1.1m of fill was encountered at the surface (where not recently cut), consisting of high plasticity, organic clay with minor silt.
- 0.2m of buried topsoil was encountered below fill.
- Extremely weak, completely weathered Greywacke was encountered below buried topsoil between 0.55m-1.3mBGL, to an observed depth of 2.35mBGL. Completely weathered Greywacke consisted of non-plastic, well graded, silty, sandy gravel with trace clay, and low plasticity, clayey silt with minor sand and trace gravel.
- Groundwater was not encountered during investigations and is expected to be greater than 10m due to the relative permeability of the rock mass.

6.0 Soldier Pile Design

The proposed soldier piles are aimed to provide lateral restrain to the buildings founding soils and rock, should the existing landslide regress, or a future landslide occurs.

RS Eng has designed design the solider piles, based on a potential regression of the existing slope to a 35° line of influence from the lowest part of the adjacent slope. Due to the position of the building in relation to the slope, the potential retained depth reduces from west to east. For efficiency, we have designed three pile types, accounting for the reduced potential maximum retained height.

6.1 Geotechnical Parameters

The design soil parameters for the various materials/units are presented in Table 1 below. These are based on the previous RS Eng report, the previous investigations, and our experience in similar materials.

Parameter	Residual	Weathered
	Soil/Earth Fill	Rock
Soil Density (kN/m³)	19	22
Friction Angle (°)	30	35
Undrained Cohesion (kPa)	100	100

Table 1: Assessed Retaining Wall Design Parameters

6.2 Groundwater

Hydrostatic pressures were taken as nil in the design. Elevated groundwater is not likely within the Waipapa Group Greywacke due to the jointed nature of the rock mass and its relatively high hydraulic conductivity.

6.3 Seismic Loading

Based on a site subsoil Class C and a 1 in 500 year return period design event, a peak ground acceleration of 0.19g was adopted. The design peak ground acceleration was calculated based on the recommendations of MBIE Module 6, being k_h =0.09g (α_{max} =0.19,g A_{topo}=1.2, Wd=0.5).

6.4 Surcharge Loading

The retaining walls have been designed using a permanent surcharge load of 12.5kPa to represent existing building loads and the soil surcharge.

6.5 Methods of Analysis

Analysis of the proposed retaining walls was completed using the methods of NZBC B1/VM4.

6.6 Results

The calculations are included in Appendix C. All cases achieved the design criteria.

The design drawings are included in Appendix E.

7.0 Stormwater

All stormwater should be collected from roofs and paved surfaces and discharged in a controlled manner. RS Eng recommends stormwater is discharged to the north, away from the steep slopes. No stormwater shall be discharged in an uncontrolled manner. As much as reasonably practical, all stormwater/runoff shall be discharged/diverted away from the steep slopes.

8.0 Construction Monitoring and Producer Statements

During the soldier piles construction, RS Eng shall undertake construction monitoring and the contactor shall complete quality assurance in accordance with Table 2 below.

Any works not inspected will be excluded from future producer statements (PS4) to be issued by RS Eng. In any event, where doubt exists regarding inspections, this office should be contacted for advice, and provided with reasonable notice of inspections.

Stage	Observations	Specification /	Observation /
		Acceptance Criteria	Testing by:
Retaining	Setout	Positioned correctly	Surveyor
Walls	Foundation	Confirm assumed design	RS Eng (100%)
	excavations	soil/rock conditions	
	Wall construction	Correct materials / layout	Contractor to keep
			records of materials
			installed.
			RS Eng periodic
			observations (50%)

Table 2: Summary of Geotechnical Construction Monitoring and Testing

9.0 Limitations

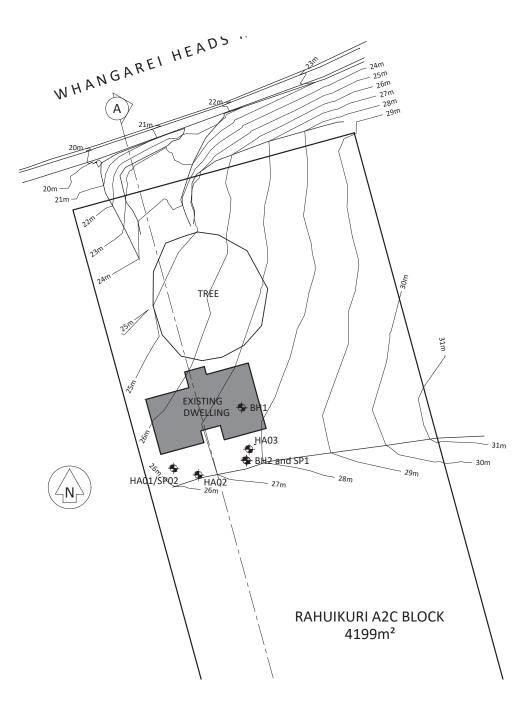
This report has been prepared solely for the benefit of our client. The purpose is to provide details of the soldier pile wall design enclosed. The reliance by other parties on the information, opinions or recommendations contained therein shall, without our prior review and agreement in writing, do so at their own risk.

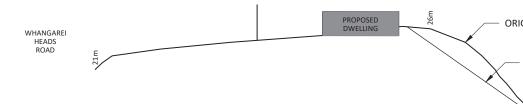
Recommendations and opinions in this report are based on data obtained as previously detailed. The nature and continuity of subsoil conditions away from the test locations are inferred and it should be appreciated that actual conditions could vary from those assumed. If during the construction process, conditions are encountered that differ from the inferred conditions on which the report has been based, RS Eng should be contacted immediately.

Construction site safety is the responsibility of the builder/contractor. The recommendations included herein should not be construed as direction of the contractor's methods, construction sequencing or procedures. RS Eng can provide recommendations if specifically engaged to, upon request.

Prepared/Approved by:

Matthew Jacobson Director NZDE(Civil), BE(Hons)(Civil), CPEng, CMEngNZ


RS Eng Ltd


Reviewed by:

David Platt Geotechnical Team Leader NZDE(Civil), MEngNZ

Appendix A

Drawings

SECTION A-A 1:500

Appendix B

Subsurface Investigations

ſ	RS Eng Ltd 09 438 3273 office@R5Eng.co.nz		HA	NC) AUGE	ER LOG		HOLE NO.: HA01/S	P02
	Eng ^{2 Seaview Road,} Whangarei 0110	CLIENT: Morris Steven JOB N PROJECT: Geotechnical Investigations JOB N						JOB NO.: 16627	,
	LOCATION: 932 Whangarei ORDINATES: 1730622mE, 60	Heads Road		inves		EVATION: 25.3m	END	DATE: 19/04/2023 DATE: 19/04/2023 ED BY: BL	
UNIT	MATERIAL DE (See Classification & Syml		SAMPLES	DEPTH (m)	LEGEND	SCALA PENETROMETER (Blows / 100mm) 2 4 6 8 10 12 14 16 18	,	SHEAR STRENGTH (kPa) Vane: GEO415 중 중 중 Value	VATEI
FILL	Organic CLAY, with minor silt; y Soft; saturated; high plasticity.	/ellow-brown.		0.2	-				
TS	Silty TOPSOIL; dark brown. Firm; moist; non-plastic.			0.4	<u>سد ۲</u> ۶ سن ۲۶ ۲۶ سن ۲۶ سن ۲۶ سن ۲۶ ۲۶ سن ۲۶ سن ۲۶ سن ۲۶				
	Completely weathered, orange- extremely weak. Silty sandy GRAVEL, with trace Very stiff; moist; non-plastic; gr sand, fine to medium.	e clay.		0.6 0.8					
				1.0 1.2	0 × 00 0 × 00 0 × 00 0 × 0 × 00 0 × 0 ×		}	167	Groundwater Not Encountered
Waipapa Gr	1.5m Hand Auger begins. Ever	thing above - legged from out		1.4				195+	Groundwate
N	face.	uning above – logged from cut		1.6 1.8				-	
				2.0 2.2	0 ° ° ° ° ° - 0 × 0 ° ° ° - 0 × 0 ° ° °			UTP -	
	Unable to penetrate End Of Hole: 2.35m			2.4 2.6	-				
				2.8	-	10 13 18 18			
				3.0 	-				
	Pi	HOTO(S)				REMARKS			
					HA performed base of HA.	d at the base of 1.5m existing cut. 0-1.5m logo	jed from i	cut face. SP performe	d at
						WATER ▼ Standing Water Level > Out flow < In flow	✓ +	And Auger	<u> </u>

Generated with CORE-GS by Geroc - 1 - Hand Auger - RS Standard scala & vane bars - 2/06/2023 11:00:08 am

	RS Eng Ltd 09 438 3273 office@RSEng.co.nz 2 Seaview Road, CLUENT: Marrie Stauen						HOLE NO.: HA02	2		
	Eng 2 Seaview Road, Whangarei 0110	CLIENT:Morris SPROJECT:Geotech		nvest	igations			JOB NO.: 16627	JOB NO.: 16627	
	ELOCATION: 932 Whangarei ORDINATES: 1730628mE, 60		1 1		E	LEVATION: 24.4m	END	DATE: 19/04/2023 DATE: 19/04/2023 GED BY: BL	1	
S MATERIAL DESCRIPTION (See Classification & Symbology sheet for details)		SAMPLES	DEPTH (m)	LEGEND	SCALA PENETROMETER (Blows / 0mm) 2 4 6 8 10 12 14 16		SHEAR STRENGTH (kPa) Vane: GEO415 ବୁ ନୁ ବୁ Values	WATER		
	Organic CLAY, with minor silt; Soft; saturated; high plasticity.	yellow-brown.		— — 0.2 ·				28		
FILL	0.6m minor fine, angular gravel	, becoming firm.		0.4 - 0.6 -	-			8 84 28		
		-		— — 0.8.				98	t Encountered	
TS	Silty TOPSOIL; dark brown. Firm; moist; non-plastic.			— 1.0 · — — 1.2 ·	した した した した した した した した した した		4	17	Groundwater Not Encountered	
ų.	extremely weak.	-brown mottled, GREYWACKE, with trace gravel. sand, fine to medium; gravel, fine.		— — 1.4 · —			1	112		
Waipapa Gr	1.5m Hand Auger begins. Ever face	ything above = logged from cut		— 1.6 · — — 1.8 · —				195+		
	Target Depth End Of Hole: 2.00m			2.0 · 2.2 · 				-		
				— 2.6 · — 2.8 ·	_					
				— — 3.0 · —	-					
	Р	HOTO(S)		- .	HA performe	REMAR	(S			
					FIA performe	WATER ▼ Standing Water Level → Out flow ↓ In flow		STIGATION TYPE Hand Auger Fest Pit	_	

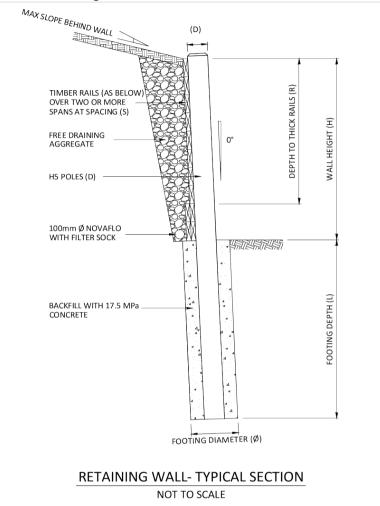
	RS Eng Ltd 09 438 3273 office@RSEng.co.nz 2 Seaview Road, Whangarei 0110	HAND AUGER LOG CLIENT: Morris Steven							.: A03	
	E LOCATION: 932 Whangarei ORDINATES: 1730635mE, 60		nical Inv	/estiga		LEVATION: 26.5m	EN	1 T DATE: 19/04/ D DATE: 19/04/ GED BY: BL		
UNIT	See Classification & Symbology sheet for details)		SAMPLES	DEPTH (m)	LEGEND	SCALA PENETROMETER (Blows / 0mm) 2 4 6 8 10 12 14 16 18		SHEAR STRE (kPa) Vane: GEO415 ନ୍ଦ୍ର ନ୍ଦ୍ର	NGTH Values	WATER
FILL	Organic CLAY, with minor silt; Soft; saturated; high plasticity.	yellow-brown.							151	
TS	Silty TOPSOIL; dark brown. Firm; moist; non-plastic.			-0.6	TS الله الله الله الله الله الله الله الل		2		22	
Waipapa Gr	extremely weak. Clayey SILT, with minor sand, v	-brown mottled, GREYWACKE, with trace gravel. sand, fine to medium; gravel, fine.		- 0.8					63 21 195+ - 195+ -	Groundwater Not Encountered
	P	ното(s)		HA	A performed	WATER Standing Water Level Out flow In flow		STIGATION Hand Auger Test Pit	TYPE	_

Generated with CORE-GS by Geroc - 1 - Hand Auger - RS Standard scala & vane bars - 2/06/2023 11:00:11 am

	RS Eng Ltd 09 438 3273 office@RSEng.co.nz		HAN		٩UG	ER LOG		HOLE NO.: SP01	
	effice@RSEng.co.nz 2 Seaview Road, Whangarei 0110		Steven chnical In	vestina	tions			JOB NO.: 16627	
	E LOCATION: 932 Whangarei -ORDINATES: 1730630mE, 60	Heads Road		vestigu		ELEVATION: 26.9m	END	START DATE: 19/04/2023 END DATE: 19/04/2023 LOGGED BY: BL	
UNIT		MATERIAL DESCRIPTION (See Classification & Symbology sheet for details)		DEPTH (m)	LEGEND	SCALA PENETROMETER (Blows / 100mm) 2 4 6 8 10 12 14 16 18		HEAR STRENGTH (kPa) Vane: 중 중 원 Values	WATER
	SP performed at the base of 1. End Of Hole: 2.30m								Groundwater Not Encountered
	P	HOTO(S)		.		REMARKS			
						WATER	INVES	TIGATION TYPE	_
						 ▼ Standing Water Level > Out flow In flow 		and Auger est Pit	

erated with CORE-GS by Geroc - 1 - Hand Auger - RS Standard scala & vane bars - 2/06/2023 11:00:13 am

	RS Eng Ltd				GER LOG		HOLE NO.:	
	RSJ 09 438 3273 office@RSEng.co.nz						SP03	
	Eng ^{2 Seaview Road,} Whangarei 0110	CLIENT: PROJECT:	Morris Steven Geotechnical Inve	stigations			JOB NO.: 16627	
	E LOCATION: 932 Whangarei ORDINATES: 1730636mE, 60				ELEVATION: 27.6m		DATE: 19/04/2023 DATE: 19/04/2023	
			v			LOGGED BY: BL		
UNIT	MATERIAL DI (See Classification & Sym		SAMPLES		SCALA PENETROMETER (Blows / 100mm) 2 4 6 8 10 12 14 16 18		SHEAR STRENGTH (kPa) Vane: ନିନ୍ଦି ପି Values	WATER
	SP performed at the base of 1.	5m cut.		<u> </u>				
			0	.2				
				-				
				.4				
			0	.6				
				-				
				.88				
				.0				
				_				
				.2				untered
			1	.4 —				ot Enco
	End Of Hole: 2.90m				-			Groundwater Not Encountered
				.6				Ground
			1	.8 8	1			
				_	1			
				0	8			
			2	.2	10			
				_	9			
				.4	18			
			2	.6	14			
				. –	20			
				.88	21>>			
			3	.0				
				1				
_	P	HOTO(S)			REMARKS			
					WATER	INVES	STIGATION TYPE	
					Standing Water Level		land Auger	
					 D→ Out flow Q→ In flow 		est Pit	
					7			


enerated with CORE-GS by Geroc - 1 - Hand Auger - RS Standard scala & vane bars - 2/06/2023 11:00:15 am

Appendix C

Calculations

Design of Typical Timber Retaining Wall for Cohesive Soils

Retaining Wall Design Table

Max Wall Height	Pole Size	Min Footing Depth	Footing Diameter	Depth to Thick Rails	Pole Spacing	Rail Size
(H)	(D)	(L)	(Ø)	(R)	(S)	
3.5m	600ø RC	6.0m	0.60m	-	1.5m	200x50 RS
2.7m	400SED HD	5.0m	0.75m	0.3m	1.5m	200x50 RS
2.1m	325SED HD	4.0m	0.60m	0.3m	1.5m	200x50 RS

Notes:

Safety from falling barrier required for walls over 1.0m high where access unrestricted

Design of Typical Timber Retaining Wall for Cohesive Soils

1.0 Site Parameters		
Location	Northland	
Subsoil Class	Class C	
Performance Requirement Case	Case 3	
Importance Level	IL 2	
	ULS	
Design Wall Parameters	Consider modelling in Wallap due to high downslope angle	
Height	H 3.5 m	
Downslope Angle	0 0 deg Height	
Allowance for Creep	creep 0.0 m	
Submerged height	h 0.0 m Submerged Height	
Retained Height	H _w 3.5 m	
Ground Slope Behind Wall	i 0 deg	
Rake on Wall	β 0 deg	
Pole Spacing	S 1.5 m	
Wall Friction Angle	δ 0 deg	
Design Retained Soil Parameters		
Soil Density	γ <mark>19</mark> kN/m ³	
Effective Stress Angle	ф <mark>. 30</mark> deg	
Design Foundation Soil Parameters		
Undrained Soil Strength	Su 90 kPa	
Strength Reduction Factor for Soils	Φ 0.5	
	Ψ	
Design Wall Surcharge		
Permanent Surcharge	S _G 16.0 kPa	
Variable Surcharge	S _Q 0.0 <mark>k</mark> Pa	
Construction Surcharge	S _{con} 0.0 kPa	
Seismic Parameters		
Topographic Amplification Factor	A _{topo} 1.2 Table 5.1, Module 6	
Return Period	R 1.0	
Wall Displacement Factor	W_d 0.5 a_{max} 0.15 g $a_{max} = C_{0,1000} \frac{R}{1.3} fg$	
Peak horizontal ground acceleration		
Design horizontal acceleration	$k_h = 0.1 \text{ g}$ $k_h = a_{max} A_{topo} W_d$	
	θ 5 deg $\theta = \tan^{-1} k_h$	
2.0 Pressure Coefficients	2(6+0)	
	Ka 0.33 $K_A =$	
	Ko 0.50 $\cos(\delta - \beta)\cos^2(-\beta)[1 + \left \frac{\sin(\phi + \delta)\sin(\phi - i)}{\cos(\delta - \beta)\cos(-i - \beta)}\right ^2$	
	Kp 3 ν - $\cos^2(\emptyset - \theta - \beta)$	
	Kae 0.39 $A_{AE} = \frac{1}{(1 + \delta)^2 (1 + \delta)^2 ($	$(\theta - i)_{12}$
	Ka 0.33 Ko 0.50 Kp 3 Kae 0.39 Kpe 0.39 Ka $A_{A} = \frac{\cos^2(\phi + \beta)}{\cos(\delta - \beta)\cos^2(-\beta)[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - i)}{\cos(\delta - \beta)\cos(-i - \beta)}]^2}}{\cos\theta\cos^2\beta\cos(\delta + \beta + \theta)[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - i)}{\cos(\delta + \beta + \theta)\cos(\phi - \beta)}}]^2}$	$\frac{1}{(i-\beta)}$
	$K_{PE} = \frac{\cos^2(\phi - \theta + \beta)}{1 + \cos^2(\phi - \theta + \beta)}$	
Coeffic	ent Chosen: Ko Ko Ko Ko Ko Ko Ko Ko Ko Ko	$\frac{(i-\theta+i)}{(i-\theta)}]^2$
	$\sqrt{\frac{1}{\sqrt{1-\frac{1}{p}+\frac{1}{2}}}}$	

CLIENT S Morris

Page No.	3
Job No.	16627
Calculated by:	MJ
Checked by:	0
Date	15/08/2023

Design of Typical Timber Retaining Wall for Cohesive Soils

3.0 Loading:

		Characteristic	Static	Earthquake	Construction	1
Soil Pressure	Fe	87.3	130.9	67.8	87.3	$P_{soil} = \frac{1}{2} LF K_{chosen} \gamma H_w^2 S$
Permanent Surcharge	G	42.0	50.4	32.6	42.0	
Variable Surcharge	Q	0.0	0.0	0.0	0.0	$P_{sur} = LFK_{chosen}S_sH_wS$
	Sum (kN)	129.3	181.3	100.4	129.3	
	Average LF	1	1.4	1.0	1	

493 mm

0.6

0.63

181.3

1.33

0.90

5.77

4.0 Bending Moments:

		Moment (kNm)	M/K1
Characteristic	Mc	175.3	292.2
Static	Ms	240.9	401.6
Earthquake	M _{EQ}	136.1	136.1
Construction	M _{CON}	175.3	175.3

Design Bending Moment (Pole)	M*	240.9 kNr	n
Design Bending Moment (Footing)	M*	240.9 kNr	n
Pole Data:			
Strength Reduction Factor	Ø	0.8	
Load Duration Factor	Kı	0.6	
Shaving Factor	K ₂₀	0.85	
Steaming Factor	K ₂₁	0.85	
Strength in Bending	f _b	52 MP	а

SED HD size required=

D

Ρ

Н

 F_0

 $\mathsf{S}_{\mathsf{fact}}$

$$M = P_{soil} \frac{H_w}{3} + P_{sur} \frac{H_w}{2}$$

Critical Moment	Static
Critical Moment	Static

$$Z_{req} = \frac{M}{\emptyset K_1 K_{20} K_{21} f_b}$$

$$SED_{req} = D_{req} - 6_E^{-3} H_w \qquad D_{req} = \sqrt[3]{\frac{32Z_{req}}{\pi}}$$

Type of Log Chosen:	SED HD
Pole Size Chosen:	450SED HD

m	$(L + 2H + F_0)^2$	
kN m	$H_{cap} = \Phi 9S_{u}B \sqrt{ \frac{(L+2H+F_{0})^{2}}{+(L-F_{0})^{2}} } - (L+2H+F_{0})^{2} $	
m	F₀ Manual Entry (m)	
m	Footing Depth Chosen (m)	6.00

6.0 Check Rails

5.0 Choose Footing Depth

Height of Total Force on Wall

Footing Diameter

Total Force on Wall

Depth to Effective Soil

Required Depth of Footing

Spacing Factor

Choose Rail Size:	200x50 RS		
Choose Timber Grade:	No. 1 Framing		
Strength of Single Rail		φM _n	0.30 kNm
Maximum unrestrained de	epth for single	depth	0.27 m

Ensure rails are continuous over more than one span.

$$\Phi M_n = \frac{\Phi k_1 f_b db^2}{6}$$
$$depth = \frac{\Phi M_n 10}{LFK_{chosen}(\gamma + S_S) dS^2}$$

CLIENT S Morris

Page No.	4
Job No.	16627
Calculated by:	MJ
Checked by:	0
Date	15/08/2023

Design of Typical Timber Retaining Wall for Cohesive Soils

1.0 Site Parameters Location		Northland			
Subsoil Class		Class C			
Performance Requirement Cas					
Importance Level	IL	2 ULS			
Design Wall Parameters		ULS			
Height	н	2.7 n	n	`````	
Downslope Angle	Θ			Heigh	t
Allowance for Creep	creep		0		
Submerged height	h			Subm	erged Height
	H _w			Θ	0 0
Retained Height	_			8D	
Ground Slope Behind Wall	i		0		
Rake on Wall	β				
Pole Spacing	S				
Wall Friction Angle	δ	0 d	leg		
Design Retained Soil Paran	neters				
Soil Density	γ	19 k	:N/m³		
Effective Stress Angle	ф	30 d	leg		
Design Foundation Soil Par	ameters				
Undrained Soil Strength	Su		:Pa		
Strength Reduction Factor for	Soils Φ	0.5			
Design Wall Surcharge					
Permanent Surcharge	S _G	16.0 k	:Pa		
Variable Surcharge	Sa	0.0 k	Pa		
Construction Surcharge	S _{CON}	0.0 k	Pa		
Seismic Parameters					
Topographic Amplification Fac	tor Δ.	1.2		Table 5.1, Module 6	
Return Period	tor A _{topo}				
Wall Displacement Factor	W _d			D	
Peak horizontal ground accele			T	$a_{max} = C_{0,1000} \frac{R}{1.3}$	fg
Design horizontal acceleration	k _h			$k_h = a_{max} A_{topo} W_d$	
	θ			$\theta = \tan^{-1} k_h$	
			0	$b = \tan \kappa_h$	
2.0 Pressure Coefficients			V	$cos^2(\emptyset + \beta$)
	Ка		$K_A =$	sin sin	$(\emptyset + \delta) \sin(\emptyset - i)$
	Ко		cos(d –	$\frac{\cos^2(\emptyset + \beta)}{\cos^2(-\beta)[1 + \sqrt{\frac{\sin}{\cos(0\beta)}}]}$	$(\delta - \beta) \cos(-i - \beta)^{2}$
	Кр		<i>K</i> _{<i>AE</i>} =	cos²(Ø ·	$-\theta - \beta$)
	Кае	0.39	cosθco	$\cos^2\beta\cos(\delta+\beta+\theta)$ [1 +	$+ \frac{\sin(\phi + \delta)\sin(\phi - \theta - i)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}]^{2}$ - $\theta + \beta$
	Кре			cos ² (Ø	$\sqrt{\cos(\theta + \beta + \theta)\cos(\theta - \beta)^3}$ - $\theta + \beta$
	Coefficient Chosen:	Ко	$K_{PE} =$	20 (5 0 : 0) 5	$\sin(\phi + \delta)\sin(\phi - \theta + i)$
	coontrollent chosen.	ŇŬ	cosθci	$bs^{-}\beta\cos(\delta - \beta + \theta) [1 + \theta]$	$+\sqrt{\frac{\sin(\phi+\delta)\sin(\phi-\theta+i)}{\cos(\delta-\beta+\theta)\cos(i-\beta)}}]^{2}$

CLIENT S Morris

 Page No.
 5

 Job No.
 16627

 Calculated by:
 MJ

 Checked by:
 0/01/1900

 Date
 15/08/2023

Design of Typical Timber Retaining Wall for Cohesive Soils

3.0 Loading:

		Characteristic	Static	Earthquake	Construction	1
Soil Pressure	Fe	51.9	77.9	40.3	51.9	$P_{soil} = \frac{1}{2} LF K_{chosen} \gamma H_w^2 S$
Permanent Surcharge	G	32.4	38.9	25.2	32.4	2
Variable Surcharge	Q	0.0	0.0	0.0	0.0	$P_{sur} = LFK_{chosen}S_sH_wS$
	Sum (kN)	84.3	116.8	65.5	84.3	
	Average LF	1	1.4	1.0	1	

4.0 Bending Moments:

4.0 Bending Momen		Moment (kNm)	M/K1	
Characteristic	M _c	90.5	150.8	
Static	Ms	122.6	204.3	$M = P_{soil} \frac{H_w}{3} + P_{sur} \frac{H_w}{2}$
Earthquake	M _{EQ}	70.2	70.2	$M = r_{soil} \frac{1}{3} + r_{sur} \frac{1}{2}$
Construction	M _{CON}	90.5	90.5	
Design Bending Mome	nt (Dolo)	M*	122.6 kNm	Critical Moment Static
8 8	· · /		122.6 kNm	
Design Bending Momen Pole Data:	nt (Footing)	M*	122.6 KNM	Critical Moment Static
Strength Reduction Fac	tor	Ø	0.8	М
Load Duration Factor		У К ₁	0.6	$Z_{req} = \frac{M}{\phi K_r K_{req} K_{req} f_r}$
Shaving Factor		K ₁ K ₂₀	0.85	$332Z_{req}$
Steaming Factor		K ₂₀	0.85	$Z_{req} = \frac{M}{\emptyset K_1 K_{20} K_{21} f_b}$ $SED_{req} = D_{req} - 6_E^{-3} H_w \qquad D_{req} = \sqrt[3]{\frac{32Z_{req}}{\pi}}$
Strength in Bending		f _b	52 MPa	
		5		Type of Log Chosen: SED HD
	SED I	HD size required=	394 mm	Pole Size Chosen: 400SED HD
5.0 Choose Footing I Footing Diameter	Depth	D	0.75 m	
Spacing Factor		S _{fact}	0.50	$(L+2H+F_{0})^{2}$
Total Force on Wall		P	116.8 kN	$H_{cap} = \Phi 9S_{u}B \begin{cases} (L + 2H + F_{0})^{2} \\ + (L - F_{0})^{2} \\ - (L + 2H + F_{0}) \end{cases}$
Height of Total Force o	n Wall	н	1.05 m	$\sqrt{-(L+2H+F_{0})}$
Depth to Effective Soil		Fo	1.13 m	F _o Manual Entry (m)
		0		
Required Depth of Foo	ting	L	4.99 m	Footing Depth Chosen (m) 5.00
6.0 Check Rails				
Choose Rail Size:	20	0x50 RS		
Choose Timber Grade:	No. :	1 Framing		Ensure rails are continuous over more than one span.
Strength of Single Rail		φM _n	0.30 kNm	$\Phi M_n = \frac{\Phi k_1 f_b db^2}{6}$
Maximum unrestrained	d depth for single	depth	0.27 m	$depth = \frac{\phi M_n 10}{LFK_{chosen}(\gamma + S_S)dS^2}$

Accept a 400SED HD pole in a 0.75m diameter hole 5.0m deep for a maximum retained height of 2.7m. Below a depth of .27m use 200x75 rails or double thickness of 200x50 well spiked together.

CLIENT S Morris

Page No.	6
Job No.	16627
Calculated by:	MJ
Checked by:	0
Date	15/08/2023

Design of Typical Timber Retaining Wall for Cohesive Soils

1 O Sito Dovomotova			
1.0 Site Parameters Location		Northland	
Subsoil Class		Class C	
	e Case		
Performance Requirement Cas			
Importance Level	I	ULS	
Design Wall Parameters		ULS	
Height	ŀ	1 2.1 m	
Downslope Angle	e		Height
Allowance for Creep	creep		
Submerged height		n 0.0 m	Submerged Height
			Θ
Retained Height	H _v		8D
Ground Slope Behind Wall		i Odeg	
Rake on Wall	ſ		
Pole Spacing		5 1.5 m	
Wall Friction Angle	ð	5 <mark>0</mark> deg	
Design Retained Soil Param	eters		
Soil Density		γ <mark>19</mark> kN/	m³
Effective Stress Angle	d		
Design Foundation Soil Para	ameters		
Undrained Soil Strength	Su	u 70 kPa	
Strength Reduction Factor for S	Soils d	0.5 O.5	
Design Wall Surcharge			
Permanent Surcharge	S	16.0 kPa	
Variable Surcharge	S		
Construction Surcharge	S _{COI}		
construction surcharge	-00	0.0	
Seismic Parameters			
Topographic Amplification Fact	or A _{top}	o <mark>1.0</mark>	Table 5.1, Module 6
Return Period		R 1.0	
Wall Displacement Factor	W	d 0.5	R
Peak horizontal ground acceler	ation a _{ma}	_x 0.15 g	$a_{max} = C_{0,1000} \frac{R}{1.3} fg$
Design horizontal acceleration	k	h 0.1 g	$k_h = a_{max} A_{topo} W_d$
	6) 4 deg	$\theta = \tan^{-1} k_h$
2.0 Pressure Coefficients			
2.0 Pressure coefficients	Ka	0.33 K _A	$= \frac{\cos^2(\emptyset + \beta)}{2}$
	K		$= \frac{1}{\cos(\delta - \beta)\cos^{2}(-\beta)[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - i)}{\cos(\delta - \beta)\cos(-i - \beta)}}]^{2}}$ $= \frac{1}{\cos^{2}(\phi - \theta - \beta)}$
	K	3	$\frac{\cos(\delta - \beta)\cos(-\iota - \beta)}{\cos^2(\theta - \theta - \beta)}$
	Ka	K _A	$E = \frac{\cos(\phi + b)\sin(\phi - b)}{\sin(\phi + b)\sin(\phi - b)}$
	Кре		$E = \frac{\cos(\psi - \theta - \beta)}{\cos(\cos^2\beta\cos(\delta + \beta + \theta)\left[1 + \sqrt{\frac{\sin(\psi + \delta)\sin(\psi - \theta - i)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}}\right]^2}$
			$E = \frac{\cos^2(\phi - \theta + \beta)}{\cos^2(\phi - \theta + \beta)}$
	Coefficient Chosen:	Ко	$cos\theta cos^{2}\beta cos(\delta - \beta + \theta) \left[1 + \sqrt{\frac{sin(\phi + \delta)sin(\phi - \theta + i)}{cos(\delta - \beta + \theta)cos(i - \beta)}}\right]^{2}$
			$\sqrt{\cos(\delta - \beta + \theta)\cos(i - \beta)}$

CLIENT S Morris

 Page No.
 7

 Job No.
 16627

 Calculated by:
 MJ

 Checked by:
 0/01/1900

 Date
 15/08/2023

Design of Typical Timber Retaining Wall for Cohesive Soils

3.0 Loading:

		Characteristic	Static	Earthquake	Construction	1
Soil Pressure	Fe	31.4	47.1	23.8	31.4	$P_{soil} = \frac{1}{2} LFK_{chosen} \gamma H_w^2 S$
Permanent Surcharge	G	25.2	30.2	19.1	25.2	2
Variable Surcharge	Q	0.0	0.0	0.0	0.0	$P_{sur} = LFK_{chosen}S_sH_wS$
	Sum (kN)	56.6	77.4	42.8	56.6	
	Average LF	1	1.4	1.0	1	

4.0 Bending Moments:

4.0 Bending Woments	_	Moment (kNm)	M/K1	
Characteristic	M _c	48.5	80.8	
Static	Ms	64.7	107.9	$M = P_{soil} \frac{H_w}{2} + P_{sur} \frac{H_w}{2}$
Earthquake	M _{EQ}	36.7	36.7	3 3 2
Construction	M _{CON}	48.5	48.5	
Design Bending Moment	(Pole)	M*	64.7 kN	m Critical Moment Static
Design Bending Moment	. ,	M*	64.7 kN	
Pole Data:	(100(11)6)		01.7 1.1	
Strength Reduction Facto	or	ø	0.8	M
Load Duration Factor		K ₁	0.6	$Z_{req} = \frac{1}{\phi K_1 K_{20} K_{21} f_h}$
Shaving Factor		K ₂₀	0.85	$Z_{req} = \frac{M}{\emptyset K_1 K_{20} K_{21} f_b}$ $SED_{req} = D_{req} - 6_E^{-3} H_w \qquad D_{req} = \sqrt[3]{\frac{32Z_{req}}{\pi}}$
Steaming Factor		K ₂₁	0.85	$SED_{req} = D_{req} - 6_E H_W \qquad \sqrt{\pi}$
Strength in Bending		f _b	52 MF	2a
				Type of Log Chosen: SED HD
SED HD size required=		HD size required=	319 mr	n Pole Size Chosen: 325SED HD
5.0 Choose Footing De Footing Diameter	epth_	D	0.6 m	
Spacing Factor		S _{fact}	0.63	$(L + 2H + F_0)^2$
Total Force on Wall		P	77.4 kN	$H_{cap} = \Phi 9S_{u}B \begin{cases} (L+2H+F_{0})^{2} \\ +(L-F_{0})^{2} \\ -(L+2H+F_{0}) \end{cases}$
Height of Total Force on	\M/all	н	0.84 m	$\int -(L+2H+F_0)$
Depth to Effective Soil	vvan	Fo	0.90 m	F₀ Manual Entry (m)
Depth to Encetive Soli		.0	0.50	
Required Depth of Footin	ng	L	3.88 m	Footing Depth Chosen (m) 4.00
6.0 Check Rails				
Choose Rail Size:	20	0x50 RS		
Choose Timber Grade:	No.	1 Framing		Ensure rails are continuous over more than one span.
Strength of Single Rail		φM _n	0.30 kN	$\Phi M_n = \frac{\Phi k_1 f_b db^2}{6}$
Maximum unrestrained o	depth for single	e depth	0.28 m	$depth = \frac{\Phi M_n 10}{LFK_{chosen}(\gamma + S_S)dS^2}$

Accept a 325SED HD pole in a 0.6m diameter hole 4.0m deep for a maximum retained height of 2.1m. Below a depth of .28m use 200x75 rails or double thickness of 200x50 well spiked together.

Appendix D

Producer Statement Design – PS1

PRODUCER STATEMENT-PS1A DESIGN

JOB NUMBER:	16627
ISSUED BY: (Engineering Design Firm)	RS Eng
TO: (Client)	Steven Morris
TO BE SUPPLIED TO: (Regulatory Authority)	Whangarei District Council
IN RESPECT OF: (Description of Works to be constructed/carried out)	SED Soldier Piles (the "Works")
AT: (Address)	932 Whangarei Heads Road, Parua Bay, Whangarei
LEGAL DESCRIPTION	Rahuikuri A2C Block

We have been engaged by Steven Morris to provide:

SED Soldier Piles

In this document SED means "Specific Engineering Design".

The design carried out by RS Eng has been prepared in accordance with the following compliance documents, regulatory requirements and/or standards and guidelines ('Compliance Documents'):

✓ Building Code Clause No(s): B1/VM4

The proposed work covered by this producer statement is described in the drawings listed in the attached Schedule, together with the specifications, and other documents set out in the attached Schedule.

On behalf of RS Eng, and subject to:

I believe on reasonable grounds that:

- the elements of the Works that have been designed by RS Eng, if constructed in accordance with the drawings, specifications, and other documents provided or listed in the attached Schedule, will comply with the relevant provisions of the Compliance Documents listed above and that:
- the persons who have undertaken the design have the necessary competency to do so.

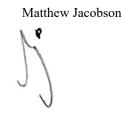
I also recommend the following level of construction monitoring: CM2

I, Matthew Jacobson, am:

- CPEng number 1161533
- and hold the following qualifications: B.E. (Hons)

RS Eng holds a current policy of Professional Indemnity Insurance no less than \$200,000.

Job Number: 16627 Job Address: 932 Whangarei Heads Road, Parua Bay, Whangarei Compilation Date and Time: 23 August 2023 at 15:18 PM


PS1A - DESIGN (NOT FOR SUBMISSION FOR A BUILDING CONSENT) – AUGUST 2021

RS Eng is a member of ACE New Zealand.

SIGNED BY:

 \checkmark

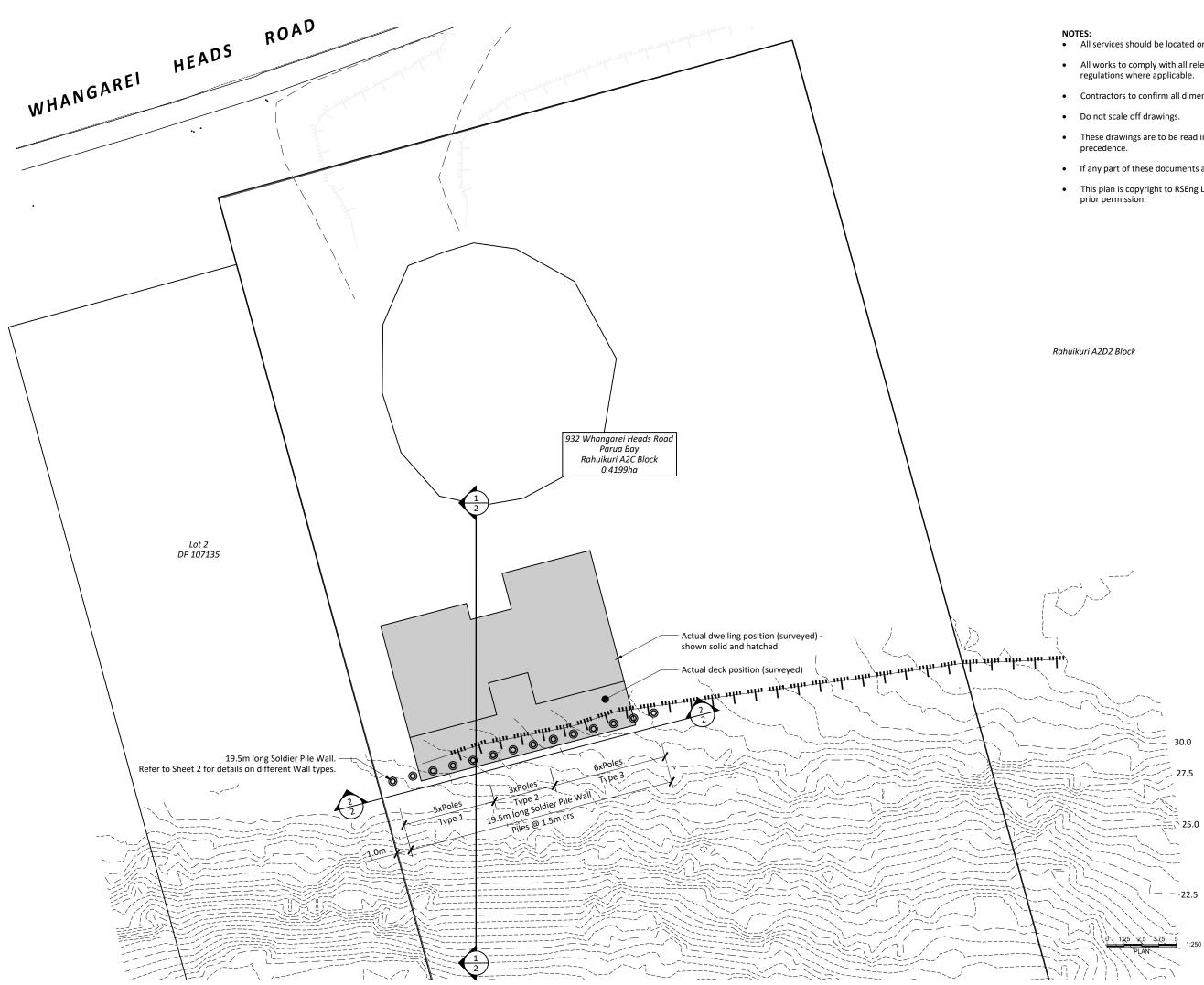
(Signature):

Date: 23/08/2023

ON BEHALF OF:

RS Eng

Note: This statement has been prepared solely for Whangarei District Council and shall not be relied upon by any other person or entity. Any liability in relation to this statement accrues to RS Eng only. As a condition of reliance on this statement, Whangarei District Council accepts that the total maximum amount of liability of any kind arising from this statement and all other statements provided to Whangarei District Council in relation to the Works, whether in tort or otherwise, is limited to the sum of \$200,000.


SCHEDULE TO PS1A

Please include an itemised list of all referenced documents, drawings, or other supporting materials in relation to this producer statement below:

- Certificate of Design Work
- Geotechnical Report: RS Eng Geotechnical Design Report 23/08/2023 RS16627

Appendix E

Drawings

• All services should be located on-site prior to commencement of works.

- All works to comply with all relevant local authority by-laws and council
- Contractors to confirm all dimensions on site prior to commencing any work.
- These drawings are to be read in conjunction with specifications plans take
- If any part of these documents are unclear, please contact RSEng Ltd.
- This plan is copyright to RSEng Ltd and should not be reproduced without

Contours are shown at 0.5m crs. Contours are derived from LiDAR (2018) and are shown at OTP64 Vertical Datum.

RS Eng Ltd

09 438 3273 office@RSEng.co.nz 2 Seaview Road, Whangarei 0110

EXISTING DWELLING AND SLIP SLIP REMEDIAL DESIGN SOLDIER PILE WALL DESIGN

STEVEN MORRIS

ocatior

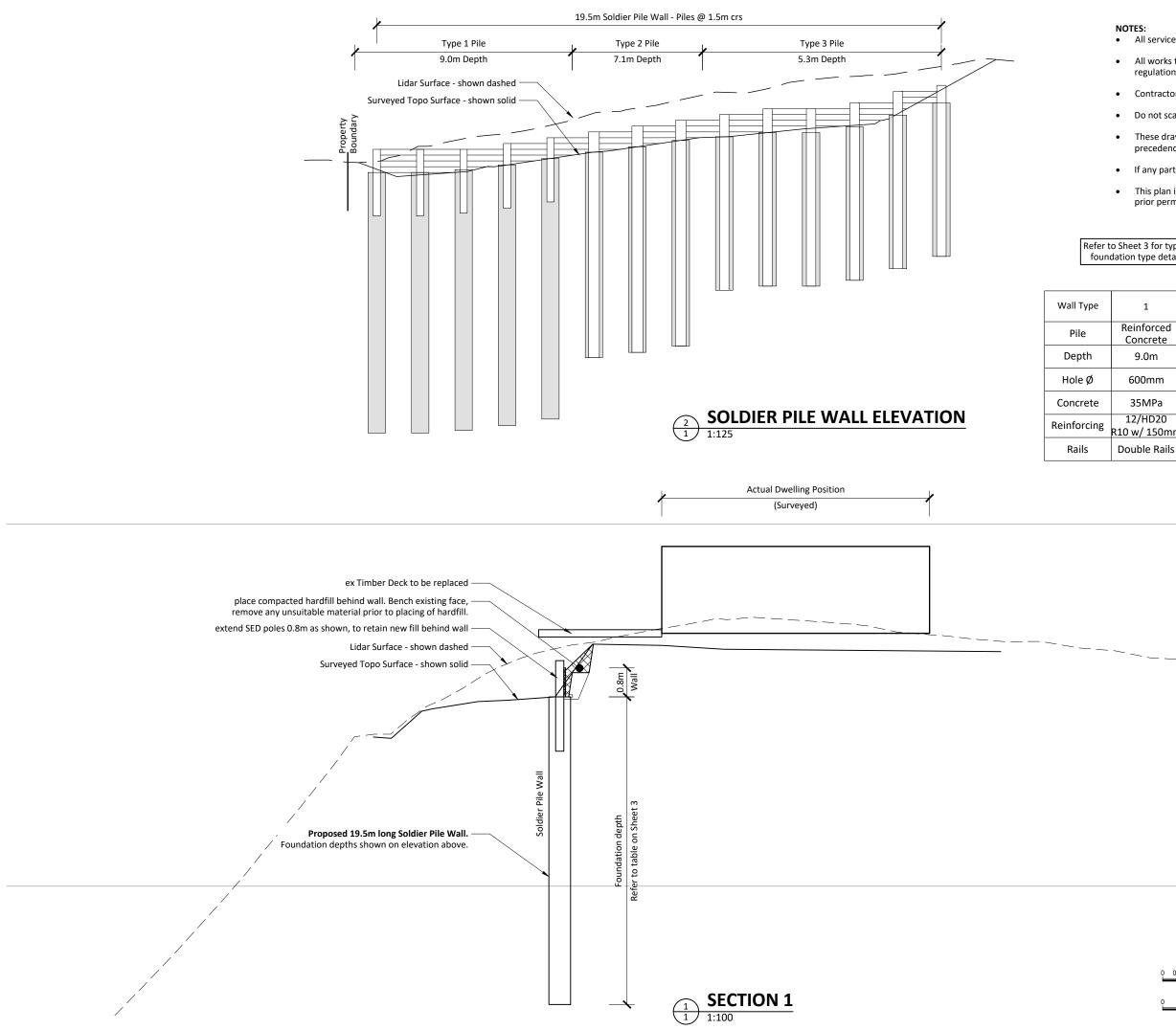
rawn

NW

932 WHANGAREI HEADS ROAD PARUA BAY

04/08/2023 A Building Consent Exemption Date Rev Notes RS Eng Ltd Consulting Engineers

RS LEng This drawing is in accordance with our calculations where applicable.


Approved

MJ

per Chartered Professional Engineer riginal 💙 А A3 1:250 Sheet

File #

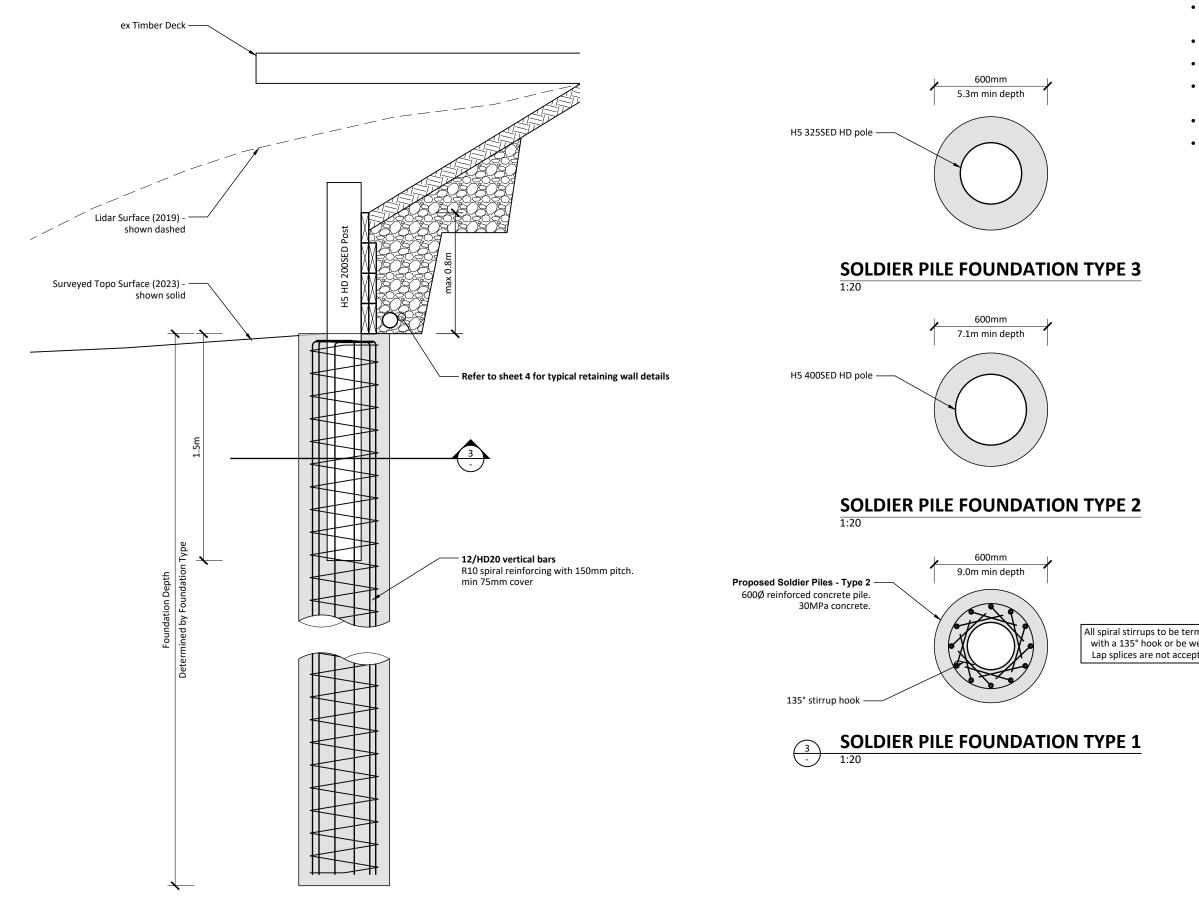
16627

NOTES:

• All services should be located on-site prior to commencement of works.

- All works to comply with all relevant local authority by-laws and council regulations where applicable.
- Contractors to confirm all dimensions on site prior to commencing any work.
- Do not scale off drawings.
- These drawings are to be read in conjunction with specifications plans take • precedence.
- If any part of these documents are unclear, please contact RSEng Ltd.
- This plan is copyright to RSEng Ltd and should not be reproduced without prior permission.

Sheet 3 for typical					
tion type details					


2	3
400SED	325SED
7.1m	5.3m
600mm	600mm
20MPa	20MPa
-	-
Double Rails	Double Rails
	400SED 7.1m 600mm 20MPa

30.0m

	RE	n N	g	09 43 office(2 Seav	Eng Ltd 8 3273 @RSEng.co.nz <i>r</i> iew Road, garei 0110
	Title EXISTIN SLIP INV SLIP REN	'ESTI	GATI		ND SLIP
		МО	RRIS		
	^{Location} 932 WH PARUA I		GARE	I HEADS	ROAD
	04/08/2023	A	Buildi	ing Consent	Exemption
	Date	Rev	Note	S	
	RS LEng	Co Thi	is dhavl	g Engineers ling is in ac	s cordance with ere applicable.
	per		Chart	ered Profess	sional Engineer
125	Scale		Origir		Rev A
	As Show			A3	Sheet
100	Drawn NW		oved NJ	File # 16627	2

20.0m

0	0.625	1.25	1.875	2.5	1.125			
-	SECTION							
٥ و	0.5	1.0	1.5	2.0	1:100			
-	1.100							

SOLDIER PILE WALL (TYPE 1) - TYPICAL SECTION

NOTES:

All services should be located on-site prior to commencement of works. •

- All works to comply with all relevant local authority by-laws and council regulations where applicable.
- Contractors to confirm all dimensions on site prior to commencing any work.
- Do not scale off drawings. •
- These drawings are to be read in conjunction with specifications plans take precedence.
- If any part of these documents are unclear, please contact RSEng Ltd.
- This plan is copyright to RSEng Ltd and should not be reproduced without prior permission.

٥	0.125	0.25	0.375	0.5	1:25		
	SECTION						
٥	0.1	0.2	0.3	0.4	1.20		
	1.20						

RS Eng	
Title	
EXISTING DWELL	.IN
SLIP INVESTIGATIC)NS
SLIP REMEDIAL OP	TIC

RS Eng Ltd

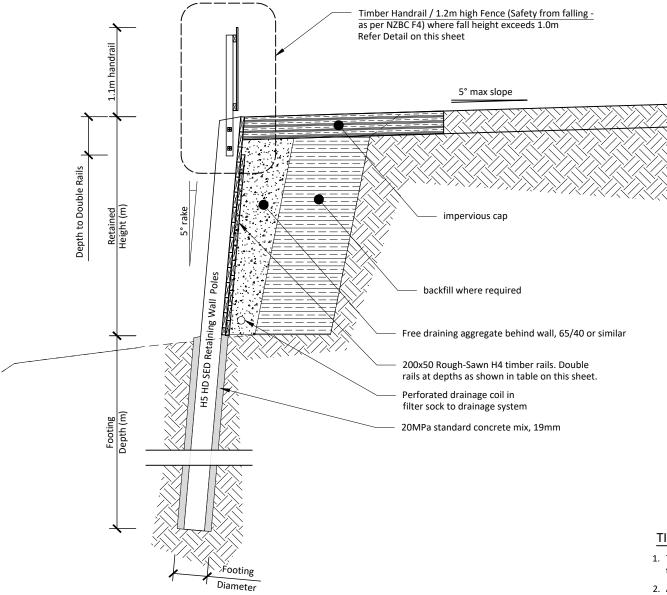
09 438 3273 office@RSEng.co.nz 2 Seaview Road, Whangarei 0110

IG AND SLIP IEDIAL OPTIONS

Client

STEVEN MORRIS

Location


932 WHANGAREI HEADS ROAD PARUA BAY

04/08/2023 A Building Consent Exemption Date Rev Notes

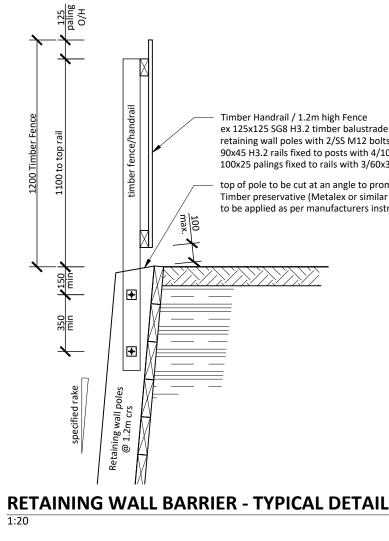
RS Eng Ltd Consulting Engineers RS_

This drawing is in accordance with our calculations where applicable. LEng per Chartered Professional Engineer

8			5			-
Scale		OriginaN		Rev	^	
As Shown		A3			~	
					Sheet	
Drawn	Approved		File	ŧ		\mathbf{a}
NW	MJ		16	627		3

PROPOSED RETAINING WALL - TYPICAL SECTION DETAIL 1:50

GENERAL NOTES


- 1. General notes shall apply unless noted otherwise on drawings.
- 2. Verify all dimensions and levels prior to construction of any works.
- 3. All workmanship and materials shall be accordance with the requirements of current AS and NZS standards, the related by-laws and ordinances of local and government authorities.
- 4. The contractor shall be responsible for ensuring the safety, stability and integrity of the site, the building works & all other neighboring properties and structures during construction period, including the design and installation of any temporary works as might be required.
- 5. Do not scale off drawings. If in doubt, contact the engineer.

CONSTRUCTION MONITORING

- 1. Contractor shall be responsible for reviewing approved building consent documentation and arranging any and all required site visits for construction monitoring purposes by other parties.
- 2. Before commencing any work, contractor shall make additional enquiries with relevant local authorities to establish site inspection requirements, including identification of all items to be covered by Engineer's Producer Statement.
- 3. Any item to be covered by Engineer's Producer Statement, must be observed by a Chartered Professional Engineer or their representative.
- 4. Contractor shall further request Council inspector to make a written note specifying any requirement for engineering observations, at each council inspection.
- 5. Engineers inspection does not replace council unless prior approval by council.

CONCRETE

- 1. Concrete for foundation backfill shall be ordinary grade concrete complying with NZS3109 'Specification for Concrete', and with a 28 day strength of 20MPa
- 2. Concrete shall be placed around poles and well compacted by vibrating. Poles shall be temporarily propped and protected against disturbance for at least two days after placement of concrete.

TIMBER

- 1. Timber poles shall be peeled radiata pine logs complying with the requirement of NZS3605 'Load Bearing Round Timber Piles and Poles' treated to TPA commodity specification H5.
- 2. All timber poles to be high density (HD).
- 3. Dimensions of poles are specified as minimum small end diameters. Actual diameters will be greater due to taper and timber grading.
- 4. Sawn timber in contact with ground shall be radiata pine treated to specification H4.
- 5. All timber shall have TPA identification brands visible when delivered to the site and shall be protected against damage during storage and handling.

EXCAVATION

- 1. Deep excavations unsupported during construction may be hazardous particularly when working in confined spaces. Worksafe's Excavation Guide gives recommended safety procedure for such situations. The excavation and earthworks contractor shall take all necessary precautions to protect adequately all persons and property with the potential to be affected by the excavation and earthworks operations.
- 2. Excavation in stages to allow for temporary support during construction is required. No more than 3.0m of unsupported slope shall exist at any one time unless specified by the Engineer.
- 3. Excavation for poles shall be taken out by augering to the dimensions detailed, with all surplus soil being disposed of away from the site.
- 4. Allowance shall be made in positioning augered holes for the slope of the wall and for concrete to surround the poles for the entire depth min 75mm concrete cover
- 5. Poles shall be installed as soon as possible after excavation.
- 6. Excavation for poles shall be free of water and loose material before concreting. If necessary, the contractor shall allow for hand-cleaning and pumping of excavation.

INSTALLATION

- 1. Driving of poles is not acceptable as an alternative to augering unless specified by the Engineer.
- 2. Fixing of horizontal timbers to poles shall utilise galvanised nails as detailed.
- 3. Timbers shall be laid in position commencing at the bottom of the wall with joints between timbers staggered between the poles

BACKFILLING

- 1. A perforated drainage coil shall be laid behind the wall and covered in a fine granular material with the invert below the Finished Ground Level and led to a free outlet at a point of safe discharge.
- 2. Remaining backfill to within 300mm of the top of the wall shall be drained, compacted granular fill not larger than 65mm.
- 3. The finished surface of backfill shall be sealed against entry of surface water with a layer of topsoil, clay or concrete.

Timber Handrail / 1.2m high Fence ex 125x125 SG8 H3.2 timber balustrade posts fixed to retaining wall poles with 2/SS M12 bolts and 50x50x3mm SS washers 90x45 H3.2 rails fixed to posts with 4/100x3.75mm nails 100x25 palings fixed to rails with 3/60x3.15mm nails per rail/paling.

top of pole to be cut at an angle to promote rainwater draining away. Timber preservative (Metalex or similar approved) to be applied as per manufacturers instructions.

1		
	RS LEng	
٦	Title	
	EXISTING DWELL	IN.

RS Eng Ltd

09 438 3273 office@RSEng.co.nz 2 Seaview Road, Whangarei 0110

NG AND SLIP SLIP INVESTIGATIONS SLIP REMEDIAL OPTIONS

STEVEN MORRIS

ocatior

nei

932 WHANGAREI HEADS ROAD PARUA BAY

04/08/2023 A Building Consent Exemption Date Rev Notes

RS Eng Ltd RS Consulting Engineer

This drawing is in accordance with our calculations where applicable. LEng

		Char	tereuph	oless	sonal Engineer	
Scale		Original 🗸		Rev A		
As Shown		A3		A		
Drawn	Approved		File #		Sheet	
NW	MJ		1662	27	4	