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1. RESEARCH PROBLEM STATEMENT 

Air pollution remains a significant global concern, with far-reaching impacts on public health. 

Particulate matter with an aerodynamic diameter of 2.5 µm or less (PM2.5) is of particular 

concern due to its significant impact on respiratory health, its association with trillions of US 

dollars in economic costs, and its contribution to social inequalities (Burnett et al., 2018; Yin et 

al., 2021). In the United States, over 30% of the population resides in areas with unhealthy levels 

of air pollution, which has been associated with an annual toll of 85,000 to 200,000 deaths 

(American Lung Association, 2023). The dispersion of PM2.5 is notably influenced by 

atmospheric factors and the urban built environment. Consequently, even communities located in 

close proximity to each other may experience varying levels of particulate matter concentrations. 

Therefore, to effectively mitigate the health burden of air pollution, understanding the hyperlocal 

spatial distribution of these pollutants, identifying potential sources, and implementing effective 

air quality monitoring mechanisms is essential (Childs et al., 2022). 

 

The Environmental Protection Agency (EPA) in the United States is tasked with developing and 

enforcing regulations related to environmental protection, including air quality standards. Its 

foremost objective is to protect public health and the environment from significant risks. To 

assess compliance with the National Ambient Air Quality Standards (NAAQS), the EPA uses 

established standard techniques such as the Federal Reference Method (FRM) and the Federal 

Equivalent Method (FEM) for conducting PM2.5 measurements. These methods are critical in 

determining whether regions meet the NAAQS or are classified as non-attainment areas (Noble 

et al., 2001). However, due to the substantial costs and maintenance demands associated with 

FRM and FEM monitoring stations, their deployment is sparse and uneven across the nation. 

Among the 3,100 counties in the US, only about 21 percent are equipped with PM2.5 monitors. 

Moreover, the temporal resolution of the data from these monitors is typically limited to 1-hour 

average intervals, which may not adequately capture short-term fluctuations in PM2.5 levels 

(Sullivan & Krupnick, 2018). 

 

Recent advancements in low-cost air pollution sensors enable studies that offer more granular 

insights into air quality, enhancing our understanding at a hyperlocal scale (Gao et al., 2015). 

Despite this progress, data quality assurance remains a significant hurdle. These low-cost 

monitors, which typically utilize optical sensors, can deliver readings affected by ambient factors 

like temperature and humidity (Han et al., 2020). Although useful in normal conditions, their 

reliability is questionable during extreme pollution events, when accurate readings are most 

critical (Barkjohn et al., 2022). Issues such as sensor maintenance, lifespan, and signal integrity 

further complicate data quality. Variability in production standards can lead to disparities in 

measurements even among sensors of the same model. The positioning of these sensors can also 

affect precision, with seemingly identical sensors yielding different data (Feenstra et al., 2019). 

Furthermore, community-operated sensors may not adhere to essential setup protocols, such as 

correct installation height and orientation, compromising the collection of high-quality data. 

 



Researchers have enhanced the accuracy of low-cost monitors and reduced bias by developing 

regression models incorporating land-use features or meteorological conditions (Barkjohn et al., 

2021). Evidence from numerous studies suggests that with proper maintenance, the use of 

sophisticated data-cleaning algorithms, and suitable calibration, these monitors can achieve 

notably high-performance levels (Connolly et al., 2022). 

 

In this study, we aim to examine the urban elements that contribute to the bias and variability of 

low-cost air quality monitors within city environments. Urban areas possess known pollution 

hotspots, such as industrial sites and major roadways, yet the unique characteristics of each 

neighborhood complicate the generalization of air pollution patterns. The design and structure of 

urban spaces are key in shaping hyperlocal air pollution, underlining the importance of research 

into these distinct variations. Our methodology involves correlating points of interest (POI) data 

from OpenStreetMap (OSM) with air quality measurements from PurpleAir sensors across the 

San Francisco Bay Area. This strategy explores the relationship between urban configurations 

and their effects on air quality. 

 

2. BRIEF RESEARCH METHODOLOGY AND APPROACH 

2.1 Air Quality Data Collection and Processing 

PurpleAir is a community-operated, low-cost air quality monitoring network, primarily for 

particulate matter assessment, both indoors and outdoors. With its network of over 20,000 

sensors in the United States, PurpleAir offers real-time air quality data to the public via an online 

map. For our study, we accessed historical data from 1,842 PurpleAir monitors located within the 

San Francisco Bay Area, utilizing the network's historical data access API. This region was 

chosen for its dense concentration of PurpleAir stations, ensuring a rich dataset. We collected 

data at 2-minute intervals from January 1 to January 31, 2020, a timeframe chosen to reflect pre-

COVID travel patterns without the confounding effects of other pollution events. This selection 

is particularly pertinent for Northern California, where wildfire-induced pollution could skew 

results. By excluding periods of extreme pollution, our analysis aims to isolate the influence of 

urban environmental factors on air quality. 

 

In our research, we applied a data cleaning and humidity correction method devised by Barkjohn 

et al. (2021) to improve data integrity. To filter out potential anomalies, we disregarded 

temperature readings above 1000°F or below -200°F, which likely indicate sensor malfunctions 

or incorrect air quality information. Our analysis utilized data from PurpleAir monitors, each 

equipped with two Plantower PMS5003 sensors (channels A&B) to allow cross-verification of 

results. We initially omitted any sensor data reliant on a single channel. Additionally, we 

excluded readings lacking temperature (T) or humidity (RH) values, as missing data may suggest 

signal errors. For monitors with dual channels, we flagged for exclusion any particulate matter 

measurements with an absolute difference exceeding 5 µg/m³ or those with percent differences 

beyond 2 standard deviations (61%). Monitors failing to reach at least 75% data completeness 

for January 2020 were also removed from our analysis. 

 

After refining the data, we juxtaposed the readings from PurpleAir monitors with those from 

FRM/FEM stations in the vicinity, finding a strong correlation in the daily and hourly PM2.5 

averages (p-values of 0.96 and 0.77, respectively). This correlation reinforces the notion that, 

given rigorous data quality management, low-cost sensors can provide reliable data for scientific 



inquiries, including the objectives of this study. To examine the spatial variability of PM2.5, we 

applied the Ordinary Kriging technique to interpolate the average PM2.5 concentrations during 

the weekdays of January 2020, using data from 534 monitors. The interpolated map revealed 

distinct spatial patterns, with certain urban areas displaying higher PM2.5 concentrations. 

Subsequent sections of this study will delve into the underlying factors contributing to these 

heightened concentrations. 

 

2.2 Point of Interest Data 

OpenStreetMap (OSM) is a participative project that allows global users to create, modify, and 

share extensive mapping details. It thrives on an open-source framework, relying on a broad 

community to maintain up-to-date and exhaustive geographical data. For our analysis, we 

utilized the “overpass-api” to methodically extract POI data within the San Francisco Bay Area, 

aligning with the range of our gathered PurpleAir sensor data. We categorized the POIs into 

seven key groups—food, health, education, industry, transit, green spaces, and shopping—to 

reflect varied urban characteristics that may influence air quality. The central coordinates of each 

POI were pinpointed for subsequent spatial correlation with the air quality monitoring data. 

 

2.3 Spatial analysis 

To evaluate the impact of POIs on air quality, we implemented a method to correlate each air 

quality sensor with its immediate urban environment. Following the EPA’s guidelines for 

monitoring network design, which advise a middle-scale representation range from 100 to 500 

meters (U.S. Environmental Protection Agency, 2017), we established a 300-meter buffer around 

each sensor. We chose this specific radius based on the premise that POIs within it have a 

substantial influence on sensor readings. Within these zones, POIs were cataloged and binary 

encoded—zero indicating absence and one indicating presence—per their main category. We 

computed the average air quality values for each sensor in January 2020, focusing on weekdays 

when the effects of industrial, educational, and healthcare activities are most pronounced. We 

then applied ordinary least squares regression (OLS) analysis, with PM2.5 averages as the 

dependent variable and the binary encoded POI categories serving as independent variables. 

 

3. KEY FINDINGS  

After conducting the Ordinary Least Squares (OLS) regression, the model presented an R2 = 

0.07, signifying considerable variability. Atmospheric modeling, particularly concerning air 

pollution, demands complex, large-scale data sets and advanced computational techniques. Our 

initial model, based predominantly on nearby POIs to predict air pollution patterns, inherently 

exhibited high variability. Additional geographical, pollution transport, and atmospheric data 

could enhance the model's robustness and reduce its variance. Of the seven categories analyzed, 

five (health, food, shopping, green spaces, and transit) emerged as statistically significant 

(p<0.05), indicating that, despite the model's variance, the bias was relatively limited. Specific 

POIs within these significant categories appeared to influence air quality in either positive or 

negative ways. Notably, areas dense with food and shopping POIs, likely to experience increased 

vehicle traffic and idling, correlated positively with higher levels of air pollution. In contrast, 

regions with health facilities, green spaces, and transit hubs correlated negatively with PM2.5 

values, likely due to reduced emission-contributing activities. The categories of industry and 

education did not show statistically meaningful patterns (p>0.05), possibly due to the uniform 

presence of educational POIs in residential zones not significantly affecting pollution, and a 



limited presence of heavy industries within the study area not sufficiently impacting the pollution 

levels to be detected by our model. 

 

4. IMPLICATIONS 

Through our analysis, we observed that areas with high-impact POIs, specifically food and 

shopping, displayed significantly increased PM2.5 levels compared to areas associated with 

lower-impact POIs, such as health facilities, green spaces, and transit hubs. Conversely, sites 

featuring industrial and educational POIs, which were statistically insignificant, showed PM2.5 

readings akin to the broader monitor dataset. This investigation operates under certain 

presumptions and is subject to constraints that warrant additional scrutiny. OpenStreetMap, being 

a community-driven platform, might suffer from data accuracy issues, with the POIs potentially 

being outdated or misplaced. For greater accuracy, alternative datasets with more precise 

mobility records, like SafeGraph, may be superior. Moreover, despite thorough data cleaning, the 

low-cost monitors utilized may still harbor significant inaccuracies, and professional monitoring 

sources are likely to provide more reliable data. It is important to note that this study's scope was 

limited to January 2020 and confined to the Bay Area; hence, variations due to different months, 

seasonal effects, and other locations might lead to divergent findings. 
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