Multi-Jurisdictional Hazard Mitigation Plan for Landslides for the Big Sandy Area Development District, Kentucky

This report was prepared by Matthew Crawford at the Kentucky Geological Survey. Funding support was through the Federal Emergency Management Agency Pre-Disaster Mitigation grant project number PDMC-PL04-KY-2017-002.

March 2021

Multi-Jurisdictional Hazard Mitigation Plan for Landslides for the Big Sandy Area Development District

Local Points of Contact:

Matt Scofield, Community Resiliency Coordinator Joe Jacobs, Economic Development Associate Monica Spriggs, Project Administrator Ben Hale, Executive Director

Big Sandy Area Development District 110 Resource Drive Prestonsburg, KY 41653 (606) 886-2374

INTRODUCTION

A landslide is a general term for the downslope movement of rock, soil, or both under the influence of gravity. Slope shape, rock, and soil type, and how fast the rock and soil move influence the style of movement and resulting landslide activity. Landslides occur when the strength of rocks or soil is exceeded by stress applied to those hillslope materials. Common stresses are gravity, increased pore-water pressure, earthquake shaking, and slope modification. Stresses can include increased pore-water pressure (from rainfall), gravity, or some type of slope modification (loading or excavating). A stable slope is one that balances the stresses imposed (driving forces) with the strength of the soil or rock (resisting forces). A slope will fail by (1) increases the stress, or (2) a change in resistance, both which cause a decrease in shear strength. The challenging part is that these stresses act over time and space at different scales, meaning landslide occurrences are influenced by contributions from both static causal conditions, as well as dynamic triggers.

Examples of driving forces:

- Surcharge of weight at the top of the slope by adding artificial fill
- Intense or prolonged rainfall
- Removal of the toe of a slope by engineered cuts or natural stream erosion

Examples of change resisting forces:

- Saturated soil, increase in relative pore-water pressure from rainfall or, in stream banks, from rapid fall of water level in the stream
- Vegetation removal
- Expansion and contraction of swelling clay soils with wet-dry weather cycles
- Weathering of weak rocks

Diverse terminology and definitions among geologists, engineers, and the public reflect the complex landslide processes. Some of the most common terms are landslide, mudslide, and rockslide. Other terms such as mass wasting, slope movement, and slope failure are also commonly used to discuss landslide phenomena. Regardless of which term is used, all landslides share physical and mechanical (in rock and soil) processes that explain their occurrence. Landslides are classified into basic types (Fig. 1). The classifications presented here are from criteria by Varnes (1978) and Cruden and Varnes (1996) that are primarily based on the type of hillslope material and the type of movement. Material in a landslide mass

is either rock, soil, or a combination of both. The type of movement describes the mechanics of how the landslide mass is displaced, which is important for determining the level of hazard. Types of movement include fall, topple, slide, spread, and flow. "Type of movement" is often synonymous with "landslide type."

Landslides have basic parts, including the surface of rupture, main scarp, landslide toe, tension cracks, and slide flanks. These parts play a role in the style of movement, velocity of the slide material, volume displaced, distance the slide might reach (extent), and any decisions regarding hazard mitigation and risk reduction.

Figure 1. Landslide types.

Impact

Landslides occur statewide in Kentucky (Fig. 2). Landslides cost the state \$10 to \$20 million annually and cause damage to homes, commercial property, and transportation infrastructure (Fig. 3). These estimates are only for direct costs. Indirect costs such as road closures, decreased property values, and utility interruption are significant, but much more challenging to quantify. The sources of the annual direct cost estimates are from the Kentucky Transportation Cabinet, Kentucky Emergency Management, and the FEMA Landslide Loss Reduction (Wold and Jochim, 1989). Figure 3 shows roads that are classified based on Kentucky Transportation Cabinet (KYTC) maintenance cost for landslides (includes rockfalls) per route (Overfield and others, 2015). The cost data is compiled from KYTC maintenance records that span 2003 to 2009. An assessment of impacts, on roads for example, can support subsequent hazard and risk assessments.

The state and local government agencies that respond to landslides vary in their approaches to data collection, evaluation, and mitigation. Much of the economic loss and public cost is borne by federal, state, and local agencies responsible for disaster assistance and highway repair. Private costs involve mainly damage to land and homes, often resulting in financial ruin for homeowners. Damage from landslides is typically not covered under most homeowner's insurance policies.

Figure 2. Documented landslide locations in Kentucky (left) and documented landslides versus statewide average cumulative rainfall (right). Dashed lines are linear trends.

Figure 3. Landslide and rockfall costs per route in the Big Sandy Area Development District. These are only Kentucky Transportation Cabinet maintenance cost records that span 2003 to 2009. Large, expensive landslide mitigation projects are likely not included in these cost totals.

Landslides in the Big Sandy Area Development District (BSADD) that are documented in the Kentucky Geological Survey (KGS) landslide inventory database and contain information on failure date, landslide extent, failure location, damage, and cost is presented in a data table as **Appendix A**. Most documented landslides do not have associated impact data, thus most table cells are blank. However, this does not mean that the landslide did not have a negative impact, but that the information was not available. This table also does not include mapped landslides in Magoffin county that were used in creating the landslide susceptibility and risk maps for the entire 5-county area.

Purpose

The purpose of this plan is to implement measures designed to evaluate landslide hazards and reduce risk to individuals and property in the Big Sandy Area Development District (BSADD). The plan contains useful information for each community to incorporate mitigation strategies that will support building and infrastructure needs, land-use planning, event awareness, response, and recovery actions for communities in the region. The plan is an inclusive process that consists of three main tasks: (1) landslide susceptibility (2) landslide risk assessment and (3) mitigation strategy.

The landslide susceptibility and risk assessment helps to maintain and enhance the Big Sandy Area's local jurisdiction's Emergency Management Team's capacity to continuously make the region less vulnerable to hazards, improve coordination and communication with other relevant organizations, increase public understanding, support, demand for hazard mitigation, and reduce the high cost of recovery from hazards where economically feasible.

Areas of Governance

The BSADD is a multi-county, sub-state region authorized and organized pursuant to Statutes of the Commonwealth of Kentucky (KRS 147A). The Big Sandy Area Development District is charged with planning, promoting, and coordinating programs for regional economic and social development. Table 1 lists the designated member jurisdictions.

County Code	Community Name/Jurisdiction	CID Number
210070_QBM0Z07TD	Allen, City of	210070
210069_QBM0Z07TC	Floyd County	210069
210071_QBM0Z07TE	Martin, City of	210071
210072_QBM0Z07TF	Prestonsburg, City of	210072
210073_QBM0Z07TG	Wayland, City of	210073
210074_QBM0Z07TH	Wheelwright, City of	210074
210339_QBM0Z0804	Johnson County	210339
210127_QBM0Z07UV	Paintsville, City of	210127
210158_QBM0Z07VP	Magoffin County	210158
210159_QBM0Z07VQ	Salyersville, City of	210159
210166_QBM0Z07VW	Martin County	210166
210362_QBM0Z080P	Inez, City of	210362
210364_QBM0Z080Q	Warfield, City of	210364
210298_QBM0Z07Z6	Pike County	210298
210263_QBM0Z07YE	Coal Run Village, City of	210263
210356_QBM0Z080K	Elkhorn City, City of	210356
210193_QBM0Z07WL	Pikeville, City of	210193

Table 1. Big Sandy Area Development District member jurisdictions.

PLANNING PROCESS

This plan was prepared by the Kentucky Geological Survey (KGS) in close cooperation with stakeholders at the BSADD. While units of government, the BSADD Board of Directors and the Regional Mitigation Committee were closely involved with this planning process, this document is a result of and owned by the citizens of the area. Through local planning and the data collection, this plan is a document for the common vision of a safer more prepared region regarding emergencies associated with landslide hazards. Although this plan was compiled for submission, the pursuit of obtaining additional information and input

from local citizenry, major areas of interest, results from public meetings and broader community input has produced a detailed regional approach toward hazard mitigation. This plan goes beyond minimum requirements to document landslide hazards and conduct a broad risk assessment. A technical approach to model landslide susceptibility was conducted using updated high-resolution maps and sophisticated techniques to map landslide susceptibility.

Open public involvement and participation

The planning process involved BSADD specialists, BSADD stakeholders, planning agencies, and the public through in-person meetings and email correspondence. Participation included specifically reaching out to emergency management Directors, emergency management Area Managers, Mayors, County Judge Executives, Congressional Office Representatives, Flood Plain Coordinators, utilities officials, soil scientists, water management coordinators. The in-person meetings introduced and updated stakeholders about the FEMA-PDM project, discussed project goals, and outlined the benefits for the region. Presentations included of the scope of work, objective and technical aspects landslide susceptibility, risk assessment, and mitigation strategy. Critical stakeholder and public involvement included identification of high hazard areas, discussions of perceptions and tolerance of risk, and what in the plan will be useful. Example landslide susceptibility and risk map results were shared with stakeholders at the in-person meetings and with email correspondence. Several suggestions regarding shared common interests and what is useful to local officials were implemented into the map data and final plan.

In-person meetings occurred on March 28, 2019 and October 22, 2019. Email updates for stakeholder involvement occurred on April 2, 2020, August 14, 2020, December 10, 2020, and February 25, 2021. Quarterly reports from the sub-grantee (KGS and University of Kentucky Research Foundation) that documented details of the planning process, summary, and updates of project tasks for the relevant quarter, and anticipated activities were provided to Kentucky Emergency Management.

Review of technical data and existing plans

The plan is consistent with and supports the existing FEMA-approved Big Sandy ADD Multi-Jurisdictional Regional Hazard Mitigation Plan, as well as the Commonwealth of Kentucky Enhanced Multihazard Mitigation Plan. The plan data supports and enhances all parts of these plans including hazard mitigation goals of reducing risk, loss reduction, protecting the public, and reducing vulnerability to the built environment. Specifically, this plan addresses the BSADD plan Goal 4 "Protect public health, safety and welfare by increasing the public awareness of existing hazards and by fostering both individual and public responsibility in mitigating risks due to those hazards" and its subsequent Objective 4.1 "Educate the public about hazards prevalent in their jurisdiction." This plan also addresses BSADD plan Goal 5 "increasing the technical capabilities of local jurisdictions to reduce potential losses" and its subsequent Objective 5.1 to "improve each jurisdiction's capability to identify and map vulnerable structures and critical facilities." The landslide susceptibility and risk maps generated for this plan are intended to identify areas with the potential for slope movement and support goals of reducing losses in hazard areas, and emphasizing the general public needs to be aware of the potential risks and high potential risk areas.

HAZARD IDENTIFICATION AND RISK ASSESSMENT

Although hazard and risk are often used interchangeably, they are fundamentally different concepts. Hazard describes the natural phenomenon (a landslide), whereas risk ideally describes the probability of loss or damage that could be caused by a landslide. The distinction between hazard and risk is of practical significance because measures and objectives designed for hazard mitigation may differ from objectives for risk reduction. Landslide processes fundamentally harbor significant uncertainty, including type of movement, rate of movement, earth materials, hydrologic triggers, slope stability calculations among other problems. Thus, the tools and approaches of reliable hazard and risk assessments vary widely and communication to stakeholders can be challenging. A successful and practical hazard and risk assessment provides a framework for quantitative risk analysis of slopes and landslides, requiring knowledge of the hazard, hazard analysis, identification of elements at risk, an analysis of the vulnerability, and a calculation of the risk using that knowledge base (IUGS Working Group on Landslides, 1997).

Geology

The BSADD is in the Eastern Kentucky Coal Field, part of the larger central Appalachian Basin. The 5county area is 1,988 mi². Topographic relief can be as much as approximately 2,500 ft and the mean slope is 24.6°. The landscape is highly dissected, characterized by narrow ridges and sinuous alluvial valleys. Deeply incised stream drainages and variable hillslope morphologies range from long and narrow to bowl-shaped tributary valleys. Bedrock comprises flat-lying complex sequences of sandstones, siltstones, shales, coals, and underclay. For detailed information regarding mapped bedrock geology and specific rock descriptions, visit the Kentucky Geological Survey Geologic Map Service. https://kgs.uky.edu/kygeode/geomap/

The hillslope morphology is often a good indicator of underlying bedrock geology, indicating the connection between bedrock and slope characteristics. For example, the more resistant lithologies, such as sandstones and siltstones, are often associated with steeper slopes and thinner soil cover. Shale beds, coals, and underclays weather easily and are known to be associated with high landslide occurrence (Crawford 2014; Chapella and others, 2019). Colluvial soil mantles slopes with varying thickness, and landslides are a dominant process that move soil and rock downslope. Colluvium transport downslope and its velocity range from imperceptible (creep) to rapid (catastrophic). Landslides that occur in colluvium are commonly thin (< 10 ft) translational slides or thicker rotational slumps, but both types have the capability of developing into damaging debris flows or debris slides, especially on steep slopes (Turner 1996; Crawford 2014).

BSADD Landslide Problem Areas

Landslides are a common occurrence in the BSADD. Debris flows, translational landslides, slumps, and rockfalls all have the potential of initiating depending on the hillslope morphology, soils, bedrock geology, and hillslope hydrology, among other factors. The KGS landslide inventory database documents known, existing landslides from a variety of sources (Fig. 3). These locations provide a general view of landslide activity across the area. Locations come from KGS research, published maps, state and local government agencies, the public, and media reports. Landslide inventory maps can be used to identify preexisting landslides and serve as a basis for landslide hazard and risk assessments. The absence of landslides in an area does not infer that a landslide does not exist or that the ground is stable. A semi-quantitative confidence ranking is assigned to each landslide feature. Confidence rankings range from "1" (low confidence) through "8" (high confidence) and reflect the relative value of different data and amount of information available. For access to the full landslide inventory and associated map data see https://kgs.uky.edu/kgsmap/helpfiles/landslide_help.shtm. The statewide inventory database can be downloaded here: https://uknowledge.uky.edu/kgs_data/4/

Figure 4. Selected landslide locations from the KGS landslide database. Not all documented landslides are shown on this map, for full access to the KGS landslide inventory see https://kgs.uky.edu/kgsmap/helpfiles/landslide_help.shtm

Examples of landslides in the BSADD (Figures 5–10)

Figure 5. Large landslide complex in Paintsville, Johnson County. This landslide damaged several homes and two streets in the area.

Figure 6. Distal toe of a damaging debris flow, Floyd County. The debris flow severely damaged a home and covered the road with debris.

Figure 7. Debris flow, Floyd County. This debris flow damaged a home and several adjacent structures on the property.

Figure 8. Landslide behind home, Pike County. This landslide initiated at an old contour mining area. The thick unconsolidated soil and rock severely damaged this home.

Figure 9. Landslide along stream bank that has damaged several buildings and property, Pike County.

Figure 10. Landslide that has displaced and damaged a road, Pike County.

Landslide Susceptibility

Landslide susceptibility is the relative tendency or potential for slope movement in an area (Highland and Bobrowsky 2008; Hearn and Hart 2019). A landslide-susceptibility map classifies or ranks slope stability in categories based on relationships of factors that contribute to instability, as opposed to a hazard map, which may indicate elements of time or estimated landslide extent (National Research Council 2004; Highland and Bobrowsky 2008). Landslide susceptibility maps in this report identify landslide-prone areas in the BSADD to provide the public, and local and state government agencies with descriptions and areas where landslides are likely to occur. The following sections describe the process and data used to model landslide susceptibility and risk, and ultimately producing maps and GIS datasets for the BSADD.

Landslide Inventory Data

To begin the process, we identified 1,054 landslides in Magoffin County (Fig. 11). Landslide extents were primarily mapped by visual inspection of a multidirectional hillshade derived from a 5-ft LiDAR digital elevation model (DEM). Secondary maps of slope, roughness, curvature, plan curvature, contour, and traditional hillshade, as well as aerial photography, were used to help identify landslide features and constrain confidence in mapping deposit extents. Extents of landslides that included features such as headscarps, flanks, toe slopes, and hummocky topography were digitized as GIS polygons. A range of sizes and shapes was observed, but landslide type, age, or potential activity was not determined. The mean landslide area is approximately 68,856 ft². Landslides under approximately 60 feet, for either width or length, generally stream-bank or roadway-embankment failures, were omitted from this study. While important, these smaller collapses typically have a different mode of failure and are controlled by different geomorphic parameters. This digitization did not characterize the landslides by type age or

determine future behaviors. The LiDAR DEM used for landslide identification in Magoffin County was generated in 2010. New landslides likely have occurred since this compilation. We used the Magoffin County landslide extents as the data catalyst for the landslide susceptibility and risk mapping. Landslide extents (polygons) were not mapped for the other BSADD counties.

Figure 11. Landslide extents mapped in Magoffin County and zoomed-in example of hillshade map showing specific landslide deposit extents.

Geomorphic Data

Geomorphic maps of elevation, slope, terrain roughness, curvature, plan curvature, and aspect were generated from a resampled and smoothed digital elevation model (DEM) (Table 2). To obtain consistent geomorphic statistics, a circular buffer was generated around the centroid point of each mapped landslide from the Magoffin County inventory (Fig. 12). The landslide extent may, depending on the size and shape of the landslide, fall outside the buffer polygon. A buffer polygon that represents most of the landslide extent is superior to a single point in accounting for variability in landslide characteristics, however. The buffers for all 1,054 landslides were used to extract six statistical variables from each of the six geomorphic maps.

Geomorphic variable	Definition
Elevation	Vertical distance of a point above or below a reference surface, derived as a
	representation of the Earth's surface (meters)
Slope	Gradient or steepness from each cell of an elevation raster (degrees)
Terrain roughness	A degree of terrain irregularity calculated as surface deviation from a smoothing
	window; scale of landscape features is important in choosing a smoothing-window
	size
Curvature	The second derivative value from each cell from an elevation raster (1/100 of a z-
	unit)
Plan curvature	Curvature of the surface perpendicular to the direction of maximum slope (1/100 of
	a z-unit)
Aspect	Compass direction of a downhill-facing slope, derived for each cell of an elevation
	raster

Table 2. Geomorphic variables calculated from the LiDAR.

Figure 12. Landslide buffers around centroids of mapped landslides (pink) and a non-landslide (green), Magoffin County, Kentucky.

The GIS extraction process resulted in 36 individual statistical values for each landslide (maximum, minimum, range, mean, standard deviation, and sum of values within each buffer for each map—e.g., slope map). The buffer created for all mapped landslides had an area of 71,558 ft² (radius of 150 ft), which is the average area of the 1,054 inventoried landslides. We tested buffer radii of approximately 50, 100, 150, and 200 ft to determine which was the most effective. Although there is some co-dependence between variables, with an abundant number of variables increases the probability of capturing the strongest correlations and will produce better model accuracy and a smoother, more realistic map.

To prepare the susceptibility modeling, statistical data for non-landslide areas are required for the creation of a dependent variable called the indicator (1 or 0). Non-landslide areas must also have comparable buffer shapes so that contrasting feature statistics can be gathered. The same procedure (using a 150-ft radius buffer) was followed to generate geomorphic statistics for the non-landslide areas as for landslide areas (Fig. 12). The buffers were inspected for overlap between non-landslide areas and landslide areas and culled accordingly. Significant overlap dictated that 123 buffers be eliminated to maintain an equal number of random non-landslide and landslide statistics. Table 3 is an example subset of the entire 36-variable dataset, showing slope values for landslides and non-landslides. These statistics, plus the indicator variable, make up a binary dataset used in susceptibility model applied to all five counties.

non lanashae oa	1101.					
Minimum	Maximum	Range of	Mean	Standard	Sum of slope	Indicator
slope	slope	slope	slope	deviation slope		
8.8	26.2	17.4	18.1	4.5	12,669.4	1
12.2	33.3	21.2	24.3	6.6	17,147.8	1
15.4	29.2	13.9	20.8	3.1	14,564.0	1
14.5	32.2	17.7	26.5	3.5	18,763.9	0
1.9	31.5	29.6	20.2	6.4	14,210.3	0
0.5	27.6	27.2	12.7	7.5	8,957.5	0

Table 3. Example subset of the independent predictor variables related to slope and the indicator variable. The indicator variable is 1 for landslide buffers and 0 for non-landslide buffers. Each horizontal record is a landslide or non-landslide buffer.

Model and Map Output

The modeling and resulting map production were a two-step process involving machine learning techniques. One, a bagged-trees technique elucidated the variables to gain a reliable first pass at variable importance. Bagged trees predict a weighted classification using the indicator variable to return an approximation of variable importance. Feature importance is a prediction of relative importance based on the combination of statistical variables. The technique is called "bagged trees" because it combines statistical results of many individual decision trees in order to improve model performance and reduce model overfitting (Mathworks 2019b; https://www.mathworks.com/help/stats/treebagger-class.html). Two, a logistic regression technique models the **probability** of an event (a landslide) being a function of other variables, and quantifies probability based on statistical analysis of existing landslides. Existing landslides are often susceptible to reactivation, which makes modeling the probability of occurrence and developing a susceptibility map with logistic regression particularly important. The value predicted is a probability of an event ranging from 0 to 1—i.e., an estimate of the maximum likelihood that a landslide will be influenced by the statistics of observed independent variables. The two-step process avoids overcomplexity for the map results. The logistic regression indicates which modeled relationships are statistically significant to be used as inputs in map generation.

The bagged trees resulted in 12 variables being important and used in the logistic regression model. A threshold of feature importance of 0.8, just slightly above the average of 0.73, was a consistent mark of separation to choose the important variables (Table 4).

Tuble 4. Dagged frees fesult from m	snest importance to lov
Geomorphic Variable	Feature importance
Standard deviation plan curvature	1.08
Standard deviation elevation	1.06
Sum of plan curvature	1.03
Minimum slope	1.03
Mean plan curvature	1.01
Range elevation	0.95
Sum of roughness	0.95
Mean curvature	0.94
Sum of curvature	0.93
Mean roughness	0.92
Minimum curvature	0.89
Standard deviation curvature	0.83

Table 4. Bagged trees result from highest importance to lowest (> 0.8 threshold).

We used JMP Pro statistical software package (SAS Institute Inc.) to conduct the logistic-regression analysis.

In logistic regression when the indicator variable is attributed (0, 1), the nominal response is:

$$log\left(\frac{P(y=0)}{P(y=1)}\right) = \beta_0 + \beta_1 V_1 + \beta_2 V_2 + \dots + \beta_x V_x$$

where β_0 is the constant intercept, V is the geomorphic variables, and β is the coefficient estimates of responses in the indicator variable. The coefficients express the effects of the predictor independent variables on the relative risk of being a landslide or not a landslide, which increases or decreases with each value of the independent variable V—i.e., the rate of change in log-odds as V changes.

The above equation can also be written as:

$$z = \beta_0 + \beta_1 V_1 + \beta_2 V_2 + \dots + \beta_x V_x$$

where z is total contribution of all predictor variables, a model of relative risk of features in the landscape being a landslide or not a landslide.

The cumulative distribution logistic function is:

$$P = \frac{1}{1 + e^{-z}}$$

where P is the cumulative estimated output **probability** of an event occurring (landslide occurrence or nonoccurrence). The output is confined between 0 and 1. We assumed the variables were not normally distributed or did not have linear relationships (Suzen and Doyuran 2004; Nandi and Shakoor 2009). Therefore, the logistic-regression analysis worked well because the primary unknown was the relationships among the variables.

The logistic regression analysis on the 12 variables found that eight geomorphic variables were statistically significant (*p*-value ≤ 0.05 ; Table 5). The p-value is defined as the largest probability, under the null hypothesis (default hypothesis that a quantity to be measured is zero about an unknown distribution). A very small p-value means that an extreme outcome in a set of results is unlikely under the null hypothesis, meaning that the statistical significance is large. Table 5 also shows the LogWorth ($-log_{10}$ (*p*-value)), which is a transformation of the *p*-value and an easier way to visualize the relative weight of each variable. The higher the significance, the higher the LogWorth.

Table 5. Logistic regression results		
Geomorphic Variable	<i>p</i> -value	LogWorth
Minimum slope	9.63829E-10	9.016
Minimum curvature	1.21899E-07	6.914
Standard deviation elevation	3.27341E-07	6.485
Range elevation	0.00004	4.446
Std. plan curvature	0.00004	4.359
Mean roughness	0.00133	2.875
Sum of roughness	0.00160	2.797
Std. curvature	0.02318	1.635

Table 5. Logistic regression results

Five landslide-susceptibility classifications were determined manually by creating breaks of standard deviations from the mean. A compilation of the percent area, percent building, percent roads (state and local), and percent railroads that fall in each landslide susceptibility class are in the following tables (Tables 6–10). All buildings that exist on a less than 3-degree slope were excluded, which is approximately 62 percent of the buildings. A 50-ft buffer around the building footprints was used in the intersection with susceptibility to account for adjacent property or other structures. A 100-ft buffer was used for roads and railroads.

Twore of Balla	Tuore of Editability and merseenon of assets for magorine county				
Probability	Landslide	% Area	% Buildings	% Roads	% Railroads
Tiobaolinty	Susceptibility	70 Alca	(50-ft buffer)	(100-ft buffer)	(100-ft buffer)
0-0.10	low	14.6	6.41	5.01	NA
0.11-0.27	low-moderate	43.1	77.47	59.63	
0.28-0.44	moderate	24.5	14.65	27.08	
0.45-0.61	moderate-high	12.9	1.32	6.87	
0.62-1.0	high	4.6	0.15	1.42	

Table 6. Landslide susceptibility and intersection of assets for Magoffin County

Table 7. Landslide susceptibility and intersection of assets for Floyd County

Probability	Landslide Susceptibility	% Area	% Buildings (50-ft buffer)	% Roads (100-ft buffer)	% Railroads (100-ft buffer)
0-0.13	low	17.3	13.86	11.07	11.36
0.14-0.33	low-moderate	37.9	74.69	65.88	62.05
0.34-0.53	moderate	25.6	10.31	17.99	19.01
0.34-0.73	moderate-high	16.0	1.01	4.16	5.67
0.74–1.0	high	3.0	0.14	0.89	1.91

Table 8. Landslide susceptibility and intersection of assets for Johnson County

Probability	Landslide Susceptibility	% Area	% Buildings (50-ft buffer)	% Roads (100-ft buffer)	% Railroads (100-ft buffer)
0-0.10	low	14.3	6.32	4.72	6.04
0.11-0.28	low-moderate	44.1	75.67	61.82	42.55
0.29-0.45	moderate	24.1	16.24	25.34	29.81
0.46-0.63	moderate-high	12.6	1.53	6.28	10.86
0.64-1.0	high	4.7	0.24	1.84	10.75

 Table 9. Landslide susceptibility and intersection of assets for Martin County

Probability	Landslide Susceptibility	% Area	% Buildings (50-ft buffer)	% Roads (100-ft buffer)	% Railroads (100-ft buffer)
0-0.12	low	15.5	8.13	7.28	11.10
0.13-0.32	low-moderate	41.7	74.48	61.96	58.22
0.33-0.52	moderate	23.6	15.31	23.69	21.30
0.53-0.72	moderate-high	15.1	1.89	5.60	6.96
0.73-1.0	high	3.8	0.19	1.47	2.42

	Tuble 10: Eulashae Subeephonity and intersection of usbets for Tine County				
Probability	Landslide	% Area	% Buildings	% Roads	% Railroads
Tiobaolinty	Susceptibility	70 Alca	(50-ft buffer)	(100-ft buffer)	(100-ft buffer)
0-0.12	low	17.1	10.44	9.01	7.84
0.13-0.34	low-moderate	38.8	76.77	66.13	61.18
0.35-0.56	moderate	24.8	11.55	19.38	22.09
0.57-0.77	moderate-high	15.9	1.09	4.76	7.45
0.78-1.0	high	3.2	0.15	0.76	1.42

Table 10. Landslide susceptibility and intersection of assets for Pike County

The following figures show example area maps of landslide susceptibility in each BSADD county (Figures 13–17). The maps show susceptibility classifications derived from values of **probability** of an event (a landslide) being a function of other geomorphic variables. Data that occurs on less than 3-degree slope were excluded. The modeled probability and associated map classification is not a prediction of a scenario-based event (a rainfall event, for example) or a probability with a temporal component. The susceptibility is a static view based on observations and conditions of slopes.

Figure 13. Landslide susceptibility in part of Magoffin County. See Appendix B for entire county map.

Figure 14. Landslide susceptibility in part of Floyd County. See Appendix B for entire county map.

Figure 15. Landslide susceptibility in part of Johnson County. See Appendix B for entire county map.

Figure 16. Landslide susceptibility in part of Martin County. See Appendix B for entire county map.

Figure 17. Landslide susceptibility in part of Pike County. See Appendix B for entire county map.

The maps represent geomorphic-based susceptibility modelling that focuses on physical slope characteristics, the quality of which is dependent on data accuracy and resolution of terrain models. The logistic-regression results show a connection between specific landslide morphologies, which indicates a certain probability of landslide occurrence. The logistic-regression model produced a landslide-susceptibility map indicating where landslides are likely to occur based on the geomorphic conditions. Overall, the map emphasizes steep hillslopes and parts of ridgetops as having moderate, moderate–high, or high susceptibility. Steep slopes just below ridgetops and steep heads of catchments (often existing headscarps) are modeled as having moderate–high and high susceptibility. Steep planar slopes that are the sides of catchments or are above roads and streams are modeled as having moderate and moderate–high susceptibility. The map strikes a good balance between indicating existing deposits that have a moderate to high probability of subsequent movement, as well as assessing other parts of the slope that do not necessarily show obvious slope movement but may have features related to existing landslide activity. The majority of the flat alluvial valley bottoms were not considered in the analysis. The susceptibility map does not determine landslide type or potential runout or other temporal implications.

A landslide inventory of the neighboring Prestonsburg 7.5-minute quadrangle was used to validate the susceptibility model. The same methodology for landslide inventory described for Magoffin County used to identify the landslides in the Prestonsburg quadrangle. The same geomorphic variables (minimum slope, minimum curvature, standard deviation of elevation, range elevation, standard deviation of plan curvature, mean roughness, sum of roughness, and standard deviation of curvature) were used in the same logistic-regression model. For the Prestonsburg quadrangle landslides, 74.9 percent of the deposits were

in the moderate, moderate-high, or high landslide-susceptibility classifications. With the success of validating the susceptibility approach on a secondary inventory, the logistic regression results were applied to the entire BSADD. See **Appendix B** for full county maps.

Model limitations

A statistical, geomorphic-based landslide susceptibility model tends to simplify the variables that trigger landslides. Taking only those hillslope geomorphic factors that can be relatively easily mapped in an area, or derived from a DEM, generalizes landslide type and the causal factors such as hillslope hydrologic fluctuations (van Westen et al., 2003). Using a landslide inventory as the basis for this model assumes that landslides happen under the same combination of conditions throughout the study area and through time, whereas in reality, environmental factors change continuously.

Another more specific limitation occurred with heavily modified slopes (primarily roadcuts and surface mines). The landslide buffer of 150 ft used to extract the geomorphic statistics and generate the variables resulted in some artifacts in the susceptibility results. Because we used a circular buffer, roughly circular artifacts are present in some areas of the resulting map. This occurs most often with heavily modified parts of the landscape (surface mine operations, for example), where there are sharp unnatural breaks between steep slopes and flat, modified ground.

Landslide examples and model check

Several landslides occurred in the BSADD during the development of, or after the completion of the landslide susceptibility mapping. Locating the landslides and visually checking the performance of the maps in these areas proved successful (Figs. 18–21).

Figure 18. A landslide caused a train derailment in Pike County on February 13, 2020. The landslide likely initiated from the pink and red area upslope, above the railroad.

Figure 19. A narrow landslide occurred on April 12, 2020, on a slope above Chloe Road in Pike County. The landslide damaged two buildings.

Figure 20. A landslide occurred on April 24, 2020 along KY 550 in Floyd County. The landslide occurred on the slope above KY 550 and above a railroad. Note the moderate-high and high classification to a broad swath of the slope above the road.

Figure 21. A landslide occurred on April 27, 2020 along KY 881 in Pike County. The landslide initiated on the slope above the road.

Risk Assessment

Generally, risk is the measure of the probability of the severity of an adverse effect to health, property, or the environment (Cruden and Fell, 1997). There are many working definitions of landslide risk, and assessments are often based on mixtures of information that range from well-established knowledge to broad assumptions due to lack of data (Lee, 2015). Landslide risk assessments attempt to estimate the product of hazard and consequences, finding the most useful combination of landslide susceptibility and risk components. Modelling reliable risk results are challenging due to the complexity of the many aspects of landslide hazards and the vulnerability of the built environment to landslides. Hindering factors include quantitative heterogeneity of vulnerability of different elements at risk (*EaR*) for qualitatively similar landslide mechanisms, and variability in temporal vulnerability (Uzielli, et al., 2008; van Westen et al., 2006).

The risk assessment presented here should be considered a static socio-economic risk, not scenariospecific or time-dependent as spatial and temporal components were not considered. However, the spatial distribution of elements at risk (assets) used in the risk calculation and the resulting map can be used as a decision-making tool and general guide to public safety.

Risk Inputs

At its core, **Risk** = Hazard x Vulnerability x Consequence

H is the probability a landslide exists, or conditions are likely for its existence. The logistic regression landslide susceptibility results in this report are used as the **H** input.

A lack of a clear definition of vulnerability and lack of common language related to vulnerability and landslides poses many challenges. Here, **V** is defined as the susceptibility of *EaR* having an adverse result to landslide activity, intensity, and magnitude. While there are many distinctions in the capacity to deal with landslides (including social, economic, physical, cultural, and environmental vulnerability) **V** is considered as a degree of loss expressed as a scale of 0 (no loss) to 1 (total loss).

C is an estimate of the value of *EaR* (exposure or infrastructure). The consequences in this risk assessment can be categorized as societal (consideration of population and infrastructure assets) and economic (consideration of the value of assets). Here, we are using V = 1 and C is the product of *EaR* and their economic value.

This risk assessment uses intersection between landslide hazard, consequences, and vulnerability. The purpose of the risk assessment is to identify areas vulnerable to the threat of landslides and provide the information to public and local and state government agencies. The resulting map represents quantitative landslide risk showing a broad socio-economic risk.

Methodology

EaR in this assessment include population, roads, railroads, building footprints, and general land type. Kernel density maps were generated for population, roads, and railroads. The kernel density technique constructs a spatial view that accurately reflects a known quantity from a point or a line. Population was generated from census block group population numbers (2018) divided per building. Not all building footprints are homes but calculating a population density this way provides a more realistic distribution of people than a population density map based on census block group data.

EaR were divided up into five asset categories, major roads, local roads, railroads, developed land, and open land. General monetary values were obtained from various government and industry sources (Table 11). KYTC = Kentucky Transportation Cabinet, UK Agriculture = University of Kentucky Agriculture Department, FHFA = Federal Housing Finance Agency ACW = Aberdeen Carolina & Western Railway.

Table 11. Elements at fisk and then estimated monetary value.					
Infrastructure	Value	Source			
Major Road	\$24,000,000 per Mile	KYTC			
Local Road	\$14,000,000 per Mile	KYTC			
Developed Land	\$95,000 per Acre	FHFA			
Open Land	\$1,800 per Acre	UK Agriculture			
Railway	\$1,000,000 per Mile	ACW Railway			

Table 11. Elements at risk and their estimated monetary value.

Infrastructure dataset rasters were created spatially with 10-ft cells for consistency with the landslide susceptibility maps. The population densities and infrastructure monetary values are subdivided to be an equivalent value per 10 ft x 10 ft cell. Population densities and the infrastructure monetary values are normalized logarithmically, with the population having a max equal to the densest population in the county and the monetary values have a max that contains the infrastructure with the highest estimated value. Realistic spatial footprints of all roads and railroads were created by buffering the line data: railroads received a buffer approximately 10 feet across, local roads received a buffer of 20 feet or 10 feet for county and private respectively, state roads received a 30 foot buffer, and the US Highways in the area and the extent of the Bert T. Combs Mountain Parkway were buffered 100 feet. Building footprints were buffered 50 feet to include adjacent property value in the asset.

The economic values were normalized as to not skew the risk towards the most expensive asset. The normalization increases in exponential bins, (\$1-\$10, 10-100, 100-1,000, 1,000-10,000...) with the highest value being \$100,000 to account for the estimated highest asset value of roadways in the area.

Risk Calculation and Map Classification

To produce a landslide risk map, the hazard and elements at risk components were compiled and used in a quantitative risk calculation. The hazard input is the logistic regression, landslide susceptibility results. The vulnerability is the probability of damage to an element from the threat, a scale of loss – zero for no damage expected to one which assumes complete destruction. Due to the lack of comprehensive vulnerability data such as landslide behavior and building resistance, the vulnerability received a value of one, assuming total loss. Consequences are the elements at risk categorized into societal (population at risk) and economic (monetary value at risk).

$$Risk = (H) * (V) * [(C1) + (C2) + (C3)]$$

Where, H = Hazard (landslide susceptibility), V = vulnerability (1), C = Consequence, which is the product of economic and societal elements at risk.

The resulting risk factor is classified into 3 risk classifications: low, moderate, and high. Areas not designated in a risk class (no color), mostly ridgetops or valley bottoms, are designated as such because of the low hazard likelihood combined with undeveloped land. These areas that exclude a classification rank could be moved into a risk classification if infrastructure development occurred.

To create risk datasets and maps for each county, risk was classified using the standard deviation of the natural log of the risk results.

log_e (Risk)

The risk factor value and associated classification is in the following tables (Tables 12–16). The county natural log approach necessarily leads to county boundary Risk Factor classification threshold differences. However, a regional approach is precluded due to a lack of an assessment for other counties in eastern Kentucky, or in other states in the Appalachian Plateau.

Tuble 12. Widgomm County		
Risk Factor	Percent Area (%)	Landslide Risk Classification
0 - 0.0023	15.8	Excluded
0.0024 - 0.0102	70.3	Low
0.0103 - 0.0213	12.0	Moderate
0.0214 - 1	1.9	High

Table 12. Magoffin County

Table 13. Floyd County

Risk Factor	Percent Area (%)	Landslide Risk Classification
0 - 0.0036	14.9	Excluded
0.0037 - 0.0182	74.1	Low
0.0183 - 0.0403	9.6	Moderate
0.0404 - 1	1.4	High

Table 14. Johnson County

Risk Factor	Percent Area (%)	Landslide Risk Classification
0 - 0.0032	15.5	Excluded
0.0033 - 0.015	70.9	Low
0.016 - 0.0324	11.6	Moderate
0.0325 - 1	2.0	High

Table 15. Martin County

Risk Factor	Percent Area (%)	Landslide Risk Classification
0 - 0.0034	14.8	Excluded
0.0035 - 0.016	71.5	Low
0.017 - 0.0344	12.2	Moderate
0.0345 - 1	1.5	High

Table 16. Pike County

Risk Factor	Percent Area (%)	Landslide Risk Classification
0 - 0.0035	15.4	Excluded
0.0036-0.0186	72.7	Low
0.0187 - 0.043	10.7	Moderate
0.0431-1	1.2	High

The resulting maps indicate low, moderate, and high landslide risk areas. In general, high concentrations of buildings, roads, and railroads that intersect or are in the vicinity of high landslide susceptibility areas are classified as moderate or high risk. Broad, large hillslopes with little to no infrastructure are classified as low risk (blue areas on maps). High concentrations of buildings and roads along steep streambanks and below steep slopes are classified as high risk. Data that occurs on less than 3-degree slope were excluded.

The risk maps do not consider scenario-based elements and should be considered a static socio-economic risk map. Final risk results generated with the risk equation were resampled with a radial smoothing window of approximately 50 feet for noise reduction (Figs. 22–26). See **Appendix C** for the full county risk maps.

Figure 22. Landslide risk in part of Magoffin County. See Appendix C for the full county risk maps.

Figure 23. Landslide risk in part of Floyd County. See Appendix C for the full county risk maps.

Figure 24. Landslide risk in part of Johnson County. See Appendix C for the full county risk maps.

Figure 25. Landslide risk in part of Martin County. See Appendix C for the full county risk maps.

Figure 26. Landslide risk in part of Pike County. See Appendix C for the full county risk maps.

Model Limitations

Statistical models of landslide susceptibility (like the one presented in this plan) generally ignore the temporal and behavioral aspects of landslides and are not able to predict the impact of changes in the controlling conditions of slope stability (water table fluctuations, land use changes, climatic change, for example). Statistical models that use parameters related to existing landslides, for which we know little about, cannot therefore provide full temporal probability information, landslide magnitude, and frequency, and thus are difficult to use in quantitative risk assessments. Rainfall or variations of soil porewater pressure with time were not considered in this plan, and the risk results are not expected loss over time. No landslide runout modeling was performed.

Economic values were obtained from various sources and all generalized as total value for the element in question. These could not be validated to historic repair costs, though there is record of historic road repair costs. Building and developed land values were determined from a small sample of property values. This analysis lacks data on other highly vulnerable elements, such as powerlines, water lines and sewerage lines, therefore these elements are not included in the risk assessment. Population considerations did not include where populations would be at any given moment. Vulnerability was assumed at the maximum value (1), which is not likely the case uniformly across the study area. The maximum rating for vulnerability is also attributed to there being no structural integrity data for infrastructure. Because this plan discusses a static, socio-economic approach to risk, a recognition of how

changing conditions and opportunities could impact community resilience in the long term need to be considered in future assessments.

MITIGATION STRATEGIES

Hazard mitigation is any sustained action taken to reduce or eliminate the long-term risk to human life and property from hazards (FEMA, 2011). The intent of mitigation planning, therefore, is to maintain a process that leads to hazard mitigation actions. Mitigation plans identify the natural hazards that impact communities, identify actions to reduce losses from those hazards, and establish a coordinated process to implement the plan. Integration of landslide hazard data and risk information into a multi-jurisdictional plan should revolve around goals of establishing resilience as a value of the community and provide the opportunity to manage development that does not lead to increased hazard vulnerability, as well as strengthening the safety of citizens. The hazard identification, landslide susceptibility, and landslide risk are the basis for a strategy that considers the following values within plan goals, projects, and plan maintenance (www.fema.gov/multi-hazard-mitigation-planning):

- 1) Land Use and Future Development
- 2) Transportation
- 3) Housing, Public Facilities, and Other Infrastructure
- 4) Economic Development
- 5) Natural Resource Protection
- 6) Historic Properties and Cultural Resources

Implementation of Mitigation Measures

Goals

The primary goal of the maps and data presented in this plan is to protect the public, reduce potential losses identified in the landslide susceptibility and risk assessment, and reduce overall vulnerability to the built environment from landslides. A key component of achieving these goals is communicating and disseminating a consistent message that reflects the landslide data, susceptibility and risk methods, and results. The plan content can serve as a blueprint for hazard mitigation actions, decision-making, and guide a work flow from the risk assessment (problem identification) to goals setting to mitigation action development, as well as plan maintenance and updates (Fig. 27).

Specific Ideas/Projects

Spatial assessment of landslide hazard and vulnerability

- Improve map and GIS data, access Kentucky Geological Survey landslide inventory database
- Evaluation of areas where landslides may occur, be informed about potential hazardous areas
- Completing an inventory of locations where critical facilities, other buildings, and infrastructure are vulnerable to landslides
- Evaluating and establishing tolerable risk criteria
- Develop and maintain a database to track community vulnerability to landslides
- Establish effective communication avenues to discuss the landslide hazard and risk assessment process and limitations

• Establish frequent workshops or symposiums that convene to discuss mitigation strategies, hazard and risk assessment data and maps, other resources for stakeholders, and future work

Manage Development

- Create a plan to implement reinforcement measures in high-susceptibility and high-risk areas
- Define steep slope/high-risk areas in land use and comprehensive plans and create guidelines or restricting new development in those areas
- Creating or increasing setback limits on parcels near high-susceptibility and high-risk areas
- Locate utilities outside of landslide areas to decrease the risk of service disruption
- Incorporate economic development activity restrictions high-susceptibility and in high-risk areas

Prevent Impact to Roads

- Evaluate state and local roads that intersect high susceptibility areas (Fig. 27).
- Implementing monitoring mechanisms/procedures (i.e., visual inspection or electronic monitoring systems)
- Applying soil stabilization measures, such as planting soil stabilizing vegetation on steep, publicly owned slopes
- Using debris-flow mitigation measures that may reduce damage in sloping areas, such as stabilization, energy dissipation, and flow control measures
- Establish setback requirements and using large setbacks when building roads near slopes of marginal stability
- Install catch-fall nets for rocks at steep slopes and roadcuts near roadways

Figure 27. Landslide susceptibility (left) and landslide risk (right) for part of Floyd County. Note the differences in where the moderate to high hazards occur on slopes versus the moderate to high risk areas.

Figure 28 is an example map that shows landslide susceptibility overlaid with state roads and buildings. The roads are classified based on Kentucky Transportation Cabinet (KYTC) maintenance cost for landslides (includes rockfalls) per one-mile road segment (Overfield and others, 2015). The thicker the line, the higher the cost. The data is generated from KYTC records that span 2003 to 2009. Spatial

overlays such as this are a good foundation for mitigation strategy goals, as well as implementing specific projects.

Figure 28. Landslide susceptibility overlaid by state road segments classified by cost per mile in part of the Pikeville area. These are only Kentucky Transportation Cabinet maintenance cost records that span 2003 to 2009. Large, expensive landslide mitigation projects are likely not included in these cost totals. Building footprints are shown as black polygons.

DISCLAIMER AND DATA LIMITATIONS

The figures and printed maps are smaller scale representations of the digital spatial data that have been generated for use in a Geographic Information System (GIS). The data is best used in a GIS at larger scales. This landslide susceptibility and risk maps are not intended to be a substitute for site-specific investigation by a licensed geologist or geotechnical engineer. The maps and GIS data do show an intersection between potentially hazardous areas and infrastructure where an investigation of slope stability or other mitigation effort may be appropriate prior to slope disturbance.

ACKNOWLEDGEMENTS

The Kentucky Geological Survey would like to thank Kentucky Emergency Management and the Federal Emergency Management Agency (FEMA) for funding support and management of this planning project. FEMA Pre-Disaster Mitigation grant project number and title are PDMC-PL04-KY-2017-002 Multi-

Jurisdictional Hazard Mitigation Plan for Landslides for the Big Sandy Area Development District. Special thanks to Terry Trimble, Deputy Director of BSADD, as well as other staff who provided resources and planning advice. Thanks to KGS research geologists Hudson Koch, Jason Dortch, Yichaun Zhu, Bill Haneberg, Ashton Killen, and Zhenming Wang who were instrumental regarding technical advice, as well as hazard and risk communication.

REFERENCES

Crawford, M.M., 2014, Kentucky Geological Survey landslide inventory: From design to application. Kentucky Geological Survey Information Circular 31, Series 12, <u>https://doi.org/10.13023/kgs.ic31.12</u>

Chapella, H., Haneberg, W.C., Crawford, M.M. and Shakoor, A., 2019, Landslide inventory and susceptibility models, Prestonsburg 7.5-min quadrangle, Kentucky, USA. *In*: Shakoor, A. and Cato, K. (eds) IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018—Volume 1, 217–226 <u>https://doi.org/10.1007/978-3-319-93124-1_26</u>

Cruden, D.M. and Varnes, D.J., 1996, Landslide types and processes. *In*: Turner, A.K. and Schuster, R.L. (eds) Landslides: Investigation and mitigation. Special Report 247, Transportation Research Board, National Research Council, Washington, D.C., 36–75

Hearn, G.J. and Hart, A.B., 2019, Landslide susceptibility mapping: A practitioner's view. Bulletin of Engineering Geology and the Environment, 78, 5811–5826 <u>https://doi.org/10.1007/s10064-019-01506-1</u>

Highland, L.M. and Bobrowsky, P., 2008, The landslide handbook—A guide to understanding landslides. U.S Geological Survey Circular 1325.

IUGS Working Group on Landslides – Committee on Risk Assessment, 1997, Quantitative assessment for slopes and landslides – The state of the art, *In*: D.M. Cruden and R. Fell (eds), Landslide Risk Assessment – Proceedings of the Workshop on Landslide Risk Assessment, Honolulu, Hawaii, USA, 19–21 February 1997 (Rotterdam: A.A. Balkema), 3–12.

Lee, E.M., 2016, Landslide risk assessment: the challenge of communicating uncertainty to decisionmakers. Quarterly Journal of Engineering Geology and Hydrogeology, 49, 21–35. <u>https://doi.org/10.1144/qjegh2015-066</u>

Nandi, A. and Shakoor, A., 2009, A GIS-based landslide evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110, 11–20 https://doi.org/10.1016/j.enggeo.2009.10.001

National Research Council, 2004, Partnerships for reducing landslide risk—Assessment of the national landslide hazards mitigation strategy. National Academies Press, Washington, D.C. http://doi.org/10.17226/10946

Overfield, B.L., Carey, D.I., Weisenfluh, G.A., Wang, R., and Crawford, M.M., 2015, The geologic context of landslide and rockfall maintenance costs in Kentucky, Kentucky Geological Survey, Report of Investigations 34, Series 12, 54 p.

Suzen, M.L. and Doyuran, V., 2004, A comparison of the GIS based landslide susceptibility assessment methods: Multivariate versus bivariate. Environmental Geology, 45, 665–679. https://doi.org/10.1007/s00254-003-0917-8 Turner, A.K., 1996, Colluvium and talus. *In*: Turner, A.K. and Schuster, R.L. (eds) Landslides investigation and mitigation, Special Report 247. Transportation Research Board, National Research Council, Washington, D.C., 525–554.

van Westen, C.J., van Asch, T.W.J., and Soeter, R., 2006, Landslide hazard and risk zonation –why is it still so difficult. Bulletin of Engineering Geology and the Environment, 65, 167-184, DOI 10.1007/s10064-005-0023-0

van Westen, C.J., Rengers, N. and Soeters, R., 2003, Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30, 399–419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e

Varnes D.J., 1978, Slope movement types and processes. *In*: Schuster, R.L., Krizek, R.J. (eds) Landslides, analysis and control, special report 176: Transportation research board, National Academy of Sciences, Washington, DC., 11–33.

Uzielli M, Nadim F, Lacasse S, Kaynia A.M., 2008, A conceptual framework for quantitative estimation of physical vulnerability to landslides. Engineering Geology, 102, 251–256.

Wold, R.L., Jr., and Jochim, C.L., 1989, Landslide loss reduction: a guide for state and local government planning. Earthquake Hazards Reduction Series 52, Federal Emergency Management Agency, Washington, 50 p.

Appendix A – Selected landslides in the BSADD from part of the KGS landslide inventory database. Not all documented landslides have impact information (failure dates, dimensions, failure location, damage, and cost) shown here.

County	Failure Date	Failure Year	Track Length (ft)	Width (ft)	Failure Location	Damage	Cost
Floyd		2019				break in pavement	
Floyd					above and below road	break in pavement, road closure	
Floyd		2015			above road, stream at bottom	damage to property	
Floyd	3/14/2015	2015	1500			damage to road and homes below	
Floyd	4/3/2015	2015	1000			damage to two homes and property	
Floyd	2/22/2015	2015	1400			damaged home, road, fence	
Floyd	3/6/2015	2015	100			damaged property	
Floyd	4/2/2015	2015			above road	damaged road and guardrail, slide hit a driver	
Floyd	2/16/2018	2018				home damaged	
Floyd			525			home threatened	
Floyd						home threatened	
Floyd		2018				home threatened	
Floyd	4/7/2018	2018				home threatened	
Floyd		2019				home threatened	
Floyd					above road	house threatened	
Floyd	5/20/2017	2017			below road, stream at bottom	large brake in pavement	
Floyd		2016				large break in pavement	
Floyd		2019				large cracks in road	
Floyd		2016			below road	pavement buckled, break in pavement	
Floyd	2/16/2016	2016			road cut	road blocked	
Floyd	3/25/2018	2018			above road	road blocked	
Floyd	6/12/2018	2018			above road	road blocked	
Floyd		2018			above road	road blocked	
Floyd	4/24/2020	2020				road blocked	
Floyd	1/3/2017	2017				road closure	
Floyd	4/23/2017	2017			above road	road closure	
Floyd		2017				road failure	
Floyd	5/11/2016	2016			above road	two lands blocked; NB road closed for weeks	
Floyd	2/6/2010	2010				yes	
Floyd						yes	
Floyd	5/8/2009	2009				yes	
Floyd	5/8/2009	2009				yes	
Floyd					above road, stream at bottom	yes	
Floyd	1/30/2013	2013			above road, stream at bottom	yes	
Floyd	5/2/2005	2005				yes	
Floyd	4/9/2013	2013			road cut	yes	
Floyd		2014			above road	yes	
Floyd	2/22/2014	2014			above road	yes	
Floyd	4/30/2014	2014			above home	yes	
Floyd		2014				yes	
Floyd							

County	Failure Date	Failure Year	Track Length (ft)	Width (ft)	Failure Location	Damage	Cost
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd	2/10/2011	2011					
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Flovd	7/19/2012	2012					
Flovd	5/2/2005	2005					
Flovd							
Flovd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Flored							
Flored							
Floyd							
Floyd							
Floyd							
Floyd		<u> </u>					
Floyd		<u> </u>					
Floyd		<u> </u>					
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							

County	Failure Date	Failure Year	Track Length (ft)	Width (ft)	Failure Location	Damage	Cost
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Flovd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Flovd							
Flovd							
Flovd							
Flovd							
Flovd							
Flovd							
Flovd							
Flovd							
Flovd							
Floyd							
Floyd							
Flovd							
Flovd							
Flovd							
Flovd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Flovd							
Floyd							
Flovd							
Flovd							
Flovd							
Flovd							
Flovd							
Floyd							
Flovd							
Floyd							
Flovd							
Flovd							
Floyd							

County	Failure Date	Failure Year	Track Length (ft)	Width (ft)	Failure Location	Damage	Cost
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd							
Floyd	6/28/2014	2014					
Floyd	0/28/2014	2014			above road		
Floyd					above road		
гюуа					above road		
Floyd	11/19/2014	2014			stream at bottom		
Floyd	11/19/2014	2014			road cut		
Floyd		2005					
Floyd	4/20/2015	2015			road cut		
Floyd	3/13/2016	2016					
Floyd		2016					
Floyd		2015					
Floyd	2/10/2018	2018					
Floyd	3/25/2018	2018	ļ				
Floyd		2018					
Floyd	9/25/2018	2018			above road		
Floyd	10/01/0010	2018					
Floyd	12/31/2018	2018					
Floyd		2019	<u> </u>				
Floyd		2010			1 /		
Floyd		2019			road cut	1	

County	Failure Date	Failure Year	Track Length (ft)	Width (ft)	Failure Location	Damage	Cost
Floyd		2019					
Floyd							
Floyd		2019					
Floyd	10/29/2020	2020					
Johnson	3/12/2015	2015				break in pavement	
Johnson		2019				break in road, 2-week lane closure	
Johnson	2/17/2018	2018				large arcuate break in road	
Johnson		2013			below road	large arcuate crack in road	
Johnson		2018				large break in pavement	
Johnson	12/12/2016	2016			above road	road blocked	
Johnson	1/24/2017	2017			above road	road blocked	
Johnson		2016			above road	road closure	
Johnson		2017				road failure	
Johnson	2/16/2016	2016			below road	road surface collapse	
					above and below	several damaged homes	
Johnson		2015	380	450	road	and damaged road	
Johnson					below road	yes	
Johnson	3/4/2011	2011			above road	yes	
Johnson	4/15/2011	2011				yes	
T 1					above and below		
Johnson					road below road	yes	
Johnson	3/2/2012	2012			stream at bottom	ves	
Johnson	3/2/2012	2012			below road, stream at bottom	yes	
Johnson		2010				yes	
Johnson		2010				ves	
Johnson		2013		225		ves	
Johnson	10/7/2008	2008					
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Jonnson							
Jonnson							
Johnson	<u> </u>						
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							

County	Failure Date	Failure Year	Track Length (ft)	Width (ft)	Failure Location	Damage	Cost
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson							
Johnson	2/24/2016	2016					
Johnson		2015			road cut		
Johnson							
Johnson		2019					
Johnson		2019					
Johnson		2019					
Magoffin	2/20/2018	2018				break in pavement	
Magoffin		2018			above and below road	break in pavement	
Magoffin		2020				break in pavement	
Magaffin		2020				break in pavement, both	
Magaffin	1/28/2015	2020			ah aya naad	ranes affected	
Magaffin	2/2/2017	2013			above road	road blocked	
Magonin	3/3/2017	2017			above road	road closure, vehicles	
Magoffin	12/28/2016	2016			road cut below road	damaged, lives threatened	
Magoffin					stream at bottom	yes	
Magoffin							
Magoffin	1/30/2013	2013					
Magoffin							
Magoffin							
Magoffin							
Magoffin					h alarry no ad		
Magoffin		2014			stream at bottom		
Magoffin					above road		
Magoffin							600,000
Magoffin	4/3/2015	2015			above road		
Magoffin		2017			stream at bottom		

County	Failure Date	Failure Year	Track Length (ft)	Width (ft)	Failure Location	Damage	Cost
Magoffin		2017			below road		
Magoffin		2019					
Magoffin		2019					
Magoffin		2019					
Magoffin		2019					
Magoffin							
Magoffin							
Magoffin		2019					
		2010				multiple breaks in	
Martin		2018				pavement	146.150
Martin	- /1 /2 0.1 0	2010	-			road damage	146,150
Martin	7/1/2010	2010			below road	yes	
Martin							
Martin							
Martin							
Martin							
Martin							
Martin							
Mortin							
Martin							
Martin							
Martin					above road		
Martin		2019			above road		
Martin		2019					
Martin		2019					
Martin		2019					
Pike	3/2/2018	2018			above road	all lanes blocked	
Pike	1/24/2019	2019				both lanes blocked	
Pike		2019				boulders on road	
Pike		2019		2500		break in pavement	
Pike		2019				cut off 12 homes	
Pike	4/3/2015	2015				damage to home	
Pike	12/22/2018	2018				damage to home	
Pike		2019				damaged business	
Pike						damaged home	
Pike	1/19/2016	2016				damaged home	
D'1	2/12/2020	2020				damaged power lines,	
Ріке	3/12/2020	2020				damaged road road	
Pike		2016				closure	
						damaged Town and	
Pike		2019				Country shipping center	
Pike	4/3/2015	2015				damaged several homes	
						driveway blocked for	
Pike	7/2/2017	2017				several days	
Pike		2017				embankment failure	
Pike		2018?				embankment failure	
Pike		2017				embankment failure	
Pike					above road	vehicle accident	
Pike	2/14/2018	2018				home threatened	
Pike	2/14/2018	2018			above road	home threatened	
Pike	3/1/2018	2018				home threatened	
Pike	2/11/2018	2018				home threatened	

County	Failure Date	Failure Year	Track Length (ft)	Width (ft)	Failure Location	Damage	Cost
Pike	2/10/2018	2018				home threatened	
Pike		2015			natural slope	homes damaged	
D ¹¹	2 15 12 0 1 5					knocked home off	
Pike	3/5/2015	2015			above home	foundation	
Pike	2/10/2018	2018			road	failure	
Pike	2/13/2020	2020				railroad blocked, train derailment, injured persons	
Pike	4/3/2015	2015				reported gas line damage, home threatened	
Pike		2018			above road	road and stream threatened	
Pike	3/25/2018	2018			above road	road blocked	
Pike	12/21/2018	2018			road cut	road blocked	
Pike		2019				road blocked	
Pike		2019				road blocked	
Pike	12/17/2019	2019				road blocked	
Pike	2/10/2020	2020				road blocked	
Pike	4/27/2020	2020				road blocked	
Pike	3/4/2015	2015				road closure	
Pike	5/29/2017	2017				road closure	
Pike		2015			below road	road closure for a month	
Pike	3/10/2015	2015			road cut	road damage closed	
Tike	5/10/2015	2015			below road,	Toud dullinge, closed	
Pike	5/12/2017	2017		100	stream at bottom	road failure	145,000
Pike						road failure	
Pike						road failure	
Pike			500			several homes threatened	
Pike	2/10/2018	2018				slide blocking both lanes	
Pike		2019				structures threatened	
						tree and power line	
Pike	2/11/2020	2020				damage	
Pike		2019				tree slid into garage, slide behind home	
Pike	5/19/2017	2017			above road	residents evacuated	
Pike	4/12/2020	2020				two damaged homes, mud, and soil in homes	
	5/11/20000	2000			below road,		
Pike	5/11/2009	2009			stream at bottom	yes	
Pike	4/15/2007	2007			below road	yes	
Pike	7/17/2010	2010				yes	
Pike		-	280	371	1 11 1	yes	
Pike					road	ves	
Pike					above road	ves	
Dilto					above and below	yee	
PIKe	1/1/2000	2000	75	102		yes	120.000
Pike	1/1/2008	2008	/3	103	above road	yes	130,000
Pike	5/14/2011	2011	+	+	-1	yes	
Pike	6/15/2006	2006			above road	yes	
Pike	1/21/2012	2012				yes	
Pike	3/15/2011	2011				yes	
Pike	5/10/2009	2009				yes	
Pike	6/5/2013	2013				yes	
Pike		2011		<u> </u>		yes	
Pike	1/14/2014	2014			above road	yes	

County	Failure Date	Failure Year	Track Length (ft)	Width (ft)	Failure Location	Damage	Cost
Pike	8/15/2013	2013	150	175	above home	yes	
Pike	3/3/2014	2014			above road	yes	
Pike					above road	yes	
Pike					above road	yes	
Pike		2019				yes	
Pike							
Pike							
Pike							
Pike							
Pike							
Pike					above road		
					bridge		
Pike					embankment		
Pike					above road		
Pike							
Pike		-					
Pike							
Pike							
Pike							
Pike	12/0/2012	2012			1 1		
Pike	12/9/2012	2012		-	above road		
Pike		2009					
Pike Dilee		2003					
Pike		2003					
Pike Dilee		1996					
Pike Dilee							
Pike							
Pike Dilee							
Pike							
Dilto							
Dike							
Diko							
Dike							
Dike							
Dike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							

County	Failure Date	Failure Year	Track Length (ft)	Width (ft)	Failure Location	Damage	Cost
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							

County	Failure Date	Failure Year	Track Length (ft)	Width (ft)	Failure Location	Damage	Cost
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike							
Pike			250		natural slope		
Pike	4/2/2015	2015			stream at bottom		
Pike		2015			above road		1
Pike		2017					1
Pike		2017			1		
Pike		2018					
Pike	9/28/2018	2018					
Pike	12/24/2018	2018		1			
Pike	12.2 // 2010	2018					
Pike		2019					
Pike		2019			above road		
	1			1			1

County	Failure Date	Failure Year	Track Length (ft)	Width (ft)	Failure Location	Damage	Cost
Pike		2019					
Pike							
Pike		2019					
Pike		2019					
Pike		2019					
Pike		2019					
Pike		2019					
Pike		2019					
Pike		2019					
Pike		2019					
Pike		2019					

Appendix B – Landslide Susceptibility Maps

Kentucky Geological Survey

Landslide Susceptibility of Magoffin County, Kentucky Matthew M. Crawford, Hudson J. Koch, Jason M. Dortch, Ashton A. Killen

Map Pr

smoothing doorsing a smooth The second derive (3/100 of a z-mit) window size write from each cell from an Converses of the surface perpendie slape (1/100 of a 2-mit) Compare direction of a downhill-fa an elevation poly.

eptibility Model

used to investigate ology and landshife o

Geomosphic variable	p-value	and inter	LogWat
Minimum slope	9.638298-10	0.085	0.016
Ministran curvature	1.215992-07	1,310	6,514
Std. elevation	3.273410-07	0.163	6.485
Rings elevation	0.00004	-0.639	1,495
Still plan carvolune	0.00034	-1.292	4,150
Marinighnau	0.0013.8	119.402	2,875
San of roughness	0.00050	0.167	2,797
Std. envitue	0.02338	2.271	1.635

of Ter

er and Data Lim

Low-Me Moderate Moderate-High High

Explanation Landslide Susceptibility Low

Building for Local roads State roads Railroads

Corporate boundaries Mapped landslides

ort and monogeneral of this ber and title are PDMC-PL-mulslides for the Big Sandy

Landslide Susceptibility of Floyd County, Kentucky

Matthew M. Crawford, Hudson J. Koch, Jason M. Dortch

Map Production

promultiple viralities were compiled and look for survivation the concertion, herevon, slope comprising and landshife occurrence. A 1.5-m 1000 was recampled in 5-m cells in order to structure prostrainfield and structure and and approximative 15 m to relatest assister was opportunitively 15 michigo constrator and in the control of the structure and the structure of logistic regression modeling to determine the structure of the control of the structure many database was produced to a structure of the structure of structure of the structure of the structure of the structure of structure of the structure of the structure of the structure of structure of the structure of the structure of structure of the structure of structure of the structure of the structure of structure of structure of structure of the structure of the structure of the structure of the structure of struc

To obtain consistent and systematic promotion attributes, a created buffer to a segmented results of a constrainty and at a 12 data at a segment systematic constrainty of the segment of the systematic constraints in the second system of the systematic constraints and the systematic systematic distribution with the second systematic constraints in the second systematic constraints and the systematic constraints in the systematic distribution of the systematic constraints and the systematic constraints and the systematic distribution of the systematic constraints and the systematic constraints and the systematic distribution of the systematic constraints and the systematic constrain

Elevation	vertices durance of a point above or below a reference number, convert as a representation of the carefu's surface instance)
Nepe Ternin roglasse	Orndust or stapped from ands all of an alexation meta (dapsac) A depute of terminimegalasity calculated to surface deviation from a suprefling window; sole of landscope ference is important in charating normaching-window size.
Curvature	The second derivative value from each cell from an electric motor (1/100 of a g-main)
Man curvature	Curvature of the surface perpendicular to the direction of morinami slope (1/100 of a z-mit)
Aspect	Compass direction of a downhill-fixing slope, derived for each cell of an elevation mater

and slide Susceptibility Model

to an explain the connection between here comparison and haddless connections that the connection between the provided the second secon

It was a basing function to model to have dependent vanishie, rather the minimum limits of the strength of the strength of the strength basines between the strength of the s

Logintic-repression results derive a coefficient of sponses (if values) and determine which variables are amicroal (y-values). Low y-rolsans minice the data are likely to support a lack of difference; i.e., low p-values (0.03) we release unadditions to the model becomes they a related to changes in the indicator vanishe. The efficients express the effects of the predictor dependent vanishes on the rother with of bring as

 $x = \beta_0 + \beta_1 V_1 + \beta_2 V_2 + \dots + \beta_n V_n$ here *x* is total contribution of all predictor variables () model of relative risk of features in the landscape bein landslike or not a landslike. The canonlarive distribution gistic function is:

T + 4 + 4 here P is the countries extincted output prebability of a event occurring. Unablish occurrance or concurrence, The august is couldned between 0 and 1. be logistic-regression analysis works well because the timogre unknown is the relationships among the warkingvalues of 2 solids. The will below were significant synthes of 2 solids. The will below with a solid wark watches of 2 solids. The will below with a solid warking of which (deg. (p-voltor), which is a transformation of a p-volto and a warp to visualize the builties week of 10.

ogWorth. Semonjais volume / Scorefficient Leaving-th Maximum Logie / GOOD C.201 9-016 Maximum Logie / GOOD 1.210 9-016 Maximum Score / GOOD 1.210 9-017 Maximum Score / GOO

 Description
 Constraints
 The bookdars are specified with the spectrum of the standard spectrum of the spectrum of the

alley bottoms with no color were not included in the analysis.

A handbide is a started term for the develope normanic attraction, solit or handbine at the started term for the develope of the started and started handbines of exploration, but the develope of the started and institution of exploration at start anover. Landbide can social should be your apple, the started and term of the started and the started and the started handbide of the started and the started and the started and handbide of the started and the started and the started and particular at reduction of the comparison of the started and the started particular as reduction of the comparison of the started and and the started and and the started and the started and the started and the started and and the started and the started and the started and the started and and the started and the started and the started and the started and and the started and and the started and and the started and the sta

Landsides are caused by reasons on atops shore that reaced the strategin field halfshore of the halfshore of the strateging strateging and (frame and halfs, garwing, or some prof slope modification (boding, or exerciting). A relies (or is not furth binners the transmiss imposed (driving, forwards with the strateging in the first binners) for some of the strateging for the strateging of the strateging for some of the binners in strateging and the strateging in the strateging. The challenges part is hard from stresson are over time and space at fifteent stales, mensing handhides are expansing located confiders and fragment strateging the strateging of the strateging. The challenges part is hard from stresson are over time and space at fifteent stales, mensing handhides are expansing located confiders and fragment.

Examples of driving forces: • Surcharge of weight at the top of the slope by adding artificial fill Instance or prolonged minfall • Removal of the tree of a slope by sugmented cuts or natural stream creation

 Saturated set1, increase in relative pore-water pressure from min or, in stream banks, from mpid fall of water level in the stream
 Vegatation removal
 Extension and entratedioa of vavelling clar soils with wet-free

 Expansion and contraction of swelling city soils with wet-dry weather cycles
 Worthering of weak rocks

Glossary of Terms

Spin Howins Mod (1964) A Again Gir drama drama and groups poster den Collesses and groups poster den Collesses General term for how and trained self deposits. Spingul A de fors of Agein in selfs the term of the self poster. Postere de Lateración System (OS): Comparte prosense and denbiers: that adore for forenese. Comparisation at adoresistic System (OS): Comparis prosense and denbiers: that adore for forenese. Comparison at any self-self-self-self-self-selfses and and a sense and features. Comparison at a self-self-self-self-self-selfant and a to me-main features.

 of the Earth's surface. Study of classification, description, nature and origin of landforms and the history of geologic changes as recorded by these surface features.

anisation structure potentialy map, may ope or map represenances that have potential of handshilder, such as steep alongs or gardegical usin, with past distributions of handshilder, consideral.

Landshide investory may. This type of map depects news where landshides have occurred, haventery maps can be both point locations and specific extents of handshides.

manual rook imp. This is providely to convertice the denotation of two potentials, outboardfree elements of the extent of from potential, outboardfree/elements, and ecocoraonaic effects on the community. It fugations: Activities that reduce are relationate the oblidities of a locard occurring, and ar lessen the freets of the hazards when they do occur. Perchelisting: The likelihood of an event

> Relief: Difference in elevation between high and low points of the land surface.

> > Data Lim

ting, typ

expected loss as a result of exposure hazard. Stress: Force per area, acting on any surface internally and also external

Explanation

Landslide Susceptibility Low Low Low-Moderate Moderate-High High Building footprints Local roads State roads

Railroads
 Corporate boundar

The Kennedy Geologian Burvey would like to final Kennedy Emerginezy Management and the Fodari Neargency Management Agency (PENA) for finalise support and management of his planatar projects, TGMA Pre-Disorder Militation grant project sumitive and the new FDMC-FR-0-KY-2017-002 Multi-intrictional Hazard Militation Fina for Landaldas for the Hig Sandy Area Development Universe.

Landslide Susceptibility of Johnson County, Kentucky

Matthew M. Crawford, Hudson J. Koch, Jason M. Dortch

Kentucky Geological Survey

Ocomorphic vztable	Definition
leration logue	Vertical distance of is point above or fallow a reference surface, derived as a representation of the earth's mathew (meters) Condent or strepness from each cell of an elevation meter (depress)
(emin roughness	A degree of territo imagalarity calculated so surface deviation from a smoothing violance scale of healwaye festures in important is decrease a suscerbing window size.
Curvatae Tan curvatee	The second derivative value from such cell from an devotion state (1000 of a paradi) Curvature of the worker prependicular to the direction of maximum slope (1/100 of a remai)
Lapeat	Comprose direction of a downhill-facing slope, derived for each cell of an elevation meter

regression d, in turn, oodels the ables, and ting the

coffin County. A buffler was also en (N - 1.054). The huffler has a are attributed with a 1 (landslid

table value the h

where of feat

 $P = \frac{1}{1 + r}$

8-011 812-621 929-64

Railroads

Gla

Corporate boundaries

map: This type of map dep This type of map en

that reduce or eliminate the probability of a en the effects of the hazards when they do o

accounter cases to possible cases. Relia: Difference in elevation between high and low points of the land surface. Risk: Probability of occurrence or expected loss as a result of exposure to a hazz Stress: Perce parts, and and a stress of the land stress of the object that pressure acting on the object that presents internal force.

The Kentecky Geological Survey would like to thank Kentecky Emergency Management and the Fadaral Intergency Management Agency (FEVA) for faulting support and management of this planning project, TRAN Pro-Distortion Billiontium strate systems and their are PDRC-72, 04-037-0311-002 Molio-Institutional Theored Miligation Files for Landbildon for the Big Sandy Area Development District.

at the top of the slope by

ary of Terms

aral term for hose and mixed soil deposits, typically at the foot bottoms brought there by gravity. graphic Information System (GIS): Computer pro-w for storage, manipulation, analyzation and disser-

rd: A geological condition that is potential flowar to life -technics bath external and may made flowers.

science of the general configuration isscription, nature and origin of land as recorded by these surface feature ility map: This type of map depicts by correlating factors to causes lac

The likelihood of an event occurring, typically measured as a os to possible casos.

Explanation Landslide Susceptibility

Landslide Susceptibility of Martin County, Kentucky

Matthew M. Crawford, Hudson J. Koch, Jason M. Dortch

smoothing window; scale of sanctonpe drassing a smoothing-window size. The sanced derivative value from each as (1/100 of a z-mail) Curvature of the suffer slope (1/100 of a z-mail cular to the dire

andslide Susceptibility Model

ad used to investigate the acquelogy and landslide

model a hinary dependent d by th

 $x = \beta_1 + \beta_1 V_1 + \beta_2 V_2 + \dots + \beta_n V_n$ tribution of all predictor varial P= 1

Dis They spati infor scale

Landslide Basics

Glo ary of Term

Explanation

Landslide Susceptibility Low Low-Moderate Moderate Moderate-High High Building footpr Local roads State roads Railroads Corporate bound

pation grant project number and time appoint of this gation grant project number and title are PDMC-P1-ard Mitigation Plan for Landslides for the Big Sacdy planning proj 04-KY-2017-

of driving f

weak rock

Landslide Susceptibility of Pike County, Kentucky

Matthew M. Crawford, Hudson J. Koch, Jason M. Dortch

at the top of the slope by

Glossary of Terms inna: General term for loose and mixed soil deposits bottoms brought there by gravity. ion System (GIS): G and: A goologi and low points of the land surface.

n grant project n Multi-Juristict Big Sauly Au

Sleps Terrin

Plue curvature

Arguet dogu, a rection of a devaalail-facing of for each cell of an abcomin Explanation Landslide Susceptibility Low Low-Moderate Moderate Moderate-High High Building footp - Local roads State roads Railroads Corporate be

9.045 6.944 6.483

Appendix C – Landslide Risk Maps

