
 🔐 Trust Without Disclosure:
 From the Pub to the Protocol

Why Zero-Knowledge Proofs are the Privacy
Backbone for DeFi on Blockchain

by Chris Poulloura
Chief Innovation & Research Strategist

ClimateDigitalTM

🍻 Over 18? Prove it! (but keep the rest of your data private)

Imagine you're asked for ID at a pub.

To prove you’re over 18, you show your driver’s license, and with it, you expose your full name,
address, birthday and more.

All of that, just to confirm one binary truth:

“Yes, I’m old enough.”

This is the kind of data oversharing we replicate every day in digital systems, especially on
blockchain.

What if you could prove your age, without revealing it?

That’s what Zero-Knowledge Proofs (ZKPs) enable.

Now, imagine you're applying for a loan on the blockchain (in a world of DeFi, decentralised
peer to peer lending), or selling carbon credits (in a world of decentralised carbon trading).

To meet lending or trading criteria, you may need to prove things like:

• ✅ Your wallet has over $5M and you have secured sufficient collateral
• ✅ You have a high enough credit score
• ✅ You have passed KYC compliance checks
• ✅ Your carbon credit is authentic

Should you have to reveal every transaction you’ve ever made to your counterparty, or in the
case of public permissionless blockchains, the whole world? Should you have to reveal all
personal details?

That’s where Zero-Knowledge Proofs (ZKPs) come in.

Note: This article does not address what roles financial and related institutions could play in that
decentralised world (e.g. authentication, collateral, escrow or advisory services etc). This is best
served in dedicated article for blockchain-based decentralised lending. However, it does deal with
how only the minimum information could be shared on chain, leveraging smart contracts, without
requiring a centralised intermediary.

🔐 What is a Zero-Knowledge Proof?

A ZKP allows someone to prove a statement is true (like age > 18) without revealing the
underlying data (your actual age).

This isn't magic. It's maths, and it's how we go from:

• ❌ “Share everything to prove anything”
• ✅ to “Prove only what’s necessary, and nothing more”

A ZKP lets you prove something is true, without revealing without revealing underlying data.

• ✅ “I am over 18” (without showing your birthdate)
• ✅ “I have over $5M” (without showing your wallet balance)
• ✅ “I have a high enough credit score” (without showing your credit score or history)
• ✅ “I have passed KYC compliance checks” (without revealing your personal details)
• ✅ “This carbon credit is real” (without revealing your supplier)

Mathematics and cryptography enable a new kind of trust for decentralised, blockchain based
systems.

🍻 From the Pub: Simulating Zero-Knowledge in Python

Let’s recreate that "over 18" scenario in code (simplified hashing approach, just to prove the
concept):

from hashlib import sha256

Prover's secret (not to be made visible to the Verifier)
your_age = 34
threshold = 18

Commitment (a hash of the age, to be made visible to the Verifier)
def create_commitment(value):
 return sha256(str(value).encode()).hexdigest()

commitment = create_commitment(your_age) # visible to the Verifier

Prover generates a proof (input age not made visible to the Verifier, only
output and commitment)
def generate_proof(age, threshold, commitment):
 if age > threshold and create_commitment(age) == commitment:
 return {"proof_passed": True, "commitment": commitment}
 else:
 return {"proof_passed": False, "commitment": None}

proof_package = generate_proof(your_age, threshold, commitment) # output
visible to the Verifier

Verifier sees only proof, not age
def verify_proof(proof):
 return proof["proof_passed"] and proof["commitment"] == commitment

if verify_proof(proof_package):
 print("✅ Verified: Over 18 proven without revealing age.")
else:
 print("❌ Verification failed.")

✅ The verifier never sees the age, just the commitment and proof result (and the logic executed).

“Give me a hash of your age. Now prove to me that whatever number you hashed
is over 18, without telling me what the number is.”

A Zero-Knowledge Proof allows the prover to commit to a secret and generate a verifiable proof,
without ever revealing the underlying data.

🏦 To the Protocol: ZKPs in Decentralised Lending

Let’s now move from the pub to a DeFi protocol.

Suppose a protocol requires that you:

• ✅ Hold more than $5M
• ✅ Have no history of default
• ✅ Qualify for credit

Let’s assume that sharing your wallet address, full transaction history, or asset mix is
a nonstarter for institutions, DAOs, and privacy-conscious individuals.

🔄 First, let’s move from Python Hashing to Elliptic Curve
Pedersen Commitments
In the earlier example, we used Python’s built-in sha256 to simulate a commitment:

def create_commitment(value):
 return sha256(str(value).encode()).hexdigest()

This gives the idea of a commitment (i.e. hiding a secret value while being "locked in") but it falls
short for real-world zero-knowledge applications.

🛑 Limitations of SHA256 (Hash-Based Commitments)

Weakness Why It Fails in Real ZK Contexts
❌ No
randomness Without blinding, it's guessable (e.g. small ages or balances)

❌ Not zero-
knowledge Hashes reveal structure (e.g. collisions, entropy leakage)

❌ Not algebraic You can’t prove logic (like x > 5M) over hash values in Zero-Knowledge
Succinct Non-Interactive Argument of Knowledge (zkSNARK) circuits

❌ Not
compatible zkSNARKs work over elliptic curves, not hashes

❌ Not
composable You can't homomorphically add or manipulate SHA256-based commitments

✅ Enter Elliptic Curves and Pedersen Commitments

In modern ZKPs, we use algebraic commitments. The most common is the Pedersen
commitment, which is built on Elliptic Curve Cryptography (ECC):

C = gx ⋅	hr mod  p

This is the multiplicative form, based on integer finite field maths. It can be used in non-Elliptic
Curve settings, where g and h are integers (generators in a finite multiplicative group), x = secret
value; r = random blinding. This is more easily simulated in Python, using pow() and % p, for
educational and quick simulation purposes. It is not used in real ZK circuits.

In Elliptic Curve terms, this is expressed as:

C = x ⋅	G + r ⋅	H

Where:

• x = the secret (e.g. wallet balance)
• r = random blinding factor
• G, H = base points (generators) on an elliptic curve
• C = the resulting elliptic curve point (i.e. the commitment)

✅ Why Elliptic Curves?

Elliptic curves are the foundation of modern cryptography and Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge (zk-SNARK) because they offer:

• 🔐 Strong security with short keys
• ⚡ Fast arithmetic over finite fields
• ➕ Group structure, which lets us “add” and “multiply” secrets in a proof system
• 🤝 Compatibility with zero-knowledge systems like Groth16, PLONK, Halo2, and

Bulletproofs

In ZKPs, these curve-based commitments:

• Hide the data completely (even from the verifier)
• Let the prover demonstrate facts about the data (like “I have > $5M”) without ever

revealing it
• Work inside arithmetic constraint systems used in zkSNARK circuits

🧠 In Short:

• Python hash = good for learning, bad for privacy and ZKP
• Pedersen on elliptic curves = private, provable, zkSNARK-compatible

It's the difference between sealing your secret with tape versus locking it in a zero-knowledge
vault, built from elliptic curve cryptography.

💸 Pedersen commitment-based proof using elliptic curve cryptography, using
bulletproofs crate in Rust

The code below is realistic implementation of a Pedersen commitment-based solvency proof, using
bulletproofs crate, built on elliptic curve cryptography (Curve25519 via the Ristretto
group) in Rust.

bulletproofs crate is a Rust cryptographic library that allows developers to create zero-
knowledge proofs, specifically range proofs and constraint systems, without revealing the
underlying data. In the code, it enables us to prove that a private balance is greater than a public
threshold, without disclosing the actual balance.

It uses Pedersen commitments to securely hide values, and Rank-1 Constraint Systems (R1CS)
to define mathematical rules those values must satisfy. R1CS lets you turn a program (or logic)
into a series of equations that must be true.

Crucially, bulletproofs require no trusted setup and produce small, efficient proofs ideal for
privacy-preserving blockchain applications

✅ The protocol ensures the verifier only sees a proof of solvency, but never the wallet balance.

This is the foundation of zk-DeFi: trusted, verifiable, and private-by-design.

toml (Cargo.toml)

[package]
name = "zk_solvent_proof"
version = "0.1.0"
edition = "2021"

[dependencies]
bulletproofs = "4.0.0"
curve25519-dalek = "4.1.1"
merlin = "3.0.0"
rand = "0.8"

Rust code (zk_solvent_proof.rs)

// Proves in zero-knowledge that someone's balance is greater than a public
threshold
// WITHOUT revealing the actual balance — using Bulletproofs (no trusted setup).

use bulletproofs::r1cs::{Prover, Verifier, ConstraintSystem,
LinearCombination, R1CSProof, Variable};
use bulletproofs::{BulletproofGens, PedersenGens}; // Generator systems for
commitments and proofs
use curve25519_dalek::ristretto::CompressedRistretto; // For outputting
commitments
use curve25519_dalek::scalar::Scalar; // Finite field numbers
use merlin::Transcript; // Keeps context consistent between prover and verifier
use rand::rngs::OsRng; // Secure randomness

/// This function is used by the prover (the person who wants a loan, for
example).
/// It generates a zero-knowledge proof that they have more money than a certain
threshold.
/// But without showing exactly how much money they have.

fn generate_solvent_proof(
 balance: u64, // Secret balance (e.g., in wallet)
 threshold: u64 // Public threshold (e.g., minimum required to borrow)
) -> (R1CSProof, CompressedRistretto, PedersenGens, BulletproofGens) {
 // Standard generator setups — these define the cryptographic playground
 let pc_gens = PedersenGens::default(); // For commitments (hiding
numbers)
 let bp_gens = BulletproofGens::new(64, 1); // For proving in 64-bit
range

 let mut rng = OsRng; // Secure random number generator

 // Compute the difference between balance and threshold
 let delta = balance - threshold;
 assert!(delta > 0, "Balance must exceed threshold"); // This is what we're
proving

 // Create a transcript to ensure both parties are on the same page
cryptographically

 let mut transcript = Transcript::new(b"ZK Solvency Proof");
 let mut prover = Prover::new(&pc_gens, &mut transcript);

 // === STEP 1: COMMIT TO BALANCE AND THRESHOLD ===

 // These commitments hide the values but let us prove things about them.
 let (com_balance, var_balance) = prover.commit(Scalar::from(balance),
Scalar::random(&mut rng));
 let (_, var_threshold) = prover.commit(Scalar::from(threshold),
Scalar::zero()); // threshold is public, so no blinding

 // === STEP 2: COMMIT TO DELTA ===

 let (com_delta, var_delta) = prover.commit(Scalar::from(delta),
Scalar::random(&mut rng));

 // === STEP 3: ENFORCE THE RULE ===
 // balance = threshold + delta

 prover.constrain(var_balance – var_threshold – var_delta);

 // === STEP 4: PROVE THAT delta > 0 ===
 // We do this by showing delta is in a valid range [1, 2^32)

 let mut exp = Scalar::one(); // Tracks 2^i
 let mut delta_lc = LinearCombination::default(); // Linear sum of bits *
powers of 2

 for i in 0..32 {
 let bit = (delta >> i) & 1;
 let (_, var_bit) = prover.commit(Scalar::from(bit), Scalar::random(&mut
rng));
 prover.constrain(var_bit - var_bit * var_bit); // Force the bit to be
0 or 1
 delta_lc = delta_lc + (exp, var_bit); // Add to the delta representation
 exp = exp + exp;
 }

 // Make sure all bits sum back to delta

 prover.constrain(var_delta - delta_lc);

 // === STEP 5: GENERATE THE PROOF ===

 let proof = prover.prove(&bp_gens).expect("Proof generation failed");

 // Return: proof, commitment to balance, and the gens so verifier can use
them

 (proof, com_balance.compress(), pc_gens, bp_gens)
}

/// Verifier logic: checks the proof, using only the proof and a commitment.
/// It doesn’t see the balance, but can verify the relationship is true.

fn verify_solvent_proof(
 proof: R1CSProof,
 com_balance: CompressedRistretto,
 pc_gens: PedersenGens,
 bp_gens: BulletproofGens,
) -> bool {
 let mut verifier_transcript = Transcript::new(b"ZK Solvency Proof");
 let mut verifier = Verifier::new(&mut verifier_transcript);

 // Placeholder for commitment to balance

 let var_balance = verifier.commit(com_balance);

 // The verifier doesn’t know the threshold or delta, so it uses dummy zero
commitments
 let var_threshold = verifier.commit(pc_gens.commit(Scalar::zero(),
Scalar::zero()).compress());
 let var_delta = verifier.commit(pc_gens.commit(Scalar::zero(),
Scalar::zero()).compress());

 // Enforce same logic: balance = threshold + delta

 verifier.constrain(var_balance - var_threshold - var_delta);

 // Enforce that delta > 0 via same 32-bit decomposition (dummy bits)

 let mut exp = Scalar::one();
 let mut delta_lc = LinearCombination::default();
 for _ in 0..32 {
 let var_bit = verifier.commit(pc_gens.commit(Scalar::zero(),
Scalar::zero()).compress());
 verifier.constrain(var_bit - var_bit * var_bit); // Bit must be 0 or 1
 delta_lc = delta_lc + (exp, var_bit);
 exp = exp + exp;
 }
 verifier.constrain(var_delta - delta_lc);

 // If everything checks out, the proof is valid

 proof.verify(&bp_gens, &pc_gens, verifier).is_ok()
}

fn main() {

 // Example use case: someone has 6.2 million, threshold is 5 million

 let balance = 6_200_000u64;
 let threshold = 5_000_000u64;

 // Prover generates a proof

 let (proof, com_balance, pc_gens, bp_gens) =
generate_solvent_proof(balance, threshold);

 // Verifier checks the proof — without seeing the actual balance

 let valid = verify_solvent_proof(proof, com_balance, pc_gens, bp_gens);

 if valid {
 println!("✅ ZK Proof verified successfully.");
 } else {
 println!("❌ ZK Proof verification failed.");
 }

 // Display the cryptographic commitment to the balance

 println!("🔒 Balance commitment: {:?}", com_balance);
}

This Rust code proves something very powerful:

• The prover (say, a DeFi borrower) can prove they have more than a minimum required
balance (e.g., for a loan)

• They do not reveal their actual wallet balance
• The verifier (say, a smart contract or DeFi protocol) can cryptographically verify the

claim
• This is done with no trusted setup and small proof size using Bulletproofs

🧱 Why ZKPs Matter for DeFi Infrastructure

Without ZKPs:

• Transparency becomes exposure.
• Compliance becomes surveillance.
• Trust becomes a liability.

With ZKPs:

• 🔐 Users can prove eligibility without doxxing wallets.
• 🏦 Protocols can enforce rules without reading your data.
• 🌍 Institutions can interact on-chain without leaking IP or identity.

ZKPs are the privacy layer DeFi needs, not to hide, but to scale.

🌱 What I’ve Seen in the Field

ZKPs can be used to:

• ✅ Prove carbon credit validity without revealing project-level identities
• ✅ Enable confidential ESG financing
• ✅ Build pilots where Ethereum smart contracts verify zk-SNARK proofs using Solidity

and Rust

ZKPs are already making decentralised systems compliant, credible, and confidential.

📜 Zero-Knowledge Proofs in International Standards

• 🛡 ISO/IEC 27565 provides internationally recognized guidelines on the use of zero-

knowledge proofs (ZKPs) to enhance privacy during data sharing. This work is part of the
broader effort led by ISO/IEC JTC 1/SC 27, the subcommittee responsible for global
standards in cybersecurity, cryptography, and privacy protection.

• 🌐 Meanwhile, ISO TC 307, which focuses on blockchain and distributed ledger

technologies (DLT), recognizes privacy and security as central challenges in decentralized
systems. Within TC 307, Working Group 2 (WG2) and the Joint Working Group 4
(JWG 4) actively explore privacy-preserving mechanisms, including zero-knowledge
proofs.

• 📘 Notably, technical reports such as ISO/TR 23244 and ISO/TR 23455 outline

principles for privacy and smart contract security that naturally align with ZKP-based
approaches.

📚 Further	Reading	&	Technical	Sources	

• Agrawal, S. and Boneh, D., 2024. Survey of Zero-Knowledge Range Proofs. [online] IACR
Cryptology ePrint Archive. Available at: https://eprint.iacr.org/2024/430.pdf.

• Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E. and Virza, M., 2014. Succinct Non-
Interactive Zero Knowledge for a von Neumann Architecture. [online] IACR Cryptology ePrint
Archive. Available at: https://eprint.iacr.org/2013/879.pdf.

• Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P. and Maxwell, G., 2018. Bulletproofs:
Short proofs for confidential transactions and more. [online] IACR Cryptology ePrint Archive.
Available at: https://eprint.iacr.org/2017/1066.pdf .

• Curve25519-dalek, n.d. Fast and safe elliptic curve operations in Rust. [online] GitHub.
Available at: https://github.com/dalek-cryptography/curve25519-dalek.

• Dalek Cryptography, n.d. Bulletproofs crate documentation. [online] Docs.rs. Available
at: https://docs.rs/bulletproofs/latest/bulletproofs/.

• Goldwasser, S., Micali, S. and Rackoff, C., 1989. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1), pp.186–208.

• Kleppmann, M., n.d. Curve25519: Elliptic Curve Diffie-Hellman. [pdf] Available
at: https://martin.kleppmann.com/papers/curve25519.pdf.

• RareSkills, 2023. Bulletproofs Explained. [online] RareSkills Blog. Available
at: https://www.rareskills.io/post/bulletproofs-zk.

• RareSkills, 2023. Pedersen Commitment: Binding and Hiding with Elliptic Curve Points.
[online] RareSkills Blog. Available at: https://www.rareskills.io/post/pedersen-commitment.

• Tari Labs University, 2021. Rank-1 Constraint Systems. [online] Available
at: https://tlu.tarilabs.com/cryptography/rank-1.html.

• Tari Labs University, 2021. The Bulletproof Protocols. [online] Available
at: https://tlu.tarilabs.com/cryptography/the-bulletproof-protocols.

• Buterin, V., 2022. What (else) can ZK-SNARKs do? [online] Available
at: https://vitalik.eth.limo/general/2022/06/15/using_snarks.html..

• ISO, 2024. ISO/IEC 27565: Information security, cybersecurity and privacy protection —
Guidelines on privacy preservation based on zero-knowledge proofs. Geneva: International
Organization for Standardization. Available at: https://www.iso.org/standard/80398.html.

• ISO, n.d. ISO/IECJTC 1/SC 27: Information security, cybersecurity and privacy protection —
Subcommittee SC 27. Geneva: International Organization for Standardization.
Available at: https://www.iso.org/committee/45306.html.

• ISO, n.d. ISO/TC 307: Blockchain and distributed ledger technologies — Technical Committee
TC 307. Geneva: International Organization for Standardization.
Available at: https://www.iso.org/committee/6266604.html.

• ISO, 2020. ISO/TR 23244: Blockchain and distributed ledger technologies — Privacy and
personally identifiable information protection considerations. Geneva: International
Organization for Standardization.

• ISO, 2019. ISO/TR 23455: Blockchain and distributed ledger technologies — Overview of and
interactions between smart contracts. Geneva: International Organization for Standardization.

