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🍻 Over 18? Prove it! (but keep the rest of your data private) 

Imagine you're asked for ID at a pub. 

To prove you’re over 18, you show your driver’s license, and with it, you expose your full name, 
address, birthday and more. 

All of that, just to confirm one binary truth: 

“Yes, I’m old enough.” 

This is the kind of data oversharing we replicate every day in digital systems, especially on 
blockchain. 

What if you could prove your age, without revealing it? 

That’s what Zero-Knowledge Proofs (ZKPs) enable. 

Now, imagine you're applying for a loan on the blockchain (in a world of DeFi, decentralised 
peer to peer lending), or selling carbon credits (in a world of decentralised carbon trading). 

To meet lending or trading criteria, you may need to prove things like: 

• ✅ Your wallet has over $5M and you have secured sufficient collateral 
• ✅ You have a high enough credit score 
• ✅ You have passed KYC compliance checks 
• ✅ Your carbon credit is authentic 



Should you have to reveal every transaction you’ve ever made to your counterparty, or in the 
case of public permissionless blockchains, the whole world? Should you have to reveal all 
personal details? 

That’s where Zero-Knowledge Proofs (ZKPs) come in. 

Note: This article does not address what roles financial and related institutions could play in that 
decentralised world (e.g. authentication, collateral, escrow or advisory services etc). This is best 
served in dedicated article for blockchain-based decentralised lending. However, it does deal with 
how only the minimum information could be shared on chain, leveraging smart contracts, without 
requiring a centralised intermediary. 

 

🔐 What is a Zero-Knowledge Proof? 

A ZKP allows someone to prove a statement is true (like age > 18) without revealing the 
underlying data (your actual age). 

This isn't magic. It's maths, and it's how we go from: 

• ❌ “Share everything to prove anything” 
• ✅ to “Prove only what’s necessary, and nothing more” 

A ZKP lets you prove something is true, without revealing without revealing underlying data. 

• ✅ “I am over 18” (without showing your birthdate) 
• ✅ “I have over $5M” (without showing your wallet balance) 
• ✅ “I have a high enough credit score” (without showing your credit score or history) 
• ✅ “I have passed KYC compliance checks” (without revealing your personal details) 
• ✅ “This carbon credit is real” (without revealing your supplier) 

Mathematics and cryptography enable a new kind of trust for decentralised, blockchain based 
systems. 

 
  



🍻 From the Pub: Simulating Zero-Knowledge in Python 

Let’s recreate that "over 18" scenario in code (simplified hashing approach, just to prove the 
concept): 

from hashlib import sha256 
 
# Prover's secret (not to be made visible to the Verifier) 
your_age = 34 
threshold = 18 
 
# Commitment (a hash of the age, to be made visible to the Verifier) 
def create_commitment(value): 
    return sha256(str(value).encode()).hexdigest() 
 
commitment = create_commitment(your_age) # visible to the Verifier 
 
# Prover generates a proof (input age not made visible to the Verifier, only 
output and commitment) 
def generate_proof(age, threshold, commitment): 
    if age > threshold and create_commitment(age) == commitment: 
        return {"proof_passed": True, "commitment": commitment} 
    else: 
        return {"proof_passed": False, "commitment": None} 
 
proof_package = generate_proof(your_age, threshold, commitment) # output 
visible to the Verifier 
 
# Verifier sees only proof, not age 
def verify_proof(proof): 
    return proof["proof_passed"] and proof["commitment"] == commitment 
 
 
if verify_proof(proof_package): 
    print("✅ Verified: Over 18 proven without revealing age.") 
else: 
    print("❌ Verification failed.") 
 

 

✅ The verifier never sees the age, just the commitment and proof result (and the logic executed). 

“Give me a hash of your age. Now prove to me that whatever number you hashed 
is over 18, without telling me what the number is.”  

A Zero-Knowledge Proof allows the prover to commit to a secret and generate a verifiable proof, 
without ever revealing the underlying data. 

 
  



🏦 To the Protocol: ZKPs in Decentralised Lending 

Let’s now move from the pub to a DeFi protocol. 

Suppose a protocol requires that you: 

• ✅ Hold more than $5M 
• ✅ Have no history of default 
• ✅ Qualify for credit 

Let’s assume that sharing your wallet address, full transaction history, or asset mix is 
a nonstarter for institutions, DAOs, and privacy-conscious individuals. 

 

🔄 First, let’s move from Python Hashing to Elliptic Curve 
Pedersen Commitments 
In the earlier example, we used Python’s built-in sha256 to simulate a commitment: 

def create_commitment(value): 
    return sha256(str(value).encode()).hexdigest() 

This gives the idea of a commitment (i.e. hiding a secret value while being "locked in") but it falls 
short for real-world zero-knowledge applications. 

 

🛑 Limitations of SHA256 (Hash-Based Commitments) 

Weakness Why It Fails in Real ZK Contexts 
❌ No 
randomness Without blinding, it's guessable (e.g. small ages or balances) 

❌ Not zero-
knowledge Hashes reveal structure (e.g. collisions, entropy leakage) 

❌ Not algebraic You can’t prove logic (like x > 5M) over hash values in Zero-Knowledge 
Succinct Non-Interactive Argument of Knowledge (zkSNARK) circuits 

❌ Not 
compatible zkSNARKs work over elliptic curves, not hashes 

❌ Not 
composable You can't homomorphically add or manipulate SHA256-based commitments 

 



✅ Enter Elliptic Curves and Pedersen Commitments 

In modern ZKPs, we use algebraic commitments. The most common is the Pedersen 
commitment, which is built on Elliptic Curve Cryptography (ECC): 

C = gx ⋅	hr mod  p   
 
This is the multiplicative form, based on integer finite field maths. It can be used in non-Elliptic 
Curve settings, where g and h are integers (generators in a finite multiplicative group), x = secret 
value; r = random blinding. This is more easily simulated in Python, using pow() and % p, for 
educational and quick simulation purposes. It is not used in real ZK circuits. 

In Elliptic Curve terms, this is expressed as: 

C = x ⋅	G + r ⋅	H 

Where: 

• x = the secret (e.g. wallet balance) 
• r = random blinding factor 
• G, H = base points (generators) on an elliptic curve 
• C = the resulting elliptic curve point (i.e. the commitment) 

 

✅ Why Elliptic Curves? 

Elliptic curves are the foundation of modern cryptography and Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge (zk-SNARK) because they offer: 

• 🔐 Strong security with short keys 
• ⚡ Fast arithmetic over finite fields 
• ➕ Group structure, which lets us “add” and “multiply” secrets in a proof system 
• 🤝 Compatibility with zero-knowledge systems like Groth16, PLONK, Halo2, and 

Bulletproofs 

In ZKPs, these curve-based commitments: 

• Hide the data completely (even from the verifier) 
• Let the prover demonstrate facts about the data (like “I have > $5M”) without ever 

revealing it 
• Work inside arithmetic constraint systems used in zkSNARK circuits 

 



🧠 In Short: 

• Python hash = good for learning, bad for privacy and ZKP 
• Pedersen on elliptic curves = private, provable, zkSNARK-compatible 

It's the difference between sealing your secret with tape versus locking it in a zero-knowledge 
vault, built from elliptic curve cryptography. 

 

💸 Pedersen commitment-based proof using elliptic curve cryptography, using 
bulletproofs crate in Rust 

The code below is realistic implementation of a Pedersen commitment-based solvency proof, using 
bulletproofs crate, built on elliptic curve cryptography (Curve25519 via the Ristretto 
group) in Rust. 

bulletproofs crate is a Rust cryptographic library that allows developers to create zero-
knowledge proofs, specifically range proofs and constraint systems, without revealing the 
underlying data. In the code, it enables us to prove that a private balance is greater than a public 
threshold, without disclosing the actual balance. 

It uses Pedersen commitments to securely hide values, and Rank-1 Constraint Systems (R1CS) 
to define mathematical rules those values must satisfy. R1CS lets you turn a program (or logic) 
into a series of equations that must be true. 

Crucially, bulletproofs require no trusted setup and produce small, efficient proofs ideal for 
privacy-preserving blockchain applications 

✅ The protocol ensures the verifier only sees a proof of solvency, but never the wallet balance. 

This is the foundation of zk-DeFi: trusted, verifiable, and private-by-design. 

 

toml (Cargo.toml) 
 
[package] 
name = "zk_solvent_proof" 
version = "0.1.0" 
edition = "2021" 
 
[dependencies] 
bulletproofs = "4.0.0" 
curve25519-dalek = "4.1.1" 
merlin = "3.0.0" 
rand = "0.8" 
 



Rust code (zk_solvent_proof.rs) 
 
// Proves in zero-knowledge that someone's balance is greater than a public 
threshold 
// WITHOUT revealing the actual balance — using Bulletproofs (no trusted setup). 
 
use bulletproofs::r1cs::{Prover, Verifier, ConstraintSystem, 
LinearCombination, R1CSProof, Variable}; 
use bulletproofs::{BulletproofGens, PedersenGens}; // Generator systems for 
commitments and proofs 
use curve25519_dalek::ristretto::CompressedRistretto; // For outputting 
commitments 
use curve25519_dalek::scalar::Scalar; // Finite field numbers 
use merlin::Transcript; // Keeps context consistent between prover and verifier 
use rand::rngs::OsRng; // Secure randomness 
 
/// This function is used by the prover (the person who wants a loan, for 
example). 
/// It generates a zero-knowledge proof that they have more money than a certain 
threshold. 
/// But without showing exactly how much money they have. 
 
fn generate_solvent_proof( 
    balance: u64,       // Secret balance (e.g., in wallet) 
    threshold: u64      // Public threshold (e.g., minimum required to borrow) 
) -> (R1CSProof, CompressedRistretto, PedersenGens, BulletproofGens) { 
    // Standard generator setups — these define the cryptographic playground 
    let pc_gens = PedersenGens::default();         // For commitments (hiding 
numbers) 
    let bp_gens = BulletproofGens::new(64, 1);     // For proving in 64-bit 
range 
 
    let mut rng = OsRng; // Secure random number generator 
 
    // Compute the difference between balance and threshold 
    let delta = balance - threshold; 
    assert!(delta > 0, "Balance must exceed threshold"); // This is what we're 
proving 
 
    // Create a transcript to ensure both parties are on the same page 
cryptographically 
 
    let mut transcript = Transcript::new(b"ZK Solvency Proof"); 
    let mut prover = Prover::new(&pc_gens, &mut transcript); 
 
    // === STEP 1: COMMIT TO BALANCE AND THRESHOLD === 
 
    // These commitments hide the values but let us prove things about them. 
    let (com_balance, var_balance) = prover.commit(Scalar::from(balance), 
Scalar::random(&mut rng)); 
    let (_, var_threshold) = prover.commit(Scalar::from(threshold), 
Scalar::zero()); // threshold is public, so no blinding 
 
    
 
 
 



    // === STEP 2: COMMIT TO DELTA === 
 
    let (com_delta, var_delta) = prover.commit(Scalar::from(delta), 
Scalar::random(&mut rng)); 
 
    // === STEP 3: ENFORCE THE RULE === 
    // balance = threshold + delta 
 
    prover.constrain(var_balance – var_threshold – var_delta); 
 
    // === STEP 4: PROVE THAT delta > 0 === 
    // We do this by showing delta is in a valid range [1, 2^32) 
 
    let mut exp = Scalar::one(); // Tracks 2^i 
    let mut delta_lc = LinearCombination::default(); // Linear sum of bits * 
powers of 2 
 
    for i in 0..32 { 
        let bit = (delta >> i) & 1; 
        let (_, var_bit) = prover.commit(Scalar::from(bit), Scalar::random(&mut 
rng)); 
        prover.constrain(var_bit - var_bit * var_bit); // Force the bit to be 
0 or 1 
        delta_lc = delta_lc + (exp, var_bit); // Add to the delta representation 
        exp = exp + exp; 
    } 
 
    // Make sure all bits sum back to delta 
 
    prover.constrain(var_delta - delta_lc); 
 
    // === STEP 5: GENERATE THE PROOF === 
 
    let proof = prover.prove(&bp_gens).expect("Proof generation failed"); 
 
    // Return: proof, commitment to balance, and the gens so verifier can use 
them 
 
    (proof, com_balance.compress(), pc_gens, bp_gens) 
} 
 
/// Verifier logic: checks the proof, using only the proof and a commitment. 
/// It doesn’t see the balance, but can verify the relationship is true. 
 
fn verify_solvent_proof( 
    proof: R1CSProof, 
    com_balance: CompressedRistretto, 
    pc_gens: PedersenGens, 
    bp_gens: BulletproofGens, 
) -> bool { 
    let mut verifier_transcript = Transcript::new(b"ZK Solvency Proof"); 
    let mut verifier = Verifier::new(&mut verifier_transcript); 
 
    // Placeholder for commitment to balance 
 
    let var_balance = verifier.commit(com_balance); 
 



    // The verifier doesn’t know the threshold or delta, so it uses dummy zero 
commitments 
    let var_threshold = verifier.commit(pc_gens.commit(Scalar::zero(), 
Scalar::zero()).compress()); 
    let var_delta = verifier.commit(pc_gens.commit(Scalar::zero(), 
Scalar::zero()).compress()); 
 
    // Enforce same logic: balance = threshold + delta 
 
    verifier.constrain(var_balance - var_threshold - var_delta); 
 
    // Enforce that delta > 0 via same 32-bit decomposition (dummy bits) 
 
    let mut exp = Scalar::one(); 
    let mut delta_lc = LinearCombination::default(); 
    for _ in 0..32 { 
        let var_bit = verifier.commit(pc_gens.commit(Scalar::zero(), 
Scalar::zero()).compress()); 
        verifier.constrain(var_bit - var_bit * var_bit); // Bit must be 0 or 1 
        delta_lc = delta_lc + (exp, var_bit); 
        exp = exp + exp; 
    } 
    verifier.constrain(var_delta - delta_lc); 
 
    // If everything checks out, the proof is valid 
 
    proof.verify(&bp_gens, &pc_gens, verifier).is_ok() 
} 
 
fn main() { 
    
    // Example use case: someone has 6.2 million, threshold is 5 million 
 
    let balance = 6_200_000u64; 
    let threshold = 5_000_000u64; 
 
    // Prover generates a proof 
 
    let (proof, com_balance, pc_gens, bp_gens) = 
generate_solvent_proof(balance, threshold); 
 
    // Verifier checks the proof — without seeing the actual balance 
 
    let valid = verify_solvent_proof(proof, com_balance, pc_gens, bp_gens); 
 
    if valid { 
        println!("✅ ZK Proof verified successfully."); 
    } else { 
        println!("❌ ZK Proof verification failed."); 
    } 
 
    // Display the cryptographic commitment to the balance 
 
    println!("🔒 Balance commitment: {:?}", com_balance); 
}

 



This Rust code proves something very powerful: 

• The prover (say, a DeFi borrower) can prove they have more than a minimum required 
balance (e.g., for a loan) 

• They do not reveal their actual wallet balance 
• The verifier (say, a smart contract or DeFi protocol) can cryptographically verify the 

claim 
• This is done with no trusted setup and small proof size using Bulletproofs 

 

🧱 Why ZKPs Matter for DeFi Infrastructure 

Without ZKPs: 

• Transparency becomes exposure. 
• Compliance becomes surveillance. 
• Trust becomes a liability. 

With ZKPs: 

• 🔐 Users can prove eligibility without doxxing wallets. 
• 🏦 Protocols can enforce rules without reading your data. 
• 🌍 Institutions can interact on-chain without leaking IP or identity. 

ZKPs are the privacy layer DeFi needs, not to hide, but to scale. 

 

🌱 What I’ve Seen in the Field 

ZKPs can be used to: 

• ✅ Prove carbon credit validity without revealing project-level identities 
• ✅ Enable confidential ESG financing 
• ✅ Build pilots where Ethereum smart contracts verify zk-SNARK proofs using Solidity 

and Rust 

ZKPs are already making decentralised systems compliant, credible, and confidential. 

 

 



📜 Zero-Knowledge Proofs in International Standards 

 
• 🛡 ISO/IEC 27565 provides internationally recognized guidelines on the use of zero-

knowledge proofs (ZKPs) to enhance privacy during data sharing. This work is part of the 
broader effort led by ISO/IEC JTC 1/SC 27, the subcommittee responsible for global 
standards in cybersecurity, cryptography, and privacy protection. 

 
• 🌐 Meanwhile, ISO TC 307, which focuses on blockchain and distributed ledger 

technologies (DLT), recognizes privacy and security as central challenges in decentralized 
systems. Within TC 307, Working Group 2 (WG2) and the Joint Working Group 4 
(JWG 4) actively explore privacy-preserving mechanisms, including zero-knowledge 
proofs. 

 
• 📘 Notably, technical reports such as ISO/TR 23244 and ISO/TR 23455 outline 

principles for privacy and smart contract security that naturally align with ZKP-based 
approaches. 
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