BACHELOR OF SCIENCE (HONS.-AGRICULTURE) – FIRST SEMESTER

First Semester			
S. No.	Name of Subject	Credits	Total Marks
1	Fundamentals of Horticulture	2	100
2	Fundamentals of Plant Biochemistry and Biotechnology	3	100
3	Fundamentals of Soil Science	3	100
4	Introduction to Forestry	2	100
5	Comprehension & Communication Skills in English	2	100
6	Fundamentals of Agronomy	4	100
7	Any One 1. Elementary Mathematics 2. Introductory Biology	2	100
8	Agricultural Heritage	1	100
9	Rural Sociology & Educational Psychology	2	100
10	Human Values & Ethics	1	100
11	NSS/NCC/Physical Education & Yoga Practices	2	100
Total		24	

FUNDAMENTALS OF HORTICULTURE

Theory

Scope and importance and classification of horticultural crops and their culture and nutritive value, area and production, exports and imports, fruit and vegetable zones of India and of different states, nursery management practices, soil and climate, vegetable gardens, nutrition and kitchen garden and other types of gardens – principles, planning and layout, management of orchards, planting systems and planting densities. Production and practices for fruit, vegetable and floriculture crops, nursery techniques and their management. Principles and methods of pruning and training of fruit crops, types and use of growth regulators in horticulture, water management, weed management, fertility management in horticultural crops, cropping systems, intercropping, multi-tier cropping, mulching, bearing habits, factors influencing the fruitfulness and unfruitfulness. Rejuvenation of old orchards, top working, frames working, principles of organic farming.

Suggested list of practical

Tools and implements, Features of orchard, planning and layout of orchard, layout of nutrition garden, preparation of nursery beds for sowing of vegetable seeds, digging of pits for fruit

plants, planting systems, training and pruning of orchard trees, preparation of fertilizer mixtures and field application, preparation and application of growth regulators, bio enhancers layout of different irrigation systems, identification and management of nutritional disorder in fruits and vegetables, assessment of bearing habits, maturity standards, harvesting, grading, packaging and storage.

Suggested Reading:

- Prasad and Kumar, 2014. Principles of Horticulture 2nd Edn. Agrobios (India).
- 2. Neeraj Pratap Singh, 2005. Basic concepts of Fruit Science 1st Edn. IBDC Publishers.
- Gardner/Bardford/Hooker. J.R., 1957. Fundamentals of Fruit Production. Mac Graw Hill BookCo., New York.
- 4. Edmond, J.B, Sen, T.L, Andrews, F.S and Halfacre R.G., 1963. Fundamentals of Horticulture. Tata Mc Graw Hill Publishing Co., New Delhi.
- Kumar, N., 1990. Introduction to Horticulture. Rajyalakshmi publications, Nagarcoil, Tamilnadu
- 6. Jitendra Singh, 2002. Basic Horticulture. Kalyani Publishers, Hyderabad.
- 7. Denisen E.L.,1957. Principles of Horticulture. Macmillan Publishing Co., New York.
- 8. Chadha,K.L.(ICAR),2002,2001. HandbookofHorticulture . ICAR, NewDelhi
- 9. K.V.Peter, 2009. Basics Horticulture. New India Publishing Agency
- 10. Kausal Kumar Misra and Rajesh Kumar, 2014. Fundamentals of Horticulture. Biotech Books.
- 11. D.K. Salunkhe and S.S. Kadam, 2013. A handbook of Fruit Science and Technology. CRC Press.
- 12. S. Prasad and U. Kumar, 2010. A handbook of Fruit Production. Agrobios (India).
- 13. Jitendra Singh, 2011. Basic Horticulture. Kalyani Publications, New Delhi.

FUNDAMENTALS OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY

Theory

Importance of Biochemistry. Properties of Water, pH and Buffer. Carbohydrate: Importance and classification. Structures of Monosaccharides, Reducing and oxidizing properties of Monosaccharide's, Mutarotation; Structure of Disaccharides and Poly saccharides. Lipid: Importance and classification; Structures and properties of fatty acids; storage lipids and membranelipids. Proteins: Importance of proteins and classification; Structures, titration and zwitterions nature of amino acids; Structural organization of proteins. Enzymes: General properties; Classification; Mechanism of action; Michaelis & Menten and Line Weaver Burk equation &plots; Introduction to allosteric enzymes. Nucleic acids: Importance and classification; Structure of Nucleotides, A, B & Z DNA; RNA: Types and Secondary & Tertiary structure. Metabolism of carbohydrates: Glycolysis, TCA cycle, Glyoxylate cycle, Electron transport chain. Metabolism of lipids: Beta oxidation, Biosynthesis of fatty acids. Concepts and applications of plant biotechnology: Scope, organ culture, embryo culture, cell suspension culture, callus culture, anther culture, pollen culture and ovule culture and their applications; Micro-propagation methods; organogenesis and embryogenesis, Synthetic seeds and their significance; Embryo rescue and its significance; somatic hybridization and cybrids; Somaclonal variation and its use in crop improvement; cryo-preservation; Introduction to recombinant DNA methods: physical (Gene gun method), chemical (PEG mediated) and Agrobacterium mediated gene transfer methods; Transgenics and its importance in crop improvement; PCR techniques and its applications; RFLP, RAPD, SSR; Marker Assisted Breeding in crop improvement; Biotechnology regulations.

Suggested list of practical

Preparation of solution, pH & buffers, Qualitative tests of carbohydrates and amino acids. Quantitative estimation of glucose/ proteins. Titration methods for estimation of aminoacids / lipids, Effect of pH, temperature and substrate concentration on enzyme action, Paper chromatography/ TLC demonstration for separation of amino acids/ Monosaccharides. Sterilization techniques. Composition of various tissue culture media and preparation of stock solutions for MS nutrient medium. Callus induction from various explants. Micro-propagation, hardening and acclimatization. Demonstration on isolation of DNA. Demonstration of gel electrophoresis techniques and DNA finger printing

Suggested Reading:

- 1. Lehninger, Nelson, D. L. and Michael, M. C. 2004. Principles of Biochemistry. Freeman Publishers
- 2. Narayanan L M. Biochemistry. Saras Publications
- Bose. Developments in Physiology Biochemistry & Molecular Biology of Plants Vol.-1. New India Publications.
- 4. D and Voet J. G. 2004. Biochemistry 4th Edn. Wiley & sons Publishers. USA.
- Sadashiv, S and Manickam, A. 1996. Biochemical methods for Agricultural sciences. New age Interantional publishers, New Delhi.
- 6. Voet, D. and Voet, J.G. 2004. (3rd edit). Biochemistry. John Wiley & sons Incl.USA.
- 7. Rameshwar, A. 2006. (3rd edit). Practical Biochemistry. Kalyani Publishers, New Delhi.
- 8. Buchanan, B. B., Gruissem, W. and Jones, R. L. 2002. Biochemistry and molecular biology of plants. 2nd edition. Blackwell publications, UK.
- 9. Singh, B D, 2004. Biotechnology Expanding Horizons 2nd Edn. Kalyani Publishers, New Delhi.
- 10. Gupta, P.K., 2015. Elements of Biotechnology 2nd Edn. Rastogi and Co., Meerut.
- 11. Razdan M K, 2014. Introduction to plant Tissue Culture 2nd Edn. Science Publishers, inc. USA.
- 12. Gautam V K, 2005. Agricultural Biotechnology. Sublime Publications
- 13. Thomar, R.S., Parakhia, M.V., Patel, S.V. and Golakia, B.A., 2010. Molecular markers and PlantBiotechnology, New Publishers, New Delhi.
- 14. Purohit, S.S., 2004. A Laboratory Manual of Plant Biotechnology 2nd Edn. Agribios, India.
- 15. Singh, B.D. 2012. Plant Biotechnology. Kalyani publishers, Ludhiana
- 16. Bilgrami, K.S. and Pandey, A.K.1992. Introduction to Biotechnology. CBS Pub. New Delhi
- 17. Gupta, P.K. 1994. Elements of Biotechnology. Rastogi Pub. Meerut.
- 18. Chahal, G.S. and Gosal, S.S.2003. Principles and Procedures of Plant Approaches Breeding Biotechnological and Conventional. Narosa Publishing House, New Delhi

FUNDAMENTALS OF SOIL SCIENCE

Theory

Soil as a natural body, Pedological and edaphological concepts of soil; Soil genesis: soil forming rocks and minerals; weathering, processes and factors of soil formation; Soil Profile, components of soil; Soil physical properties: soil-texture, structure, density and porosity, soil colour, consistence and plasticity; Elementary knowledge of soil taxonomy classification and soils of India; Soil water retention, movement and availability; Soil air, composition, gaseous exchange, problem and plant growth, Soil temperature; source, amount and flow of heat in soil; effect on plant growth, Soil reaction-pH, soil acidity and alkalinity, buffering, effect of pH

on nutrient availability; soil colloids- inorganic and organic; silicate clays: constitution and properties; sources of charge; ion exchange, cation exchange capacity, base saturation; soil organic matter: composition, properties and its influence on soil properties; humic substances - nature and properties; soil organisms: macro and microorganisms, their beneficial and harmful effects; Soil pollution - behaviour of pesticides and inorganic contaminants, prevention and mitigation of soil pollution.

Suggested list of practical

Study of soil profile in field. Study of soil sampling tools, collection of representative soil sample, its processing and storage. Study of soil forming rocks and minerals. Determination of soil density, moisture content and porosity. Determination of soil texture by feel and Bouyoucos Methods. Studies of capillary rise phenomenon of water in soil column and water movementin soil. Determination of soil pH and electrical conductivity. Determination of cation exchange capacity of soil. Study of soil map. Determination of soil colour. Demonstration of heat transfer in soil. Estimation of organic matter content of soil.

Suggested Reading:

- 1 Brady Nyle C and Ray R Well, 2014. Nature and properties of soils. Pearson Education Inc., New Delhi.
- 2. Indian Society of Soil Science, 2002. Fundamentals of Soil Science. IARI, New Delhi.
- Sehgal J. A., 2005. Textbook of Pedology Concepts and Applications. Kalyani Publishers, NewDelhi.
- 4. Dilip Kumar Das, 2015. Introductory Soil Science. Kalyani Publishers, Ludhiana.
- 5. Biswas, T.D. and Mukharjee, S.K., 2015. Text Book of Soil science. Tata Mc Graw Hill PublishingCo. Ltd., New Delhi.
- 6. Brady, N.C., 1995. The Nature and properties of Soils. Macmillan Publishing Co, New York.
- 7. Ghildyal, B.P. and Tripathi, R.P., 1987. Soil Physics. Acad. Press. New York.
- 8. Kolay, A.K., 1983. Basic concepts of Soil Science. Wiley Eastern Ltd., New Delhi
- Brady, N. C. and Weil, R. R., 2010. Elements of the Nature and Properties of Soils (3rd Edition), Pearson Education, New Delhi.
- 10. Foth, H.D., 1991. Fundamentals of Soil Science (8th Edition), John Wiley & Sons, New Delhi.
- 11. Das, D.K., 2011. Introductory Soil Science (3rd Edition), Kalyani publisher, Ludhiana (India).

INTRODUCTION TO FORESTRY

Theory

Introduction – definitions of basic terms related to forestry, objectives of silviculture, forest classification, and salient features of Indian Forest Policies. Forest regeneration, Natural regeneration - natural regeneration from seed and vegetative parts, coppicing, pollarding, root suckers; Artificial regeneration – objectives, choice between natural and artificial regeneration, essential preliminary considerations. Crown classification. Tending operations – weeding, cleaning, thinning – mechanical, ordinary, crown and advance thinning. Forest mensuration – objectives, diameter measurement, instruments used in diameter measurement; Non instrumental methods of height measurement - shadow and single pole method; Instrumental methods of height measurement - geometric and trigonometric principles, instruments used in height measurement; tree stem form, form factor, form quotient, measurement of volume of felled and standing trees, age determination of trees.

Agroforestry – definitions, importance, criteria of selection of trees in agroforestry, different agroforestry systems prevalent in the country, shifting cultivation, taungya, alley cropping, wind breaks and shelter belts, home gardens. Cultivation practices of two important fast growing tree species of the region.

Practical

Identification of tree-species. Diameter measurements using calipers and tape, diameter measurements of forked, buttressed, fluted and leaning trees. Height measurement of standing trees by shadow method, single pole method and hypsometer. Volume measurement of logs using various formulae. Nursery lay out, seed sowing, vegetative propagation techniques. Forest plantations and their management. Visits of nearby forest based industries.

COMPREHENSION AND COMMUNICATION SKILLS IN ENGLISH

Theory

War Minus Shooting- The sporting Spirit. A Dilemma- A layman looks at science Raymond B. Fosdick. You and Your English – Spoken English and broken English G.B. Shaw. Reading Comprehension, Vocabulary- Antonym, Synonym, Homophones, Homonyms, often confused words. Exercises to Help the students in the enrichment of vocabulary based on TOEFL and other competitive examinations. Functional grammar: Articles, Prepositions, Verb, Subject verb Agreement, Transformation, Synthesis, Direct and Indirect Narration. Written Skills: Paragraph writing, Precise writing, Report writing and Proposal writing. The Style: Importance of professional writing. Preparation of Curriculum Vitae and Job applications. Synopsis Writing. Interviews: kinds, Importance and process.

Practical

Listening Comprehension: Listening to short talks lectures, speeches (scientific, commercial and general in nature). Oral Communication: Phonetics, stress and intonation, Conversation practice. Conversation: rate of speech, clarity of voice, speaking and Listening, politeness &Reading skills: reading dialogues, rapid reading, intensive reading, improving reading skills. Mock Interviews: testing initiative, team spirit, leadership, intellectual ability. Group Discussions

FUNDAMENTALS OF AGRONOMY

Theory

Agronomy and its scope, seeds and sowing, tillage and tilth, crop density and geometry, Crop nutrition, manures and fertilizers, nutrient use efficiency, water resources, soil-plant-water relationship, crop water requirement, water use efficiency, irrigation- scheduling criteria and methods, quality of irrigation water, logging.

Weeds- importance, classification, crop weed competition, concepts of weed management principles and methods, herbicides- classification, selectivity and resistance, allelopathy. Growth and development of crops, factors affecting growth and development, plant ideotypes, crop rotation and its principles, adaptation and distribution of crops, crop management technologies in problematic areas, harvesting and threshing of crops.

Practical

Identification of crops, seeds, fertilizers, pesticides and tillage implements, study of agroclimatic zones of India, Identification of weeds in crops, Methods of herbicide and fertilizer application, Study of yield contributing characters and yield estimation, Seed germination and viability test, Numerical exercises on fertilizer requirement, plant population, herbicides and water requirement, Use of tillage implements-reversible plough, one way

plough, harrow, leveler, seed drill, Study of soil moisture measuring devices, Measurement of field capacity, bulk density and infiltration rate, Measurement of irrigation water.

ELEMENTARY MATHEMATICS

Theory

Straight lines: Distance formula, section formula (internal and external division), Change of axes (only origin changed), Equation of co-ordinate axes, Equation of lines parallel to axes, Slope-intercept form of equation of line, Slope-point form of equation of line, Two point form of equation of line, Intercept form of equation of line, Normal form of equation of line, General form of equation of line, Point of intersection of two st. lines, Angles between two st. lines, Parallel lines, Perpendicular lines, Angle of bisectors between two lines, Area of triangle and quadrilateral. Circle: Equation of circle whose centre and radius is known, General equation of a circle, Equation of circle passing through three given points, Equation of circle whose diameters is line joining two points (x1, y1) & (x2, y2), Tangent and Normal to a given circle at given point (Simple problems), Condition of tangency of a line y = mx + c to the given circle x2 + y2 = a2 . Differential Calculus : Definition of function, limit and continuity, Simple problems on limit, Simple problems on continuity, Differentiation of xn, ex, sin x & cos x from first principle, Derivatives of sum, difference, product and quotient of two functions, Differentiation of functions of functions (Simple problem based on it), Logarithmic differentiation (Simple problem based on it), Differentiation by substitution method and simple problems based on it, Differentiation of Inverse Trigonometric functions. Maxima and Minima of the functions of the form y=f(x) (Simple problems based on it).

Integral Calculus: Integration of simple functions, Integration of Product of two functions, Integration by substitution method, Definite Integral (simple problems based on it), Area under simple well-known curves (simple problems based on it).

Matrices and Determinants: Definition of Matrices, Addition, Subtraction, Multiplication, Transpose and Inverse up to 3rd order, Properties of determinants up to 3rd order and their evaluation.

INTRODUCTORY BIOLOGY

Theory

Introduction to the living world, diversity and characteristics of life, origin of life, Evolution and Eugenics. Binomial nomenclature and classification Cell and cell division. Morphology of flowing plants. Seed and seed germination. Plant systematic- viz; Brassicaceae, Fabaceae and Poaceae. Role of animals in agriculture.

Practical

Morphology of flowering plants – root, stem and leaf and their modifications. Inflorence, flower and fruits. Cell, tissues & cell division. Internal structure of root, stem and leaf. Study of specimens and slides. Description of plants - Brassicaceae, Fabaceae and Poaceae.

AGRICULTURAL HERITAGE

Theory

Introduction of Indian agricultural heritage; Ancient agricultural practices, Relevance of heritage to present day agriculture; Past and present status of agriculture and farmers in society; Journey of Indian agriculture and its development from past to modern era; Plant

production and protection through indigenous traditional knowledge; Crop voyage in India and world; Agriculture scope; Importance of agriculture and agricultural resources available in India; Crop significance and classifications; National agriculture setup in India; Current scenario of Indian agriculture; Indian agricultural concerns and future prospects.

RURAL SOCIOLOGY AND EDUCATIONAL PSYCHOLOGY

Theory

Sociology and Rural sociology: Definition and scope, its significance in agriculture extension, Social Ecology, Rural society, Social Groups, Social Stratification, Culture concept, Social Institution, Social Change & Development. Educational psychology: Meaning & its importance in agriculture extension. Behavior: Cognitive, affective, psychomotor domain, Personality, Learning, Motivation, Theories of Motivation, Intelligence.

Suggested reading

- 1. Chitambar, J.B. 1973. Introductory rural sociology. New York, John Wilex and Sons.
- 2. Desai, A.R. 1978. Rural sociology in India. Bombay, Popular Prakashan, 5th Rev. ed.
- 3. Doshi, S.L. 2007. Rural sociology. Rawat Publishers, Delhi.
- Jayapalan, N. 2002. Rural sociology. Altanic Publishers, New Delhi.
- 5. Sharma, K.L. 1997. Rural society in India. Rawat Publishers, Delhi.
- Bhatia, H.R. 1965. A Text Book of Educational Psychology, Asia Publishing House, New Delhi.
- Pujari, D. 2002. Educational Psychology in Agriculture, Agrotech Publishing Academy, Udaipur (Raj.)
- 8. Bhushan, V. and Sachdeva, D.R. 2010. An introduction to Sociology, Kitab Mahal, New Delhi.

HUMAN VALUES & ETHICS

Theory

Values and Ethics-An Introduction. Goal and Mission of Life. Vision of Life. Principles and Philosophy. Self Exploration. Self Awareness. Self Satisfaction. Decision Making. Motivation. Sensitivity. Success. Selfless Service. Case Study of Ethical Lives. Positive Spirit. Body, Mind and Soul. Attachment and Detachment. Spirituality Quotient. Examination.

NSS/NCC/PHYSICAL EDUCATION & YOGA PRACTICES

Theory

Course aims at evoking social consciousness among students through various activities viz., working together, constructive and creative social work, to be skilful in executing democratic leadership, developing skill in programme development to be able for self employment, reducing gap between educated and uneducated, increasing awareness and desire to help sections of society.

Following activities are to be taken up under the NSS course:

- Introduction and basic components of NSS: Orientation
- NSS programmes and activities
- Understanding youth
- Community mobilisation
- Social harmony and national integration
- Volunteerism and shramdan
- Citizenship, constitution and human rights
- Family and society
- Importance and role of youth leadership
- Life competencies
- Youth development programmes
- Health, hygiene and sanitation
- Youth health, lifestyle, HIV AIDS and first aid
- Youth and yoga
- Vocational skill development
- Issues related environment
- Disaster management
- Entrepreneurship development
- Formulation of production oriented project
- Documentation and data reporting
- Resource mobilization
- Additional life skills
- Activities directed by the Central and State Government

All the activities related to the National Service Scheme course is distributed under four different courses viz., National Service Scheme I, National Service Scheme II, National Service Scheme III and National Service Scheme IV each having one credit load. The entire four courses should be offered continuously for two years. A student enrolled in NSS course should put in at least 60 hours of social work in different activities in a semester other than five regular one day camp in a year and one special camp for duration of 7 days at any semester break period in the two year. Different activities will include orientation lectures and practical works. Activities directed by the Central and State Government have to be performed by all the volunteers of NSS as per direction.

BACHELOR OF SCIENCE (HONS.-AGRICULTURE) – SECOND SEMESTER

Second Semester			
S. No.	Name of Subject	Credits	Total Marks
1	Fundamentals of Genetics	3	100
2	Agricultural Microbiology	2	100
3	Soil and Water Conservation Engineering	2	100
4	Fundamentals of Crop Physiology	2	100
5	Fundamentals of Agricultural Economics	2	100
6	Fundamentals of Plant Pathology	4	100
7	Fundamentals of Entomology	4	100
8	Fundamentals of Agricultural Extension Education	3	100
9	Communication Skills and Personality Development	2	100
Total			

FUNDAMENTALS OF GENETICS

Theory

Pre and Post Mendelian concepts of heredity, Mendelian principles of heredity. Architecture of chromosome; chromonemata, chromosome matrix, chromomeres, centromere, secondary constriction and telomere; special types of chromosomes. Chromosomal theory of inheritance- cell cycle and cell division- mitosis and meiosis. Probability and Chi-square. Dominance relationships, Epistatic interactions with example. Multiple alleles, pleiotropism and pseudoalleles, Sex determination and sex linkage, sex limited and sex influenced traits, Blood group genetics, Linkage and its estimation, crossing over mechanisms, chromosome mapping. Structural and numerical variations in chromosome and their implications, Use of haploids, dihaploids and doubled haploids in Genetics. Mutation, classification, Methods of inducing mutations & CIB technique, mutagenic agents and induction of mutation. Qualitative & Quantitative traits, Polygenes and continuous variations, multiple factor hypothesis, Cytoplasmic inheritance. Genetic disorders. Nature, structure & replication of genetic material. Protein synthesis, Transcription and translational mechanism of genetic material, Gene concept: Gene structure, function and regulation, Lac and Trp operons.

Practical

Study of microscope. Study of cell structure. Mitosis and Meiosis cell division. Experiments on monohybrid, dihybrid, trihybrid, test cross and back cross, Experiments on epistatic interactions including test cross and back cross, Practice on mitotic and meiotic cell division, Experiments on probability and Chi-square test. Determination of linkage and cross-over analysis (through two point test cross and three point test cross data). Study on sex linked inheritance in Drosophila. Study of models on DNA and RNA structures.

AGRICULTURAL MICROBIOLOGY

Theory

Introduction. Microbial world: Prokaryotic and eukaryotic microbes. Bacteria: cell structure, chemoautotrophy, photo autotrophy, growth. Bacterial genetics: Genetic recombination transformation, conjugation and transduction, plasmids, transposon. Role of microbes in soil fertility and crop production: Carbon, Nitrogen, Phosphorus and Sulphur cycles. Biological nitrogen fixation- symbiotic, associative and asymbiotic. Azolla, blue green algae and mycorrhiza. Rhizosphere and phyllosphere. Microbes in human welfare: silage production, biofertilizers, biopesticides, biofuel production and biodegradation of agro-waste.

Practical

Introduction to microbiology laboratory and its equipments; Microscope- parts, principles of microscopy, resolving power and numerical aperture. Methods of sterilization. Nutritional media and their preparations. Enumeration of microbial population in soil- bacteria, fungi, actinomycetes. Methods of isolation and purification of microbial cultures. Isolation of Rhizobium from legume root nodule. Isolation of Azotobacter from soil. Isolation of Azotobacter from soil. Isolation of Azotobacter from soil.

SOIL AND WATER CONSERVATION ENGINEERING

Theory

Introduction to Soil and Water Conservation, causes of soil erosion. Definition and agents of soil erosion, water erosion: Forms of water erosion. Gully classification and control measures. Soil loss estimation by universal Loss Soil Equation. Soil loss measurement techniques. Principles of erosion control: Introduction to contouring, strip cropping. Contour bund. Graded bund and bench terracing. Grassed water ways and their design. Water harvesting and its techniques. Wind erosion: mechanics of wind erosion, types of soil movement. Principles of wind erosion control and its control measures.

Practical

General status of soil conservation in India. Calculation of erosion index. Estimation of soil loss. Measurement of soil loss. Preparation of contour maps. Design of grassed water ways. Design of contour bunds. Design of graded bunds. Design of bench terracing system. Problem on wind erosion.

FUNDAMENTALS OF CROP PHYSIOLOGY

Theory

Introduction to crop physiology and its importance in Agriculture; Plant cell: an Overview; Diffusion and osmosis; Absorption of water, transpiration and Stomatal Physiology; Mineral nutrition of Plants: Functions and deficiency symptoms of nutrients, nutrient uptake mechanisms; Photosynthesis: Light and Dark reactions, C3, C4 and CAM plants; Respiration: Glycolysis, TCA cycle and electron transport chain; Fat Metabolism: Fatty acid synthesis and Breakdown; Plant growth regulators: Physiological roles and agricultural uses, Physiological aspects of growth and development of major crops: Growth analysis, Role of Physiological growth parameters in crop productivity.

Practical

Study of plant cells, structure and distribution of stomata, imbibitions, osmosis, plasmolysis, measurement of root pressure, rate of transpiration, Separation of photosynthetic pigments through paper chromatography, Rate of transpiration, photosynthesis, respiration, tissue test for mineral nutrients, estimation of relative water content, Measurement of photosynthetic CO2 assimilation by Infra Red Gas Analyser (IRGA).

FUNDAMENTALS OF AGRICULTURAL ECONOMICS

Theory

Economics: Meaning, scope and subject matter, definitions, activities, approaches to economic analysis; micro and macroeconomics, positive and normative analysis. Nature of economic theory; rationality assumption, concept of equilibrium, economic laws as generalization of human behavior. Basic concepts: Goods and services, desire, want, demand, utility, cost and price, wealth, capital, income and welfare. Agricultural economics: meaning, definition, characteristics of agriculture, importance and its role in economic development. Agricultural planning and development in the country. Demand: meaning, law of demand, schedule and demand curve, determinants, utility theory; law of diminishing marginal utility, equi-marginal utility principle. Consumer's equilibrium and derivation of demand curve, concept of consumer surplus. Elasticity of demand: concept and measurement of price elasticity, income elasticity and cross elasticity. Production: process, creation of utility, factors of production, input output relationship. Laws of returns: Law of variable proportions and law of returns to scale. Cost: concepts, short run and long run cost curves. Supply: Stock v/s supply, law of supply, schedule, supply curve, determinants of supply, elasticity of supply. Market structure: meaning and types of market, basic features of perfectly competitive and imperfect markets. Price determination under perfect competition; short run and long run equilibrium of firm and industry, shut down and break even points. Distribution theory: meaning, factor market and pricing of factors of production. Concepts of rent, wage, interest and profit. National income: Meaning and importance, circular flow, concepts of national income accounting and approaches to measurement, difficulties in measurement. Population: Importance, Malthusian and Optimum population theories, natural and socioeconomic determinants, current policies and programmes on population control. Money: Barter system of exchange and its problems, evolution, meaning and functions of money, classification of money, supply, general price index, inflation and deflation. Banking: Role in modern economy, types of banks, functions of commercial and central bank, credit creation policy. Agricultural and public finance: meaning, micro v/s macro finance, need for agricultural finance, public revenue and public expenditure. Tax: meaning, direct and indirect taxes, agricultural taxation, VAT. Economic systems: Concepts of economy and its functions, important features of capitalistic, socialistic and mixed economies, elements of economic planning.

FUNDAMENTALS OF PLANT PATHOLOGY

Theory

Introduction: Importance of plant diseases, scope and objectives of Plant Pathology. History of Plant Pathology with special reference to Indian work. Terms and concepts in Plant Pathology. Pathogenesis. Causes / factors affecting disease development: disease triangle and tetrahedron and classification of plant diseases. Important plant pathogenic organisms, different groups: fungi, bacteria, fastidious vesicular bacteria, phytoplasmas, spiroplasmas, viruses, viroids, algae, protozoa, phanerogamic parasites and nematodes with examples of diseases caused by them. Diseases and symptoms due to abiotic causes. *Fungi*: general characters, definition of fungus, somatic structures, types of fungal thalli, fungal tissues, modifications of thallus, reproduction (asexual and sexual). Nomenclature, Binomial system of nomenclature, rules of nomenclature, classification of fungi. Key to divisions, sub-divisions, orders and classes. *Bacteria and mollicutes*: general morphological characters. Basic methods of classification and reproduction. *Viruses*: nature, structure, replication and transmission.

Study of phanerogamic plant parasites. *Nematodes:* General morphology and reproduction, classification, symptoms and nature of damage caused by plant nematodes (*Heterodera*, *Meloidogyne*, *Anguina*, *Radopholus* etc.)Growth and reproduction of plant pathogens. Liberation / dispersal and survival of plantpathogens. Types of parasitism and variability in plant pathogens. Pathogenesis. Role of enzymes, toxins and growth regulators in disease development. Defense mechanism in plants. Epidemiology: Factors affecting disease development. Principles and methods of plant disease management. Nature, chemical combination, classification, mode of action and formulations of fungicides and antibiotics.

Suggested list of practical

Acquaintance with various laboratory equipment and microscopy. Collection and preservation of disease specimen. Preparation of media, isolation and Koch's postulates. General study of different structures of fungi. Study of symptoms of various plant diseases. Study of representative fungal genera. Staining and identification of plant pathogenic bacteria. Transmission of plant viruses. Study of phanerogamic plant parasites. Study of morphological features and identification of plant parasitic nematodes. Sampling and extraction of nematodes from soil and plant material, preparation of nematode mounting. Study of fungicides and their formulations. Methods of pesticide application and their safe use. Calculation of fungicide sprays concentrations.

Suggested Readings:

- 1. N.G. Ravichandra, 2013. Fundamentals of Plant Pathology. PHI Hall of India, New Delhi
- 2. R.S. Mehrohtra, Ashok Agarwal. Fundamental of Plant Pathologyyy
- Sambamurthy A textbook of Plant Pathologyyy
- 4. R.S.Singh Introduction to principles of plant pathology
- 5. Alexopoulos, C.J. Mims, C.W. and Blackwell, M. 1996. Introduction to Mycology Wiley Eastern Ltd., New York.
- 6. Mandahar, C.L. 1987. Introduction to Plant Viruses. Chand and Co. Pvt. Ltd., New Delhi.
- Mehrotra, R.S. and Aneja, K.R. 1990. . An Introduction to Mycology. New Age International (P) Ltd., New Delhi.
- 8. Singh, R.S. 1982. Plant Pathogens The Fungi. Oxford and IBH Publishing Co., New Delhi.
- Singh, R.S. 1989. Plant Pathogens The Prokaryotes .Oxford and IBH Publishing Co., New Delhi.
- 10 Dhingra and Sinclair 1993. Basic Plant Pathology Methods. CBS, Publishers & Distributors, New Delhi.

FUNDAMENTALS OF ENTOMOLOGY

Theory

History of Entomology in India. Major points related to dominance of Insecta in Animal kingdom. Classification of phylum Arthropoda upto classes. Relationship of class Insecta withother classes of Arthropoda. Morphology: Structure and functions of insect cuticle and molting. Body segmentation. Structure of Head, thorax and abdomen. Structure and modifications of insect antennae, mouth parts, legs, Wing venation, modifications and wing coupling apparatus. Structure of male and female genital organ. Metamorphosis and diapause in insects. Types of larvae and pupae. Structure and functions of digestive, circulatory,

excretory, respiratory, nervous, secretary (Endocrine) and reproductive system, in insects. Types of reproduction in insects. Major sensory organs like simple and compound eyes, chemoreceptor. Insect Ecology: Introduction, Environment and its components. Effect of abiotic factors-temperature, moisture, humidity, rainfall, light, atmospheric pressure and air currents. Effect of biotic factors – food competition, natural and environmental resistance. Categories of pests. Concept of IPM, Practices, scope and limitations of IPM. Classification of insecticides, toxicity of insecticides and formulations of insecticides. Chemical control importance, hazards and limitations. Recent methods of pest control, repellents, anti-feed ants, hormones, attractants, gamma radiation. Insecticides Act 1968- Important provisions. Application techniques of spray fluids. Symptoms of poisoning, first aid and antidotes. Systematics: Taxonomy –importance, history and development and binomial nomenclature. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta upto Orders, basic groups of present day insects with special emphasis to orders and families of Agricultural importance like Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; Dictyoptera: Mantidae, Blattidae; Odonata; Isoptera: Termitidae; Thysanoptera: Thripidae; Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; Neuroptera: Chrysopidae; Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; Coleoptera: Coccinellidae, Chrysomelidae, Cerambycidae, Curculionidae, Bruchidae, Scarabaeidae; Hymenoptera: Tenthridinidae, Apidae. Trichogrammatidae, Ichneumonidae, Braconidae, Chalcididae; Diptera: Cecidomyiidae, Tachinidae, Agromyziidae, Culicidae, Muscidae, Tephritidae.

Suggested list of practical

Methods of collection and preservation of insects including immature stages; External features of Grasshopper/Blister beetle; Types of insect antennae, mouthparts and legs; Wing venation, types of wings and wing coupling apparatus. Types of insect larvae and pupae; Dissection of digestive system in insects (Grasshopper); Dissection of male and female reproductive systems in insects (Grasshopper); Study of characters of orders Orthoptera, Dictyoptera, Odonata, Isoptera, Thysanoptera, Hemiptera, Lepidoptera, Neuroptera, Coleoptera, Hymenoptera, Diptera and their families of agricultural importance. Insecticides and their formulations. Pesticide appliances and their maintenance. Sampling techniques for estimation of insect population and damage.

- Awasthi, V.B. 1997. Introduction to general and applied entomology. Scientific Publishers, Jodhpur, 379 p.
- Borror, D.J., C.A. Triple Horn and N.F.Johnson. 1987. An introduction to the study of insects (VI Edition). Harcourt Brace College Publishers, New York, 875p.
- Chapman, R.F. 1981. The Insects: Structure and function. Edward Arnold (Publishers) Ltd, London, 919p.
- Gullan, P.J. and Cranston, P.S. 2001. The insects- An outline of entomology, II edition, Chapman & Hall, Madras, 491p.
- Mani, M.S. 1968. General entomology. Oxford and IBH Publishing Co. Pvt Ltd., New Delhi, 912p.

- 6. Nayar, K.K., T.N.Ananthakrishnan and B.V. David. 1976. General and applied entomology,
- 7. Tata McGraw Hill Publishing Company Limited, New Delhi, 589p.

FUNDAMENTALS OF AGRICULTURAL EXTENSION EDUCATION

Theory

Education: Meaning, definition & Types; Extension Education- meaning, definition, scope and process; objectives and principles of Extension Education; Extension Programme planning-Meaning, Process, Principles and Steps in Programme Development. Extension systems in India: extension efforts in pre-independence era (Sriniketan, Marthandam, Firka Development Scheme, Gurgaon Experiment, etc.) and post-independence era (Etawah Pilot Project, Nilokheri Experiment, etc.); various extension/ agriculture development programmes launched by ICAR/Govt. of India (IADP, IAAP, HYVP, KVK, IVLP, ORP, ND, NATP, NAIP, etc.). New trends in agriculture extension: privatization extension, cyber extension/ e-extension, marketled extension, farmer-led extension, expert systems, etc. Rural Development: concept, meaning, definition; various rural development programmes launched by Govt. of India. Community Dev.-meaning, definition, concept & principles, Philosophy of C.D. Rural Leadership: concept and definition, types of leaders in rural context; extension administration: meaning and concept, principles and functions. Monitoring and evaluation: concept and definition, monitoring and evaluation of extension programmes; transfer of technology: concept and models, capacity building of extension personnel; extension teaching methods: meaning, classification, individual, group and mass contact methods, ICT Applications in TOT (New and Social Media), media mix strategies; communication: meaning and definition; Principles and Functions of Communication, models and barriers to communication. Agriculture journalism; diffusion and adoption of innovation: concept and meaning, process and stages of adoption, adopter categories.

Suggested list of practical's

To get acquainted with university extension system. Group discussion- exercise; handling and use of audio visual equipment and digital camera and LCD projector; preparation and use of AV aids, preparation of extension literature – leaflet, booklet, folder, pamphlet news stories and success stories; Presentation skills exercise; micro teaching exercise; A visit to village to understand the problems being encountered by the villagers/ farmers; to study organization and functioning of DRDA and other development departments at district level; visit to NGO and learning from their experience in rural development; understanding PRA techniques and their application in village development planning; exposure to mass media: visit to community radio and television studio for understanding the process of programme production; script writing, writing for print and electronic media, developing script for radio and television.

- 1. Adivi Reddy, A., 2001, Extension Education, Sree Lakshmi press, Bapatla.
- Dahama, O. P. and Bhatnagar, O.P., 1998, Education and Communication for Development, Oxford and IBH publishing Co. Pvt. Ltd., New Delhi.
- 3. Jalihal, K. A. and Veerabhadraiah, V., 2007, Fundamentals of Extension Education and Management in Extension, Concept publishing company, New Delhi.

- 4. Muthaiah Manoraharan, P. and Arunachalam, R., Agricultural Extension, Himalaya Publishing House (Mumbai).
- Sagar Mondal and Ray, G. L., Text Book On Rural Development, Entrepreneurship And Communication Skills, Kalyani Publications.
- Rathore, O. S. et al., 2012, Handbook of Extension Education, Agrotech Publishing Academy, Udaipur.
- Ray, G. L., 1991 (1st Edition), Extension Communication and Management, Kalyani Publishers, Ludhiana {7th revised edition - 2010}.
- 8. Supe, S. V., 2013 (2nd Edition), A Text Book of Extension Education, Agrotech Publishing Academy, Udaipur.

COMMUNICATION SKILLS AND PERSONALITY DEVELOPMENT

Theory

Communication Skills: Structural and functional grammar; meaning and process of communication, verbal and nonverbal communication; listening and note taking, writing skills, oral presentation skills; field diary and lab record; indexing, footnote and bibliographic procedures. Reading and comprehension of general and technical articles, precise writing, summarizing, abstracting; individual and group presentations, impromptu presentation, public speaking; Group discussion. Organizing seminars and conferences.

Suggested list of practical

Listening and note taking, writing skills, oral presentation skills; field diary and lab record; indexing, footnote and bibliographic procedures. Reading and comprehension of general and technical articles, precise writing, summarizing, abstracting; individual and group presentations.

- Balasubramanian T. 1989. A Text book of Phonetics for Indian Students. Orient Longman, New Delhi.
- 2 Balasubrmanyam M. 1985. Business Communication. Vani Educational Books, New Delhi.
- Naterop, Jean, B. and Rod Revell. 1997. Telephoning in English. Cambridge University Press, Cambridge.
- Mohan Krishna and Meera Banerjee. 1990. Developing Communication Skills. Macmillan India Ltd. New Delhi.
- Krishnaswamy, N and Sriraman, T. 1995. Current English for Colleges. Macmillan India Ltd. Madras.
- 6. Narayanaswamy V R. 1979. Strengthen your writing. Orient Longman, New Delhi.
- Sharma R C and Krishna Mohan. 1978. Business Correspondence. Tata Mc Graw Hill publishingCompany, New Delhi.

BACHELOR OF SCIENCE (HONS.-AGRICULTURE) - THIRD SEMESTER

S. No.	Name of Subject	Credits	Total Marks
1	Crop Production Technology – I (Kharif Crops)	3	100
2	Fundamentals of Plant Breeding	3	100
3	Agricultural Finance and Cooperation	3	100
4	Agri- Informatics	2	100
5	Farm Machinery and Power	2	100
6	Production Technology for Vegetables and Spices	2	100
7	Environmental Studies and Disaster Management	3	100
8	Statistical Methods	2	100
9	Livestock and Poultry Management	4	100
Total			

CROP PRODUCTION TECHNOLOGY-I (KHARIF CROPS)

Theory

Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices and yield of Kharif crops. Cereals – rice, maize, sorghum, pearl millet and finger millet, pulses-pigeonpea, mungbean and urdbean; oilseeds- groundnut, and soybean; fibre crops-cotton & jute; forage crops-sorghum, cowpea, cluster bean and napier.

Practical

Rice nursery preparation, transplanting of rice, sowing of soybean, pigeonpea and mungbean. maize, groundnut and cotton, effect of seed size on germination and seedling vigour of kharif season crops, effect of sowing depth on germination of kharif crops, identification of weeds in kharif season crops, top dressing and foliar feeding of nutrients, study of yield contributing characters and yield calculation of kharif season crops, study of crop varieties and important agronomic experiments at experimental farm. study of forage experiments, morphological description of kharif season crops, visit to research centres of related crops.

FUNDAMENTALS OF PLANT BREEDING

Theory

Historical development, concept, nature and role of plant breeding, major achievements and future prospects; Genetics in relation to plant breeding, modes of reproduction and apomixes, self-incompatibility and male sterility-genetic consequences, cultivar options. Domestication, Acclimatization and Introduction; Centres of origin/ diversity, components of Genetic variation;

Heritability and genetic advance; Genetic basis and breeding methods in self- pollinated crops-mass and pure line selection, hybridization techniques and handling of segregating population; Multiline concept. Concepts of population genetics and Hardy-Weinberg Law, Genetic basis and methods of breeding cross pollinated crops, modes of selection; Population improvement Schemes Ear to row method, Modified Ear to Row, recurrent selection schemes; Heterosis and inbreeding depression, development of inbred lines and hybrids, composite and synthetic varieties; Breeding methods in asexually propagated crops, clonal selection and hybridization; Maintenance of breeding records and data collection; Wide hybridization and prebreeding; Polyploidy in relation to plant breeding, mutation breeding-methods and uses; Breeding for important biotic and abiotic stresses; Biotechnological tools-DNA markers and marker assisted selection. Participatory plant breeding; Intellectual Property Rights, Patenting, Plant Breeders and & Farmer's Rights.

Practical

Plant Breeder's kit, Study of germplasm of various crops. Study of floral structure of self-pollinated and cross pollinated crops. Emasculation and hybridization techniques in self & cross pollinated crops. Consequences of inbreeding on genetic structure of resulting populations. Study of male sterility system. Handling of segregation populations. Methods of calculating mean, range, variance, standard deviation, heritability. Designs used in plant breeding experiments, analysis of Randomized Block Design. To work out the mode of pollination in a given crop and extent of natural out-crossing. Prediction of performance of double cross hybrids.

AGRICULTURAL FINANCE AND CO-OPERATION

Theory

Agricultural Finance- meaning, scope and significance, credit needs and its role in Indian agriculture. Agricultural credit: meaning, definition, need, classification. Credit analysis: 4 R's, and 3C's of credits. Sources of agricultural finance: institutional and non-institutional sources, commercial banks, social control and nationalization of commercial banks, Micro financing including KCC. Lead bank scheme, RRBs, Scale of finance and unit cost. An introduction to higher financing institutions – RBI, NABARD, ADB, IMF, world bank, Insurance and Credit Guarantee Corporation of India. Cost of credit. Recent development in agricultural credit. Preparation and analysis of financial statements – Balance Sheet and Income Statement. Basic guidelines for preparation of project reports- Bank norms – SWOT analysis.

Agricultural Cooperation – Meaning, brief history of cooperative development in India, objectives, principles of cooperation, significance of cooperatives in Indian agriculture. Agricultural Cooperation in India- credit, marketing, consumer and multi-purpose cooperatives, farmers' service cooperative societies, processing cooperatives, farming cooperatives, cooperative warehousing; role of ICA, NCUI, NCDC, NAFED.

Practical

Determination of most profitable level of capital use. Optimum allocation of limited amount of capital among different enterprise. Analysis of progress and performance of cooperatives using published data. Analysis of progress and performance of commercial banks and RRBs using published data. Visit to a commercial bank, cooperative bank and cooperative society to acquire first-hand knowledge of their management, schemes and procedures. Estimation of credit

requirement of farm business – A case study. Preparation and analysis of balance sheet – A case study. Preparation and analysis of income statement – A case study. Appraisal of a loan proposal – A case study. Techno-economic parameters for preparation of projects. Preparation of Bankable projects for various agricultural products and its value added products. Seminar on selected topics.

AGRI-INFORMATICS

Theory

Introduction to Computers, Operating Systems, definition and types, Applications of MSOffice for document creation & Editing, Data presentation, interpretation and graph creation, statistical analysis, mathematical expressions, Database, concepts and types, uses of DBMS in Agriculture, World Wide Web (WWW): Concepts and components. Introduction to computer programming languages, concepts and standard input/output operations.

e-Agriculture, concepts and applications, Use of ICT in Agriculture. Computer Models for understanding plant processes. IT application for computation of water and nutrient requirement of crops, Computer-controlled devices (automated systems) for Agri-input management, Smartphone Apps in Agriculture for farm advises, market price, postharvest management etc; Geospatial technology for generating valuable agri-information. Decision support systems, concepts, components and applications in Agriculture, Agriculture Expert System, Soil Information Systems etc for supporting Farm decisions. Preparation of contingent crop-planning using IT tools.

Practical

Study of Computer Components, accessories, practice of important DOS Commands. Introduction of different operating systems such as windows, Unix/ Linux, Creating, Files & Folders, File Management. Use of MS-WORD and MS Power-point for creating, editing and presenting a scientific Document. MS-EXCEL - Creating a spreadsheet, use of statistical tools, writing expressions, creating graphs, analysis of scientific data. MS-ACCESS: Creating Database, preparing queries and reports, demonstration of Agri-information system. Introduction to World Wide Web (WWW). Introduction of programming languages. Hands on Crop Simulation Models (CSM) such as DSSAT/Crop-Info/CropSyst/ Wofost; Computation of water and nutrient requirements of crop using CSM and IT tools. Introduction of Geospatial Technology for generating valuable information for Agriculture. Hands on Decision Support System. Preparation of contingent crop planning.

FARM MACHINERY AND POWER

Theory

Status of Farm Power in India, Sources of Farm Power , I.C. engines, working principles of I C engines, comparison of two stroke and four stroke cycle engines , Study of different components of I.C. engine, I.C. engine terminology and solved problems, Familiarization with different systems of I.C. engines: Air cleaning, cooling, lubrication ,fuel supply and hydraulic control system of a tractor, Familiarization with Power transmission system : clutch, gear box, differential and final drive of a tractor , Tractor types, Cost analysis of tractor power and attached implement, Familiarization with Primary and Secondary Tillage implement, Implement for hill agriculture, implement for intercultural operations, Familiarization with sowing and planting equipment, calibration of a seed drill and solved examples, Familiarization with Plant Protection equipment, Familiarization with harvesting and threshing equipment.

Practical

Study of different components of I.C. engine. To study air cleaning and cooling system of engine, Familiarization with clutch, transmission, differential and final drive of a tractor, Familiarization with lubrication and fuel supply system of engine, Familiarization with brake, steering, hydraulic control system of engine, Learning of tractor driving, Familiarization with operation of power tiller, Implements for hill agriculture, Familiarization with different types of primary and secondary tillage implements: mould plough, disc plough and disc harrow . Familiarization with seed cumfertilizer drills their seed metering mechanism and calibration, planters and transplanter Familiarization with different types of sprayers and dusters Familiarization with different intercultivation equipment, Familiarization with harvesting and threshing machinery.

PRODUCTION TECHNOLOGY FOR VEGETABLE AND SPICES

Theory

Importance of vegetables & spices in human nutrition and national economy, kitchen gardening, brief about origin, area, climate, soil, improved varieties and cultivation practices such as time of sowing, transplanting techniques, planting distance, fertilizer requirements, irrigation, weed management, harvesting and yield, physiological disorders, of important vegetable and spices (Tomato, Brinjal, Chilli, Capsicum, Cucumber, Melons, Gourds, Pumpkin, French bean, Peas; Cole crops such as Cabbage, Cauliflower, Knol-khol; Bulb crops such as Onion, Garlic; Root crops such as Carrot, Raddish, Beetroot; Tuber crops such as Potato; Leafy vegetables such as Amaranth, Palak. Perennial vegetables).

Practical

Identification of vegetables & spice crops and their seeds. Nursery raising. Direct seed sowing and transplanting. Study of morphological characters of different vegetables & spices. Fertilizers applications. Harvesting & preparation for market. Economics of vegetables and spices cultivation.

ENVIRONMENTAL STUDIES AND DISASTER MANAGEMENT

Theory

Multidisciplinary nature of environmental studies- Definition, scope and importance. Natural resources- Renewable and non-renewable resources and their associated problems. Forest resources- Use and over-exploitation, deforestation, timber extraction, mining, dams and their effects on forest and tribal people. Water resources- Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Mineral resources- Use and exploitation, environmental effects of extracting and using mineral resources. Food resources- World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, and salinity. Energy resources-Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Land resources- Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources, equitable use of resources for sustainable lifestyles. Ecosystems- Concept, structure and function of an ecosystem. Producers, consumers and decomposers, energy flow in the ecosystem, ecological succession. Food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of forest, grassland, desert and aquatic ecosystems. Biodiversity and its conservation- Introduction, definition, genetic, species, ecosystem diversity and

biogeographically classification of India. Value of biodiversity- Consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity at global, national and local levels, India as a mega-diversity nation. Hot-sports of biodiversity. Threats to biodiversity- Habitat loss, poaching of wildlife, man-wildlife conflicts, endangered and endemic species of India. In-situ and Ex-situ conservation of biodiversity. Environmental pollution- Definition, cause, effects and control measures of air, water, soil, marine, noise and thermal pollution and nuclear hazards. Solid waste management- Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. Social issues and the environment- Unsustainable to sustainable development, urban problems related to energy. Water conservation, rain water harvesting, watershed management. Environmental ethics- Issues and possible solutions, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Environment protection acts- Air (Prevention and control of pollution) act, water (Prevention and control of pollution) act, wildlife protection act, forest conservation act, Issues involved in enforcement of environmental legislation, public awareness. Human population and the environment- Population growth, variation among nations, population explosion. Role of Information Technology in environment and human health. Natural disasters- Meaning and nature, types (floods, drought, cyclone, earthquakes, landslides, avalanches, volcanic eruptions, heat and cold waves, global warming, sea level rise, ozone depletion) and effects. Man-made disasters-Nuclear, chemical, and biological disasters, building fire, coal fire, forest fire, oil fire, road accidents, rail accidents, air accidents, sea accidents. Disaster management- International strategy for disaster reduction at national and global levels; National disaster management framework-Financial arrangements, role of NGOs, community-based organizations and media, central, state, district and local administration, armed forces in disaster response, police and other organizations. Feeding the people struck by the disaster, managing house and dress need during disaster

Suggested list of practical's

Visit to a local area to document environmental assets river/forest/grassland/hill/mountain, visit to a local polluted site-Urban/rural/industrial/agricultural. Study of common plants, insects, birds and study of simple ecosystems i.e. pond, river, hill slopes, etc. Case-studies.

Suggested Reading:

- 1. A. Nandini, N. Suneetha and Sucharitha Tandon. Environmental Studies.
- Aswathanarayana, U. 1999. Soil resources and the environment. Oxford and IBH publishingCo., New Delhi. P. 173-195.
- D. D. Misra. Fundamental Concepts in Environmental Studies.
- Diwan, P. and P. Diwan. 1998. Environmental Management Law and Administration. Variety Books International, New Delhi.
- 5. Krishnamurthy. An Advanced Textbook on Biodiversity.
- S. Deshwal A. Deshwal. A Basic Course in Environmental Science.
- Erach Bharucha 2005. Textbook of environmental studies for under graduate courses. UGC, University press, Hyderabad.
- Manohara Chary and Jayaram Reddy 2004. Principles of Environmental studies BB publishers, Hyderabad.

STATISTICAL METHODS

Theory

Introduction to Statistics and its Applications in Agriculture, Graphical Representation of Data, Measures of Central Tendency & Dispersion, Definition of Probability, Addition and Multiplication Theorem (without proof). Simple Problems Based on Probability. Binomial & Poisson Distributions, Definition of Correlation, Scatter Diagram. Karl Pearson's Coefficient of Correlation. Linear Regression Equations. Introduction to Test of Significance, One sample & two sample test t for Means, Chi-Square Test of Independence of Attributes in 2 ×2 Contingency Table. Introduction to Analysis of Variance, Analysis of One Way Classification. Introduction to Sampling Methods, Sampling versus Complete Enumeration, Simple Random Sampling with and without replacement, Use of Random Number Tables for selection of Simple Random Sample.

Practical

Graphical Representation of Data. Measures of Central Tendency (Ungrouped data) with Calculation of Quartiles, Deciles & Percentiles. Measures of Central Tendency (Grouped data) with Calculation of Quartiles, Deciles & Percentiles. Measures of Dispersion (Ungrouped Data). Measures of Dispersion (Grouped Data). Moments, Measures of Skewness & Kurtosis (Ungrouped Data). Moments, Measures of Skewness & Kurtosis (Grouped Data). Correlation & Regression Analysis. Application of One Sample t-test. Application of Two Sample Fisher's t-test. Chi-Square test of Goodness of Fit. Chi-Square test of Independence of Attributes for 2 ×2 contingency table. Analysis of Variance One Way Classification. Analysis of Variance Two Way Classification. Selection of random sample using Simple Random Sampling.

LIVESTOCK & POULTRY MANAGEMENT

Theory

Role of livestock in the national economy. Reproduction in farm animals and poultry. Housing principles, space requirements for different species of livestock and poultry. Management of calves, growing heifers and milch animals. Management of sheep, goat and swine. Incubation, hatching and brooding. Management of growers and layers.

Important Indian and exotic breeds of cattle, buffalo, sheep, goat, swine and poultry. Improvement of farm animals and poultry.

Digestion in livestock and poultry. Classification of feedstuffs. Proximate principles of feed. Nutrients and their functions. Feed ingredients for ration for livestock and poultry. Feed supplements and feed additives. Feeding of livestock and poultry.

Introduction of livestock and poultry diseases. Prevention (including vaccination schedule) and control of important diseases of livestock and poultry.

Practical

External body parts of cattle, buffalo, sheep, goat, swine and poultry. Handling and restraining of livestock. Identification methods of farm animals and poultry. Visit to IDF and IPF to study breeds of livestock and poultry and daily routine farm operations and farm records. Judging of cattle, buffalo and poultry. Culling of livestock and poultry. Planning and layout of housing for different types of livestock. Computation of rations for livestock. Formulation of concentrate mixtures. Clean milk production, milking methods. Hatchery operations, incubation and hatching equipments. Management of chicks, growers and layers. Debeaking, dusting and vaccination. Economics of cattle, buffalo, sheep, goat, swine and poultry production.

BACHELOR OF SCIENCE (HONS.-AGRICULTURE) – FOURTH SEMESTER

Fourth	Fourth Semester			
S. No.	Name of Subject	Credits	Total Marks	
1	Crop Production Technology –II (Rabi Crops)	3	100	
2	Production Technology for Ornamental Crops, MAP and Landscaping	2	100	
3	Renewable Energy and Green Technology	2	100	
4	Problematic Soils and Their Management	2	100	
5	Production Technology for Fruit and Plantation Crops	2	100	
6	Principles of Seed Technology	3	100	
7	Farming System & Sustainable Agriculture	2	100	
8	Agricultural Marketing Trade & Prices	3	100	
9	Introductory Agro-Meteorology & Climate Change	2	100	
10	Elective Course (Any One) Elective Course-Agronomy-I Elective Course-Horticulture-I Elective Course-Plant Protection-I	3	100	
Total		24		

CROP PRODUCTION TECHNOLOGY-II (RABI CROPS)

Theory

Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices and yield of Rabi crops; cereals –wheat and barley, pulses-chickpea, lentil, peas, oilseeds-rapeseed, mustard and sunflower; sugar crops-sugarcane; medicinal and aromatic crops-mentha, lemon grass and citronella, Forage crops-berseem, lucerne and oat.

Practical

Sowing methods of wheat and sugarcane, identification of weeds in rabi season crops, study of morphological characteristics of rabi crops, study of yield contributing characters of rabi season crops, yield and juice quality analysis of sugarcane, study of important agronomic experiments of rabi crops at experimental farms. Study of rabi forage experiments, oil extraction of medicinal crops, visit to research stations of related crops.

PRODUCTION TECHNOLOGY FOR ORNAMENTAL CROPS, MAPS AND LANDSCAPING

Theory

Importance and scope of ornamental crops, medicinal and aromatic plants and landscaping. Principles of landscaping. Landscape uses of trees, shrubs and climbers. Production

technology of important cut flowers like rose, gerbera, carnation, lilium and orchids under protected conditions and gladiolus, tuberose, chrysanthemum under open conditions. Package of practices for loose flowers like marigold and jasmine under open conditions. Production technology of important medicinal plants like ashwagandha, asparagus, aloe, costus, Cinnamomum, periwinkle, isabgol and aromatic plants like mint, lemongrass, citronella, palmarosa, ocimum, rose, geranium, vetiver. Processing and value addition in ornamental crops and MAPs produce.

Practical

Identification of Ornamental plants. Identification of Medicinal and Aromatic Plants. Nursery bed preparation and seed sowing. Training and pruning of Ornamental plants. Planning and layout of garden. Bed preparation and planting of MAP. Protected structures – care and maintenance. Intercultural operations in flowers and MAP. Harvesting and post-harvest handling of cut and loose flowers. Processing of MAP. Visit to commercial flower/MAP unit.

RENEWABLE ENERGY AND GREEN TECHNOLOGY

Theory

Classification of energy sources, contribution of these of sources in agricultural sector, Familiarization with biomass utilization for biofuel production and their application, Familiarization with types of biogas plants and gasifiers, biogas, bioalcohol, biodiesel and biooil production and their utilization as bioenergy resource, introduction of solar energy, collection and their application, Familiarization with solar energy gadgets: solar cooker, solar water heater, application of solar energy: solar drying, solar pond, solar distillation, solar photovoltaic system and their application, introduction of wind energy and their application.

Practical

Familiarization with renewable energy gadgets. To study biogas plants, To study gasifier, To study the production process of biodiesel, To study briquetting machine, To study the production process of bio-fuels. Familiarization with different solar energy gadgets. To study solar photovoltaic system: solar light, solar pumping, solar fencing. To study solar cooker, To study solar drying system. To study solar distillation and solar pond.

PROBLEMATIC SOILS AND THEIR MANAGEMENT

Theory

Soil quality and health, Distribution of Waste land and problem soils in India. Their categorization based on properties. Reclamation and management of Saline and sodic soils, Acid Sulphate soils, Eroded and Compacted soils, Flooded soils, Polluted soils.

Irrigation water – quality and standards, utilization of saline water in agriculture. Remote sensing and GIS in diagnosis and management of problem soils.

Multipurpose tree species, bio remediation through MPTs of soils, land capability and classification, land suitability classification. Problematic soils under different Agro-ecosystems.

PRODUCTION TECHNOLOGY FOR FRUIT AND PLANTATION CROPS

Theory

Importance and scope of fruit and plantation crop industry in India; Importance of rootstocks; Production technologies for the cultivation of major fruits-mango, banana, citrus, grape, guava, litchi, papaya, sapota, apple, pear, peach, walnut, almond and; minor fruits- date, ber, pineapple, pomegranate, jackfruit, strawberry, plantation crops-coconut, arecanut, cashew, tea, coffee & rubber.

Practical

Seed propagation. Scarification and stratification of seeds. Propagation methods for fruit and plantation crops. Description and identification of fruit. Preparation of plant bio regulators and their uses, Important pests, diseases and physiological disorders of above fruit and plantation crops, Visit to commercial orchards.

PRINCIPLES OF SEED TECHNOLOGY

Theory

Seed and seed technology: introduction, definition and importance. Deterioration causes of crop varieties and their control; Maintenance of genetic purity during seed production, seed quality; Definition, Characters of good quality seed, different classes of seed. Foundation and certified seed production of important cereals, pulses, oilseeds, fodder and vegetables. Seed certification, phases of certification, procedure for seed certification, field inspection. Seed Act and Seed Act enforcement. Duty and powers of seed inspector, offences and penalties. Seeds Control Order 1983, Varietal Identification through Grow Out Test and Electrophoresis, Molecular and Biochemical test. Detection of genetically modified crops, Transgene contamination in non-GM crops, GM crops and organic seed production.

Seed drying, processing and their steps, seed testing for quality assessment, seed treatment, its importance, method of application and seed packing. Seed storage; general principles, stages and factors affecting seed longevity during storage. Measures for pest and disease control during storage. Seed marketing: structure and organization, sales generation activities, promotional media. Factors affecting seed marketing, Role of WTO and OECD in seed marketing. Private and public sectors and their production and marketing strategies.

Practical

Seed production in major cereals: Wheat, Rice, Maize, Sorghum, Bajra and Ragi. Seed production in major pulses: Urd, Mung, Pigeonpea, Lentil, Gram, Field bean, pea. Seed production in major oilseeds: Soybean, Sunflower, Rapeseed, Groundnut and Mustard. Seed production in important vegetable crops. Seed sampling and testing: Physical purity, germination, viability, etc. Seed and seedling vigour test. Genetic purity test: Grow out test and electrophoresis. Seed certification: Procedure, Field inspection, Preparation of field inspection report. Visit to seed production farms, seed testing laboratories and seed processing plant.

FARMING SYSTEM AND SUSTAINABLE AGRICULTURE

Theory

Farming System-scope, importance, and concept, Types and systems of farming system and factors affecting types of farming, Farming system components and their maintenance, Cropping system and pattern, multiple cropping system, Efficient cropping system and their evaluation, Allied enterprises and their importance, Tools for determining production and efficiencies in cropping and farming system; Sustainable agriculture-problems and its impact on agriculture, indicators of sustainability, adaptation and mitigation, conservation agriculture strategies in agriculture, HEIA, LEIA and LEISA and its techniques for sustainability, Integrated farming system-historical background, objectives and characteristics, components of IFS and its advantages, Site specific development of IFS model for different agro-climatic zones, resource use efficiency and optimization techniques, Resource cycling and flow of energy in different farming system, farming system and environment, Visit of IFS model in different agro-climatic zones of nearby states University/ institutes and farmers field.

AGRICULTURAL MARKETING, TRADE AND PRICES

Theory

Agricultural Marketing: Concepts and definitions of market, marketing, agricultural marketing, market structure, marketing mix and market segmentation, classification and characteristics of agricultural markets; demand, supply and producer's surplus of agri-commodities: nature and determinants of demand and supply of farm products, producer's surplus – meaning and its types, marketable and marketed surplus, factors affecting marketable surplus of agricommodities; product life cycle (PLC) and competitive strategies: Meaning and stages in PLC; characteristics of PLC; strategies in different stages of PLC; pricing and promotion strategies: pricing considerations and approaches – cost based and competition based pricing; market promotion – advertising, personal selling, sales promotion and publicity – their meaning and merits & demerits; marketing process and functions: Marketing process-concentration, dispersion and equalization; exchange functions – buying and selling; physical functions – storage, transport and processing; facilitating functions - packaging, branding, grading, quality control and labeling (Agmark); Market functionaries and marketing channels: Types and importance of agencies involved in agricultural marketing; meaning and definition of marketing channel; number of channel levels; marketing channels for different farm products; Integration, efficiency, costs and price spread: Meaning, definition and types of market integration; marketing efficiency; marketing costs, margins and price spread; factors affecting cost of marketing; reasons for higher marketing costs of farm commodities; ways of reducing marketing costs; Role of Govt. in agricultural marketing: Public sector institutions- CWC, SWC, FCI, CACP & DMI – their objectives and functions; cooperative marketing in India; Risk in marketing: Types of risk in marketing; speculation & hedging; an overview of futures trading; Agricultural prices and policy: Meaning and functions of price; administered prices; need for agricultural price policy; Trade: Concept of International Trade and its need, theories of absolute and comparative advantage. Present status and prospects of international trade in agri-commodities; GATT and WTO; Agreement on Agriculture (AoA) and its implications on Indian agriculture; IPR.

Practical

Plotting and study of demand and supply curves and calculation of elasticities; Study of relationship between market arrivals and prices of some selected commodities; Computation of marketable and marketed surplus of important commodities; Study of price behaviour over time for some selected commodities; Construction of index numbers; Visit to a local market to study various marketing functions performed by different agencies, identification of marketing channels for selected commodity, collection of data regarding marketing costs, margins and price spread and presentation of report in the class; Visit to market institutions – NAFED, SWC, CWC, cooperative marketing society, etc. to study their organization and functioning; Application of principles of comparative advantage of international trade.

INTRODUCTORY AGROMETEOROLOGY & CLIMATE CHANGE

Theory

Meaning and scope of agricultural meteorology; Earth atmosphere- its composition, extent and structure; Atmospheric weather variables; Atmospheric pressure, its variation with height; Wind, types of wind, daily and seasonal variation of wind speed, cyclone, anticyclone, land breeze and sea breeze; Nature and properties of solar radiation, solar constant, depletion of solar radiation, short wave, long wave and thermal radiation, net radiation, albedo; Atmospheric temperature, temperature inversion, lapse rate, daily and seasonal variations of temperature, vertical profile of temperature, Energy balance of earth; Atmospheric humidity, concept of saturation, vapor pressure, process of condensation, formation of dew, fog, mist, frost, cloud; Precipitation, process of precipitation, types of precipitation such as rain, snow,

sleet, and hail, cloud formation and classification; Artificial rainmaking. Monsoon- mechanism and importance in Indian agriculture, Weather hazards - drought, floods, frost, tropical cyclones and extreme weather conditions such as heat-wave and cold-wave. Agriculture and weather relations; Modifications of crop microclimate, climatic normals for crop and livestock production. Weather forecasting- types of weather forecast and their uses. Climate change, climatic variability, global warming, causes of climate change and its impact on regional and national Agriculture.

Practical

Visit of Agrometeorological Observatory, site selection of observatory, exposure of instruments and weather data recording. Measurement of total, shortwave and longwave radiation, and its estimation using Planck's intensity law. Measurement of albedo and sunshine duration, computation of Radiation Intensity using BSS. Measurement of maximum and minimum air temperatures, its tabulation, trend and variation analysis. Measurement of soil temperature and computation of soil heat flux. Determination of vapor pressure and relative humidity. Determination of dew point temperature. Measurement of atmospheric pressure and analysis of atmospheric conditions. Measurement of wind speed and wind direction, preparation of wind rose. Measurement, tabulation and analysis of rain. Measurement of open pan evaporation and evapotranspiration. Computation of PET and AET.

BACHELOR OF SCIENCE (HONS.-AGRICULTURE) – FIFTH SEMESTER

ELECTIVE COURSE-AGRONOMY-I

ELECTIVE COURSE-HORTICULTURE-I

ELECTIVE COURSE-PLANT PROTECTION-I

Fifth Se	Fifth Semester			
S. No.	Name of Subject	Credits	Total Marks	
1	Principles of Integrated Pest and Disease Management	3	100	
2	Manures, Fertilizers and Soil Fertility Management	3	100	
3	Pests of Crops and Stored Grain and their Management	3	100	
4	Diseases of Field and Horticultural Crops and Their Management –I	3	100	
5	Crop Improvement-I (Kharif Crops)	2	100	
6	Entrepreneurship Development and Business Communication	2	100	
7	Geoinformatics and Nano-Technology and Precision Farming	2	100	
8	Practical Crop Production – I (Kharif Crops)	2	100	
9	Intellectual Property Rights	1	100	
10	Elective Course (Any One) Elective Course-Agronomy-II Elective Course-Horticulture-II Elective Course-Plant Protection-II	3	100	
Total		24		

PRINCIPLES OF INTEGRATED PEST AND DISEASE MANAGEMENT

Theory

Categories of insect pests and diseases, IPM: Introduction, history, importance, concepts, principles and tools of IPM. Economic importance of insect pests, diseases and pest risk analysis. Methods of detection and diagnosis of insect pest and diseases. Calculation and dynamics of economic injury level and importance of Economic threshold level. Methods of control: Host plant resistance, cultural, mechanical, physical, legislative, biological and chemical control. Ecological management of crop environment. Introduction to conventional

pesticides for the insect pests and disease management. Survey surveillance and forecasting of Insect pest and diseases. Development and validation of IPM module. Implementation and impact of IPM (IPM module for Insect pest and disease. Safety issues in pesticide uses. Political, social and legal implication of IPM. Case histories of important IPM programmes. Case histories of important IPM programmes.

Practical

Methods of diagnosis and detection of various insect pests, and plant diseases, Methods of insect pests and plant disease measurement, Assessment of crop yield losses, calculations based on economics of IPM, Identification of bio control agents, different predators and natural enemies. Mass multiplication of Trichoderma, Pseudomonas, Trichogramma, NPV etc. Identification and nature of damage of important insect pests and diseases and their management. Crop (agroecosystem) dynamics of a selected insect pest and diseases. Plan & assess preventive strategies (IPM module) and decision making. Crop monitoring attacked by insect, pest and diseases. Awareness campaign at farmers fields.

MANURES, FERTILIZERS AND SOIL FERTILITY MANAGEMENT

Theory

Introduction and importance of organic manures, properties and methods of preparation of bulky and concentrated manures. Green/leaf manuring. Fertilizer recommendation approaches. Integrated nutrient management.

Chemical fertilizers: classification, composition and properties of major nitrogenous, phosphatic, potassic fertilizers, secondary & micronutrient fertilizers, Complex fertilizers, nano fertilizers Soil amendments, Fertilizer Storage, Fertilizer Control Order.

History of soil fertility and plant nutrition. Criteria of essentiality. Role, deficiency and toxicity symptoms of essential plant nutrients, Mechanisms of nutrient transport to plants, factors affecting nutrient availability to plants. Chemistry of soil nitrogen, phosphorus, potassium, calcium, magnesium, sulphur and micronutrients. Soil fertility evaluation, Soil testing. Critical levels of different nutrients in soil. Forms of nutrients in soil, plant analysis, and rapid plant tissue tests. Indicator plants. Methods of fertilizer recommendations to crops. Factor influencing nutrient use efficiency (NUE), methods of application under rainfed and irrigated conditions.

Practical

Introduction of analytical instruments and their principles, calibration and applications, Colorimetry and flame photometry. Estimation of soil organic carbon, Estimation of alkaline hydrolysable N in soils. Estimation of soil extractable P in soils. Estimation of exchangeable K; Ca and Mg in soils. Estimation of soil extractable S in soils. Estimation of DTPA extractable Zn in soils. Estimation of N in plants. Estimation of P in plants. Estimation of S in plants.

PESTS OF CROPS AND STORED GRAINS AND THEIR MANAGEMENT

Theory

General account on nature and type of damage by different arthropods pests. Scientific name, order, family, host range, distribution, biology and bionomics, nature of damage, and management of major pests and scientific name, order, family, host range, distribution, nature of damage and control practice other important arthropod pests of various field crop, vegetable crop, fruit crop, plantation crops, ornamental crops, spices and condiments. Factors affecting losses of stored grain and role of physical, biological, mechanical and chemical factors in deterioration of grain. Insect pests, mites, rodents, birds and microorganisms

associated with stored grain and their management. Storage structure and methods of grain storage and fundamental principles of grain store management.

Practical

Identification of different types of damage. Identification and study of life cycle and seasonal history of various insect pests attacking crops and their produce: (a) Field Crops; (b) Vegetable Crops; (c) Fruit Crops; (d) Plantation, gardens, Narcotics, spices & condiments. Identification of insect pests and Mites associated with stored grain. Determination of insect infestation by different methods. Assessment of losses due to insects. Calculations on the doses of insecticides application technique. Fumigation of grain store / godown. Identification of rodents and rodent control operations in godowns. Identification of birds and bird control operations in godowns. Determination of moisture content of grain. Methods of grain sampling under storage condition. Visit to Indian Storage Management and Research Institute, Hapur and Quality Laboratory, Department of Food., Delhi. Visit to nearest FCI godowns.

DISEASES OF FIELD & HORTICULTURAL CROPS & THEIR MANAGEMENT I & II

Theory

Symptoms, etiology, disease cycle and management of major diseases of following crops:

Field Crops: Rice: blast, brown spot, bacterial blight, sheath blight, and tungro; Maize: downy mildew, leaf spots; Sorghum: smuts and anthracnose, Bajra: downy mildew and ergot; Groundnut: early and late leaf spots, wilt Soybean: Rhizoctonia blight, bacterial spot; Pigeonpea: Phytophthora blight, wilt and sterility mosaic; black & green gram: Cercospora leaf spot and anthracnose, Castor: Phytophthora blight; Tobacco: black root rot and mosaic. Wheat: rusts, loose smut, karnal bunt and ear cockle; Sugarcane: red rot, smut, grassy shoot, ratoon stunting; Sunflower: Sclerotinia stem rot and Alternaria blight; Mustard: Alternaria blight, white rust, downy mildew; Lentil: rust and wilt; Cotton: anthracnose, vascular wilt, and black arm; Pea: downy mildew, powdery mildew and rust.

Horticultural Crops: Guava: wilt and anthracnose; Banana: Panama wilt, bacterial wilt, Sigatoka and bunchy top; Papaya: foot rot, leaf curl and mosaic, Cruciferous vegetables: Alternaria leaf spot and black rot; Brinjal: Phomopsis blight and fruit rot and Sclerotinia blight; Tomato: damping off, wilt, early and late blight, buck eye rot and leaf curl and mosaic; Okra: Yellow Vein Mosaic; Beans: anthracnose and bacterial blight; Ginger: soft rot; Colocasia: Phytophthora blight; Coconut: wilt and bud rot; Tea: blister blight; Coffee: rust

Mango: anthracnose, malformation, and powdery mildew; Citrus: canker; Grape vine: downy mildew, Powdery mildew; Apple: scab, powdery mildew, fire blight and crown gall; Peach: leaf curl. Strawberry: leaf spot Potato: early and late blight, black scurf, leaf roll, and mosaic; Cucurbits: downy mildew, powdery mildew, wilt; Onion and garlic: purple blotch, and Stemphylium blight; Chillies: anthracnose and fruit rot, wilt and leaf curl; Turmeric: leaf spot Coriander: stem gall Marigold: Botrytis blight; Rose: dieback, powdery mildew and black leaf spot.

Suggested list of practical's

Identification and histopathological studies of selected diseases of field and horticultural crops covered in theory. Field visit for the diagnosis of field problems. Collection and preservation of plant diseased specimens for Herbarium;

- Cook, A. A. 1981. Diseases of tropical and sub-tropical field fiber and oil plants. Mac Millan Publishing Co. New York.
- 2. Gupta V K and Paul, Y S 2008. IInd ed. Diseases of field crops. Kalyani Publishing Co. ND.

- Mehrotra R S and Aggarwal A. 2012. 12th ed. Plant Pathology, Tata McGraw-Hill Publishing Co Ltd. ND.
- 4. Mishra A, Bohra A and Mishra, A. 2005. Plant Pathology. Agrobios. Jodhpur (India).
- 5. Rangaswamy, G and Mahadevan, A . 2012. 4th ed. Diseases of crop plants in India. Prent
- 6. Singh R S .2007. 8thed. Plant Diseases. Oxford and IBH Publishing Co. Pvt. Ltd. New Delhi
- 7. Gupta ,V. K. 2014. Diseases of Fruit Crops. Kalyani Publishers
- 8. Chaube H.S. Crop Diseases and Their Management. PHI
- 9. Singh R S .2007. Plant Diseases.(9th Ed.) Oxford and IBH Publishing Co.Pvt .Ltd .ND
- 10. Singh, R.P. 2013. Plant Pathology. Kalyani Publishers
- 11. Tripati, D.P. 2009. Crop Diseases, Kalyani Publishers
- Gangawane, L.V. and Khilare, V.C. 2008. Crop diseases identification and management.
 Daya publishing house, New Delhi. ice hall of India Pvt Ltd, New Delhi

CROP IMPROVEMENT - I (KHARIF)

Theory

Centers of origin, distribution of species, wild relatives in different cereals; pulses; oilseeds; fibres; fodders and cash crops; vegetable and horticultural crops; Plant genetic resources, its utilization and conservation, study of genetics of qualitative and quantitative characters; Important concepts of breeding self-pollinated, cross pollinated and vegetative propagated crops; Major breeding objectives and procedures including conventional and modern innovative approaches for development of hybrids and varieties for yield, adaptability, stability, abiotic and biotic stress tolerance and quality (physical, chemical, nutritional); Hybrid seed production technology in Maize, Rice, Sorghum, Pearl millet and Pigeonpea, etc. Ideotype concept and climate resilient crop varieties for future.

Practical

Floral biology, emasculation and hybridization techniques in different crop species; viz., Rice, Jute, Maize, Sorghum, Pearl millet, Ragi, Pigeonpea, Urdbean, Mungbean, Soybean, Groundnut, Seasame, Caster, Cotton, Cowpea, Tobacco, Brinjal, Okra and Cucurbitaceous crops. Maintenance breeding of different kharif crops. Handling of germplasm and segregating populations by different methods like pedigree, bulk and single seed decent methods; Study of field techniques for seed production and hybrid seeds production in Kharif crops; Estimation of heterosis, inbreeding depression and heritability; Layout of field experiments; Study of quality characters, donor parents for different characters; Visit to seed production plots; Visit to AICRP plots of different field crops.

ENTREPRENEURSHIP DEVELOPMENT AND BUSINESS COMMUNICATION

Theory

Concept of Entrepreneur, Entrepreneurship Development, Characteristics of entrepreneurs; SWOT Analysis & achievement motivation, Government policy and programs and institutions for entrepreneurship development, Impact of economic reforms on Agribusiness/ Agrienterprises, Entrepreneurial Development Process; Business Leadership Skills; Developing organizational skill (controlling, supervising, problem solving, monitoring & evaluation), Developing Managerial skills, Business Leadership Skills (Communication, direction and motivation Skills), Problem solving skill, Supply chain management and Total quality management, Project Planning Formulation and report preparation; Financing of enterprise, Opportunities for agri entrepreneurship and rural enterprise.

Suggested list of practical's

Assessing entrepreneurial traits, problem solving skills, managerial skills and achievement motivation, exercise in creativity, time audit through planning, monitoring and supervision, identification and selection of business idea, preparation of business plan and proposal writing, visit to entrepreneurship development institute and entrepreneurs.

Suggested readings

- 1. Balasubramaniyan, A. (1998), Personal management, everest Publishing House, Pune
- 2. Kotler, P. (1997) Marketing management 9th edn. Prentice-Hall of India, New Delhi
- Sivakamasundari, S. (1995) Entrepreneurship development for rural women- Vol-I, Asian and Pacific Centre for Transfer of Technology, New Delhi

GEOINFORMATICS, NANO-TECHNOLOGY AND PRECISION FARMING

Theory

Precision agriculture: concepts and techniques; their issues and concerns for Indian agriculture; Geo-informatics- definition, concepts, tool and techniques; their use in Precision Agriculture. Crop discrimination and Yield monitoring, soil mapping; fertilizer recommendation using geospatial technologies; Spatial data and their management in GIS; Remote sensing concepts and application in agriculture; Image processing and interpretation; Global positioning system (GPS), components and its functions; Introduction to crop Simulation Models and their uses for optimization of Agricultural Inputs; STCR approach for precision agriculture; Nanotechnology, definition, concepts and techniques, brief introduction about nanoscale effects, nano-particles, nano-pesticides, nano-fertilizers, nano-sensors, Use of nanotechnology in seed, water, fertilizer, plant protection for scaling-up farm productivity.

Practical

Introduction GISsoftware, spatialdata creation and editing. Introduction to image processing software. Visual and digital interpretation of remote sensing images. Generation of spectral profiles of different objects. Supervised and unsupervised classification and acreage estimation. Multispectral remote sensing for soil mapping. Creation of thematic layers of soil fertility based on GIS. Creation of productivity and management zones. Fertilizers recommendations based of VRT and STCR techniques. Crop stress (biotic/abiotic) monitoring using geospatial technology. Use of GPS for agricultural survey. Formulation, characterization and applications of nanoparticles in agriculture. Projects formulation and execution related to precision farming.

PRACTICAL CROP PRODUCTION-I (KHARIF CROPS)

Practical

Crop planning, raising field crops in multiple cropping systems: Field preparation, seed, treatment, nursery raising, sowing, nutrient, water and weed management and management of insect-pests diseases of crops, harvesting, threshing, drying winnowing, storage and marketing of produce. The emphasis will be given to seed production, mechanization, resource conservation and integrated nutrient, insect-pest and disease management technologies. Preparation of balance sheet including cost of cultivation, net returns per student as well as per team.

INTELLECTUAL PROPERTY RIGHTS

Theory

Introduction and meaning of intellectual property, brief introduction to GATT, WTO, TRIPs and WIPO, Treaties for IPR protection: Madrid protocol, Berne Convention, Budapest treaty, etc.

Types of Intellectual Property and legislations covering IPR in India:-Patents, Copyrights, Trademark, Industrial design, Geographical indications, Integrated circuits, Trade secrets. Patents Act 1970 and Patent system in India, patentability, process and product patent, filing of patent, patent specification, patent claims, Patent opposition and revocation, infringement, Compulsory licensing, Patent Cooperation Treaty, Patent search and patent database.

Origin and history including a brief introduction to UPOV for protection of plant varieties, Protection of plant varieties under UPOV and PPV&FR Act of India, Plant breeders rights, Registration of plant varieties under PPV&FR Act 2001, breeders, researcher and farmers rights. Traditional knowledge-meaning and rights of TK holders.

Convention on Biological Diversity, International treaty on plant genetic resources for food and agriculture (ITPGRFA). Indian Biological Diversity Act, 2002 and its salient features, access and benefit sharing.

BACHELOR OF SCIENCE (HONS.-AGRICULTURE) - SIXTH SEMESTER

ELECTIVE COURSE-AGRONOMY-II

ELECTIVE COURSE-HORTICULTURE-II

ELECTIVE COURSE-PLANT PROTECTION-II

Sixth Se	Sixth Semester			
S. No.	Name of Subject	Credits	Total Marks	
1	Rainfed Agriculture & Watershed Management	2	100	
2	Protected Cultivation and Secondary Agriculture	2	100	
3	Diseases of Field and Horticultural Crops and Their Management-II	3	100	
4	Post-Harvest Management and Value Addition of Fruits and Vegetables	2	100	
5	Management of Beneficial Insects	2	100	
6	Crop Improvement-II (Rabi Crops)	2	100	
7	Practical Crop Production –II (Rabi Crops)	2	100	
8	Principles of Organic Farming	2	100	
9	Farm Management, Production & Resource Economics	2	100	
10	Principles of Food Science and Nutrition	2	100	
11	Elective Course (Any One) Elective Course-Agronomy-III Elective Course-Horticulture-III Elective Course-Plant Protection-III	3	100	
	Total	24		

RAINFED AGRICULTURE & WATERSHED MANAGEMENT

Theory

Rainfed agriculture: Introduction, types, History of rainfed agriculture and watershed in India; Problems and prospects of rainfed agriculture in India; Soil and climatic conditions prevalent in rainfed areas; Soil and water conservation techniques, Drought: types, effect of water deficit on physio-morphological characteristics of the plants, Crop adaptation and mitigation to drought; Water harvesting: importance, its techniques, Efficient utilization of water through

soil and crop management practices, Management of crops in rainfed areas, Contingent crop planning for aberrant weather conditions, Concept, objective, principles and components of watershed management, factors affecting watershed management.

Practical

Studies on climate classification, studies on rainfall pattern in rainfed areas of the country and pattern of onset and withdrawal of monsoons. Studies on cropping pattern of different rainfed areas in the country and demarcation of rainfed area on map of India. Interpretation of meteorological data and scheduling of supplemental irrigation on the basis of evapotranspiration demand of crops. Critical analysis of rainfall and possible drought period in the country, effective rainfall and its calculation. Studies on cultural practices for mitigating moisture stress. Characterization and delineation of model watershed. Field demonstration on soil & moisture conservation measures. Field demonstration on construction of water harvesting structures. Visit to rainfed research station/watershed.

PROTECTED CULTIVATION AND SECONDARY AGRICULTURE

Theory

Green house technology: Introduction, Types of Green Houses; Plant response to Green house environment, Planning and design of greenhouses, Design criteria of green house for cooling and heating purposes. Green house equipments, materials of construction for traditional and low cost green houses. Irrigation systems used in greenhouses, typical applications, passive solar green house, hot air green house heating systems, green house drying. Cost estimation and economic analysis.

Important Engineering properties such as physical, thermal and aero & hydrodynamic properties of cereals, pulses and oilseed, their application in PHT equipment design and operation. Drying and dehydration; moisture measurement, EMC, drying theory, various drying method, commercial grain dryer (deep bed dryer, flat bed dryer, tray dryer, fluidized bed dryer, circulatory dryer and solar dryer). Material handling equipment; conveyer and elevators, their principle, working and selection.

Practical

Study of different type of greenhouses based on shape. Determine the rate of air exchange in an active summer winter cooling system. Determination of drying rate of agricultural products inside green house. Study of greenhouse equipment. Visit to various Post Harvest Laboratories. Determination of Moisture content of various grains by oven drying & infrared moisture methods. Determination of engineering properties (shape and size, bulk density and porosity of biomaterials). Determination of Moisture content of various grains by moisture meter. Field visit to seed processing plant.

DISEASES OF FIELD AND HORTICULTURAL CROPS AND THEIR MANAGEMENT-II

Theory

Symptoms, etiology, disease cycle and management of following diseases:

Field Crops: Wheat: rusts, loose smut, karnal bunt, powdery mildew, alternaria blight, and ear cockle;

Sugarcane: red rot, smut, wilt, grassy shoot, ratoon stunting and Pokkah Boeng;

Sunflower: Sclerotinia stem rot and Alternaria blight; Mustard: Alternaria blight, white rust, downy mildew and Sclerotinia stem rot; Gram: wilt, grey mould and Ascochyta blight; Lentil: rust and wilt; Cotton: anthracnose, vascular wilt, and black arm; Pea: downy mildew, powdery mildew and rust.

Horticultural Crops:

Mango: anthracnose, malformation, bacterial blight and powdery mildew; Citrus: canker and gummosis; Grape vine: downy mildew, Powdery mildew and anthracnose; Apple: scab, powdery mildew, fire blight and crown gall; Peach: leaf curl.

Strawberry: leaf spot Potato: early and late blight, black scurf, leaf roll, and mosaic;

Cucurbits: downy mildew, powdery mildew, wilt; Onion and garlic: purple blotch, and Stemphylium blight; Chillies: anthracnose and fruit rot, wilt and leaf curl; Turmeric: leaf spot Coriander: stem gall Marigold: Botrytis blight; Rose: dieback, powdery mildew and black leaf spot.

Practical

Identification and histopathological studies of selected diseases of field and horticultural crops covered in theory. Field visit for the diagnosis of field problems. Collection and preservation of plant diseased specimens for herbarium.

POST-HARVEST MANAGEMENT AND VALUE ADDITION OF FRUITS AND VEGETABLES

Theory

Importance of post-harvest processing of fruits and vegetables, extent and possible causes of post-harvest losses; Pre-harvest factors affecting postharvest quality, maturity, ripening and changes occurring during ripening; Respiration and factors affecting respiration rate; Harvesting and field handling; Storage (ZECC, cold storage, CA, MA, and hypobaric); Value addition concept; Principles and methods of preservation; Intermediate moisture food- Jam, jelly, marmalade, preserve, candy – Concepts and Standards; Fermented and non-fermented beverages. Tomato products- Concepts and Standards; Drying/ Dehydration of fruits and vegetables – Concept and methods, osmotic drying. Canning – Concepts and Standards, packaging of products.

Practical

Applications of different types of packaging, containers for shelf life extension. Effect of temperature on shelf life and quality of produce. Demonstration of chilling and freezing injury in vegetables and fruits. Extraction and preservation of pulps and juices. Preparation of jam, jelly, RTS, nectar, squash, osmotically dried products, fruit bar and candy and tomato products, canned products. Quality evaluation of products -- physico-chemical and sensory. Visit to processing unit/industry.

MANAGEMENT OF BENEFICIAL INSECTS

Theory

Importance of beneficial Insects, Beekeeping and pollinators, beebiology, commercial methods of rearing, equipment used, seasonal management, bee enemies and disease. Bee pasturage, bee foraging and communication. Insect pests and diseases of honey bee. Role of pollinators in cross pollinated plants.

Types of silkworm, voltinism and biology of silkworm. Mulberry cultivation, mulberry varieties and methods of harvesting and preservation of leaves. Rearing, mounting and harvesting of cocoons. Pest and diseases of silkworm, management, rearing appliances of mulberry silkworm and methods of disinfection.

Species of lac insect, morphology, biology, and host plant, lac production – seed lac, button lac, shellac, lac- products. Identification of major parasitoids and predators commonly being used in biological control.

Insect orders bearing predators and parasitoids used in pest control and their mass multiplication techniques. Important species of pollinator, weed killers and scavengers with their importance.

Practical

Honey bee species, castes of bees. Beekeeping appliances and seasonal management, bee enemies and disease. Bee pasturage, bee foraging and communication. Types of silkworm, voltinism and biology of silkworm. Mulberry cultivation, mulberry varieties and methods of harvesting and preservation of leaves. Species of lac insect, host plant identification. Identification of other important pollinators, weed killers and scavengers. Visit to research and training institutions devoted to beekeeping, sericulture, lac culture and natural enemies. Identification and techniques for mass multiplication of natural enemies.

CROP IMPROVEMENT-II (RABI CROPS)

Theory

Centers of origin, distribution of species, wild relatives in different cereals; pulses; oilseeds; fodder crops and cash crops; vegetable and horticultural crops; Plant genetic resources, its utilization and conservation; study of genetics of qualitative and quantitative characters; Major breeding objectives and procedures including conventional and modern innovative approaches for development of hybrids and varieties for yield, adaptability, stability, abiotic and biotic stress tolerance and quality (physical, chemical, nutritional); Hybrid seed production technology of rabi crops. Ideotype concept and climate resilient crop varieties for future.

Practical

Floral biology, emasculation and hybridization techniques in different crop species namely Wheat, Oat, Barley, Chickpea, Lentil, Field pea, Rajma, Horse gram, Rapeseed Mustard, Sunflower, Safflower, Potato, Berseem. Sugarcane, Tomato, Chilli, Onion; Handling of germplasm and segregating populations by different methods like pedigree, bulk and single seed decent methods; Study of field techniques for seed production and hybrid seeds production in Rabi crops; Estimation of heterosis, inbreeding depression and heritability; Layout of field experiments; Study of quality characters, study of donor parents for different characters; Visit to seed production plots; Visit to AICRP plots of different field crops

PRACTICAL CROP PRODUCTION -II (RABI CROPS)

Practical

Crop planning, raising field crops in multiple cropping systems: Field preparation, seed, treatment, nursery raising, sowing, nutrient, water and weed management and management of insect-pests diseases of crops, harvesting, threshing, drying winnowing, storage and marketing of produce. The emphasis will be given to seed production, mechanization, resource conservation and integrated nutrient, insect-pest and disease management technologies.

PRINCIPLES OF ORGANIC FARMING

Theory

Organic farming, principles and its scope in India; Initiatives taken by Government (central/state), NGOs and other organizations for promotion of organic agriculture; Organic ecosystem and their concepts; Organic nutrient resources and its fortification; Restrictions to nutrient use in organic farming; Choice of crops and varieties in organic farming; Fundamentals of insect, pest, disease and weed management under organic mode of production; Operational structure of NPOP; Certification process and standards of organic farming; Processing,

leveling, economic considerations and viability, marketing and export potential of organic products.

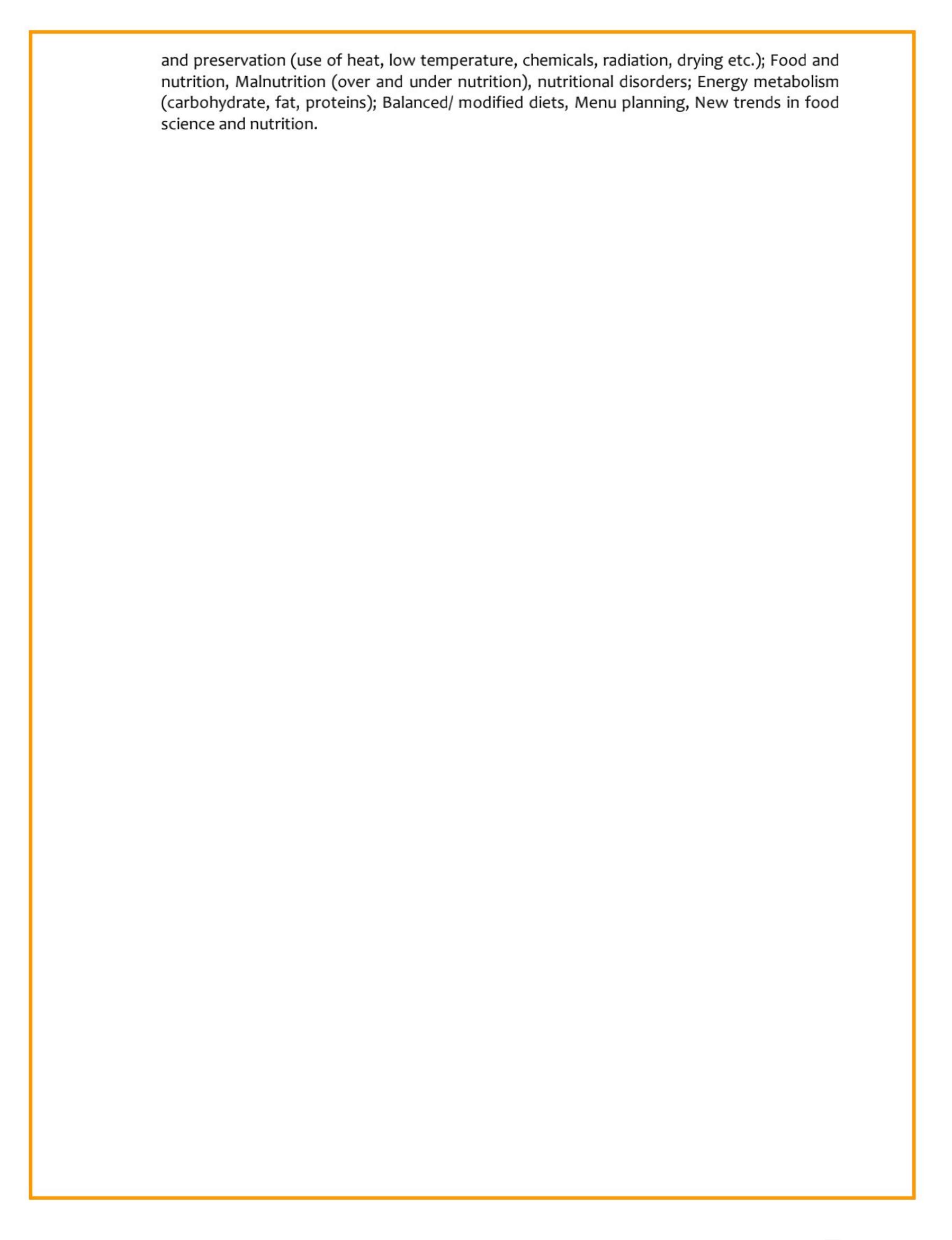
Practical

Visit of organic farms to study the various components and their utilization; Preparation of enrich compost, vermicompost, bio-fertilizers/bio-inoculants and their quality analysis; Indigenous technology knowledge (ITK) for nutrient, insect, pest disease and weed management; Cost of organic production system; Post harvest management; Quality aspect, grading, packaging and handling.

FARM MANAGEMENT, PRODUCTION & RESOURCE ECONOMICS

Theory

Meaning and concept of farm management, objectives and relationship with other sciences. Meaning and definition of farms, its types and characteristics, factor determining types and size of farms. Principles of farm management: concept of production function and its type, use of production function in decision-making on a farm, factor-product, factor-factor and product relationship, law of equi-marginal/orprinciples of opportunity costand law of comparative advantage. Meaning and concept of cost, types of costs and their interrelationship, importance of cost in managing farm business and estimation of gross farm income, net farm income, family labour income and farm business income. Farm business analysis: meaning and concept of farm income and profitability, technical and economic efficiency measures in crop and livestock enterprises. Importance of farm records and accounts in managing a farm, various types of farm records needed to maintain on farm, farm inventory, balance sheet, profit and loss accounts. Meaning and importance of farm planning and budgeting, partial and complete budgeting, steps in farm planning and budgeting-linear programming, appraisal of farm resources, selection of crops and livestock's enterprises. Concept of risk and uncertainty occurs in agriculture production, nature and sources of risks and its management strategies, Crop / livestock / machinery insurance – weather based crop insurance, features, and determinants of compensation. Concepts of resource economics, differences between NRE and agricultural economics, unique properties of natural resources. Positive and negative externalities in agriculture, Inefficiency and welfare loss, solutions, Important issues in economics and management of common property resources of land, water, pasture and forest resources etc.


Practical

Preparation of farm layout. Determination of cost of fencing of a farm. Computation of depreciation cost of farm assets. Application of equi-marginal returns / opportunity cost principle in allocation of farm resources. Determination of most profitable level of inputs use in a farm production process. Determination of least cost combination of inputs. Selection of most profitable enterprise combination. Application of cost principles including CACP concepts in the estimation of cost of crop and livestock enterprises. Preparation of farm plan and budget, farm records and accounts and profit & loss accounts. Collection and analysis of data on various resources in India.

PRINCIPLES OF FOOD SCIENCE AND NUTRITION

Theory

Concepts of Food Science (definitions, measurements, density, phase change, pH, osmosis, surface tension, colloidal systems etc.); Food composition and chemistry (water, carbohydrates, proteins, fats, vitamins, minerals, flavours, colours, miscellaneous bioactives, important reactions); Food microbiology (bacteria, yeast, moulds, spoilage of fresh & processed foods, Production of fermented foods); Principles and methods of food processing

