
Edited by
Rishi Chopra

DECAP448
LINUX and Shell Scripting

Edited By:
Rishi Chopra

user
Typewritten text
LINUX and Shell Scripting

Title: LINUX AND SHELL SCRIPTING

Author’s Name: Dr. Divya

Published By : Lovely Professional University

Publisher Address: Lovely Professional University, Jalandhar Delhi GT road, Phagwara - 144411

Printer Detail: Lovely Professional University

Edition Detail: (I)

ISBN: 978-93-94068-25-4

Copyrights@ Lovely Professional University

CONTENT

Unit 1: 1

Unit 2: 11

Unit 3: 43

Unit 4: 57

Unit 5: 73

Unit 6: 99

Unit 7: 126

Unit 8: 166

Unit 9: 212

Unit 10:

291Unit 11:

Unit 12: 308

Unit 13: 323

Unit 14: 336

242

 Getting Started with Linux

 Installation Guide

 Connecting to Internet

Installing Software

 Utilities

 File Systems

 The Shell and popular Editors

 Programming the Bourne Again Shell

 Linux System Administration

 Web Server Configuration

 File Server Configurati

 Samba Servers

 Network File Systems

Dr. Divya, Lovely Professional University

 The Bourne Again Shell and TC Shell

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Unit 01: Getting Started with Linux

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 01: Getting Started with Linux

CONTENTS

Objectives

Introduction

1.1 The History of UNIX and GNU–Linux

1.2 What is so good about Linux

1.3 Why Linux Is Popular with Hardware Companies and Developers

1.4 Overview of Linux

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions:

Further Readings

Objectives

 After studying this unit, you will be able to

• understand the operating system

• know the history of Linux

• understand the features of Linux

• understand the basic commands of Linux

• understand the shell of Linux

Introduction

 An operating system is the low-level software that schedules tasks, allocates storage, and handles
the interfaces to peripheral hardware, such as printers, disk drives, the screen, keyboard, and
mouse. An operating system has two main parts: the kernel and the system programs.

• The kernel allocates machine resources—including memory, disk space, and CPU cycles—

to all other programs that run on the computer.

• The system programs include device drivers, libraries, utility programs, shells (command

interpreters), configuration scripts and files, application programs, servers, and

documentation.

The Linux kernel was developed by Linus Torvalds. He released Linux version 0.01 in September
1991. The name ‘Linux’ is a combination of Linus and UNIX. The Linux OS, is a product of the
Internet and is a free OS. Linux is free software. “Free software” is a matter of liberty, not price. To
understand the concept, you should think of “free” as in “free speech,” not as in “free beer.” The
UNIX OS is the common ancestor of Linux. A Linux distribution comprises the Linux kernel,
utilities, and application programs. Many distributions are available, including Ubuntu, Fedora,
Red Hat, Mint, OpenSUSE, Mandriva, CentOS, and Debian.

1

Dr. Divya, Lovely Professional University

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

1.1 The History of UNIX and GNU–Linux

The Heritage of Linux: UNIX

The UNIX system was developed by researchers who needed a set of modern computing tools to
help them with their projects. When the UNIX OS became widely available in 1975, Bell Labs
offered it to educational institutions at nominal cost. The schools, colleges, universities and
industries accepted the OS and worked on it.

Linux-BSD

One version is called the Berkeley Software Distribution (BSD) of the UNIX system (or just Berkeley
UNIX).

Fade to 1983

Richard Stallman announced the GNU Project for creating an operating system, both kernel and
system programs. GNU, which stands for Gnu’s Not UNIX, is the name for the complete UNIX-
compatible software system.

Next Scene, 1991

The GNU Project has moved well along toward its goal. Much of the GNU operating system, except
for the kernel, is complete.

The Code is Free

The tradition of free software dates back to the days when UNIX was released to universities at
nominal cost, which contributed to its portability and success. This tradition eventually died as
UNIX was commercialized. Another problem with the commercial versions of UNIX related to their
complexity.

1.2 What is so good about Linux

• Standards

• Applications

• Peripherals

• Software

• Platforms

• Emulators

• Virtual Machines

• Xen

• VMWare

• KVM

• Qemu

• Virtual Box

Standards

In 1985, the POSIX standard was developed, which is based largely on the SVID and other earlier
standardization efforts. These efforts were spurred by the U.S. government, which needed a
standard computing environment to minimize its training and procurement costs.

2

Unit 01: Getting Started with Linux

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Applications

A rich selection of applications is available for Linux—both free and commercial—as well as a wide
variety of tools: graphical, word processing, networking, security, administration, Web server, and
many others.

Peripherals

Linux often supports a peripheral or interface card before any company does. Unfortunately some
types of peripherals—particularly proprietary graphics cards—lag in their support.

Software’s

Also important to users is the amount of software that is available—not just source code but also
prebuilt binaries that are easy to install and ready to run. These programs include more than free
software.

Platforms

Linux is not just for Intel-based platforms: It has been ported to and runs on the PowerPC. Nor is
Linux just for single-processor machines.

Emulators

Linux supports programs, called emulators, that run code intended for other operating systems.

Virtual Machines

A virtual machine appears to the user and to the software running on it as a complete physical
machine. The software that provides the virtualization is called a virtual machine monitors (VMM)
or hypervisor. Each VM can run a different OS from the other VMs.

Xen

Xen, which was created at the University of Cambridge and is now being developed in the open-
source community, is an open-source VMM. Xen introduces minimal performance overhead when
compared with running each of the operating systems natively.

VMWare

VMware, Inc. offers VMware Server, a free, downloadable, proprietary product you can install and
run as an application under Linux. VMware Server enables you to install several VMs, each
running a different OS, including Windows and Linux.

KVM

The Kernel-based Virtual Machine (KVM) is an open-source VM and runs as part of the Linux
kernel.

Qemu

Qemu, is an open-source VMM that runs as a user application with no CPU requirements. It can
run code written for a different CPU than that of the host machine.

3

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Virtual Box

Virtual Box is an open-source VM developed by Sun Microsystems.

1.3 Why Linux Is Popular with Hardware Companies and Developers

Two trends in the computer industry set the stage for the growing popularity of UNIX and Linux.
These are proprietary and generic operating systems.

Proprietary operating systems: A proprietary OS is one that is written and owned by the

manufacturer of the hardware (for example, DEC/Compaq owns VMS). Today’s manufacturers
need a generic OS that they can easily adapt to their machines.

Generic operating systems: Generic OS is written outside of the company manufacturing the

hardware and is sold (UNIX, OS X, Windows) or given (Linux) to the manufacturer. Linux is a
generic OS.

Linux emerged to serve both needs: It is a generic OS that takes advantage of available hardware. A
portable OS is one that can run on many different machines. More than 95% of the Linux OS is
written in the C programming language. Because Linux is portable, it can be adapted (ported) to
different machines and can meet special requirements. The ancestor of Linux is UNIX. The UNIX
OS was written in assembly language. For this reason, the original UNIX OS was not portable. To
make UNIX portable, Thompson developed the B programming language, a machine-independent
language. Dennis Ritchie developed the C programming language by modifying B and, with
Thompson, rewrote UNIX in C in 1973.

1.4 Overview of Linux

Like UNIX, it is also a well-thought-out family of utility programs and a set of tools that allow users
to connect and use these utilities to build systems and applications.

Kernel Programming Interface

The Linux kernel—the heart of the Linux OS—is responsible for allocating the computer’s resources
and scheduling user jobs so each one gets its fair share of system resources. Programs interact with
the kernel through system calls. A programmer can use a single system call to interact with many
kinds of devices. For example, there is one write() system call, rather than many device-specific
ones. It also makes it possible to move programs to new versions of the OS without rewriting them
(provided the new version recognizes the same system calls).

Supports Many Users

Depending on the hardware and the types of tasks the computer performs, a Linux system can
support from 1 to more than 1,000 users, each concurrently running a different set of programs.

4

Unit 01: Getting Started with Linux

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Runs Many Tasks

Linux is a fully protected multitasking OS, allowing each user to run more than one job at a time.
Processes can communicate with one another but remain fully protected from one another, just as
the kernel remains protected from all processes.

Secure Hierarchical File system

The Linux file system provides a structure whereby files are arranged under directories, which are
like folders or boxes. Each directory has a name and can hold other files and directories. Directories,
in turn, are arranged under other directories, and so forth, in a treelike organization.

Linux File System Structure

Standards

The Linux File system Standard (FSSTND) was developed, which has since evolved into the Linux
File system Hierarchy Standard (FHS).

Links

A link allows a given file to be accessed by means of two or more names. The alternative names can
be located in the same directory as the original file or in another directory.

Security

Like most multiuser OSs, Linux allows users to protect their data from access by other users. It also
allows users to share selected data and programs with certain other users by means of a simple but
effective protection scheme.

The Shell

The shell can work as a command interpreter as well as a programming language.

The shell as a command interpreter: In a textual environment, the shell—the command
interpreter—acts as an interface between you and the OS. A number of shells are available for
Linux. The four most popular shells are:

5

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• Bourne Again Shell

• Debian Almquist Shell

• TC Shell

• Z Shell

The shell as a Programming Language: The shell is a high-level programming language. Shell
commands can be arranged in a file for later execution which is known as shell scripts. This
flexibility allows users to perform complex operations with relative ease.

Filename Generation

When you type commands to be processed by the shell, you can construct patterns using characters
that have special meanings to the shell. These characters are called wildcard characters. The
patterns, which are called ambiguous file references, are a kind of shorthand.

Completion

In conjunction with the Readline library, the shell performs command, filename, pathname, and
variable completion.

Device-Independent Input and Output

• Redirection: When you give a command to the Linux OS, you can instruct it to send the
output to any one of several devices or files. This diversion is called output redirection.

• Device independence: In a similar manner, a program’s input, which normally comes from
a keyboard, can be redirected so that it comes from a disk file instead.

Shell Functions

Many shells, including the BASH, support shell functions that the shell holds in memory so it does
not have to read them from the disk each time you execute them.

Job Control

Job control is a shell feature that allows users to work on several jobs at once, switching back and
forth between them as desired.

A Large Collection of Useful Utilities

Linux includes a family of several hundred utility programs, often referred to as commands. These
utilities perform functions that are universally required by users. For example: Sort utility.

Inter process Communication

Linux enables users to establish both pipes and filters on the command line. A pipe sends the
output of one program to another program as input. A filter is a special kind of pipe that processes
a stream of input data to yield a stream of output data.

System Administration

On a Linux system the system administrator is frequently the owner and only user of the system.
This person has many responsibilities. The first responsibility may be to set up the system, install
the software, and possibly edit configuration files.

6

Unit 01: Getting Started with Linux

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Additional Features of Linux

The developers of Linux included features from BSD, System V, and Sun Microsystems’ Solaris, as
well as new features, in their OS.

GUIs: Graphical User Interfaces

X11:

Given a terminal or workstation screen that supports X, a user can interact with the computer
through multiple windows on the screen, display graphical information, or use special-purpose
applications to draw pictures, monitor processes, or preview formatted output. Usually two layers
run on top of X: a desktop manager and a window manager.

Desktop manager: A desktop manager is a picture-oriented user interface that enables you to
interact with system programs by manipulating icons instead of typing the corresponding
commands to a shell.

Window manager: A window manager is a program that runs under the desktop manager and
allows you to open and close windows, run programs, and set up a mouse so it has different effects
depending on how and where you click.

(Inter)Networking Utilities

Linux network support includes many utilities that enable you to access remote systems over a
variety of networks. In addition to sending email to users on other systems, you can access files on
disks mounted on other computers.

Software Development

One of Linux’s most impressive strengths is its rich software development environment. Linux
supports compilers and interpreters for many computer languages.

Utilities

These utilities facilitate you for a large task. There are various utilities like ls, cd, cat, mv, cp, echo
and date.

Summary

• An operating system has two main parts: the kernel and the system programs.

• A Linux distribution comprises the Linux kernel, utilities, and application programs.

• Linux supports programs, called emulators, that run code intended for other operating

systems.

• The software that provides the virtualization is called a virtual machine monitor.

• The Kernel-based Virtual Machine (KVM) is an open-source VM and runs as part of the

Linux kernel.

• A portable OS is one that can run on many different machines.

• The four most popular shells are: Bourne Again Shell, Debian Almquist Shell, TC Shell and

Z Shell.

• Shell commands can be arranged in a file for later execution which are known as shell

scripts.

7

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Keywords

• ls utility: A utility used for listing the contents of a directory.

• mv utility: A utility used for moving the files from one directory to another.

• cd utility: A utility used for changing the directory.

• Operating System: An operating system is the low-level software that schedules tasks,

allocates storage, and handles the interfaces to peripheral hardware, such as printers, disk

drives, the screen, keyboard, and mouse.

• Emulators: Linux supports programs, called emulators, that run code intended for other

operating systems.

• Proprietary OS: It is the one that is written and owned by the manufacturer of the

hardware.

• Generic OS: It is written outside of the company manufacturing the hardware and is sold

or given to the manufacturer.

Self Assessment

1. An operating system is responsible for

A. Scheduling the tasks.

B. Allocation the storage

C. Handling the interfaces for peripherals

D. All of the above

2. An operating system has

A. Kernel

B. System programs

C. Both of the above

D. None of the above

3. Which of these are distributions of Linux?

A. Fedora

B. RedHat

C. CentOS

D. All of the above

4. A Linux distribution comprises of

A. Application programs

B. Utilities

C. Kernel

D. All of the above

5. Which of these shells are available in Linux?

A. TC Shell

B. Z Shell

C. Debian Almquist Shell

D. All of the above

6. Which is the core of operating system?

A. Kernel

B. Commands

C. Shell

D. Script

8

Unit 01: Getting Started with Linux

 LOVELY PROFESSIONAL UNIVERSITY

Notes

7. Which of these utilities is used to show which files and folders are available in the system?

A. ls

B. cat

C. rm

D. All of the above

8. Linux OS supports

A. Multi User

B. Multi Process

C. Multi-tasking

D. All of the above

9. Which of these utilities is used for concatenation of files?

A. ls

B. cat

C. rm

D. echo

10. Which of these utilities is used for displaying the contents of a file?

A. ls

B. cat

C. rm

D. echo

11. Linux is an example of

A. Web browser

B. Word processing software

C. Operating system

D. Photo editor

12. Who founded the Linux Kernel?

A. Richard Stallman

B. Ben Thomas

C. Linus Torvalds

D. None of the above

13. Which of the following OS is not based upon Linux?

A. BSD

B. Redhat

C. Ubuntu

D. CentOS

14. What is available to users in Linux OS?

A. Source code

B. Prebuilt binaries

C. Both source code and prebuilt binaries

D. None of the above

9

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

15. Which of these represents system programs?

A. Libraries

B. Device drivers

C. Servers

D. All of the above

Answers for Self Assessment

1.
D 2. C 3. D 4. D 5. D

6.
A 7. A 8. D 9. B 10. B

11.
C 12. C 13. A 14. C 15. D

Review Questions:

1. What is an operating system? Explain its main parts.

2. What are the features of Linux? Explain.

3. What are proprietary and generic operating systems? Explain why Linux is popular with

hardware companies and developers?

4. What is so good about Linux? Explain about its applications, peripherals, platforms and

standards.

5. What is kernel programming interface? Explain.

6. What are the basic utilities in Linux? Explain.

Further Readings

Mark G Sobell, A Practical Guide to Linux Commands, Editors, and Shell Programming,
Second Edition.

Web Links

https://www.redhat.com/en/topics/linux/what-is-linux

10

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 02: Installation Guide

CONTENTS

Objectives

Introduction:

2.1 Booting sequence:

2.2 Download Linux

2.3 Installation of Linux

2.4 Moving around the Desktop

2.5 Components of Desktop

Summary:

Keywords:

Self Assessment

Answers for Self Assessment

Review Questions:

Further Readings

Objectives

After studying this unit, you will be able to

• Understand the booting process

• Understand the installation process of Linux

• Understand the partitioning of hard drives

• Understand the file system types

• Understand how to log in the system

Introduction: An operating system (OS) is a system software that manages computer

hardware, software resources, and provides common services for computer programs. Booting is a
bootstrapping process that starts operating systems when the user turns on a computer system. A
boot sequence is the set of operations the computer performs when it is switched on that load an
operating system.

2.1 Booting sequence:

The booting sequence follows several steps. These are:

• Turn on the system

• CPU jump to address of BIOS

• BIOS runs POST (Power-On Self-Test)

• Find bootable devices

• Loads and execute boot sector form MBR

• Load OS

11

Dr. Divya, Lovely Professional University

https://en.wikipedia.org/wiki/System_software
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Daemon_(computing)
https://en.wikipedia.org/wiki/Computer_program

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The first and foremost task is to turn on the system. So that the other processes can start. Rest of the
process includes jumping of CPU to the address of CPU, BIOS runs POST, finding of bootable
devices, loads and execute boot sector from MBR and loading of operating system.

BIOS (Basic Input/ Output System)

BIOS refer to the software code run by a computer when first powered on. It identifies your
computer’s hardware, configures it, tests it, and connects it to the operating system for further
instruction. This is called the boot process. The primary function of BIOS is code program
embedded on a chip that recognizes and controls various devices that make up the computer.

MBR(Master Boot Record)

OS is booted from a hard disk, where the Master Boot Record (MBR) contains the primary boot
loader.The MBR is a 512-byte sector, located in the first sector on the disk (sector 1 of cylinder 0,
head 0).After the MBR is loaded into RAM, the BIOS yields control to it.

Boot loader

Boot loader could be more adeptly called the kernel loader. The task at this stage is to load the
Linux kernel.GRUB and LILO are the most popular Linux boot loader.Examples of boot loaders are:

Example: GRUB, LILO, GRUB2WIN, BOOTCAMP, BOOTKEY, NTLDR and Syslinux

GRUB:

GRUB stands for GRand Unified Bootloader.It is an operating system independent boot loader.
It is a multiboot software packet from GNU.It has a flexible command line interface. It has file
system access. It supports multiple executable formats. It supports diskless system.

LILO: LInux Loader

This boot loader does not depend on a specific file system.It can boot from hard-disk and floppy

Task of kernel

The kernel helps in process management, memory management. The device management is also
one of the tasks of kernel.The system calls are also handled by kernel.

12

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Init process

The first thing the kernel does is to execute init program. Init is the root/parent of all processes
executing on Linux. The first processes that init starts is a script /etc/rc.d/rc.sysinit. Based on the
appropriate run-level, scripts are executed to start various processes to run the system and make it
functional. The init process is identified by process id “1”.Init is responsible for starting system
processes as defined in the /etc/inittab file.Upon shutdown, init controls the sequence and processes for

shutdown.

Runlevels

A run-level is a software configuration of the system which allows only a selected group of
processes to exist. Init can be in one of seven run-levels: 0-6.

Runlevel ScriptsDirectory

(RedHat/Fedora

Core)

State

0 /etc/rc.d/rc0.d/ shutdown/halt system

1 /etc/rc.d/rc1.d/ Single user mode

2 /etc/rc.d/rc2.d/
Multiuser with no network services

exported

3 /etc/rc.d/rc3.d/
Default text/console only start. Full

multiuser

4 /etc/rc.d/rc4.d/
Reserved for local use. Also X-windows

(Slackware/BSD)

5 /etc/rc.d/rc5.d/
XDM X-windows GUI mode

(Redhat/System V)

6 /etc/rc.d/rc6.d/ Reboot

s or S Single user/Maintenance mode (Slackware)

M Multiuser mode (Slackware)

2.2 Download Linux

• To install Red Hat, you will need to download the ISO images (CD Images) of the
installation CD-ROMs from http://fedora.redhat.com

• Download the i386 images for 32 Intel Processors, PPC images for Apple Macintosh and
x86_64 for 64-bit AMD Processors.

13

http://fedora.redhat.com/

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Here the installation of Linux distribution is shown under VMWare. It can be installed as an
individual operating system as well. Generally, when we buy a new system, the seller gives us the
Windows operating system by default in that.

2.3 Installation of Linux

New Virtual Machine Wizard:

After the installation of VMWare in the system, the New Virtual Machine Wizard will open. It asks
for the type of configuration you want to go with: typical or custom. The typical configuration is the
recommended one and custom is the configuration with the advanced options. Choose the
appropriate option and go to next step.

Installation of operating system

In this step, the guest operating system will be installed. Here the available options are

• Installer disc

• Installer disc image file (iso)

• Later installation.

14

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

So out of these three options, choose the option depending upon the availability of the operating
system. Here the installation using iso images is shown. The whole operating system is divided into
three iso images.

After selecting the first iso image, choose which guest operating system you want to install. Here
the Linux is chosen for installation on the virtual machine. The version of the operating system will
also be selected here. Once it is done, click on Next to go further.

Write the name of the virtual machine and choose the location where you want to have all of its
files. Once this is done, click on next to go further.

15

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Specify disk capacity

When the name and location is specified, next task is to specify the disk capacity. By default, the
recommended maximum disk size is 8 GB. We can increase or decrease it as per our requirements.
Then it will ask whether you want to store virtual disk as a single file or into multiple files. Choose
the appropriate option and go further.

After this, there are two options. One is to power on this virtual machine and other is to edit virtual
machine settings. If you have done any mistake while setting the machine, then edit those settings.
Otherwise turn on the power machine.

16

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

When you power on the virtual machine, the next screen will be:

When you press the ENTER key, the next screen will be:

17

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Testing the CD Media

If you are using the CD media for the first time, then it is advised to test it before the installation
process. If the same media is used for installation earlier, then it can be skipped.

Running Anaconda

The Anaconda starts running. It is best to install Anaconda for the local user, which does not
require administrator permissions and is the most robust type of installation. However, if you need
to, you can install Anaconda system wide, which does require administrator permissions.

The process starts with the screen “Welcome to Red Hat Linux”. Click on Next for further process.

18

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Language Selection

The next screen is for language selection. Choose the language that you want to use during
installation process. After selection of language, click on next.

Keyboard Configuration

The screen is for choosing of layout type of keyboard that we want to use for the system. After
chosen, click on next.

19

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Mouse Configuration

The screen is for mouse configuration. By default, it will choose the appropriate option. So, it is
advised to go with the recommended settings. Click on next.

Installation Type

Next is to choose the installation type which best meet your needs. The installation type available
are: Personal Desktop, workstation, server and custom. Choose the appropriate option and click on
next.

20

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Disk Partitioning Setup

Partitioning is a means to divide a single hard drive into many logical drives. A partition is a
contiguous set of blocks on a drive that are treated as an independent disk. A partition table is an
index that relates sections of the hard drive to partitions.

The task is now to partition the drive. It can be done in two ways: automatically partition and
manually partition with disk druid. The automatically partition is dependent upon the selected
installation type. The manual partition uses the tool Disk Druid for partitioning. The ppartition
fields are:

• Device: This field displays the partition's device name.

• Start: This field shows the sector on your hard drive where the partition begins.

• End: This field shows the sector on your hard drive where the partition ends.

• Size: This field shows the partition's size (in MB).

• Type: This field shows the partition's type (for example, ext2, ext3, or vfat).

• Mount Point: A mount point is the location within the directory hierarchy at which a
volume exists; the volume is "mounted" at this location. This field indicates where the
partition will be mounted.

The file system types are:

• ext2 — An ext2 filesystem supports standard Unix file types (regular files, directories,
symbolic links, etc). It provides the ability to assign long file names, up to 255 characters.
Versions prior to Red Hat Linux 7.2 used ext2 file systems by default.

• ext3 — The ext3 filesystem is based on the ext2 filesystem and has one main advantage —
journaling. Using a journaling filesystem reduces time spent recovering a filesystem after a
crash as there is no need to fsck the filesystem.

• swap — Swap partitions are used to support virtual memory. In other words, data is
written to a swap partition when there is not enough RAM to store the data your system is
processing.

• vfat — The VFAT filesystem is a Linux filesystem that is compatible with Windows 95/NT
long filenames on the FAT filesystem.

21

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Recommended Partitioning Scheme

• Unless you have a reason for doing otherwise, it is recommended that you create the
following partitions:

• /boot partition – contains kernel images and grub configuration and commands

• / partition

• /var partition

• Any other partition based on application (e.g /usr/local for squid)

• swap partition — swap partitions are used to support virtual memory. In other words,
data is written to a swap partition when there is not enough RAM to store the data your
system is processing. The size of your swap partition should be equal to twice your
computer's RAM.

Here we are going with manual partition in which disk druid tool helps.

22

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Boot Loader Configuration

23

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Change Boot Loader

24

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Network Configuration

Firewall Configuration

25

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Additional Language Support

Time Zone Selection

26

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Set Root Password

Provide Root Password

27

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Personal Desktop Defaults (Packages)

About to Install

28

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Installing Packages

Insert Disc 2

29

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Insert Disc 3

30

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Proper Settings

Boot Diskette Creation

31

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Graphical Interface (X) Configuration

Monitor Configuration

32

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Customize Graphics Configuration

33

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Welcome Screen

Creation of User Account

34

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Enter Credentials

Enter Date and Time

35

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Sound Card

Registration with Red Hat Network

36

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Installation of packages from additional CDs

Finish Setup

37

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Logging in

Home Screen

38

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

2.4 Moving around the Desktop

• GNOME: The default desktop interface of Red Hat Linux 9. GNOME represents a
presentation layer that provides a graphical user interface as well as the focused working
environment, which enables you to access all your work from one place.

• KDE: KDE desktop is included in Rec Hat Linux 9 distribution but not installed by
default.KDE is a desktop environment for an integrated set of cross-platform
applications designed to run on Linux, FreeBSD, Microsoft Windows, Solaris and Mac OS,
designed by the KDE Community.

2.5 Components of Desktop

• Panel: The panel stretches across the bottom of the desktop. By default, it contains the
main menu icon and quick-launch icons for logging out, opening a terminal window, and
other common applications and utilities. The panel is highly configurable. You can add
and remove buttons that launch applications easily.

• Workspace: Workspaces refer to the grouping of windows on your desktop. You can
create multiple workspaces, which act like virtual desktops. Workspaces are meant to
reduce clutter and make the desktop easier to navigate.Workspaces can be used to
organize your work. For example, you could have all your communication windows, such
as e-mail and your chat program, on one workspace, and the work you are doing on a
different workspace. Your music manager could be on a third workspace.

Summary:

• A boot sequence is the set of operations the computer performs when it is switched on that
load an operating system.

• The primary function of BIOS is code program embedded on a chip that recognizes and
controls various devices that make up the computer.

• GRUB and LILO are the most popular Linux boot loader.

• The first thing the kernel does is to execute init program.

• There are four types of installation available in Linux: personal desktop, workstation,
server and custom.

• There are two ways the disk can be partitioned: manually and automatically.

Keywords:

• Booting: It is a bootstrapping process that starts operating systems when the user turns on
a computer system.

• BIOS: It refers to the software code run by a computer when first powered on.

• Partitioning: It is a means to divide a single hard drive into many logical drives.A partition
is a contiguous set of blocks on a drive that are treated as an independent disk.

• Swap: Swap partitions are used to support virtual memory. In other words, data is written
to a swap partition when there is not enough RAM to store the data your system is
processing.

• GNOME: The default desktop interface of Red Hat Linux is GNOME.

• Run-level: A run-level is a software configuration of the system which allows only a
selected group of processes to exist

39

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Self Assessment

1. Which of these executes kernel?
A. MBR

B. BIOS

C. GRUB

D. Init

2. The first thing a Kernel does is __________.
A. Execute GRUB

B. Execute LILO

C. Execute init program

D. None of the above

3. Which of these tasks are handled by Kernel?
A. System Call

B. Process Management

C. Device Management

D. All: System call, process and device management

4. While installation of Red Hat Linux in the system, it asks for __________.
A. Language Selection

B. Keyboard Configuration

C. Mouse Configuration

D. All: Language selection, keyboard and mouse configuration

5. In partition field, i.e., SIZE, the measurement unit is _____
A. TB

B. MB

C. GB

D. KB

6. Which of these defines the runlevels?
A. 0-6

B. 1-7

C. 2-8

D. 3-9

7. Which of these partitions is used to support virtual memory?
A. /

B. /var

C. /boot

D. swap

40

Unit 02: Installation Guide

 LOVELY PROFESSIONAL UNIVERSITY

Notes

8. Which of these is a Red Hat Linux installer?
A. Anaconda

B. GRUB

C. LILO

D. Emulator

9. Which of these programs allows us to partition the disk?
A. Anaconda

B. GRUB

C. Disk Druid

D. Disk Help

10. MBR is executed by ___________ .
A. BIOS

B. GRUB

C. Kernel

D. Init

11. In which mode, it is possible to install and upgrade Red Hat Linux?
A. Graphical

B. Text

C. Both graphical and text

D. None of the above

12. What does BIOS mean?
A. Basic Input/ Output Service

B. Basic Input/ Output System

C. Buffer Input/ Output System

D. Buffer Input/ Output Service

13. MBR is executed by ___________ .
A. BIOS

B. GRUB

C. Kernel

D. Init

14. In which mode, it is possible to install and upgrade Red Hat Linux?
A. Graphical

B. Text

C. Both graphical and text

D. None of the above

15. What type can be installed in Red Hat Linux?

41

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

A. Personal Desktop

B. Server

C. Workstation

D. All: personal desktop, server and workstation

Answers for Self Assessment

1. C 2. C 3. D 4. D 5. B

6. A 7. D 8. A 9. C 10. A

11. C 12. B 13. A 14. C 15. D

Review Questions:

1. What is booting? Explain the booting sequence in detail.

2. What is a kernel? Explain the tasks of a kernel in detail.

3. What is a partition? Write the partition fields. What is the recommended partition scheme?

4. What is a file system? Explain its types in detail.

5. What is a run-level? Explain about the run-level of in it.

Further Readings

Mark G. Sobell, A Practical Guide to Fedora andRed Hat Enterprise Linux, Fifth Edition,
Pearson Education, Inc.

Web Links

https://www.educba.com/install-linux/

https://phoenixnap.com/kb/linux-create-partition

42

https://www.educba.com/install-linux/

Unit 03: Connecting to Internet

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 03: Connecting to Internet

CONDUCT

Objectives

Introduction

3.1 Internet Configuration Wizard

3.2 Connecting to LAN

3.3 Domain Name System

Keywords

Summary

Self Assessment

Answers for Self Assessment

Review Questions:

Further Readings

Objectives

After studying this unit, you will be able to understand

• Understand the Network Interfacing Tool

• Connect to LAN using static and dynamic addresses

• Understand DNS

• Know useful commands for configuration of system for internet

• Understand the internet connectivity in Linux

Introduction

When the installation of operating system is completed on the computer system, the next task we
do is to connect it to the internet. The surfing of websites, playing online games, sending, and
receiving of emails etc. is possible only through internet. For this, first we need to configure our
computer system so that the connection can take place.

3.1 Internet Configuration Wizard

The internet configuration wizard can be opened by following this path: Main Menu | System
Tools | Internet Configuration Wizard. Network interfacing tool is also known as the network
administration tool or network configuration tool.

43

Dr. Divya, Lovely Professional University

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

3.2 Connecting to LAN

A local area network (LAN) is a collection of devices connected in one physical location, such as a
building, office, or home. A LAN can be small or large, ranging from a home network with one user

to an enterprise network with thousands of users and devices in an office or school. A network

device connected to a TCP/IP network has an IP address associated with it, such as 192.168.100.20.
Using the IP address of a machine, other machines on the network can address it uniquely.A LAN
comprises cables, access points, switches, routers, and other components that enable devices to
connect to internal servers, web servers, and other LANs via wide area networks.

Once the network interfacing wizard is opened, then we need to select the device type. The
available options are VPN connection, ethernet connection, ISDN connection, modem connection,
token ring connection, wireless connection and xDSL connection. As we going to connect to LAN,
so for that we need to click on ‘Ethernet connection’, it will create a new ethernet connection. Once
selected, click on forward.

Next it will ask for the selection of Ethernet card. The options are AMD PCnet32 and other ethernet
cards. Click on AMD PCnet32 (eth0) and then click forward.

Next it will ask for configuration of network settings, and these networks are provided by the
means of IP addresses. An IP address is a unique address that identifies a device on the internet or
a local network. IP stands for "Internet Protocol," which is the set of rules governing the format of
data sent via the internet or local network. In essence, IP addresses are the identifier that allows

information to be sent between devices on a network: they contain location information and make devices

44

Unit 03: Connecting to Internet

 LOVELY PROFESSIONAL UNIVERSITY

Notes

accessible for communication. The internet needs a way to differentiate between different computers, routers,

and websites. IP addresses provide a way of doing so and form an essential part of how the internet works.
These are of two types: static IP address and dynamic IP address.

Static IP address: A static IP address is simply an address that doesn't change. Once your device

is assigned a static IP address, that number typically stays the same until the device is
decommissioned or your network architecture changes. Static IP addresses generally are used by
servers or other important equipment. Static IP addresses are assigned by Internet Service
Providers (ISPs). Your ISP may or may not allocate you a static IP address depending on the nature
of your service agreement. We describe your options a little later, but for now assume that a static
IP address adds to the cost of your ISP contract. A static IP address may be IPv4 or IPv6; in this case
the important quality is static. Some day, every bit of networked gear we have might have a unique
static IPv6 address. We're not there yet. For now, we usually use static IPv4 addresses for
permanent addresses.

Dynamic IP address:As the name suggests, dynamic IP addresses are subject to change,
sometimes at a moment's notice. Dynamic addresses are assigned, as needed, by Dynamic Host
Configuration Protocol (DHCP) servers. We use dynamic addresses because IPv4 doesn't provide
enough static IP addresses to go around. So, for example, a hotel probably has a static IP address,
but each individual device within its rooms would have a dynamic IP address. On the internet,
your home or office may be assigned a dynamic IP address by your ISP's DHCP server. Within
your home or business network, the dynamic IP address for your devices -- whether they are
personal computers, Smartphone, streaming media devices, tablet, what have you -- are probably
assigned by your network router. Dynamic IP is the standard used by and for consumer
equipment.

The next step is to select static or dynamic IP address. So when you go further, the next screen will
show this.

Here we need to select the dynamic IP address. Dynamic IP addresses are distributed and managed
via dynamic address allocation protocols. In the case of a machine connected to a LAN using a
dynamic IP address, the address is allocated either using the DHCP or BOOTP. For ISPs that use
PPPoE, the address is allotted by the PPPoE protocol, in which case we need to choose dialup.

45

https://www.kaspersky.com/vpn-secure-connection?icid=rc-vpn&utm_campaign=resource-centert&utm_medium=site&utm_content=vpn
https://www.kaspersky.com/vpn-secure-connection?icid=rc-vpn&utm_campaign=resource-centert&utm_medium=site&utm_content=vpn

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

When everything is done, it will create an Ethernet device.

The network interfacing tool will be opened. It has four tabs:

• Devices Tab: Lists the device connections that we have available on our machine.

• Hardware Tab: Allows us to manage the various network devices on the system, such as
Ethernet cards, internal modems, and wireless cards.

• DNS Tab: Allows us to specify DNS server information.

46

Unit 03: Connecting to Internet

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• Hosts Tab: Allows us to modify the hostname of the machine and add aliases to the same
host.

When you double click on the selected device, the next screen will look like this.

Click on allow all users to enable and disable the device. The next screen is:

Click on OK.

47

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

To activate the internet connection, click on ok.

When this is done, our next task is to modify three files so that the computer system can be
connected to the internet. These files are opened using the editors. For the opening of first file, we
need to write #gedit /etc/syscon fig/network-scripts/ifcfg-eth0 in terminal and then press ENTER.
When this file is opened, it will show

48

Unit 03: Connecting to Internet

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Here at the bottom of it, we need to add some content, i.e.,

Check_link_down()

{

return 1;

}

So, after modification, it will look like

Next we need to open and modify second file: #gedit /etc/sysconfig/networking/devices/ifcfg-
eth0.

49

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Here at the bottom of it, we need to add some content, i.e.,

Check_link_down()

{

return 1;

}

So, after modification, it will look like

Next, we will open the third file: #gedit/etc/sysconfig/networking/profiles/default/ifcfg-eth0

50

Unit 03: Connecting to Internet

 LOVELY PROFESSIONAL UNIVERSITY

Notes

After modification of these three files, we ned to activate the internet.

51

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Once it is activated, we can browse the internet through web browser.

3.3 Domain Name System

• Rather than remember the IP address of the Wrox web site, it is easier for us to remember
www.wrox.com.

• Domain Name System (DNS) servers provide the mapping between human−readable
addresses (such as www.wrox.com) and the IP addresses of the machines acting as the
web servers for the corresponding web service.

• Applications such as web browsers and e−mail clients require the IP address to connect to
a web site or a mail server respectively.

• In order to get this from the human−readable input that we provide them with, they query
a DNS server for the corresponding IP address information.

• Obviously, this also means that the browser and other clients on the machine need to
know the IP address of the DNS server.

• For machines that use DHCP, the information about the DNS server is automatically
available when the machine is configured.

Some useful Commands for connecting to internet:

• #redhat-config-network //to open network configuration manager

• ifconfig // to get information about active network

• ping //used to test the reachability of a host

52

Unit 03: Connecting to Internet

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Keywords

• Network Interfacing Tool is also known as the Network Administration Tool or Network
Configuration Tool.

• A network device connected to a TCP/IP network has an IP address associated with it,
such as 192.168.100.20. Using the IP address of a machine, other machines on the network
can address it uniquely.

• Dynamic IP addresses are distributed and managed via dynamic address allocation
protocols.

• Applications such as web browsers and e−mail clients require the IP address to connect to
a web site or a mail server respectively.

• For machines that use DHCP, the information about the DNS server is automatically
available when the machine is configured.

Summary

• Static address: These are allotted to machines indefinitely and do not change. Typically,
static addresses are allocated to servers.

• Dynamic address: These are allotted to machines for a specific period with no guarantee
that the same address will be available next time the machine connects to the network.

• Devices Tab: This tab lists the device connections that we have available on our machine.

• Hardware Tab: It allows us to manage the various network devices on the system, such as
Ethernet cards, internal modems, and wireless cards.

• DNS Tab: It allows us to specify DNS server information.

• Hosts Tab: It allows us to modify the hostname of the machine and add aliases to the same
host.

• Domain Name System (DNS): It provide the mapping between human−readable
addresses (such as www.wrox.com) and the IP addresses of the machines acting as the
web servers for the corresponding web service.

Self Assessment

1. If we want to make a connection to the LAN, then what kind of device will be chosen?
A. CIPC Connection

B. Ethernet Connection

C. ISDN Connection

D. None of the above

2. What is an internet?
A. A tool to write the text data

B. A network that connects the computer all over the world

C. A tool to convert the word doc to pdf

D. None of the above

3. The IP address can be assigned
A. Statically

B. Dynamically

C. Both statically and dynamically

53

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

D. None of the above

4. What is another name of Network Interfacing Tool?
A. Network Administration Tool

B. Network Configuration Tool

C. Both network administration and configuration tool

D. None of the above

5. For a machine connected to a LAN or ISP using a static IP address, we need to obtain the

network details like
A. IP address

B. Subnet mask

C. Default gateway address

D. All IP address, subnet mask and default gateway address

6. Which of these tabs are available in Network Interfacing Tool?
A. Device tab

B. Hardware tab

C. DNS tab

D. All device, hardware, and DNS tabs

7. In the case of a machine connected to a LAN using a dynamic IP address, the address is

allocated either using ____
A. DHCP

B. BOOTP

C. Either DHCP or BOOTP

D. None of the above

8. In the process of activating the internet, how many files were modified?
A. One

B. Two

C. Three

D. Four

9. Which of these is not a web browser?
A. Windows

B. Google Chrome

C. Mozilla Firefox

D. Microsoft Edge

10. How to open the network configuration manager through command line?
A. redhat-config-network

B. redhat-config-internet

54

Unit 03: Connecting to Internet

 LOVELY PROFESSIONAL UNIVERSITY

Notes

C. redhat-config-mozillabrowser

D. None of the above

11. What is used by browsers to retrieve any published resource on the web?
A. URL

B. VRL

C. LRU

D. None of the above

12. What is the path to enter the Network Administration Wizard?
A. Main Menu | System Tools | Internet Configuration Wizard

B. Main Menu | Systems | Settings

C. Main Menu | System Tools | Web Browsers

D. None of the above

13. What is the format of IP address?

A. x.x

B. x.x.x

C. x.x.x.x

D. None of the above

14. What is required to access internet?
A. Pdf converter

B. Photoshop

C. Web browser

D. None of the above

15. What provides the interfacing between human-readable address and IP address of the

machine?
A. DNS

B. ABC

C. Wrox

D. None of the above

Answers for Self Assessment

1. C 2. B 3. C 4. C 5. D

6. D 7. C 8. C 9. A 10. A

11. A 12. A 13. C 14. C 15. A

55

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Review Questions:

1. Is it necessary to configure the system before the internet connection take place? If yes,

how can we configure it?

2. What is an IP address? Explain the difference between static and dynamic IP address.

3. What is a network interfacing tool? Explain its tabs.

4. What is DNS? Explain.

5. Explain the process of configuring the system for internet connection.

Further Readings

Mark G. Sobell, A Practical Guide to Fedora and Red Hat Enterprise Linux, Fifth
Edition, Pearson Education, Inc.

Web Links

https://www.redhat.com/sysadmin/network-interface-linux

56

Unit 04: Installing Software

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 04: Installing Software

CONTENTS

Objectives

Introduction

4.1 RPM Package Manager

4.2 Adding and Removing Packages

4.3 RPM Command Line Tool

4.4 Querying Packages

4.5 Package Installation in TAR Format

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions:

Further Readings

Objectives

 After studying this unit, you will be able to understand

• Understand RPM

• See the RPM Package Management tool

• Add and remove the packages

• Query the RPM package

• Install package in TAR format

Introduction

RPM stands for Redhat Package Manager. The RPM package manager is an open-source packaging
system distributed under the GNU GPL. It runs on most Linux distributions and makes it easy for
you to install, uninstall, and upgrade the software on your machine. RPM files can be easily
recognized by their .rpm file extension and the 'package' icon that appears in your navigation
window.The RPM package management is shown below.

57

Dr. Divya, Lovely Professional University

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

4.1 RPM Package Manager

Benefits of using RPM: There are few reasons to use RPM.

• Simplicity: RPM is quite simple to use. The interface of RPM is very clear. The packages
and the groups in RPM are very easy to locate. So, this is the remarkable feature of RPM.

• Upgradability: RPM interface is easy to upgrade. If a new package comes, it can be easily
upgraded.

• Manageability: RPM interface is easily manageable. If we want to add or delete some
packages using RPM, then it can be easily done. So, the manageability is one of the
greatest feature of RPM interface.

• Package Queries: The packages are easily queried in RPM. By querying the packages, we
can see which all packages are installed in the computer system.

• Uninstalling: It is very easy to uninstall a package or a group. If we don’t need any
package or its related extra group at some time, then it can be deleted at that time.

• System Verification: System verification can be easily done using RPM.

• Security: The RPM way of installing and installing packages is secure.

Ways to use RPM: RPM can be used in two different, yet complementary ways −

• From the desktop, using the GUI interface,

• From the command line.

The RPM package management (GUI) tool

This tool is a graphical user interface (GUI) designed for the management of package installation
and removal. The GUI allows us to add and remove packages at the click of a mouse.

Starting the RPM Package Management Tool: There are two ways to start RPM.

• Main Menu, select Main Menu | System Settings | Add/Remove Applications.

• $ redhat−config−packages

When you use either of the way, the next moment your screen will look like this. It checks the
system package status.

58

Unit 04: Installing Software

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The package management window shows all the packages and its group. The interface contains:

• Package category

• Package group

• Details link

• Number of packages installed/Out of total number of packages

• Summary of disk space required to install the package

• Update button

• Quit button

59

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Package categories and groups: There are various package categories and groups available.

Standard and extra packages

Each group may have standard packages and extra packages, or just extra packages. Standard
packages are always available when a package group is installed − so you can't add or remove
them explicitly unless the entire group is removed. However, the extra packages are optional so
they can be individually selected for installation or removal at any time.

Package Category Package Groups

Desktop X Window System

GNOME Desktop Environment

KDE Desktop Environment

Applications Editors

Engineering and Scientific

Graphical Internet

Text−based Internet

Office/Productivity

Sound and Video

Authoring and Publishing

Graphics

Games and Entertainment

Servers Server Configuration Tools

Web Server

Mail Server

Windows File Server

DNS Name Server

FTP Server

SQL Database Server

News Server

Network Servers

Development Development Tools

Kernel Development

X Software Development

GNOME Software Development

KDE Software Development

System Administration Tools

System Tools

Printing Support

60

Unit 04: Installing Software

 LOVELY PROFESSIONAL UNIVERSITY

Notes

4.2 Adding and Removing Packages

Installing new software from the package management tool is very simple. When we select any
group using the RPM package management tool interface, it automatically selects the standard
packages (if any) that are needed for the category as well as any dependent packages that it may
have.We can customize the packages to be installed by clicking on the Details button. Once you've
made your selections, click on the Update button on the main window. The package management
tool will then calculate the disk space required for installing packages, as well as any dependencies,
before displaying the following dialog:

61

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Use the required disk for updation of system.

It will start updating the system.

62

Unit 04: Installing Software

 LOVELY PROFESSIONAL UNIVERSITY

Notes

When the update is complete, it will show the updation complete message.

We can also delete the package if some package is no longer required. We just need to uncheck that
package and click on update.

63

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Then the packages will be placed in queue for deletion. Here the 17 packages are queued for
removal. It will also show how much space will be freed after removal of packages. If the packages
are correct for deletion (click on show details for confirmation), click on continue. It will remove the
packages from the system.

64

Unit 04: Installing Software

 LOVELY PROFESSIONAL UNIVERSITY

Notes

When the update is complete. Click on ok.

65

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

4.3 RPM Command Line Tool

Up to now, we've talked about how to install and remove packages using Red Hat's graphical
package management tool. While this tool is simple to use, it's lacking in functionality. For
example:

• It cannot install packages using network, FTP, or HTTP connections.

• It does not show the location the files in a package are installed to.

• It lacks the capability to query for specific packages installed on the system.

• It does not provide full details of the RPM package − such as the vendor, build date,
signature, description, and so on.

• It does not have a function to verify a package. That means it cannot compare information
about files like size, MD5 sum, permissions, type, owner, and group installed from a
package with the same information from the original package.

• It does not show all the packages available in a product. So you won't always know if
you've got the whole thing.

4.4 Querying Packages

RPM keeps a record of all the packages installed on your system in a database. By querying the
database, you obtain a complete list of all the packages that you've installed on your system. Should
you want to, you can then go further and query each individual package for more details about
itself.

The syntax for a basic query is as follows:

• rpm −q [options] <filename>

You have list of files, and you would like to find out which package belongs to these files.The
syntax is:

• rpm –qf<filename>

You have installed an rpm package and want to know the information about the package. The
syntax is:

• rpm –qi <package _name>

66

Unit 04: Installing Software

 LOVELY PROFESSIONAL UNIVERSITY

Notes

You have downloaded a package from the internet and want to know the information of a package
before installing.The syntax is:

• rpm –qip<package_name>

To get the list of available documentation of an installed package.The syntax is:

• rpm –qdf<package_name>

4.5 Package Installation in TAR Format

TAR stands for tape archive.An archive is nothing, but you bundle (put) many files together into a
single file on a single tape or disk.The tar program combines multiple files into a single large file. It
is separate from the compression tool, so it allows you to select which compression tool to use or
whether you even want compression.A tar ball is a (usually compressed) archive of files, similar to

67

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

a Zip file on Windows or a Sit on the Mac. Tar balls come in files that end in .tar, .tar.gz, .tgz, or
something along these lines.

• Structure of the tar command

 [root@localhost /root]# tar [commands and options] filename

• Option for tar
-c Create a new archive.
-t View the contents of an archive.
-x Extract the contents of an archive.
-f Specify the name of the file (or device) in which the archive is located.
-v Be verbose during operations.
-z Use gzip to compress or decompress the file.
-u To upgrade the tar file

To create a tar file

[root@localhostmohit]# tar -cvf filename.tar directory [path of files]

In this example, filename.tar represents the file you are creating and directory/file represents the
directory and file you want to put in the archived file.

Where,

 -c : Create a tar ball.

 -v : Verbose output (show progress).

 -f : Output tar ball archive file name.

 -x : Extract all files from archive.tar.

 -t : Display the contents (file list) of an archive.

To View a Tar Ball

• It Contains (list file inside a tar ball)

• Type the following command:

 tar -tvf/tmp/data.tar ar Ball

To Extract a Tar Ball

Type the following command to extract /tmp/data.tar in a current directory, enter:

 tar -xvf/tmp/data.tar

Summary

• RPM files can be easily recognized by their .rpm file extension and the 'package' icon that
appears in your navigation window.

• There are various benefits of using RPM for package installation and deletion: simplicity,
upgradability, manageability, easy uninstallation, system verification and high security.

• The RPM package management tool contains: the button for package category, package
group, details link, number of packages installed/Out of total number of packages,
summary of disk space required to install the package, update button, and quit button.

• Each group may have standard packages and extra packages, or just extra packages.

• We can customize the packages to be installed by clicking on the Details button. Once
you've made your selections, click on the Update button on the main window.

• RPM keeps a record of all the packages installed on your system in a database.

68

Unit 04: Installing Software

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• The tar program combines multiple files into a single large file. It is separate from the
compression tool, so it allows you to select which compression tool to use or whether you
even want compression.

Keywords

• RPM:The RPM package manager is an open-source packaging system distributed under

the GNU GPL.

• Standard packages: These are always available when a package group is installed − so

you can't add or remove them explicitly unless the entire group is removed.

• Extra packages:These are optional so they can be individually selected for installation or

removal at any time.

• Archive:An archive is nothing, but you bundle (put) many files together into a single file

on a single tape or disk.

• Tar ball: A tar ball is a (usually compressed) archive of files, like a Zip file on Windows or

a Sit on the Mac. Tar balls come in files that end in .tar, .tar.gz, .tgz, or something along

these lines.

Self Assessment

1. TAR stands for
A. Tour Archive

B. Tape Archive

C. Tape Assistance

D. Tour Assistance

2. Under development tools, what can be installed using RPM package management tool?
A. KDE Software development

B. GNOME Software development

C. X Software development

D. All of the above

3. While graphical interface of RPM package management tool can install/remove/update

the packages, but it still lacks which functionality.
A. It cannot install packages using network, FTP, or HTTP connections.

B. It does not show the location the files in a package are installed to.

C. Both above

D. None of the above

4. The RPM package management tool is a ______
A. Graphical interface

B. Textual interface

C. Not an interface

D. None of the above

69

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

5. Using RPM package management tool, we can install
A. Web server

B. Mail server

C. DNS name server

D. All of the above

6. We can which packages are installed/ not installed by clicking on
A. Update button

B. Quit button

C. Details link

D. None of the above

7. Which of these packages are always available when a package group is installed?
A. Standard packages

B. Extra packages

C. Grouped packages

D. None of the above

8. Which of the buttons are available on the tool interface?
A. Update button

B. Quit button

C. Both update and quit buttons

D. None of the above

9. The slash (/) in the interface of RPM package management tool represents:
A. Total number of packages/ Number of packages installed

B. Number of packages installed/ total number of packages

C. Package category/ package group

D. Package group/ package category

10. What is the extension of the RPM file
A. .txt

B. .doc

C. .rpm

D. .pdf

11. How can we start RPM package management tool?
A. $redhat-config-services

B. $redhat-config-packages

C. $redhat-config-management

D. None of the above

12. What are the benefits of using RPM?

70

Unit 04: Installing Software

 LOVELY PROFESSIONAL UNIVERSITY

Notes

A. Package queries

B. System verification

C. Security

D. All of the above

13. With RPM, it is easy to ______ softwares on the computer system.
A. Install

B. Uninstall

C. Upgrade

D. All: install, uninstall and upgrade

14. From ___________________, it is possible to install packages network, FTP or HTTP

connections.
A. Command line

B. Graphical interface

C. Both command line and graphical interface

D. None of the above

15. Which of these commands is used for querying the information about a package after

installation?
A. rpm –qi<filename>

B. rpm –qu<filename>

C. rpm –qr<filename>

D. None of the above

Answers for Self Assessment

1. B 2. D 3. C 4. A 5. D

6. C 7. A 8. C 9. B 10. C

11. B 12. D 13. D 14. A 15. A

Review Questions:

1. What is RPM? Write the ways and benefits of using RPM.

2. What is RPM package management tool? How can we start it? Explain some details about

its interface.

3. How can we add and remove the packages? Explain.

4. What is RPM command line tool? Write its benefits.

5. How can we query a package? Write syntax.

6. Explain the package installation in TAR format. How can we create, view and extract a tar

ball?

71

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Further Readings

Mark G. Sobell, A Practical Guide to Fedora and Red Hat Enterprise Linux, Fifth
Edition, Pearson Education, Inc.

Web Links

https://www.redhat.com/sysadmin/create-rpm-package

72

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 05: Utilities

CONTENTS

Objectives

Introduction

5.1 Common Utilities

5.2 Working With Files

5.3 Four More Utilities

5.4 Compressing and Archiving Files

5.5 Locating Commands

Summary:

Keywords

Self Assessment

Answers for Self Assessment

Review Questions:

Further Readings

Objectives

After studying this unit, you will be able to:

• Understand the basic utilities

• Work with files

• Understand the Pipe

• Understand the compressing and archiving of files

• Understand the locating commands

Introduction

 Command-line utilities are often faster, more powerful, or more complete than their GUI
counterparts. When you work with a command-line interface, you are working with a shell. One of
the important advantages of Linux is that it comes with thousands of utilities that perform
innumerable functions.

• ls

• cat

• rm

• less

• more

5.1 Common Utilities

ls: Lists the Names of Files

The ls utility lists the names of files which are available. ls is a Linux shell command that lists

directory contents of files and directories.

73

Dr. Divya, Lovely Professional University

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

cat: Displays the Text of File

The cat utility displays the contents of a text file. The name of the command is derived from
catenate, which means to join, one after the other.

rm: Deletes a File

The rm (remove) utility deletes a file.

74

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

When you follow rm with the –i option and the name of the file you want to delete, rm displays the
name of the file and then waits for you to respond with y (yes) before it deletes the file. It does not
delete the file if you respond with a string that begins with a character other than y.

75

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

less Is more: Display a Text File One Screen at a Time

It displays a text file one screen at a time. When you want to view a file that is longer than one
screen, you can use either the less utility or the more utility. Each of these utilities pauses after
displaying a screen of text; press the SPACE bar to display the next screen of text. Because these
utilities show one page at a time, they are called pagers. Although less and more are very similar,
they have subtle differences. At the end of the file, for example, less displays an END message and
waits for you to press q before returning you to the shell. In contrast, more returns you directly to
the shell. While using both utilities you can press h to display a Help screen that lists commands
you can use while paging through a file.

76

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

77

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

78

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

5.2 Working With Files

There are various utilities which we can use when we are working with files. These are:

• cp

• mv

• grep

• head

• tail

• sort

• uniq

• diff

• file

cp: Copies a File

The cp (copy) utility makes a copy of a file. This utility can copy any file, including text and
executable program (binary) files. You can use cp to make a backup copy of a file or a copy to
experiment with. The cp command line uses the following syntax to specify source and destination
files: cp source-file destination-file

79

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

cp can destroy a file: if the destination-file exists before you give a cp command, cp overwrites it.
The cp –i (interactive) option prompts you before it overwrites a file.

mv: Changes the Name of a File

The mv (move) utility can rename a file without making a copy of it. The mv command line
specifies an existing file and a new filename using the same syntax as cp: mv existing-filename
new-filename

80

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

grep: Searches for a String

The grep utility searches through one or more files to see whether any contain a specified string of
characters. This utility does not change the file it searches but simply displays each line that
contains the string.

81

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

head: Displays the Beginning of a File

By default, the head utility displays the first ten lines of a file. For example, if you have a file named
months that lists the 12 months of the year in calendar order, one to a line, then head displays Jan
through Oct.

This utility can display any number of lines, so you can use it to look at only the first line of a file, at
a full screen, or even more. To specify the number of lines displayed, include a hyphen followed by
the number of lines you want head to display.

82

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

tail: Displays the End of a File

The tail utility is like head but by default displays the last ten lines of a file. Depending on how you
invoke it, this utility can display fewer or more than ten lines.

sort: Displays a File in Order

The sort utility displays the contents of a file in order by lines; it does not change the original file.

83

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

uniq: Removes Duplicate Lines from a File

The uniq (unique) utility displays a file, skipping adjacent duplicate lines, but does not change the
original file. If a file contains a list of names and has two successive entries for the same person,
uniq skips the duplicate line. If a file is sorted before it is processed by uniq, this utility ensures that
no two lines in the file are the same.

84

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

diff: Compares Two Files

The diff (difference) utility compares two files and displays a list of the differences between them.
This utility does not change either file; it is useful when you want to compare two versions of a
letter or a report or two versions of the source code for a program. The diff utility with the –u
(unified output format) option first displays two lines indicating which of the files you are
comparing will be denoted by a plus sign (+) and which by a minus sign (–).

file: Identifies the Contents of a File

You can use the file utility to learn about the contents of a file without having to open and examine
the file yourself.

| (Pipe): Communicates Between Processes

A process is the execution of a command by Linux. Communication between processes is one of the
hallmarks of both UNIX and Linux. A pipe (written as a vertical bar [|] on the command line and
appearing as a solid or broken vertical line on a keyboard) provides the simplest form of this kind
of communication. Simply put, a pipe takes the output of one utility and sends that output as input
to another utility.

85

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

5.3 Four More Utilities

• echo

• date

• script

• unix2dos

echo: Displays Text

The echo utility copies the characters you type on the command line after echo to the screen. You
can also send messages from shell scripts to the screen.

86

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

date: Displays the Time and Date

The date utility displays the current date and time. You can choose the format and select the
contents of the output of date.

87

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

script: Records a Shell Session

The script utility records all or part of a login session, including your input and the system’s
responses. This utility is useful only from character-based devices. By default, script captures the
session in a file named typescript. To specify a different filename, follow the script command with a
SPACE and the filename

88

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

todos/unix2dos: Converts Linux Files to Windows Format

If you want to share a text file you created on a Linux system with someone on a system running
Windows, you need to convert the file before the person on the other system can read it easily. The
todos (to DOS; part of the tofrodos package) or unix2dos (UNIX to DOS; part of the unix2dos
package) utility converts a Linux text file so it can be read on a Windows system. You can use the
fromdos (from DOS; part of the tofrodos package) or dos2unix (DOS to UNIX; part of the dos2unix
package) utility to convert Windows files so they can be read on a Linux system.

5.4 Compressing and Archiving Files

Large files use a lot of disk space and take longer than smaller files to transfer from one system to
another over a network. If you do not need to look at the contents of a large file often, you may
want to save it on a CD, DVD, or another medium and remove it from the hard disk. If you have a
continuing need for the file, retrieving a copy from another medium may be inconvenient. To
reduce the amount of disk space a file occupies without removing the file, you can compress the file
without losing any of the information it holds. Similarly, a single archive of several files packed into
a larger file is easier to manipulate, upload, download, and email than multiple files. You may
download compressed, archived files from the Internet.

bzip2: Compresses a File

The bzip2 utility compresses a file by analyzing it and recoding it more efficiently. The new version
of the file looks completely different. In fact, because the new file contains many nonprinting
characters, you cannot view it directly. The –v (verbose) option causes bzip2 to report how much it
was able to reduce the size of the file.

89

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The bzip2 utility also renamed the file, appending .bz2 to its name. This naming convention
reminds you that the file is compressed; you would not want to display or print it, for example,
without first decompressing it.

bunzip2 and bzcat: Decompress a File

The bzcat utility displays a file that has been compressed with bzip2. The equivalent of cat for .bz2
files, bzcat decompresses the compressed data and displays the decompressed data. Like cat, bzcat
does not change the source file.

90

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

You can use the bunzip2 utility to restore a file that has been compressed with bzip2.

gzip: Compresses a File

The gzip (GNU zip) utility is older and less efficient than bzip2. Its flags and operation are very
similar to those of bzip2. A file compressed by gzip is marked by a .gz filename extension. Linux
stores manual pages in gzip format to save disk space; likewise, files you download from the
Internet are frequently in gzip format. The gunzip utility to restore a file that has been compressed
with gzip. zcat decompresses the compressed data and displays the decompressed data.

91

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Do not confuse gzip and gunzip with the zip and unzip utilities. These last two are used to pack
and unpack zip archives containing several files compressed into a single file that has been
imported from or is being exported to a system running Windows.

tar: Packs and Unpacks Archives

The tar utility performs many functions. Its name is short for tape archive, as its original function
was to create and read archive and backup tapes. Today it is used to create a single file (called a tar
file, archive, or tarball) from multiple files or directory hierarchies and to extract files from a tar file.

92

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Tar uses the –c (create), –v (verbose), and –f (write to or read from a file) options to create an
archive named all.tar from these files. Each line of output displays the name of the file tar is
appending to the archive it is creating. The tar utility adds overhead when it creates an archive. The
final command uses the –t option to display a table of contents for the archive. You can use bzip2,
compress, or gzip to compress tar files, making them easier to store and handle. Many files you
download from the Internet will already be in one of these formats. Files that have been processed
by tar and compressed by bzip2 frequently have a filename extension of .tar.bz2 or .tbz. Those
processed by tar and gzip have an extension of .tar.gz, .tgz, or .gz, whereas files processed by tar
and compress use .tar.Z as the extension.

5.5 Locating Commands

The where is and locate utilities can help you find a command whose name you have forgotten or
whose location you do not know. When multiple copies of a utility or program are present, which
tells you which copy you will run. The slocate utility searches for files on the local system.

Which and where is: Locate a Utility

When you give Linux a command, the shell searches a list of directories for a program with that
name and runs the first one it finds. This list of directories is called a search path. If you do not
change the search path, the shell searches only a standard set of directories and then stops
searching. However, other directories on the system may also contain useful utilities. The which
utility locates utilities by displaying the full pathname of the file for the utility. The local system
may include several utilities that have the same name. When you type the name of a utility, the
shell searches for the utility in your search path and runs the first one it finds. You can find out
which copy of the utility the shell will run by using which.

The where is utility searches for files related to a utility by looking in standard locations instead of
using your search path.

93

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Where is finds three references to sort: the sort utility file, a sort header file, and the sort man page.

slocate/locate: Searches for a File

The slocate (secure locate) or locate utility searches for files on the local system.

Summary:

• When you log in the system, you work in the home directory.

94

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• When you want to view a file that is longer than one screen, you can use either the less

utility or the more utility.

• If the destination-file exists before you give a cp command, cp overwrites it. The cp –i

(interactive) option prompts you before it overwrites a file.

• If a file contains a list of names and has two successive entries for the same person, uniq

skips the duplicate line.

• The diff utility with the –u (unified output format) option first displays two lines

indicating which of the files you are comparing will be denoted by a plus sign (+) and

which by a minus sign (–).

• You can use the file utility to learn about the contents of a file without having to open and

examine the file yourself.

• By default script captures the session in a file named typescript. To specify a different

filename, follow the script command with a SPACE and the filename

• The todos (to DOS; part of the tofrodos package) or unix2dos (UNIX to DOS; part of the

unix2dos package) utility converts a Linux text file so it can be read on a Windows system.

• Linux stores manual pages in gzip format to save disk space; likewise, files you download

from the Internet are frequently in gzip format.

• The gunzip utility to restore a file that has been compressed with gzip.

• The whereis and slocate utilities can help you find a command whose name you have

forgotten or whose location you do not know.

Keywords

• Directory: A directory is a resource that can hold files. On other operating systems, like

Windows, a directory is referred to as a folder.

• ls: The ls utility lists the names of files which are available.

• cat: The cat utility displays the contents of a text file.

• rm: The rm (remove) utility deletes a file.

• cp:: The cp (copy) utility makes a copy of a file. This utility can copy any file, including

text and executable program (binary) files.

• mv: The mv (move) utility can rename a file without making a copy of it.

• grep: The grep utility searches through one or more files to see whether any contain a

specified string of characters.

• sort: The sort utility displays the contents of a file in order by lines; it does not change the

original file.

• diff: The diff (difference) utility compares two files and displays a list of the differences

between them.

• uniq: The uniq (unique) utility displays a file, skipping adjacent duplicate lines, but does

not change the original file.

• Pipe: A pipe (written as a vertical bar [|] on the command line and appearing as a solid or

broken vertical line on a keyboard) provides the simplest form of this kind of

communication.

• echo: The echo utility copies the characters you type on the command line after echo to the

screen.

• date: The date utility displays the current date and time.

95

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• script: The script utility records all or part of a login session, including your input and the

system’s responses.

• bzip2: The bzip2 utility compresses a file by analyzing it and recoding it more efficiently.

• bzcat: The bzcat utility displays a file that has been compressed with bzip2.

• bunzip2: You can use the bunzip2 utility to restore a file that has been compressed with

bzip2.

• whereis: The whereis utility searches for files related to a utility by looking in standard

locations instead of using your search path.

• slocate: The slocate (secure locate) or locate utility searches for files on the local system.

Self Assessment

1. Which of these utilities is used to convert a Linux text file so that it can be read on a

Windows system?
A. todos

B. dos2unix

C. echo

D. script

2. Which of these utilities records a shell session?
A. echo

B. date

C. script

D. cat

3. Which of these is not used in Linux System?
A. zip

B. bzip2

C. bunzip2

D. zcat

4. Which of these utilities is used to compress a file?
A. bzip2

B. bunzip2

C. gunzip

D. zcat

5. Which of these utilities records a shell session?
A. echo

B. date

C. script

D. cat

6. In less/more, which of these keys should be pressed to display the next screen?

96

Unit 05: Utilities

 LOVELY PROFESSIONAL UNIVERSITY

Notes

A. SPACE

B. ENTER

C. CTRL

D. ALT

7. Which of these utilities removes duplicate lines from a file?
A. grep

B. uniq

C. sort

D. None of the above

8. Which option with rm provides the interactive deletion?

A. -i

B. -a

C. -b

D. -r

9. Which of these utilities are used when you want to view a file that is longer than one

page?
A. more

B. less

C. Both more and less

D. None of the above

10. Which of these utility displays the contents of a text file?
A. ls

B. cat

C. rm

D. All of the above mentioned

11. Which of these utilities displays the names of files that are available?
A. ls

B. cat

C. rm

D. All of the above mentioned

12. Which of these utilities compares two files and display the difference between them?
A. grep

B. uniq

C. diff

D. differ

13. Which symbol is used for representation of a pipe?

97

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

A. #

B. $

C. |

D. &

14. Which of these represents the basic utilities in Linux?
A. ls

B. cat

C. rm

D. All of the above mentioned

15. When you log in a Linux system, you work in _________ directory

A. root

B. home

C. var

D. None of the above

Answers for Self Assessment

1. A 2. C 3. A 4. A 5. C

6. A 7. C 8. A 9. C 10. B

11. A 12. C 13. C 14. D 15. B

Review Questions:

1. What is command line utilities? Give some examples and explain the usage of few basic

utilities.

2. Which basic utility is used to delete a file? How can we make it interactive?

3. What are pager utilities? How these are useful?

4. Which utilities are used to work with files? Explain any five utilities in detail.

5. Explain the use and syntax of echo, date and script utilities.

6. What is compressing and archiving of files? Explain the utilities used for it.

7. Explain what are locating commands?

Further Readings

Mark G. Sobell, A Practical Guide to Fedora and Red Hat Enterprise Linux, Fifth
Edition, Pearson Education

Web Links

https://www.javatpoint.com/linux-commands

98

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 06: File Systems

CONTENTS

Objectives

Introduction

6.1 Obtaining User and System Information

6.2 Communicating with Other Users

6.3 The Filesystem

6.4 Pathnames

6.5 Working with Directories

6.6 Linux Access Permissions

6.7 Access Control Lists

6.8 Links

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to:

• Obtain user and system information

• Communicate with other users

• Understand the filesystem

• Understand the pathnames

• Work with directories

• Understand the access permission

• Understand the Access Control Lists and Links

Introduction

There are some utilities that provide information about who is using the system, what those users
are doing, and how the system is running. To find out who is using the local system, you can
employ one of several utilities that vary in the details they provide and the options they support.

6.1 Obtaining User and System Information

• who

• finger

• w

99

Dr. Divya, Lovely Professional University

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The oldest utility, who, produces a list of users who are logged in on the local system, the device
each person is using, and the time each person logged in. The w and finger utilities show more
detail, such as each user’s full name and the command line each user is running. You can use the
finger utility to retrieve information about users on remote systems if the local system is attached to
a network.

who: Lists Users on the System

The who utility displays a list of users who are logged in on the local system.

The information that who displays is useful when you want to communicate with a user on the
local system.If you need to find out which terminal you are using or what time you logged in, you
can use the command who am i:

finger: Lists Users on the System

You can use finger to display a list of users who are logged in on the local system. In addition to
usernames, finger supplies each user’s full name along with information about which device the
user’s terminal is connected to, how recently the user typed something on the keyboard, when the
user logged in, and available contact information. If the user has logged in over the network, the
name of the remote system is shown as the user’s location.

On systems where security is a concern, the system administrator may disable finger. You can also
use finger to learn more about an individual by specifying a username on the command line.

100

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

You can also use finger to display a user’s username. The finger utility, which is not case sensitive,
can search for information on Helen using her first or last name.

w: Lists Users on the System

The w utility displays a list of the users who are logged in on the local system. The information that
w displays is useful when you want to communicate with someone at your installation.

The first line the w utility displays includes the time of day, the period of time the computer has
been running (in days, hours, and minutes), the number of users logged in, and the load average
(how busy the system is).

6.2 Communicating with Other Users

write: Sends a Message

These are used to exchange messages and files with other users either interactively or through
email. It is enabled as a two-way communication.

The syntax of a write command line is: write username [terminal]. The username is the username of
the user you want to communicate with. The terminal is an optional device name that is useful if
the user is logged in more than once. You can display the usernames and device names of all users
who are logged in on the local system by using who, w, or finger. To establish two-way
communication with another user, you and the other user must each execute write, specifying the
other’s username as the username. The write utility then copies text, line by line, from one
keyboard/display to the other. Sometimes it helps to establish a convention, such as typing o (for

101

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

“over”) when you are ready for the other person to type and typing oo (for “over and out”) when
you are ready to end the conversation. When you want to stop communicating with the other user,
press CONTROL-D at the beginning of a line. Pressing CONTROL-D tells write to quit, displays
EOF (end of file) on the other user’s terminal, and returns you to the shell. The other user must do
the same.

If the Message from banner appears on your screen and obscures something you are working on,
press CONTROL- L or CONTROL- R to refresh the screen and remove the banner. Then you can
clean up, exit from your work, and respond to the person who is writing to you. You have to
remember who is writing to you, however, because the banner will no longer appear on the screen.

mesg: Denies or Accepts Messages

By default, messages to your screen are blocked. Give the following mesg command to allow other
users to send you messages: $ mesg y

If Max had not given this command before Zach tried to send him a message, Zach might have seen
the following message: $ write max

 write: max has messages disabled

You can block messages by entering mesg n. Give the command mesg by itself to display is y (for
“yes, messages are allowed”) or is n (for “no, messages are not allowed”).If you have messages
blocked and you write to another user, write displays the following message because, even if you
are allowed to write to another user, the user will not be able to respond to you:

 $ write max

 write: write: you have write permission turned off.

Email

Email enables you to communicate with users on the local system and, if the installation is part of a
network, with other users on the network. If you are connected to the Internet, you can
communicate electronically with users around the world. Email utilities differ from write in that
email utilities can send a message when the recipient is not logged in. In this case the email is
stored until the recipient reads it. These utilities can also send the same message to more than one
user at a time. Many email programs are available for Linux, including the original character-based
mailx program, Mozilla/Thunderbird, pine, mail through emacs, KMail, and evolution. Another
popular graphical email program is sylpheed. Two programs are available that can make any email
program easier to use and more secure. The procmail program creates and maintains email servers
and mailing lists; preprocesses email by sorting it into appropriate files and directories. The GNU
Privacy Guard encrypts and decrypts email and makes it almost impossible for an unauthorized
person to read.

6.3 The Filesystem

A filesystem is a set of data structures that usually resides on part of a disk and that holds
directories of files. Filesystems store user and system data that are the basis of users’ work on the
system and the system’s existence. A hierarchical structure frequently takes the shape of a pyramid.
One example: a family’s lineage. A couple has a child, who may in turn have several children, each
of whom may have more children. This hierarchical structure is called a family tree.

102

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Like the family tree it resembles, the Linux filesystem is called a tree. It consists of a set of
connected files. This structure allows you to organize files so you can easily find any one. On a
standard Linux system, each user starts with one directory, to which the user can add
subdirectories to any desired level. By creating multiple levels of subdirectories, a user can expand
the structure as needed. Typically each subdirectory is dedicated to a single subject, such as a
person, project, or event. The subject dictates whether a subdirectory should be subdivided further.
For example, a secretary’s subdirectory named correspond.

Example: A secretary’s directories

This directory contains three subdirectories: business, memos, and personal. The business directory
contains files that store each letter the secretary types.

Strength of Linux File System

One major strength of the Linux filesystem is its ability to adapt to users’ needs. You can take
advantage of this strength by strategically organizing your files so they are most convenient and
useful for you.

103

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Directory Files and Ordinary Files

Like a family tree, the tree representing the filesystem is usually pictured upside down, with its
root at the top. The tree “grows” downward from the root, with paths connecting the root to each of
the other files. At the end of each path is either an ordinary file or a directory file. Ordinary files, or
simply files, appear at the ends of paths that cannot support other paths. Directory files, also
referred to as directories or folders, are the points that other paths can branch off from. When you
refer to the tree, up is toward the root and down is away from the root. Directories directly
connected by a path are called parents (closer to the root) and children (farther from the root).A
pathname is a series of names that trace a path along branches from one file to another.

Filenames

Every file has a filename. The maximum length of a filename varies with the type of filesystem;
Linux supports several types of filesystems. Although most of today’s filesystems allow files with
names up to 255 characters long, some filesystems restrict filenames to fewer characters. Choose
characters from the following list:

• Uppercase letters (A–Z)

• Lowercase letters (a–z)

• Numbers (0–9)

• Underscore (_)

• Period (.)

• Comma (,)

Like the children of one parent, no two files in the same directory can have the same name. Files in
different directories, like the children of different parents, can have the same name. The filenames
you choose should mean something. Too often a directory is filled with important files with such
unhelpful names as hold1, wombat, and junk, not to mention foo and foobar. Such names are poor
choices because they do not help you recall what you stored in a file. The following filenames
conform to the suggested syntax and convey information about the contents of the file:

• Correspond

• January

• Davis

• Reports

• 2001

• acct_payable

104

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

If you keep the filenames short, they are easy to type. The disadvantage of short filenames is that
they are typically less descriptive than long filenames. Long filenames enable you to assign
descriptive names to files. To help you select among files without typing entire filenames, shells
support filename completion. You can use uppercase and/or lowercase letters within filenames,
but be careful: Many filesystems are case sensitive. For example, the popular ext family of
filesystems and the UFS filesystem are case sensitive, so files named JANUARY, January, and
January refer to three distinct files. The FAT family of filesystems (used mostly for removable
media) is not case sensitive, so those three filenames represent the same file. The HFS+ filesystem,
which is the default OS X filesystem, is case preserving but not case sensitive. Although you can
use SPACEs within filenames, it is a poor idea. Because a SPACE is a special character, you must
quote it on a command line. Use periods or underscores instead of SPACEs: joe.05.04.26, new_stuff.

 $ lpr my\ file

 $ lpr "my file"

Filename Extensions

A filename extension is the part of the filename following an embedded period. The filename
extensions help describe the contents of the file.

Filename with Extension Meaning of Extension

compute.c A C programming language source file

compute.o The object code file of compute.c

compute The executable file of compute.c

memo-0410.txt A text file

memo.pdf A PDF file, view with xpdf or kpdf

memo.ps A PostScript file, view with gs or kpdf

memo.z A file compressed wih compress; use uncompress or
gunzip to decompress

Memo.tgz or memo.tar.gz A tar archive of files compressed with gzip

Memo.gz A file compressed with gzip, view with zcat or
decompress with gunzip

Memo.bz2 A file compressed with bzip2; view with bzcat or
decompress with bunzip2

Memo.html A file meant to be viewed using a Web browser,
such as firefox

105

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

.gif, .jpg, .jpeg, .bmp, .tif or .tiff A file containing graphical information, such as
picture

Hidden Filenames

A filename that begins with a period is called a hidden filename because ls does not normally
display it. The command ls –a displays all filenames, even hidden ones. Names of startup files
usually begin with a period so that they are hidden and do not clutter a directory listing.The .plan
file is also hidden. Two special hidden entries—a single and double period (. and ..)—appear in
every directory.

The Working Directory

While you are logged in on a Linux system, you are always associated with a directory. The
directory you are associated with is called the working directory or current directory. Sometimes
this association is referred to in a physical sense: “You are in (or working in) the zach directory.”
The pwd (print working directory) shell builtin displays the pathname of the working directory.

Your Home Directory

When you first log in, the working directory is your home directory. To display the pathname of
your home directory, use pwd just after you log in. Linux home directories are typically located in
/home. When used without any arguments, the ls utility displays a list of the files in the working
directory. All the files you have created up to this point were created in your home directory.

Startup Files

Startup files, which appear in your home directory, give the shell and other programs information
about you and your preferences. Because the startup files have hidden filenames, you must use the
ls –a command to see whether one is in your home directory.

6.4 Pathnames

Every file has a pathname, which is a trail from a directory through part of the directory hierarchy
to an ordinary file or a directory. Within a pathname, a slash (/) to the right of a filename indicates
that the file is a directory file. The file following the slash can be an ordinary file or a directory file.

• Absolute Pathnames

• Relative Pathnames

Absolute Pathnames

The root directory of the filesystem hierarchy does not have a name. It is referred to as the root
directory. It is represented by a / (slash) standing alone or at the left end of a pathname. An
absolute pathname starts with a slash (/), which represents the root directory. The slash is followed
by the name of a file located in the root directory. An absolute pathname continues, tracing a path
through all intermediate directories, to the file identified by the pathname. String all the filenames
in the path together, following each directory with a slash (/). This string of filenames is called an
absolute pathname because it locates a file absolutely by tracing a path from the root directory to
the file. Using an absolute pathname, you can list or otherwise work with any file on the local
system, regardless of the working directory at the time you give the command. For example, Sam
can give the following command while working in his home directory to list the files in the
/usr/bin directory:

$ pwd

/home/sam

106

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

$ ls /usr/bin

7z kwin

7za kwin_killer_helper

822-date kwin_rules_dialog

Relative Pathnames

A relative pathname traces a path from the working directory to a file. The pathname is relative to
the working directory. Any pathname that does not begin with the root directory (represented by
/) or a tilde (~) is a relative pathname. Like absolute pathnames, relative pathnames can trace a
path through many directories. The simplest relative pathname is a simple filename, which
identifies a file in the working directory.

Significance of the Working Directory

To access any file in the working directory, you need only a simple filename. To access a file in
another directory, you must use a pathname. Typing a long pathname is tedious and increases the
chance of making a mistake. This possibility is less likely under a GUI, where you click filenames or
icons. You can choose a working directory for any task to reduce the need for long pathnames.

6.5 Working with Directories

• how to create directories (mkdir),

107

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• switch between directories (cd),

• remove directories (rmdir)

• mv, cp: Move or Copy Files

• mv: Moves a Directory

mkdir: Creates a Directory

The mkdir utility creates a directory. The argument to mkdir becomes the pathname of the new
directory.

He uses a relative pathname (a simple filename) because he wants the literature directory to be a
child of the working directory. Max could have used an absolute pathname to create the same
directory: mkdir /home/max/literature or mkdir ~max/literature.There are two ways to create the
promo directory as a child of the newly created literature directory.

The first way checks that /home/max is the working directory and uses a relative pathname:

$ pwd

/home/max

$ mkdir literature/promo

The second way uses an absolute pathname:

$ mkdir /home/max/literature/promo

cd: Changes to Another Working Directory

The cd (change directory) utility makes another directory the working directory but does not
change the contents of the working directory.

108

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The working directory versus your home directory

The working directory is not the same as your home directory. Your home directory remains the
same for the duration of your session and usually from session to session. Immediately after you
log in, you are always working in the same directory: your home directory. Unlike your home
directory, the working directory can change as often as you like. You have no set working
directory, which explains why some people refer to it as the current directory. When you log in and
until you change directories using cd, your home directory is the working directory.

The . and .. Directory Entries

The mkdir utility automatically puts two entries in each directory it creates: a single period (.) and a
double period (..). The . is synonymous with the pathname of the working directory and can be
used in its place; the .. Is synonymous with the pathname of the parent of the working directory.
These entries are hidden because their filenames begin with a period.

rmdir: Deletes a Directory

The rmdir (remove directory) utility deletes a directory. You cannot delete the working directory or
a directory that contains files other than the . and .. entries. If you need to delete a directory that has
files in it, first use rm to delete the files and then delete the directory. You do not have to (nor can
you) delete the . and .. entries; rmdir removes them automatically. The following command deletes
the promo directory: $ rmdir /home/max/literature/promo

The rm utility has a –r option (rm –r filename) that recursively deletes files, including directories,
within a directory and also deletes the directory itself.

Although rm –r is a handy command, you must use it carefully. Do not use it with an ambiguous
file reference such as *. It is shockingly easy to wipe out your entire home directory with a single
short command.

mv, cp: Move or Copy Files

You can use this utility to move files from one directory to another (change the pathname of a file)
as well as to change a simple filename. When used to move one or more files to a new directory, the
mv command has this syntax: mv existing-file-list directory.

If the working directory is /home/max, Max can use the following command to move the files
names and temp from the working directory to the literature directory:$ mv names temp literature.

This command changes the absolute pathnames of the names and temp files from
/home/max/names and /home/max/temp to /home/max/literature/names and
/home/max/literature/temp, respectively. Like most Linux commands, mv accepts either absolute
or relative pathnames. The cp utility works in the same way as mv does, except that it makes copies
of the existing-file-list in the specified directory.

109

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

mv: Moves a Directory

Just as it moves ordinary files from one directory to another, so mv can move directories. The
syntax is similar except that you specify one or more directories, not ordinary files, to move:mv
existing-directory-list new-directory

If new-directory does not exist, the existing-directory-list must contain just one directory name,
which mv changes to new-directory (mv renames the directory). Although you can rename
directories using mv, you cannot copy their contents with cp unless you use the –r (recursive)
option.

A typical FHS-based Linux filesystem structure

Important Standard Directories and Files

/ Root: The root directory, present in all Linux filesystem structures,
is the ancestor of all files in the filesystem.

/bin Essential command binaries Holds the files needed to bring the
system up and run it when it first comes up in single-user or
recovery mode.

/boot Static files of the boot loader Contains all files needed to boot the
system.

/dev Device files Contains all files that represent peripheral devices,
such as disk drives, terminals, and printers

/etc Machine–local system configuration files Holds administrative,
configuration, and other system files. One of the most important is
/etc/passwd, which contains a list of all users who have
permission to use the system.

/etc/opt Configuration files for add-on software packages kept in /opt

/etc/X11 Machine–local configuration files for the X Window System

110

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

/home User home directories

/lib Shared libraries

/lib/modules Loadable kernel modules

/mnt Mount point for temporarily mounting filesystems

/opt Add-on (optional) software packages

/proc Kernel and process information virtual filesystem

/root Home directory for the root account

/sbin Essential system binaries Utilities used for system administration
are stored in /sbin and /usr/sbin. The /sbin directory includes
utilities needed during the booting process, and /usr/sbin holds
utilities used after the system is up and running.

/sys Device pseudofilesystem

/tmp Temporary Files

/usr/games Games and educational programs

/usr/include Header files used by C programs

/usr/lib Libraries

/usr/local Local hierarchy Holds locally important files and directories that
are added to the system. Subdirectories can include bin, games,
include, lib, sbin, share, and src.

/usr/sbin Nonvital system administration binaries See /sbin.

/usr/share Architecture-independent data Subdirectories can include dict, doc,
games, info, locale, man, misc, terminfo, and zoneinfo.

/usr/share/doc Documentation

/usr/share/info GNU info system’s primary directory

111

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

6.6 Linux Access Permissions

Linux supports two methods of controlling who can access a file and how they can access it:

1) Traditional Linux access permissions

2) Access Control Lists (ACLs).

Three types of users can access a file:

1) The owner of the file (owner),

2) A member of a group that the file is associated with (group),

3) Everyone else (other).

Ways to Access an Ordinary File:

• A user can attempt to access an ordinary file in three ways:

1) Read from

2) Write to

3) Execute it.

Access Permissions

• ls –l: Displays Permissions

• chmod: Changes Access Permissions

• Setuid and Setgid Permissions

• Directory Access Permissions

ls –l: Displays Permissions:

When you call ls with the –l option and the name of one or more ordinary files, ls displays a line of
information about the file.

 /usr/share/man Online manuals

/usr/src Source code

/var Variable data Files with contents that vary as the system runs are

kept in subdirectories under /var. The most common examples
are temporary files, system log

files, spooled files, and user mailbox files.

/var/log Log files Contains lastlog (a record of the last login by each user),
messages (system messages from syslogd), and wtmp (a record of
all logins/logouts), among other log

files.

/var/spool Spooled application data Contains anacron, at, cron, lpd, mail,

mqueue, samba, and other directories.

112

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

From left to right, the lines that an ls –l command displays contain: The type of file (first character),
the file’s access permissions (the next nine characters), the ACL flag (present if the file has an ACL),
the number of links to the file, the name of the owner of the file (usually the person who created the
file), the name of the group the file is associated with, the size of the file in characters (bytes), the
date and time the file was created or last modified, the name of the file and the type of file is a
hyphen (–) because it is an ordinary file.

Character Meaning

- Ordinary

b Block Device

c Character Device

d Directory

p FIFO (names Pipe)

l Symbolic link

The next three characters specify the access permissions for the owner of the file.

• R indicates read permission,

• w indicates write permission,

113

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• x indicates execute permission.

A – in one of the positions indicates that the owner does not have the permission associated with
that position. In a similar manner the next three characters represent permissions for the group. The
final three characters represent permissions for other (everyone else).Although execute permission
can be allowed for any file, it does not make sense to assign execute permission to a file that
contains a document, such as a letter.

chmod: Changes Access Permissions

The Linux file access permission scheme lets you give other users access to the files you want to
share yet keep your private files confidential.

• You can allow other users to read from and write to a file.

• You can also allow others only to read from a file.

• Or you can allow others only to write to a file.

A user with root privileges can access any file on the system. Anyone who can gain root privileges
has full access to all files, regardless of the file’s owner or access permissions. The owner of a file
controls which users have permission to access the file and how those users can access it. When you
own a file, you can use the chmod (change mode) utility to change access permissions for that file.
You can specify symbolic (relative) or numeric (absolute) arguments to chmod.

Symbolic Arguments to chmod

114

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

When using chmod, many people assume that the o stands for owner; it does not. The o stands for
other, whereas u stands for owner (user).UGO (user-group-other)

Numeric Arguments to chmod

You can also use numeric arguments to specify permissions with chmod. In place of the letters and
symbols specifying permissions used, here numeric arguments comprise three octal digits. The first
digit specifies permissions for the owner, the second for the group, and the third for other users. A
1 gives the specified user(s) execute permission, 2 gives write permission, and 4 gives read
permission. Construct the digit representing the permissions for the owner, group, or others by
ORing (adding) the appropriate values.

115

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Setuid and Setgid Permissions

When you execute a file that has setuid (set user ID) permission, the process executing the file takes
on the privileges of the file’s owner. For example, if you run a setuid program that removes all files
in a directory, you can remove files in any of the file owner’s directories, even if you do not
normally have permission to do so. In a similar manner, setgid (set group ID) permission gives the
process executing the file the privileges of the group the file is associated with.

Directory Access Permissions

Access permissions have slightly different meanings when they are used with directories. Although
the three types of users can read from or write to a directory, the directory cannot be executed.
Execute permission is redefined for a directory: It means that you can cd into the directory and/or
examine files that you have permission to read from in the directory. It has nothing to do with
executing a file. When you have only execute permission for a directory, you can use ls to list a file
in the directory if you know its name. You cannot use ls without an argument to list the entire
contents of the directory.

116

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The d at the left end of the line that ls displays indicates that Linux is a directory. The person has
read, write, and execute permissions; members of the group also have read, write and execute
permissions; and other users have only read and execute permissions.

6.7 Access Control Lists

The ACLs provide finer-grained control over which users can access specific directories and files
than do traditional Linux permissions. Using ACLs you can specify the ways in which each of
several users can access a directory or file.

Reduced Performance

Because ACLs can reduce performance, do not enable them on filesystems that hold system files,
where the traditional Linux permissions are sufficient. Also be careful when moving, copying, or
archiving files: Not all utilities preserve ACLs. In addition, you cannot copy ACLs to filesystems
that do not support ACLs.

Rules

An ACL comprises a set of rules. Rule: It specifies how a specific user or group can access the file
that the ACL is associated with. There are two kinds of rules: access rules and default rules.

• Access rule: It specifies access information for a single file or directory.

• Default ACL: It pertains to a directory only; it specifies default access information (an
ACL) for any file in the directory that is not given an explicit ACL.

Most utilities do not preserve ACLs

• cp utility: When used with the –p (preserve) or –a (archive) option, cp preserves ACLs
when it copies files.

• mv utility: It also preserves ACLs.

• Other utilities, such as tar, cpio, and dump, do not support ACLs.

Enabling ACLs

Before you can use ACLs you must install the acl software package. Linux officially supports ACLs
on ext2, ext3, and ext4 filesystems only, although informal support for ACLs is available on other
filesystems. To use ACLs on an ext filesystem, you must mount the device with the acl option. For
example, if you want to mount the device represented by /home so you can use ACLs on files in
/home, you can add acl to its options list in /etc/fstab:

 $ grep home /etc/fstab

 LABEL=/home /home ext3 defaults,acl 1 2

After changing fstab, you need to remount /home before you can use ACLs.

117

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The first three lines of the getfacl output comprise the header; they specify the name of the file, the
owner of the file, and the group the file is associated with. In the line that starts with user, the two
colons (::) with no name between them indicate that the line specifies the permissions for the owner
of the file. Similarly, the two colons in the group line indicate that the line specifies permissions for
the group the file is associated with. The two colons following other are there for consistency: No
name can be associated with other.

118

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Setting up ACL :

1) To add permission for user

setfacl -m "u:user:permissions" /path/to/file

2) To add permissions for a group

setfacl -m "g:group:permissions" /path/to/file

3) To allow all files or directories to inherit ACL entries from the directory it is within

setfacl -dm "entry" /path/to/dir

4) To remove a specific entry

setfacl -x "entry" /path/to/file

5) To remove all entries

setfacl -b path/to/file

Modifying ACL using setfacl:

To add permissions for a user (user is either the user name or ID): # setfacl -m

"u:user:permissions". To add permissions for a group (group is either the group name or ID): #

setfacl -m "g:group:permissions". To allow all files or directories to inherit ACL entries from the
directory it is within: # setfacl -dm "entry".

View ACL :

To show permissions : # getfacl filename

Remove ACL :

If you want to remove the set ACL permissions, use setfacl command with -b option.

Setting Default Rules for a Directory

The setfacl command uses the –d (default) option to add two default rules to the ACL for dir. These
rules apply to all files in the dir directory that do not have explicit ACLs.

119

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

6.8 Links

A link is a pointer to a file. Every time you create a file by using vim, touch, cp, or any other means,
you are putting a pointer in a directory. This pointer associates a filename with a place on the disk.
When you specify a filename in a command, you are indirectly pointing to the place on the disk
that holds the information you want.

Using links to cross-classify files

120

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Using links

Sharing files can be useful when two or more people are working on the same project and need to
share some information. You can make it easy for other users to access one of your files by creating
additional links to the file. To share a file with another user, first give the user permission to read
from and write to the file. You may also have to change the access permissions of the parent
directory of the file to give the user read, write, or execute permission. Once the permissions are
appropriately set, the user can create a link to the file so that each of you can access the file from
your separate directory hierarchies. A link can also be useful to a single user with a large directory
hierarchy. You can create links to cross-classify files in your directory hierarchy, using different
classifications for different tasks.

Hard Links

A hard link to a file appears as another file. If the file appears in the same directory as the linked-to
file, the links must have different filenames because two files in the same directory cannot have the
same name. You can create a hard link to a file only from within the filesystem that holds the file. A
hard link is a direct link to the data on disk. This means data can be accessed directly via an original
filename or a hard link. Both the original file and the hard link are direct links to the data on disk.
The use of a hard link allows multiple filenames to be associated with the same data on disk.

Soft Links

These are also known as symbolic links or symlink. It refers to a symbolic path indicating the
abstract location of another file. A symbolic link (also sometimes known as a soft link) does not link
directly to the data on disk but to another link to the data on disk. On most operating systems
folders may only be linked using a symlink. Symbolic links can link across file systems to link a
folder on an external hard drive.

Hard link vs. Soft link in Linux

Hard links cannot link directories and cross file system boundaries. Soft or symbolic links are just
like hard links. It allows to associate multiple filenames with a single file. However, symbolic links
allows: to create links between directories and can cross file system boundaries. These links behave
differently when the source of the link is moved or removed. Symbolic links are not updated. Hard
links always refer to the source, even if moved or removed.

Summary

• The oldest utility, who, produces a list of users who are logged in on the local system, the
device each person is using, and the time each person logged in. The w and finger utilities
show more detail, such as each user’s full name and the command line each user is
running.

• On systems where security is a concern, the system administrator may disable finger.

• Email enables you to communicate with users on the local system and, if the installation is
part of a network, with other users on the network. If you are connected to the Internet,
you can communicate electronically with users around the world.

• The popular graphical email program is sylpheed in Linux.

• On a standard Linux system, each user starts with one directory, to which the user can add
subdirectories to any desired level.

• One major strength of the Linux filesystem is its ability to adapt to users’ needs.

• When you refer to the tree, up is toward the root and down is away from the root.

• If you keep the filenames short, they are easy to type. The disadvantage of short filenames
is that they are typically less descriptive than long filenames.

121

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Keywords

• Finger: This utility is used to retrieve information about users on remote systems if the
local system is attached to a network.

• Filesystem: A filesystem is a set of data structures that usually resides on part of a disk and
that holds directories of files.

• Ordinary files: These are simply files, appear at the ends of paths that cannot support
other paths.

• Directory files: These are also referred to as directories or folders, are the points that other
paths can branch off from.

• Pathname: A pathname is a series of names that trace a path along branches from one file
to another.

• Startup files: These appear in your home directory, give the shell and other programs
information about you and your preferences.

• Cd utility: The cd (change directory) utility makes another directory the working directory
but does not change the contents of the working directory.

Self Assessment

1. Which of these utilities is used to change to another working directory?
A. mkdir

B. cd

C. mv

D. None of the above

2. Any pathname that does not begin with _ is a relative pathname.
A. /

B. ~

C. Either / or ~

D. None of the above

3. When you refer to the tree, _____ is towards the root and ____ is away from the root.
A. up, down

B. down, up

C. left, right

D. right, left

4. Which of these files appear at the ends of paths that cannot support other paths?
A. Directory files

B. Ordinary files

C. Base files

D. None of the above

5. Which of these builtin is used to display the pathname of the working directory?
A. pwd

B. work

C. path

122

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

D. None of the above

6. With a slash (/), we represent
A. Home directory

B. Root directory

C. Path directory

D. None of the above

7. Which of these utilities is used for communication when the recipient is not logged in?
A. echo

B. email

C. cat

D. None of the above

8. The utility who produces the

A. List of users who are logged in on the local system

B. Device each person is using

C. The time each person is logged in

D. All of the above mentioned

9. On those systems, where security is concern, the system administrator can disable

A. echo

B. finger

C. ls

D. None of the above

10. Which of these is used for establishing and ending the conversation?

A. o

B. oo

C. Both of the above

D. None of the above

11. Which of these utilities preserve ACLs?
A. cp

B. mv

C. Both cp and mv

D. None of the above

12. Which of these links exists in Linux?

A. Hard links

B. Soft links

C. Water links

123

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

D. Any of these

13. Which of these files are the points that other paths can branch off from?
A. Directory files

B. Ordinary files

C. Base files

D. None of the above

14. Which of these builtin is used to display the pathname of the working directory?
A. pwd

B. work

C. path

D. None of the above

15. Which of these files appear at the ends of paths that cannot support other paths?
A. Directory files

B. Ordinary files

C. Base files

D. None of the above

Answers for Self Assessment

1. B 2. C 3. A 4. B 5. A

6. B 7. B 8. D 9. B 10. C

11. C 12. C 13. A 14. A 15. B

Review Questions

1. Which utilities can be used to obtain system and user information? Explain.

2. How can we communicate with other users in Linux?

3. What is a filesystem? Write the strengths of linux filesystem.

4. What are directory files and ordinary files? Explain their differences with examples.

5. What is a pathname? Write its types.

6. What is a working directory? Explain its significance. Write the utilities which are used to

work with directories.

7. What are access permissions? Explain in detail.

8. What is an access control lists? Write its features. How can we set up ACLs?

9. What is a link? Explain the difference between hard links and soft links.

124

Unit 06: File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Further Readings

Mark G. Sobell, A Practical Guide to Fedora and Red Hat Enterprise Linux, Fifth
Edition, Pearson Education, Inc.

Web Links

https://www.redhat.com/sysadmin/linux-access-control-lists

https://www.geeksforgeeks.org/soft-hard-links-unixlinux/

125

https://www.redhat.com/sysadmin/linux-access-control-lists

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 07: The Shell and popular Editors

CONTENTS

Objectives

Introduction

7.1 The Shell

7.2 Standard Input and Standard Output

7.3 Redirection

7.4 Pipes

7.5 Filters

7.6 Running a Command in the Background

7.7 Filename Generation/Pathname Expansion

7.8 Builtins

7.9 vim

7.10 Modes in vim

7.11 Introduction to vim Features

7.12 Command Mode

7.13 Input Mode

7.14 Emacs

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions:

Further Readings

Objectives

After studying this unit, you will be able to:

• Understand the Command Line

• Understand the Standard Input and Standard Output

• Understand about filename generation and pathname extension

• Understand about builtins

• Know how to use and features of vim

• Understand the command mode and input mode

• Know the difference between emacs and vim

• Understand the functionalities and basic editing commands in emacs

Introduction

The important component of any computer system is an operating system. An operating system is
the software that directly manages a system’s hardware and resources, like CPU, memory,
and storage. The OS sits between applications and hardware and makes the connections between

126

Dr. Divya, Lovely Professional University

https://www.redhat.com/en/technologies/linux-platforms/old-enterprise-linux
https://www.redhat.com/en/topics/data-storage/software-defined-storage

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

all your software and the physical resources that do the work.Think about an OS like a car engine.
An engine can run on its own, but it becomes a functional car when it’s connected with a
transmission, axles, and wheels. Without the engine running properly, the rest of the car won’t
work. An Operating system is made of many components, but its two prime components are –
kernel and shell.

A Kernel is at the nucleus of a computer. It makes the communication between the hardware and
software possible. While the Kernel is the innermost part of an operating system, a shell is the
outermost one. It is the base component of the OS. Without it, the OS doesn’t work. The kernel
manages the system’s resources and communicates with the hardware. It’s responsible for memory,
process, and file management.A shell in a Linux operating system takes input from you in the form
of commands, processes it, and then gives an output. It is the interface through which a user works
on the programs, commands, and scripts. A shell is accessed by a terminal which runs it. When you
run the terminal, the Shell issues a command prompt (usually $), where you can type your input,
which is then executed when you hit the Enter key. The output or the result is thereafter displayed
on the terminal. The Shell wraps around the delicate interior of an OS protecting it from accidental
damage. Hence the name Shell.

7.1 The Shell

A Shell provides you with an interface to the Unix system. It gathers input from you and executes
programs based on that input. When a program finish executing, it displays that program's
output.Shell is an environment in which we can run our commands, programs, and shell scripts.
There are different flavors of a shell, just as there are different flavors of operating systems. Each
flavor of shell has its own set of recognized commands and functions. You can cause the shell to
execute various types of programs—such as shell scripts, application programs, and programs
you have written—in the same way. The line that contains the command, including any
arguments, is called the command line.The syntax for a basic command line is

 command [arg1] [arg2] ... [argn] RETURN

The prompt, $, which is called the command prompt, is issued by the shell. While the prompt is
displayed, you can type a command.Shell reads your input after you press Enter

Rules for commands

There are some rules for writing the commands. These are:

127

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• One or more SPACEs must separate elements on the command line.

• The command is the name of the command, arg1 through argn are arguments, and
RETURN is the keystroke that terminates all command lines.

• The brackets in the command-line syntax indicate that the arguments they enclose are
optional.

• Not all commands require arguments.

Command Name

Some useful Linux command lines consist of only the name of the command without any
arguments. Commands that require arguments typically give a short error message, called a usage
message.

Arguments

On the command line each sequence of nonblank characters is called a token or word. An argument
is a token, such as a filename, string of text, number, or other object that a command acts on. For
example, the argument to a vim or emacs command is the name of the file you want to edit.The
following command line shows cp copying the file named temp to temp copy: $ cp temp temp
copy. Arguments are numbered starting with the command itself, which is argument zero. cp
arument-0, temp argument-1 and temp copy argument-2.The cp utility requires at least two
arguments on the command line.

Options

An option is an argument that modifies the effects of a command.You can frequently specify more
than one option, modifying the command in several different ways.Most utilities require you to
prefix options with a single hyphen. However, this requirement is specific to the utility and not the
shell. GNU program options are frequently preceded by two hyphens in a row. For example, ––
help generates a (sometimes extensive) usage message.

Combining options

When you need to use several options, you can usually group multiple single-letter options into
one argument that starts with a single hyphen; do not put SPACEs between the options. You cannot
combine options that are preceded by two hyphens in this way. Specific rules for combining
options depend on the program you are running.

128

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Option arguments

Some utilities have options that themselves require arguments. For example, the gcc utility has a –o
option that must be followed by the name you want to give the executable file that gcc generates.
Typically, an argument to an option is separated from its option letter by a SPACE.

Arguments that start with a hyphen

Another convention allows utilities to work with arguments, such as filenames, that start with a
hyphen. If a file’s name is –l, the following command is ambiguous:

 $ ls -l

This command could mean you want ls to display a long listing of all files in the working directory
or a listing of the file named –l..

Processing the Command Line

As you enter a command line, the Linux tty device driver (part of the Linux kernel) examines each
character to see whether it must take immediate action.

Key Result

CONTROL-H To erase a character

CONTROL-U To kill a line

CONTROL-W To erase a word

When the character you entered does not require immediate action, the device driver stores the
character in a buffer and waits for additional characters. When you press RETURN, the device
driver passes the command line to the shell for processing.

129

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Parsing the command line

When the shell processes a command line, it looks at the line as a whole and parses (breaks) it into
its component parts. Next, the shell looks for the name of the command. Usually, the name of the
command is the first item on the command line after the prompt (argument zero).The shell
typically takes the first characters on the command line up to the first blank (TAB or SPACE) and
then looks for a command with that name. The command name (the first token) can be specified on
the command line either as a simple filename or as a pathname. For example, you can call the ls
command in either of the following ways:

 $ ls

 $ /bin/ls

Executing the Command Line

If it finds an executable file with the same name as the command, the shell starts a new process. A
process is the execution of a command by Linux. The shell makes each command-line argument,
including options and the name of the command, available to the called program. While the
command is executing, the shell waits for the process to finish. At this point the shell is in an
inactive state called sleep. When the program finishes execution, it passes its exit status to the shell.
The shell then returns to an active state (wakes up), issues a prompt, and waits for another
command.

Editing the Command Line

You can repeat and edit previous commands and edit the current command line.

7.2 Standard Input and Standard Output

Standard output is a place a program can send information, such as text. The program never
“knows” where the information it sends to standard output is going. The information can go to a
printer, an ordinary file, or the screen. By default, the shell directs standard output from a
command to the screen.

130

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Standard input is a place that a program gets information from. As with standard output the
program never “knows” where the information comes from. In addition to standard input and
standard output, a running program normally has a place to send error messages: standard error.

The Screen as a File

Linux have an additional type of file: a device file. A device file resides in the Linux file structure,
usually in the /dev directory, and represents a peripheral device, such as a screen and keyboard,
printer, or disk drive. The device name that the who utility displays after your username is the
filename of the screen and keyboard.

The Keyboard and Screen as Standard Input and Standard Output

When you first log in, the shell directs standard output of your commands to the device file that
represents the screen. Directing output in this manner causes it to appear on the screen.

cat utility

The cat utility provides a good example of the way the keyboard and screen function as standard
input and standard output, respectively. When you use cat, it copies a file to standard output.
Because the shell directs standard output to the screen, cat displays the file on the screen. Up to this
point cat has taken its input from the filename (argument) you specify on the command line.

131

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

When you do not give cat any argument (that is, when you give the command cat followed
immediately by RETURN), cat takes its input from standard input. Thus, when called without an
argument, cat copies standard input to standard output, one line at a time.

Because the shell associate cat’s standard input with the keyboard and cat’s standard output with
the screen, when you type a line of text cat copies the text from standard input (the keyboard) to
standard output (the screen).The cat utility keeps copying text until you enter CONTROL-D on a
line by itself. Pressing CONTROL-D sends an EOF (end of file) signal to cat to indicate that it has
reached the end of standard input and there is no more text for it to copy. The cat utility then
finishes execution and returns control to the shell, which displays a prompt.

7.3 Redirection

The term redirection encompasses the various ways you can cause the shell to alter where standard
input of a command comes from and where standard output goes to.By default, the shell associates’
standard input and standard output of a command with the keyboard and the screen.You can cause
the shell to redirect standard input or standard output of any command by associating the input or
output with a command or file other than the device file representing the keyboard and the screen.

Redirecting Standard Output

The redirect output symbol (>) instructs the shell to redirect the output of a command to the
specified file instead of to the screen.

132

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The format of a command line that redirects output is command [arguments] > filename

where command is any executable program (such as an application program or a utility),
arguments are optional arguments, and filename is the name of the ordinary file the shell redirects
the output to.

133

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The redirect output symbol on the command line causes the shell to associate cat’s standard output
with the redirectoutput.txt file specified on the command line.Redirecting standard output from cat
is a handy way to create a file without using an editor.The drawback is that once you enter a line
and press RETURN, you cannot edit the text. While you are entering a line, the erase and kill keys
work to delete text. This procedure is useful for creating short, simple files.The cat is used and the
redirect output symbol to catenate (join one after the other—the derivation of the name of the cat
utility) several files into one larger file.

Redirecting Standard Input

The redirect input symbol (<) instructs the shell to redirect a command’s input to come from the
specified file instead of from the keyboard.

The format of a command line that redirects input is: command [arguments] < filename

134

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

where command is any executable program (such as an application program or a utility),
arguments are optional arguments, and filename is the name of the ordinary file the shell redirects
the input from.

noclobber: Avoids Overwriting Files

The shell provides the noclobber feature that prevents overwriting a file using redirection.Under
bash you can enable this feature by setting noclobber using the command set –onoclobber. The
same command with +o unsets noclobber. Under tcsh use set noclobber and unset noclobber.With
noclobber set, if you redirect output to an existing file, the shell displays an error message and does
not execute the command.

135

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Appending Standard Output to a File

The append output symbol (>>) causes the shell to add new information to the end of a file, leaving
existing information intact. This symbol provides a convenient way of catenating two files into one.

/dev/null: Making Data Disappear

The /dev/null device is a data sink, commonly referred to as a bit bucket. You can redirect output
that you do not want to keep or see to /dev/null and the output will disappear without a trace.

136

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

7.4 Pipes

The shell uses a pipe to connect standard output of one command to standard input of another
command. A pipe (sometimes referred to as a pipeline) has the same effect as redirecting standard
output of one command to a file and then using that file as standard input to another command.
The symbol for a pipe is a vertical bar (|).The syntax of a command line using a pipe is

 command_a [arguments] | command_b [arguments]

The preceding command line uses a pipe on a single command line to generate the same result as
the following three command lines:

 command_a [arguments] > temp

 command_b [arguments] < temp

 rm temp

7.5 Filters

A filter is a command that processes an input stream of data to produce an output stream of data. A
command line that includes a filter uses a pipe to connect standard output of one command to the
filter’s standard input. Another pipe connects the filter’s standard output to standard input of
another command. Not all utilities can be used as filters. In this example, sort is a filter, taking
standard input from standard output of who and using a pipe to redirect standard output to
standard input of lpr. This command line sends the sorted output of who to the printer:$ who | sort
| lpr

tee: Sends Output in Two Directions

The tee utility copies its standard input both to a file and to standard output. This utility is aptly
named: It takes a single stream of input and sends the output in two directions.

137

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The output of who is sent via a pipe to standard input of tee. The tee utility saves a copy of
standard input in a file named who outand sends a copy to standard output. Standard output of tee
goes via a pipe to standard input of grep, which displays only those lines containing the string sam.

7.6 Running a Command in the Background

All commands up to this point have been run in the foreground. When you run a command in the
foreground, the shell waits for it to finish before displaying another prompt and allowing you to
continue. When you run a command in the background, you do not have to wait for the command
to finish before running another command. A job is a series of one or more commands that can be
connected by pipes. You can have only one foreground job in a window or on a screen, but you can
have many background jobs. Multitasking is the running of more than one job at a time.

To run a job in the background, type an ampersand (&) just before the RETURN that ends the
command line. The shell assigns a small number to the job and displays this job number between
brackets. Following the job number, the shell displays the process identification (PID) number—a
larger number assigned by the operating system. Each of these numbers identifies the job running
in the background. The shell then displays another prompt, and you can enter another command.
When the background job finishes, the shell displays a message giving both the job number and the
command line used to run the command. This command runs in the background; it sends the
output of ls through a pipe to lpr, which sends it to the printer.

 $ ls -l | lpr&

 [1] 22092

 $

The [1] following the command line indicates that the shell has assigned job number 1 to this job.
The 22092 is the PID number of the first command in the job. When this background job completes
execution, the shell displays the message[1]+ Done ls -l | lp

Moving a Job from the Foreground to the Background

You can suspend a foreground job (stop it from running without aborting the job) by pressing the
suspend key, usually CONTROL-Z. The shell then stops the process and disconnects standard
input from the keyboard. You can put a suspended job in the background and restart it by using the
bg command followed by the job number. You do not need to specify the job number when there is
only one stopped job. Only the foreground job can take input from the keyboard.

To connect the keyboard to a program running in the background, you must bring it to the
foreground. To do so, type fg without any arguments when only one job is in the background.
When more than one job is in the background, type fg, or a percent sign (%), followed by the
number of the job you want to bring into the foreground. The shell displays the command you used
to start the job (promptme in the following example), and you can enter any input the program
requires to continue:

 bash $ fg 1

 promptme

138

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

kill: Aborting a Background Job

The interrupt key (usually CONTROL-C) cannot abort a background process; you must use kill for
this purpose. Follow kill on the command line with either the PID number of the process you want
to abort or a percent sign (%) followed by the job number. If you forget a PID number, you can use
the ps (process status) utility to display it. The following example runs a tail –f outfile command as
a background job, uses ps to display the PID number of the process, and aborts the job with kill:

 $ tail -f outfile&

 [1] 18228

 $ ps | grep tail

 18228 pts/4 00:00:00 tail

 $ kill 18228

 [1]+ Terminated tail -f outfile

 $

If you forget a job number, you can use the jobs command to display a list of job numbers. The next
example is like the previous one except it uses the job number instead of the PID number to identify
the job to be killed. Sometimes the message saying the job is terminated does not appear until you
press RETURN after the RETURN that executes the kill command.

$ tail -f outfile&

 [1] 18236

 $ bigjob&

 [2] 18237

 $ jobs

 [1]- Running tail -f outfile&

 [2]+ Running bigjob&

 $ kill %1

 $ RETURN

 [1]- Terminated tail -f outfile

 $

7.7 Filename Generation/Pathname Expansion

When you give the shell abbreviated filenames that contain special characters, also called
metacharacters, the shell can generate filenames that match the names of existing files. These
special characters are also referred to as wildcards because they act much as the jokers do in a deck
of cards. When one of these characters appears in an argument on the command line, the shell
expands that argument in sorted order into a list of filenames and passes the list to the program
called by the command line. Filenames that contain these special characters are called ambiguous
file references because they do not refer to any one specific file. The process that the shell performs
on these filenames is called pathname expansion or globing.

Ambiguous file references refer to a group of files with similar names quickly, saving the effort of
typing the names individually. They can also help find a file whose name you do not remember in
its entirety. If no filename matches the ambiguous file reference, the shell generally passes the
unexpanded reference—special characters and all—to the program.

The ? Special Character

The question mark (?) is a special character that causes the shell to generate filenames. It matches
any single character in the name of an existing file. The following command uses this special
character in an argument to the lpr utility: $ lprmemo?.

139

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The shell expands the memo? argument and generates a list of files in the working directory that
have names composed of memo followed by any single character. The shell then passes this list to
lpr. The lpr utility never “knows” the shell generated the filenames it was called with. If no
filename matches the ambiguous file reference, the shell passes the string itself (memo?) to lpr or, if
it is set up to do so, passes a null string. The following example uses ls first to display the names of
all files in the working directory and then to display the filenames that memo? matches:

 $ ls

 mem memo12 memo9 memomax newmemo5

 memo memo5 memoa memos

$ ls memo?

 memo5 memo9 memoa memos

The memo? ambiguous file reference does not match mem, memo, memo12, memomax, or
newmemo5. You can also use a question mark in the middle of an ambiguous file reference:

 $ ls

 7may4report may4report mayqreportmay_report

 may14report may4report.79 mayreportmay.report

$ ls may?report

 may.report may4report may_reportmayqreport

The * Special Character

The asterisk (*) performs a function like that of the question mark but matches any number of
characters, including zero characters, in a filename.

$ ls

amemo memo.0612 memosally memsam user.memo mem memoa memosam.0620
sallymemo memo memorandum memosam.keep typescript

$ echo memo*

memo memo.0612 memoa memorandum memosally memosam.0620 memosam.keep

$ echo *mo

amemo memo sallymemouser.memo

$ echo *sam*

memosam.0620 memosam.keepmemsam

The ambiguous file reference memo* does not match amemo, mem, sallymemo, or user.memo. Like
the question mark, an asterisk does not match a leading period in a filename.The –a option causes ls
to display hidden filenames. The command echo * does not display . (the working directory), .. (the
parent of the working directory), .aaa, or .profile. In contrast, the command echo .* displays only
those four names:

$ ls

aaamemo.sally sally.0612 thurs

memo.0612 report saturday

140

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

$ ls -a

. .aaaaaamemo.sally sally.0612 thurs

.. .profile memo.0612 report saturday

$ echo *

aaa memo.0612 memo.sally report sally.0612 saturdaythurs

$ echo .*

. .. .aaa .profile

In the following example, .p* does not match memo.0612, private, reminder, or report. The ls .*
command causes ls to list .private and .profile in addition to the contents of the . directory (the
working directory) and the .. directory (the parent of the working directory). When called with the
same argument, echo displays the names of files (including directories) in the working directory
that begin with a dot (.), but not the contents of directories.

$ ls -a

. .private memo.0612 reminder

.. .profile private report

$ echo .p*

.private .profile

$ ls .*

.private .profile

.:

memo.0612 private reminder report

..:

.

.

$ echo .*

. .. .private .profile

You can plan to take advantage of ambiguous file references when you establish conventions for
naming files. For example, when you end all text filenames with .txt, you can reference that group
of files with *.txt.The next command uses this convention to send all text files in the working
directory to the printer.The ampersand (&) causes lpr to run in the background.

 $ lpr *.txt &

The [] Special Characters

A pair of brackets surrounding a list of characters causes the shell to match filenames containing
the individual characters. Whereas memo? matches memo followed by any character, memo[17a] is
more restrictive: It matches only memo1, memo7, and memoa. The brackets define a character class
that includes all the characters within the brackets. The shell expands an argument that includes a

141

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

character-class definition, by substituting each member of the character class, one at a time, in place
of the brackets and their contents. The shell then passes the list of matching filenames to the
program it is calling. Each character-class definition can replace only a single character within a
filename. The brackets and their contents are like a question mark that substitutes only the
members of the character class. The first of the following commands lists the names of all files in the
working directory that begin with a, e, i, o, or u. The second command displays the contents of the
files named page2.txt, page4.txt, page6.txt, and page8.txt.

$ echo [aeiou]*

...

$ less page[2468].txt

...

A hyphen within brackets defines a range of characters within a character-class definition. For
example, [6–9] represents [6789], [a–z] represents all lowercase letters in English, and [a–zA–Z]
represents all letters, both uppercase and lowercase, in English. The following command lines show
three ways to print the files named part0, part1, part2, part3, and part5. Each of these command
lines causes the shell to call lpr with five filenames:

$ lpr part0 part1 part2 part3 part5

$ lpr part[01235]

$ lpr part[0-35]

The following command line prints 39 files, part0 through part38:

$ lprpart[0-9] part[12][0-9] part3[0-8]

The first of the following commands lists the files in the working directory whose names start with
a through m.

$ echo [a-m]*

...

The second lists files whose names end with x, y, or z.

$ echo *[x-z]

...

The ls utility cannot interpret ambiguous file references. First ls is called with an argument of ?old.
The shell expands ?old into a matching filename, hold, and passes that name to ls.

$ ls ?old

hold

The second command is the same as the first, except the ? is quoted.

$ ls \?old

ls: ?old: No such file or directory

The shell does not recognize this question mark as a special character and passes it to ls. The ls
utility generates an error message saying that it cannot find a file named ?old (because there is no
file named ?old).

142

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

7.8 Builtins

A builtin is a utility (also called a command) that is built into a shell. Each of the shells has its own
set of builtins. When it runs a builtin, the shell does not fork a new process. Consequently, builtins
run more quickly and can affect the environment of the current shell. Because builtins are used in
the same way as utilities, you will not typically be aware of whether a utility is built into the shell
or is a standalone utility. The echo utility, for example, is a shell builtin. The shell always executes a
shell builtin before trying to find a command or utility with the same name.

Listing bash builtins

To display a list of bash builtins, give the command info bash and select the Shell Builtin
Commands menu. Then select the Bourne Shell Builtins and/or Bash Builtins menus. The bash info
page is part of the bash-doc package—you can view only the man page (even using info) if this
package is not installed. Because bash was written by GNU, the info page has better information
than does the man page.

Listing tcshbuiltins

For tcsh, give the command man tcsh to display the tcsh man page and then search with the
following command: /Builtin commands$ (search for the string at the end of a line).

7.9 vim

The vim editor is not a text formatting program. It does not justify margins or provide the output
formatting features of a sophisticated word processing system such as OpenOffice.org Writer. Vim
is a sophisticated text editor meant to be used to write code (C, HTML, Java, etc.), short notes, and
input to a text formatting system, such as groff or troff.

Starting vim

Start vim with the following command to create and edit a file named practice: $ vim practice.
The tildes in the starting indicates that the page is blank.

143

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

If you call vim without specifying a filename on the command line, vim assumes that you are a
novice and tells you how to get started.

 $ vim

7.10 Modes in vim

Two of vim’s modes of operation are Command mode (also called Normal mode) and Input mode.
While vim is in Command mode, you can give vim commands. For example, you can delete text or
exit from vim. You can also command vim to enter Input mode. In Input mode, vim accepts
anything you enter as text and displays it on the screen.The colon (:) in the preceding command
puts vim into another mode, Last Line mode. While in this mode, vim keeps the cursor on the
bottom line of the screen. When you press RETURN to finish entering the command, vim restores
the cursor to its place in the text. Press ESCAPE to return vim to Command mode. By default, the
vim editor informs you about which mode it is in: It displays INSERT at the lower-left corner of the
screen while it is in Insert mode.

144

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Entering Text

When you start vim, you must put it in Input mode before you can enter text. To put vim in Input
mode, press the i (insert before cursor) key or the a (append after cursor) key. If you are not sure
whether vim is in Input mode, press the ESCAPE key; vim returns to Command mode if it is in
Input mode or beeps, flashes, or does nothing if it is already in Command mode. You can put vim
back in Input mode by pressing the i or a key again. While vim is in Input mode, you can enter text
by typing on the keyboard. If the text does not appear on the screen as you type, vim is not in Input
mode.

Correcting Text

The keys that back up and correct a shell command line serve the same functions when vim is in
Input mode.

Key Results

CONTROL-H Erase

CONTROl-U Line kill

CONTROL-W Word kill

Dd, dw, x Remove the incorrect text

I, a, o, O Insert the correct text

To change the word pressing to hitting in, you might use the ARROW keys to move the cursor until
it is on top of the p in pressing. Then give the command dw to delete the word pressing. Put vim in
Input mode by giving an i command, enter the word hitting followed by a SPACE, and press
ESCAPE. The word is changed, and vim is in Command mode, waiting for another command. A
shorthand for the two commands dw followed by the i command is cw (Change word). The cw
command puts vim into Input mode.

Ending the Editing Session

While you are editing, vim keeps the edited text in an area named the Work buffer. Use the ZZ
command (you must use uppercase Zs) to write the newly entered text to the disk. You can exit
with :q! if you do not want to save your work.

Moving the Cursor

To delete, insert, and correct text, you need to move the cursor on the screen. While vim is in
Command mode, you can use the RETURN key, the SPACE bar, and the ARROW keys to move the
cursor. You can use the h, j, k, and l (lowercase “l”) keys to move the cursor left, down, up, and
right, respectively.

Deleting Text

If you wany to delete a single character, then press x. If a word needs to be deleted, pressdw and
for the deletion of line of text, press dd.

Undoing Mistakes

Give the command u (Undo) immediately after the command you want to undo. If you give the u
command again, vim will undo the command you gave before the one it just undid. You can use
this technique to back up over many of your actions. If you undo a command, you did not mean to
undo, give a Redo command: CONTROL-R or :redo (followed by a RETURN).As with the Undo
command, you can give the Redo command many times in a row.

145

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Entering Additional Text

When you want to insert new text within existing text, move the cursor so it is on the character that
follows the new text you plan to enter. Then give the i (Insert) command to put vim in Input mode,
enter the new text, and press ESCAPE to return vim to Command mode. Alternatively, you can
position the cursor on the character that precedes the new text and use the a (Append) command.
To enter one or more lines, position the cursor on the line above where you want the new text to go.
Give the command o (Open). The vim editor opens a blank line below the line the cursor was on,
puts the cursor on the new, empty line, and enters Input mode. Enter the new text, ending each line
with a RETURN. When you are finished entering text, press ESCAPE to return vim to Command
mode. The O command works in the same way as the o command, except it opens a blank line
above the current line.

7.11 Introduction to vim Features

There are various useful features of vim which are of great help:

• Online help,

• Modes of operation,

• The work buffer,

• Emergency procedures,

• Other vim features.

Online Help

Give the command: help feature to display information about feature. As you scroll through the
various help texts, you will see words with a bar on either side, such as |tutor|. These words are
active links: Move the cursor on top of an active link and press CONTROL-] to jump to the linked
text. Use CONTROL-o (lowercase “o”) to jump back to where you were in the help text. You can
also use the active link words in place of feature. For example, you might see the reference
|credits|; you could enter :help credits RETURN to read more about credits. Enter :q! to close a
help window. You can also give the command :help doc-file-list to view a complete list of the help
files.

Modes of Operation

The current character is the character the cursor is on. The current line is the line the cursor is on.
The status line is the last or bottom line of the screen. This line is reserved for Last Line mode and
status information. Text you are editing does not appear on this line. The vim editor is part of the
ex-editor, which has five modes of operation:

• ex Command mode

• ex Input mode

• vim Command mode

• vim Input mode

• vim Last Line mode

While in Command mode, vim accepts keystrokes as commands, responding to each command as
you enter it. It does not display the characters you type in this mode. While in Input mode, vim
accepts and displays keystrokes as text that it eventually puts into the file you are editing. All
commands that start with a colon (:) put vim in Last Line mode. The colon moves the cursor to the
status line of the screen, where you enter the rest of the command. When you give a command in
Command mode, you do not terminate the command with a RETURN. In contrast, you must
terminate all Last Line mode commands with a RETURN. When an editing session begins, vim is in
Command mode. Several commands, including Insert and Append, put vim in Input mode. When
you press the ESCAPE key, vim always reverts to Command mode. The Change and Replace
commands combine the Command and Input modes. The Change command deletes the text you

146

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

want to change and puts vim in Input mode so you can insert new text. The Replace command
deletes the character(s) you overwrite and inserts the new one(s) you enter.

The vim editor displays status information on the bottom line of the display area. This information
includes error messages, information about the deletion or addition of blocks of text, and file status
information. In addition, vim displays Last Line mode commands on the status line. Sometimes the
screen may become garbled or overwritten. When vim puts characters on the screen, it sometimes
leaves @ on a line instead of deleting the line. When output from a program becomes intermixed
with the display of the Work buffer, things can get even more confusing. The output does not
become part of the Work buffer but affects only the display. If the screen gets overwritten, press
ESCAPE to make sure vim is in Command mode, and press CONTROL-L to redraw (refresh) the
screen. If the end of the file is displayed on the screen, vim marks lines that would appear past the
end of the file with a tilde (~) at the left of the screen. While vim is in Input mode, you can use the
erase and line kill keys to back up over text so you can correct it. You can also use CONTROL-W to
back up over words.

Work Buffer

The vim editor does all its work in the Work buffer. At the beginning of an editing session, vim
reads the file you are editing from the disk into the Work buffer. During the editing session, it
makes all changes to this copy of the file but does not change the file on the disk until you write the
contents of the Work buffer back to the disk. Normally when you end an editing session, you tell
vim to write the contents of the Work buffer, which makes the changes to the text final. If you
accidentally end an editing session without writing out the contents of the Work buffer, your work
is lost. However, if you unintentionally make some major changes (such as deleting the entire
contents of the Work buffer), you can end the editing session without implementing the changes.
To look at a file but not to change it while you are working with vim, you can use the view utility:
$ view filename. Calling the view utility is the same as calling the vim editor with the –R (readonly)
option.

The vim editor operates on files of any format. The total length of the file is limited only by
available disk space and memory. The vim editor allows you to open, close, and hide multiple
windows, each of which allows you to edit a different file. Give the command :help windows to
display a complete list of windows commands.

Abnormal Termination of an Editing Session and recovering after a crash (Emergency
Procedures)

You can end an editing session in one of two ways: When you exit from vim, you can save the
changes you made during the editing session or you can abandon those changes. You can use the
ZZ or :wq command from Command mode to save the changes and exit from vim. To end an
editing session without writing out the contents of the Work buffer, give the following command:
 :q!.Use the :q! command cautiously. When you use this command to end an editing
session, vim does not preserve the contents of the Work buffer, so you will lose any work you did
since the last time you wrote the Work buffer to disk.:w filename: Use this to save the file with a
name.

The vim editor temporarily stores the file you are working on in a swap file. If the system crashes
while you are editing a file with vim, you can often recover its text from the swap file. If someone
else is editing the file, quit or open the file as a read only file. With the –r option, vim displays a list
of swap files it has saved (some may be old).If your work was saved, give the same command
followed by a SPACE and the name of the file. Give the command :w filename immediately to save
the salvaged copy of the Work buffer to disk under a name different from the original file; then
check the recovered file to make sure it is OK.

7.12 Command Mode

While vim is in Command mode, you can position the cursor over any character on the screen.

147

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Forward means toward the right and bottom of the screen and the end of the file. Backward means
toward the left and top of the screen and the beginning of the file.

Moving the Cursor

When you use a command that moves the cursor forward past the end (right) of a line, the cursor
generally moves to the beginning (left) of the next line. When you move it backward past the
beginning of a line, the cursor generally moves to the end of the previous line. Sometimes a line in
the Work buffer may be too long to appear as a single line on the screen. In such a case vim wraps
the current line onto the next line. You can move the cursor through the text by any Unit of
Measure (that is, character, word, line, sentence, paragraph, or screen).If you precede a cursor-
movement command with a number, called a Repeat Factor, the cursor moves that number of units
through the text.

Moving the Cursor by Characters

Key Results

Space bar, l and Right Arrow Key Forward

h and Left Arrow Key Backward

For example, the command 7 SPACE or 7l moves the cursor seven characters to the right.

Moving the Cursor to a Specific Character

You can move the cursor to the next occurrence of a specified character on the current line by using
the Find command. For example, the following command moves the cursor from its current
position to the next occurrence of the character a, if one appears on the same line: fa. You can also
find the previous occurrence by using a capital F. The following command moves the cursor to the
position of the closest previous a in the current line: Fa. A semicolon (;) repeats the last Find
command.

148

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Moving the Cursor by Words

Key Results

W and w Moves the cursor forward

B and b Moves the cursor backwards

E and e Moves the cursor to the end of the next word

Groups of punctuation count as words. The command 15w moves the cursor to the first character of
the fifteenth subsequent word. The W key is like the w key but moves the cursor by blank-
delimited words, including punctuation, as it skips forward. The B key moves the cursor backward
by blank-delimited words. E moves it to the end of the next blank-delimited word.

Moving the Cursor by Lines

Key Results

RETURN To the beginning of next line.

j/ DOWN Arrow Down one line to the character just below the current character.

k and UP Arrow Up one line to the character just above the current character.

- To the end of the next line.

) Forward to the beginning of the next sentence.

(Forward to the beginning of the next paragraph.

} Backward to the beginning of current sentence.

{ Backward to the beginning of current paragraph.

149

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Moving the Cursor Within the Screen

Key Result

H To the left end of the top line of the screen

M To the middle line

L To the bottom line

Viewing Different Parts of the Work Buffer

The screen displays a portion of the text that is in the Work buffer. You can display the text
preceding or following the text on the screen by scrolling the display. You can also display a
portion of the Work buffer based on a line number. Press CONTROL-D to scroll the screen down
(forward) through the file so that vim displays half a screen of new text. Use CONTROL-U to scroll
the screen up (backward) by the same amount. If you precede either of these commands with a
number, vim scrolls that number of lines each time you press CONTROL-D or CONTROL-U for the
rest of the session (unless you again change the number of lines to scroll). The CONTROL-F
(forward) and CONTROL-B (backward) keys display almost a whole screen of new text, leaving a
couple of lines from the previous screen for continuity. On many keyboards you can use the PAGE
DOWN and PAGE UP keys in place of CONTROL-F and CONTROL-B, respectively.

Deleting and Changing of Text

• Undoing changes

• Deleting characters

• Deleting text

• Changing text

• Replacing text

• Changing case

Undoing Changes

The u command (Undo) restores text that you just deleted or changed by mistake. A single Undo
command restores only the most recently deleted text. With the compatible parameter set, vim can

150

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

undo only the most recent change. The U command restores the last line you changed to the way it
was before you started changing it, even after several changes.

Deleting Characters

The x command deletes the current character. You can precede the x command by a Repeat Factor
to delete several characters on the current line, starting with the current character. The X command
deletes the character to the left of the cursor.

Deleting Text

The d (Delete) command removes text from the Work buffer. The amount of text that d removes
depends on the Repeat Factor and the Unit of Measure. After the text is deleted, vim is still in
Command mode.

Command Result

dl Deletes current character (same as the x command)

d0 Deletes from the beginning of line

d^ Deletes from first character of line

dw Deletes to end of word

d3w Deletes to end of third word

db Deletes from beginning of word

dw Deletes to end of blank delimited word

dB Deletes to beginning of blank delimited word

d7B Deletes from seventh previous beginning of blank delimited word

d) Deletes to end of sentence

d4) Deletes to end of fourth sentence

d{ Deletes from beginning of sentence

d} Deletes to end of paragraph

d{ Deletes from beginning of paragraph

d7{ Deletes from 7th paragraph preceding from beginning of paragraph

d/text Deletes upto next occurrence of word text

dfc Deletes on current line upto and including next occurrence of character c

dtc Deletes on current line upto next occurrence of c

D Deletes to end of line

D$ Deletes to end of line

151

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

dd Deletes current line

5dd Deletes five lines starting with current line

dL Deletes through last line on screen

dH Deletes from first line on screen

dG Deletes through end of work buffer

D1G Deletes from beginning of work buffer

Changing Text

The c (Change) command replaces existing text with new text. The new text does not have to
occupy the same space as the existing text. You can change a word to several words, a line to
several lines, or a paragraph to a single character. The C command replaces the text from the cursor
position to the end of the line. The c command deletes the amount of text specified by the Repeat
Factor and the Unit of Measure and puts vim in Input mode. When you finish entering the new text
and press ESCAPE, the old word, line, sentence, or paragraph is changed to the new one. Pressing
ESCAPE without entering new text deletes the specified text (that is, it replaces the specified text
with nothing).

Command Result

cl Changes current character

cw Changes to end of word

c3w Changes to end of third word

cb Changes from beginning of word

cW Changes from end of blank delimited word

cB Changes from beginning of blank delimited word

C7B Changes from beginning of seventh previous blank delimited word

C$ Changes to end of line

c0 Changes from beginning of line

c) Changes to end of sentence

c4) Changes to end of fourth sentence

c(Changes from beginning of sentence

c} Changes to end of paragraph

c{ Changes from beginning of paragraph

c7{ Changes from beginning of seventh preceding paragraph

ctc Changes of current line upto next occurrence of c

C Changes to end of line

cc Changes current line

152

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Replacing Text

The s and S (Substitute) commands also replace existing text with new text.The s command deletes
the current character and puts vim into Input mode. It has the effect of replacing the current
character with whatever you type until you press ESCAPE. The S command does the same thing as
the cc command: It changes the current line. The s command replaces characters only on the current
line.If you specify a Repeat Factor before an s command and this action would replace more
characters than are present on the current line, s changes characters only to the end of the line
(same as C).

Command Result

s Substitute one or more characters for current character

S Substitute one or more characters for current line

5s Substitute one or more characters for five characters, starting
with current character

Changing Case

The tilde (~) character changes the case of the current character from uppercase to lowercase, or
vice versa. You can precede the tilde with a number to specify the number of characters you want
the command to affect.For example, the command 5~ transposes the next five characters starting
with the character under the cursor but will not transpose characters past the end of the current
line.

7.13 Input Mode

The Insert, Append, Open, Change, and Replace commands put vim in Input mode.While vim is in
this mode, you can put new text into the Work buffer. To return vim to Command mode when you
finish entering text, press the ESCAPE key.

Inserting Text

Key Results

i Put vim in the insert mode and places the text before the current character.

I Places the text at the beginning of the current line.

a Places the text after the current character.

A Places the text after the current line.

o Opens a new line below the current line.

O Opens a new line above the current line.

153

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Replacing Text

The r and R (Replace) commands cause the new text you enter to overwrite (replace) existing text.
The single character you enter following an r command overwrites the current character. After you
enter that character, vim returns to Command mode—you do not need to press the ESCAPE key.
The R command causes all subsequent characters to overwrite existing text until you press ESCAPE
to return vim to Command mode.

Quoting Special Characters in Input Mode

While you are in Input mode, you can use the Quote command, CONTROL-V, to enter any
character into the text, including characters that normally have special meaning to vim. Among
these characters are CONTROL-L (or CONTROL-R), which redraws the screen; CONTROL-W,
which backs the cursor up a word to the left; CONTROL-M, which enters a NEWLINE; and
ESCAPE, which ends Input mode. To insert one of these characters into the text, type CONTROL-V
followed by the character. CONTROL-V quotes the single character that follows it.

7.14 Emacs

Emacs is one of the oldest and most versatile text editors available for Linux and UNIX-based
systems. It’s been around for a long time (more than twenty years for GNU emacs) and is well
known for its powerful and rich editing features. The emacs editor, which is coded in C, contains a
complete Lisp interpreter and fully supports the X Window System and mouse interaction. Version
22 has significant internationalization upgrades: an extended UTF-8 internal character set four
times bigger than Unicode, along with fonts and keyboard input methods for more than 30
languages. Also, the user interface is moving in the direction of a WYSIWYG (what you see is what
you get) word processor, which makes it easier for beginners to use the editor. You never need to
switch emacs between Input and Command modes, emacs is a modeless editor.

emacs Versus vim

1) Like vim, emacs is a display editor: It displays on the screen the text you are editing and changes
the display as you type each command or insert new text.

2) Unlike vim, emacs does not require you to keep track of whether you are in Command mode or
Insert mode: Commands always use CONTROL or other special keys.

3) The emacs editor inserts ordinary characters into the text you are editing (as opposed to using
ordinary characters as commands), another trait of modeless editing. For many people this
approach is convenient and natural.

4) As with vim, you use emacs to edit a file in a work area, or buffer, and have the option of writing
this buffer back to the file on the disk when you are finished. With emacs, however, you can have
many work buffers and switch among them without having to write the buffer out and read it back
in.

5) Like vim, emacs has a rich, extensive command set for moving about in the buffer and altering
text. This command set is not “cast in concrete”—you can change or customize commands at any
time.

6) Finally, and very unlike vim, emacs allows you to use Lisp to write new commands or override
old ones. This feature is called online extensibility,

Getting Started with emacs

To edit a file named sample using emacs as a text-based editor, enter the following command:$
emacs -nw -q sample.

• –nw option: It must be the first option on the emacs command line, tells emacs not to use

its X interface (GUI).

154

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• –q option: It tells emacs not to read the ~/.emacs startup file. Not reading this file
guarantees that emacs will behave in a standard manner and can be useful for beginners
or for other users who want to bypass a .emacs file.

The command $ emacs -nw -q samplestarts emacs, reads the file named sample into a buffer, and
displays its contents on the screen or window. If no file has this name, emacs displays a blank
screen with (New File) at the bottom.

If the file exists, emacs displays the file and a different message.

155

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

If you start emacs without naming a file on the command line, it displays a welcome screen that
includes usage information and a list of basic commands.

Initially, emacs displays a single window. At the top of the window is a reverse-video menubar that
you can access using a mouse or keyboard.From the keyboard, F10, META-‘ (back tick), or META-x
tmm-menubar RETURN displays the Menubar Completion List window. At the bottom of the
emacs window is a reverse-video titlebar called the Mode Line. At a minimum, the Mode Line

156

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

shows which buffer the window is viewing, whether the buffer has been changed, which major and
minor modes are in effect, and how far down the buffer the window is positioned.When multiple
windows appear on the screen, one Mode Line appears in each window. At the bottom of the
screen, emacs leaves a single line open. This Echo Area and Minibuffer line (they coexist on one
line) is used for messages and special one-line commands.If you make an error while you are
typing in the Minibuffer, emacs displays the error message in the Echo Area. The error message
overwrites the command you were typing, but emacs restores the command in a few seconds.A
cursor is either in the window or in the Minibuffer. All input and nearly all editing take place at the
cursor. As you type ordinary characters, emacs inserts them at the cursor position. If characters are
under the cursor or to its right, they are pushed to the right as you type, so no characters are lost.

Exiting

The command to exit from emacs is CONTROL-X CONTROL-C.If you want to cancel a half-typed
command or stop a running command before it is done, press CONTROL-G. The emacs editor
displays Quit in the Echo Area and waits for another command.

Inserting Text

Typing an ordinary (printing) character pushes the cursor and any characters to the right of the
cursor one position to the right and inserts the new character in the space opened by moving the
characters.

Deleting Characters

Depending on the keyboard and the emacs startup file, different keys may delete characters in
different ways.

• CONTROL-D typically deletes the character under the cursor, as do DELETE and DEL.

• BACKSPACE typically deletes the character to the left of the cursor.

Moving the Cursor

You can position the cursor over any character in the emacs window and move the window, so it
displays any portion of the buffer. You can move the cursor forward or backward through the text
various textual units—for example, characters, words, sentences, lines, and paragraphs.

Moving the Cursor by Characters

Key Results

Control – B / Left Arrow Key Moves the cursor backward one character.

Control – F / Right Arrow Key Moves the cursor forward one character.

157

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Moving the Cursor by Words

META-f: Moves the cursor forward one word. To invoke this command, holddown the META or
ALT key while you press f. If the keyboard you are using does not have either of these keys, press
ESCAPE, release it, and then press f.

META-b: Moves the cursor backward one word, leaving the cursor on the first letter of the word it
started on.

Moving the Cursor by Lines

Key Result

CONTROL-A/CONTROL-P Moves the cursor to the beginning of the line it is on

CONTROL-E/CONTROL-P Moves it to the end

UP ARROW key or CONTROL-P Moves the cursor up one line to the position directly
above where the cursor started

DOWN ARROW key or CONTROL-
N

Moves the cursor down one line to the position directly
above where the cursor started

Moving the Cursor by Sentences, Paragraphs, and Window Position

158

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Key Results

META-a It moves the cursor to the beginning of the sentence the cursor is on

META-e It moves the cursor to the end of the sentence the cursor is on.

META-{ It moves the cursor to the beginning of the paragraph the cursor is on.

META-} It moves it to the end of the paragraph the cursor is on.

META-r It moves the cursor to the beginning of the middle line of the window.

CONTROL-U
META-r

It moves the cursor to the beginning of the top line (line zero) in the
window.

CONTROL-U–
(minus sign)

The command moves the cursor to the beginning of the last line of the
window

Editing at the Cursor Position

Entering text requires no commands once you position the cursor in the window at the location you
want to enter text. When you type text, emacs displays that text at the position of the cursor. Any
text under or to the right of the cursor is pushed to the right.Pressing BACKSPACE removes
characters to the left of the cursor. The cursor and the remainder of the text on this line both move
to the left each time you press BACKSPACE. To join a line with the line above it, position the cursor
on the first character of the second line and press BACKSPACE. Press CONTROL-D to delete the
character under the cursor.

Saving and Retrieving the Buffer

No matter what changes you make to a buffer during an emacs session, the associated file does not
change until you save the buffer. If you leave emacs without saving the buffer (emacs allows you to
do so if you are persistent), the file is not changed and emacs discards the work you did during the
session. The command CONTROL-X CONTROL-S saves the current buffer in its associated file. The
emacs editor confirms a successful save by displaying an appropriate message in the Echo Area.

The emacs GUI

Full mouse support was introduced in version 19. The emacs editor is still evolving toward full
internationalization, accessibility, and a simplified user experience that appeals to the widest
possible audience. New features include a colorful menubar and toolbar, mixed text and graphics,
tooltips, drag and drop editing, and new GUIs for browsing directories and selecting fonts.

Basic Editing Commands

Command functions in emacs usually involve two or three keys. The most common is the Ctrl key,
followed by the Alt or Esc key. In emacs literature, Ctrl is shown in short form as “C”.So if you see
something like C-x C-c, it means “press the Ctrl key and x together, then press Ctrl and c”.Similarly,
if you see C-h t, it means “press Ctrl and h together, then release both keys and press
t”.Alt and Esc keys are referred to as “meta” key in emacs lingo. So if you see a notation like M-x, it
means “press Alt/Esc/Option/Edit key and x together”. The Enter key is shown as RET (short for
“Return”) and The Esc key is often shown as E.

Marking Text Regions

To mark a text region (like selecting text in popular word processors), follow these steps:

159

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

1) Move the cursor to the position where you would like the selection to start Press C-Space (Ctrl +
Space Bar) or C-@ to set a mark. The mini buffer will show a status message of Mark set.

2) Move the cursor to the position where you want the region to end.

3) The text will be highlighted up to the point where your cursor is now located.

4) If you want to “un-mark” the highlighted text, press C-Space or C-@ twice The mini buffer will
show a status message of Mark deactivated.

Cut, Copy & Paste

Once you have the text region marked, you can copy or cut the text and paste it elsewhere. For
copying the text, press E-w. For cutting the text, press C-w. Move your cursor to the position where
the text needs to be pasted. Press C-y (y stands for “yank” - you are yanking the text from one
position to another). The contents will be pasted here.

Deleting Text

For deleting, Backspace and Delete keys work just the way you would expect them to work. For
deleting a whole word, move the cursor at the beginning of a word and press M-d. For deleting
multiple words, hold the meta key down and keep pressing d. Words will start deleting one by one.
For deleting a whole line, position the cursor where you want it to be and press C-k. This would
delete the text right up to the end of the line on screen. For deleting a sentence, press M-k

Undo & Redo

Undoing the last operation is simple. Press C-x u. You can keep repeating this to go backwards.
Another key combination is C-/ (Ctrl + /) or C-_ (Ctrl + _). For redoing your last undo, press C-g,
followed by C-_ (that’s Ctrl + Shift+ Underscore). Another way to do the same thing would be to
press C-x C-u again (Undoing the Undo).

Search & Replace

There are two search directions in emacs: forward and backward. In forward search, the word you
specify will be searched forward from the current cursor position. For backward search, it’s the
other way round. Press C-s for forward search and press C-r for backward search.

For replacing text, follow these steps:

1. Press M-% (that’s Alt + Shift + %). The mini buffer shows the prompt for the text to be
searched (Query replace:).

2. Type the text and press Enter. The mini buffer displays a message like (Query replace
<search_word> with:). Type the replacing text and press Enter.

3. For each match emacs finds, it will ask whether you would like to make a replacement
(Query replacing <search_word> with <replace_word>: (C-h for help)). You can take any
of the following actions:Press y to replace the current match found/ press n to skip to the
next match/ press q to exit without any replacements (basically escaping)/ press ! to do a
global replace without any prompts. (emacs will show a message like replaced n
occurrences)

Left, Right and Centre Alignment

For justifying a selected text region, follow these steps:

1. Create a text region to highlight the text you wish to justify

2. Press M-x. The mini buffer will await a response

3. Start typing set-justifiction- and press Tab.

4. You will be given completion options likeset-justification-center, set-justification-left, set-
justification-right,set-justification-none and set-justification-full

160

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

5. Complete the justification command (for example set-justification-right) and press Enter.

6. The selected text will be justified.

Converting Case

Command Result

M-c (c for Capitalize) Capitalizing a word after the cursor

M-l (l for Lower case) Converting a word to lower case

M-u (u for Upper case) Converting a word to upper case

Block select, then C-x C-u Converting a paragraph to upper case

Block select, then C-x C-l Converting a paragraph to lower case

Summary

• Kernel is the innermost part of an operating system; a shell is the outermost one.

• The line that contains the command, including any arguments, is called the command line.

• By default, the shell directs standard output from a command to the screen.

• In addition to standard input and standard output, a running program normally has a

place to send error messages: standard error.

• The redirect output symbol (>) instructs the shell to redirect the output of a command to

the specified file instead of to the screen.

• The redirect input symbol (<) instructs the shell to redirect a command’s input to come

from the specified file instead of from the keyboard.

• A filter is a command that processes an input stream of data to produce an output stream

of data.

• When you run a command in the foreground, the shell waits for it to finish before

displaying another prompt and allowing you to continue. When you run a command in

the background, you do not have to wait for the command to finish before running

another command.

• You can suspend a foreground job (stop it from running without aborting the job) by

pressing the suspend key, usually CONTROL-Z.

• The vim editor is not a text formatting program. It is a sophisticated text editor meant to

be used to write code (C, HTML, Java, etc.), short notes, and input to a text formatting

system, such as groff or troff.

• If you call vim without specifying a filename on the command line, vim assumes that you

are a novice and tells you how to get started.

• There are three modes in vim: command mode, input mode and last line mode.

• To put vim in Input mode, press the i (insert before cursor) key or the a (append after

cursor) key.

• In vim to correct text, use dd, dw, or x to remove the incorrect text. Then use i, a, o, or O to

insert the correct text.

• There are various features of vim: online help, modes of operation, work buffer,

emergency procedures, etc.

161

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• The emacs editor, which is coded in C, contains a complete Lisp interpreter, and fully

supports the X Window System and mouse interaction. You never need to switch emacs

between Input and Command modes, emacs is a modeless editor.

Keywords

• Kernel:Kernel is at the nucleus of a computer. It makes the communication between the

hardware and software possible.

• Shell: A shell in a Linux operating system takes input from you in the form of commands,

processes it, and then gives an output.

• Token:On the command line each sequence of nonblank characters is called a token or

word.

• Standard output: It is a place a program can send information, such as text.

• Standard input: It is a place that a program gets information from.

• Redirection: The term redirection encompasses the various ways you can cause the shell

to alter where standard input of a command comes from and where standard output goes

to.

• noclobber:The shell provides the noclobber feature that prevents overwriting a file using

redirection.

• Bit bucket:The /dev/null device is a data sink, commonly referred to as a bit bucket.

• Pipe: The shell uses a pipe to connect standard output of one command to standard input

of another command.

• tee utility:The tee utility copies its standard input both to a file and to standard output.

• Job: A job is a series of one or more commands that can be connected by pipes. You can

have only one foreground job in a window or on a screen, but you can have many

background jobs.

• ? special character:The question mark (?) is a special character that causes the shell to

generate filenames.It matches any single character in the name of an existing file.

• * special character:The asterisk (*) performs a function similar to that of the question mark

but matches any number of characters, including zero characters, in a filename.

• Builtin:A builtin is a utility (also called a command) that is built into a shell.

Self Assessment

1. Which of these is used for erasing a word?
A. CTRL-H

B. CTRL-W

C. CTRL-U

D. None of the above

2. Standard _______ is a place that a program gets information from.
A. Output

B. Input

C. Error

D. None of the above

3. Which symbol is used for appending the standard output to a file?

162

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

A. >>

B. <<

C. !!

D. <>

4. Which of these components of operating system is the outermost part?
A. Kernel

B. Shell

C. CPU

D. None of the above

5. The redirection input symbol is

A. >

B. <

C. !

D. None of the above

6. What is another name of pathname expansion?
A. Local-ling

B. Globing

C. Met-forcing

D. None of the above

7. A _____________ within a bracket defines a range.
A. Hyphen

B. Underscore

C. Asterisk

D. None of the above

8. How many jobs we can run in foreground?
A. 0

B. 1

C. 2

D. 3

9. Which of these is a suspend key which can suspend a foreground job?
A. CTRL-Z

B. CTRL-D

C. CTRL-C

D. CTRL-A

10. Which of these symbols puts the vim in last line mode?
A. :

B. ;

163

Unit 07: The Shell and Popular Editors

 LOVELY PROFESSIONAL UNIVERSITY

Notes

C. “

D. ?

11. Which of these modes are available in vim?
A. Command mode

B. Input mode

C. Last line mode

D. All of the above mentioned

12. Which of these characters delete a character?
A. x

B. y

C. z

D. None of the above

13. Which of these keys can be used to move the cursor backward by one character?
A. h

B. i

C. j

D. k

14. For backward search, press
A. C-s

B. C-b

C. C-r

D. C-c

15. The shortcut for exiting from emacs is
A. CTRL-X CTRL-C

B. CTRL-X CTRL-X

C. CTRL-C CTRL-C

D. CTRL-C CTRL-X

Answers for Self Assessment

1. B 2. B 3. A 4. B 5. B

6. B 7. A 8. B 9. A 10. A

11. D 12. A 13. A 14. C 15. A

Review Questions:

1. What is an operating system? Describe its main components: shell and kernel in detail.

164

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

2. What is a command? What are the rules for writing a command? Explain the components

of a command.

3. What are standard input and standard output? Explain redirection and noclobber.

4. Explain pipes and filters.

5. How can we run a command in background? Explain with commands. How to move a job

from foreground to background?

6. What is filename generation? Which special characters are used in this? Explain the

difference of usage of each character.

7. What is a builtin? How can we list out bash and tschbuiltins?

8. What is vim? How can we use vim? Explain the starting, entering of text, moving of

cursor, correction of text and exiting in vim with examples and commands.

9. What are modes in vim? Explain its usage.

10. Explain the various features of vim in detail.

11. What is command mode? How can we move the cursor in this?

12. How can we delete and change text in command mode? Explain with commands.

13. What is emacs? Explain its difference with vim.

14. What are basic editing commands in emacs? Explain.

Further Readings

https://www.informit.com/articles/article.aspx?p=2854374&seqNum=5

https://unix.stackexchange.com/questions/986/what-are-the-pros-and-cons-of-vim-
and-emacs

https://stackoverflow.com/questions/1430164/differences-between-emacs-and-vim

165

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 08: The Bourne Again Shell and Tc Shell

CONTENTS

Objectives

Introduction

8.1 Startup Files

8.2 File Descriptors

8.3 Writing a Simple Shell Script

8.4 Job Control

8.5 Manipulating the Directory Stack

8.6 Shell Variables

8.7 Variable Attributes

8.8 Keyword Variables

8.9 Processes

8.10 History

8.11 Alias

8.12 Functions

8.13 Command Line Options

8.14 Shell Features

8.15 The TC Shell

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

 After studying this unit, you will be able to:

• Understand the basics of shell, parameters and variables of a shell

• Understand the special characters

• Understand about the process

• Understand the re-execution and editing of commands

• Understand the aliases and functions in Linux

• Know how to control bash, how to enter and leave the TC shell

• Understand the features common to Bourne Again and TC Shells

Introduction

A Shell provides you with an interface to the Unix system. It gathers input from you and executes
programs based on that input. When a program finish executing, it displays that program's
output. Shell is an environment in which we can run our commands, programs, and shell scripts.

166

Dr. Divya, Lovely Professional University

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

There are different flavors of a shell, just as there are different flavors of operating systems. Each
flavor of shell has its own set of recognized commands and functions. There are two major types
of shells −

• Bourne Again shell

• TC shell

The Bourne Again Shell and TC Shell are command interpreters and high-level programming
languages. As command interpreters, they process commands you enter on the command line in
response to a prompt. When you use the shell as a programming language, it processes commands
stored in files called shell scripts.Give the command echo “$SHELL”. Under most Linux
distributions, bash is the default shell. You can run any shell you like once you are logged in. When
the command cat /etc/shells is given, it shows which shells are available to use in the system.

Enter the name of the shell you want to use (bash, tcsh, or another shell) and press RETURN; the
next prompt will be that of the new shell. Give an exit command to return to the previous shell.

167

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

8.1 Startup Files

When a shell starts, it runs startup files to initialize itself. Which files the shell runs depends on
whether it is a login shell, an interactive shell that is not a login shell, or a noninteractive shell. You
must have read access to a startup file to execute the commands in it.

Login Shells

The shells that you start with the bash ––login option. Login shells are, by their nature, interactive.

1) /etc/profile: The shell first executes the commands in /etc/profile. A user working with root
privileges can set up this file to establish system-wide default characteristics for users running bash.

2) .bash_profile, .bash_login, .profile: Next the shell looks for ~/.bash_profile, ~/.bash_login, and
~/.profile (~/ is shorthand for your home directory), in that order, executing the commands in the
first of these files it finds. You can put commands in one of these files to override the defaults set in
/etc/profile.

3) .bash_logout: When you log out, bash executes commands in the ~/.bash_logout file. This file
often holds commands that clean up after a session, such as those that remove temporary files.

Interactive Nonlogin Shells

The commands in these startup files are not executed by interactive, nonlogin shells. However,
these shells inherit values from the login shell variables that are set by these startup files.

1) /etc/bashrc: Although not called by bash directly, many ~/.bashrc files call /etc/bashrc. This
setup allows a user working with root privileges to establish systemwide default characteristics for
nonlogin bash shells.

2) .bashrc: An interactive nonlogin shell executes commands in the ~/.bashrc file. Typically, a
startup file for a login shell, such as .bash_profile, runs this file, so both login and nonlogin shells
run the commands in .bashrc.

168

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

However, the noninteractive shells inherit login shell variables that are set by these startup files.
Noninteractive shells look for the environment variable BASH_ENV (or ENV if the shell is called as
sh) and execute commands in the file named by this variable.

There are various commands that are used as symbols. The Bourne Again Shell uses these symbols
as shown in the below table. A command can send error messages to standard error to keep them
from getting mixed up with the information it sends to standard output.

Symbol Command

() Subshell

$() Command Substitution

(()) Arithmetic evaluation

$(()) Arithmetic expression

[] The test command

[[]] Conditional expression; similar to [] but adds string comparisons

8.2 File Descriptors

A file descriptor is the place a program sends its output to and gets its input from. When you
execute a program, Linux opens three file descriptors for the program:

• 0 (standard input), (0<)

• 1 (standard output), (1>)

• and 2 (standard error), (2>)

Opening a File Descriptor

The Bourne Again Shell opens files using the exec built in as follows:

• exec n>outfile: The line opens outfile for output and holds it open, associating it with file
descriptor n.

• exec m<infile: The line opens infile for input and holds it open, associating it with file

descriptor m.

Duplicating a file descriptor

The <& token duplicates an input file descriptor; >& duplicates an output file descriptor.

169

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Redirection Operators

There are various redirection operators which can be used. These are shown in the table below.

Operator Meaning

< filename Redirects standard input from filename

>filename Redirects standard output to filename unless filename exists and noclobber is
set. If noclobber is not set, this redirection creates filename if it does not exist
and overwrites it if it does exist.

>| filename Redirects standard output to filename, even if the file exists and noclobber is
set.

>> filename Redirects and appends standard output to filename unless filename exists and
noclobber is set. If noclobber is not set, this redirection creates filename if it
does not exist.

&>
filename

Redirects standard output and standard error to filename.

<&m Duplicates standard input from file descriptor m

[n] >&m Duplicates standard output or file descriptor n if specified from file descriptor
m

[n] <&- Closes standard input or file descriptor n if specified

[n] >&- Closes standard output or file descriptor n if specified.

8.3 Writing a Simple Shell Script

A shell script is a file that holds commands that the shell can execute. The commands in a shell
script can be any commands you can enter in response to a shell prompt. For example, a command
in a shell script might run a Linux utility, a compiled program, or another shell script. Like the
commands you give on the command line, a command in a shell script can use ambiguous file
references and can have its input or output redirected from or to a file or sent through a pipe. You
can also use pipes and redirection with the input and output of the script itself.

chmod: Makes a File Executable

To execute a shell script by giving its name as a command, you must have permission to read and
execute the file that contains the script. Read permission enables you to read the file that holds the
script. Execute permission tells the shell and the system that the owner, group, and/or public has
permission to execute the file; it implies that the content of the file is executable. When you create a
shell script using an editor, the file does not typically have its execute permission set. The following
example shows a file named whoson that contains a shell script:

$ cat whoson

date

echo "Users Currently Logged In"

170

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

who

$./whoson

#! Specifies a Shell

You can put a special sequence of characters on the first line of a shell script to tell the operating
system which shell (or other program) should execute the file. Because the operating system checks
the initial characters of a program before attempting to execute it using exec, these characters save
the system from making an unsuccessful attempt.

Begins a Comment

Comments make shell scripts and all code easier to read and maintain by you and others. The
comment syntax is common to both the Bourne Again and the TC Shells.

Executing a Shell Script

A command on the command line causes the shell to fork a new process, creating a duplicate of the
shell process (a subshell). The new process attempts to exec (execute) the command. Like fork, the
exec routine is executed by the operating system (a system call).

Separating and Grouping Commands

Whether you give the shell commands interactively or write a shell script, you must separate
commands from one another.

8.4 Job Control

A job is a command pipeline. For example: you run a simple job whenever you give the shell a
command. If you type date on the command line and press RETURN, you have run a job. You can
also create several jobs with multiple commands on a single command line. For example:

$ find . -print | sort | lpr& grep -l max /tmp/* >maxfiles&

[1] 18839

[2] 18876

171

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

jobs: Lists Jobs

The jobs built in lists all background jobs. Following, the sleep command runs in the background
and creates a background job that jobs reports on:

$ sleep 60 &

[1] 7809

$ jobs

[1] + Running sleep 60 &

fg: Brings a Job to the Foreground

The shell assigns a job number to each command you run in the background. For each job run in
the background, the shell lists the job number and PID number immediately, just before it issues a
prompt:

$ xclock&

[1] 1246

$ date &

[2] 1247

$ Tue Dec 2 11:44:40 PST 2008

[2]+ Done date

$ find /usr -name ace -print >findout&

[2] 1269

$ jobs

[1]- Running xclock&

[2]+ Running find /usr -name ace -print >findout&

To move a background job to the foreground, use the fgbuiltin followed by the job number.
Alternatively, you can give a percent sign (%) followed by the job number as a command. Either of
the following commands moves job 2 to the foreground. When you move a job to the foreground,
the shell displays the command it is now executing in the foreground.

$ fg 2

find /usr -name ace -print >findout

or

$ %2

find /usr -name ace -print >findout

Suspending a Job

Pressing the suspend key (usually CONTROL-Z) immediately suspends (temporarily stops) the job
in the foreground and displays a message that includes the word Stopped.

CONTROL-Z

[2]+ Stopped find /usr -name ace -print >findout

bg: Sends a Job to the Background

To move the foreground job to the background, you must first suspend the job using CONTROL-Z.
You can then use the bg built in to resume execution of the job in the background.

$ bg

172

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

[2]+ find /usr -name ace -print >findout&

8.5 Manipulating the Directory Stack

The Bourne Again Shell allows you to store a list of directories you are working with, enabling you
to move easily among them. This list is referred to as a stack. It implements LIFO rule.

dirs: Displays the Stack

The dirs. Built in displays the contents of the directory stack. If you call dirs when the directory
stack is empty, it displays the name of the working directory: $ dirs

~/literature

The dirsbuiltin uses a tilde (~) to represent the name of the home directory.

pushd: Pushes a Directory on the Stack

When you supply the pushd (push directory) builtin with one argument, it pushes the directory
specified by the argument on the stack, changes directories to the specified directory, and displays
the stack.

$ pushd ../demo

~/demo ~/literature

$ pwd

/home/sam/demo

$ pushd ../names

~/names ~/demo ~/literature

$ pwd

/home/sam/names

173

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

When you use pushd without an argument, it swaps the top two directories on the stack, makes the
new top directory (which was the second directory) the new working directory, and displays the
stack

Using pushd in this way, you can easily move back and forth between two directories. You can also
use cd – to change to the previous directory, whether you have explicitly created a directory stack.
To access another directory in the stack, call pushd with a numeric argument preceded by a plus
sign. The directories in the stack are numbered starting with the top directory, which is number 0.

popd: Pops a Directory Off the Stack

To remove a directory from the stack, use the popd (pop directory) builtin.

$ dirs

~/literature ~/demo ~/names

$ popd

~/demo ~/names

$ pwd

/home/sam/demo

174

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

To remove a directory other than the top one from the stack, use popd with a numeric argument
preceded by a plus sign.

$ dirs

~/literature ~/demo ~/names

$ popd +1

~/literature ~/names

8.6 Shell Variables

Within a shell, a shell parameter is associated with a value that is accessible to the user. There are
several kinds of shell parameters. The parameters whose names consist of letters, digits, and
underscores are often referred to as shell variables, or simply variables. A variable name must start
with a letter or underscore, not with a number. Thus A76, MY_CAT, and ___X___ are valid variable
names, whereas 69TH_STREET (starts with a digit) and MY-NAME (contains a hyphen) are not.

Keyword variables

Keyword shell variables (or simply keyword variables) have special meaning to the shell and
usually have short, mnemonic names. When you start a shell (by logging in, for example), the shell
inherits several keyword variables from the environment. Among these variables are HOME, which
identifies your home directory, and PATH, which determines which directories the shell searches
and in what order to locate commands that you give the shell. The shell creates and initializes (with
default values) other keyword variables when you start it. Still other variables do not exist until you
set them. You can change the values of most keyword shell variables. It is usually not necessary to
change the values of keyword variables initialized in the /etc/profile or /etc/csh.cshrcsystemwide
startup files. If you need to change the value of a bash keyword variable, do so in one of your
startup files. Just as you can make user-created variables global, so you can make keyword
variables global—a task usually done automatically in startup files. You can also make a keyword
variable read only.

Positional and special parameters

The names of positional and special parameters do not resemble variable names. Most of these
parameters have one-character names (for example, 1, ?, and #) and are referenced (as are all
variables) by preceding the name with a dollar sign ($1, $?, and $#). The values of these parameters
reflect different aspects of your ongoing interaction with the shell. Whenever you give a command,
each argument on the command line becomes the value of a positional parameter. Positional
parameters enable you to access command-line arguments, a capability that you will often require
when you write shell scripts. The set builtin enables you to assign values to positional parameters.
Other frequently needed shell script values, such as the name of the last command executed, the
number of command-line arguments, and the status of the most recently executed command, are
available as special parameters. You cannot assign values to special parameters.

175

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

$ person=max

$ echo person

person

$ echo $person

max

User-created variables

Shell variables that you name and assign values to are user-created variables. You can change the
values of user-created variables at any time, or you can make them read only so that their values
cannot be changed.

User created global variables

You can also make user-created variables global. A global variable (also called an environment
variable) is available to all shells and other programs you fork from the original shell. One naming
convention is to use only uppercase letters for global variables and to use mixed-case or lowercase
letters for other variables.

Assigning values

To assign a value to a variable in the Bourne Again Shell, use the following syntax:
VARIABLE=value. There can be no whitespace on either side of the equal sign (=). An example
assignment follows: $ myvar=abc. Under the TC Shell the assignment must be preceded by the
word set and the SPACEs on either side of the equal sign are optional: $ set myvar = abc. The
Bourne Again Shell permits you to put variable assignments on a command line. This type of
assignment creates a variable that is local to the command shell—that is, the variable is accessible
only from the program the command runs.

$ cat my_script

echo $TEMPDIR

$ TEMPDIR=/home/sam/temp ./my_script

/home/sam/temp

$ echo $TEMPDIR

$

The my_script shell script displays the value of TEMPDIR. The following command runs my_script
with TEMPDIR set to /home/sam/temp. The echo builtin shows that the interactive shell has no
value for TEMPDIR after running my_script. If TEMPDIR had been set in the interactive shell,
running my_script in this manner would have had no effect on its value.

Parameter substitution

Because the echo builtin copies its arguments to standard output, you can use it to display the
values of variables.

$ person=max

$ echo person

person

$ echo $person

max

176

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The second line of the example shows that person does not represent max. Instead, the string
person is echoed as person. The shell substitutes the value of a variable only when you precede the
name of the variable with a dollar sign ($). Because of the leading $, the shell recognizes that
$person is the name of a variable, substitutes the value of the variable, and passes that value to
echo.

Quoting the $

You can prevent the shell from substituting the value of a variable by quoting the leading $. Double
quotation marks do not prevent the substitution; single quotation marks or a backslash (\) do.

$ echo $person

max

$ echo "$person"

max

$ echo '$person'

$person

$ echo \$person

$person

Spaces

To assign a value that contains SPACEs or TABs to a variable, use double quotation marks around
the value.

$ person="max and zach"

$ echo $person

max and zach

$ person=max and zach

bash: and: command not found

If you do not quote the variable, the shell collapses each string of blank characters into a single
SPACE before passing the variable to the utility:

$ person="max and zach"

$ echo $person

max and zach

$ echo "$person"

max and zach

Pathname expansion in assignments

When you execute a command with a variable as an argument, the shell replaces the name of the
variable with the value of the variable and passes that value to the program being executed. If the
value of the variable contains a special character, such as * or ?, the shell may expand that variable.

$ memo=max*

$ echo "$memo"

max*

The first line assigns the string max* to the variable memo. The Bourne Again Shell does not
expand the string because bash does not perform pathname expansion when it assigns a value to a
variable. All shells process a command line in a specific order. Within this order bash (but not tcsh)

177

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

expands variables before it interprets commands. The echo command line, the double quotation
marks quote the asterisk (*) in the expanded value of $memo and prevent bash from performing
pathname expansion on the expanded memo variable before passing its value to the echo
command.

$ ls

max.report

max.summary

$ echo $memo

max.reportmax.summary

All shells interpret special characters as special when you reference a variable that contains an
unquoted special character. The shell expands the value of the memo variable because it is not
quoted.Here the shell expands the $memo variable to max*, expands max* tomax.reportand
max.summary, and passes these two values to echo.

User-Created Variables - unset: Removes a Variable

Unless you remove a variable, it exists as long as the shell in which it was created exists. To remove
the value of a variable but not the variable itself, assign a null value to the variable (use set person =
in tcsh):

$ person=

$ echo $person

$

You can remove a variable using the unset builtin. The following command removes the variable
person:

$ unset person

8.7 Variable Attributes

readonly: Makes the Value of a Variable Permanent

You can use the readonlybuiltin (not in tcsh) to ensure that the value of a variable cannot be
changed.

$ person=zach

$ echo $person

zach

$ readonly person

$ person=helen

bash: person: readonly variable

If you use the readonlybuiltin without an argument, it displays a list of all readonly shell variables.
This list includes keyword variables that are automatically set as readonly as well as keyword or
user-created variables that you have declared as readonly.

declare and typeset: Assign Attributes to Variables

The declare and typeset builtins (two names for the same command, neither of which is available in
tcsh) set attributes and values for shell variables.

178

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Attribute Meaning

-a Declares a variable as an array

-f Declares a variable to be a function name

-I Declares a variable to be of type integer

-r Makes a variable readonly

-x Exports a varibale, makes it global

$ declare person1=max: The first line declares person1 and assigns it a value of max. This
command has the same effect with or without the word declare.

$ declare -r person2=zach: The readonly and export builtins are synonyms for the commands
declare –r and declare –x, respectively.

$ declare -rx person3=helen

$ declare -x person4: You can declare a variable without assigning a value to it, as the preceding
declaration of the variable person4 illustrates. This declaration makes person4 available to all
subshells (i.e., makes it global). Until an assignment is made to the variable, it has a null value. You
can list the options to declare separately in any order. The following is equivalent to the preceding
declaration of person3:$ declare -x -r person3=helen. Use the + character in place of – when you
want to remove an attribute from a variable. You cannot remove the readonly attribute. After the
following command is given, the variable person3 is no longer exported but it is still readonly.$
declare +x person3. You can use typeset instead of declare.

Listing variable attributes

Without any arguments or options, declare lists all shell variables. The same list is output when you
run set without any arguments.

$ declare -r

declare -ar BASH_VERSINFO='([0]="3" [1]="2" [2]="39" [3]="1" ...)'

declare -ir EUID="500"

declare -ir PPID="936"

declare -r SHELLOPTS="braceexpand:emacs:hashall:histexpand:history:..."

declare -ir UID="500"

declare -r person2="zach"

declare -rx person3="helen"

If you use a declare builtin with options but no variable names as arguments, the command lists all
shell variables that have the indicated attributes set. For example, the command declare –r displays
a list of all read only shell variables. This list is the same as that produced by the read only
command without any arguments.

179

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Integer

By default the values of variables are stored as strings. When you perform arithmetic on a string
variable, the shell converts the variable into a number, manipulates it, and then converts it back to a
string. A variable with the integer attribute is stored as an integer. Assign the integer attribute as
follows:

$ declare -i COUNT

8.8 Keyword Variables

Keyword variables either are inherited or are declared and initialized by the shell when it starts.
You can assign values to these variables from the command line or from a startup file. Typically,
you want these variables to apply to all subshells you start as well as to your login shell. For those
variables not automatically exported by the shell, you must use export or setenv to make them
available to child shells.

HOME: Your Home Directory

By default, your home directory is the working directory when you log in. Your home directory is
established when your account is set up; under Linux its name is stored in the /etc/passwd file.

$ pwd

/home/max/laptop

$ echo $HOME

/home/max

$ cd

$ pwd

/home/max

When you log in, the shell inherits the pathname of your home directory and assigns it to the
variable HOME. When you give a cd command without an argument, cd makes the directory
whose name is stored in HOME the working directory. This example shows the value of the HOME
variable and the effect of the cd builtin. After you execute cd without an argument, the pathname of
the working directory is the same as the value of HOME: your home directory.

Tilde

The shell uses the value of HOME to expand pathnames that use the shorthand tilde (~) notation to
denote a user’s home directory. It uses ls to list the files in Max’s laptop directory, which is a
subdirectory of his home directory:

$ echo ~

/home/max

$ ls ~/laptop

tester count lineup

PATH: Where the Shell Looks for Programs

If the file with the pathname you specified does not exist, the shell reports command not found. If
the file exists as specified but you do not have execute permission for it, or in the case of a shell
script you do not have read and execute permission for it, the shell reports Permission denied. If
you give a simple filename as a command, the shell searches through certain directories (your
search path) for the program you want to execute. It looks in several directories for a file that has
the same name as the command and that you have execute permission for (a compiled program) or
read and execute permission for (a shell script). The PATH shell variable controls this search. The

180

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

system directories include /bin and /usr/bin and other directories appropriate to the local system.
The PATH variable specifies the directories in the order the shell should search them. Each
directory must be separated from the next by a colon. The following command sets PATH so that a
search for an executable file starts with the /usr/local/bin directory. If it does not find the file in this
directory, the shell looks next in /bin, and then in /usr/bin. If the search fails in those directories, the
shell looks in the ~/bin directory, a subdirectory of the user’s home directory. Finally, the shell
looks in the working directory. The exporting PATH makes its value accessible to subshells:$
export PATH=/usr/local/bin:/bin:/usr/bin:~/bin:A null value in the string indicates the working
directory.

MAIL: Where Your Mail Is Kept

The MAIL variable (mail under tcsh) contains the pathname of the file that holds your mail (your
mailbox, usually /var/mail/name, where name is your username).If MAIL is set and MAILPATH
(next) is not set, the shell informs you when mail arrives in the file specified by MAIL. In a
graphical environment you can unset MAIL so the shell does not display mail reminders in a
terminal emulator window. The MAIL variable and other mail-related shell variables do not do
anything unless you have a local mail server.

• MAILPATH: The MAILPATH variable (not available under tcsh) contains a list of

filenames separated by colons. If this variable is set, the shell informs you when any one of

the files is modified.

• MAILCHECK: This variable (not available under tcsh) specifies how often, in seconds, the
shell checks for new mail. The default is 60 seconds. If you set this variable to zero, the
shell checks before each prompt.

PS1: User Prompt (Primary)

The default Bourne Again Shell prompt is a dollar sign ($). When you run bash with root privileges,
bash typically displays a pound sign (#) prompt. The PS1 variable holds the prompt string that the
shell uses to let you know that it is waiting for a command. When you change the value of PS1 or
prompt, you change the appearance of your prompt. You can customize the prompt displayed by
PS1. For example, the assignment

$ PS1="[\u@\h \W \!]$ "

displays the following prompt:

[user@host directory event]$

where user is the username, host is the hostname up to the first period, directory is the basename of
the working directory, and event is the event number of the current command.

Symbol Display in Prompt

\$ # is the user is running with root priviliges; otherwise, $

\w Pathname of the working directory

\W Basename of the working directory

\! Current event (history) number

181

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

\d Date in Weekday Month Date format

\h Machine hostname, without the domain

\H Full machine hostname, including the domain

\u Username of the current user

\@ Current time of day in 12-hour, AM/PM format

\T Current time of day in 12-hour HH:MM:SS format

\A Current time of day in 24-hour HH:MM format

\t Current time of day in 24-hour HH:MM:SS format

PS2: User Prompt (Secondary)

The PS2 variable holds the secondary prompt. On the first line, an unclosed quoted string follows
echo. The shell assumes the command is not finished and, on the second line, gives the default
secondary prompt (>). This prompt indicates the shell is waiting for the user to continue the
command line. The shell waits until it receives the quotation mark that closes the string. Only then
does it execute the command:

$ echo "demonstration of prompt string

>2"

demonstration of prompt string

2

$ PS2="secondary prompt: "

$ echo "this demonstrates

secondary prompt: prompt string 2"

this demonstrates

prompt string 2

The second command changes the secondary prompt to secondary prompt: followed by a SPACE.
A multiline echo demonstrates the new prompt.

PS3: Menu Prompt

The PS3 variable holds the menu prompt for the select control structure.

PS4: Debugging Prompt

The PS4 variable holds the bash debugging symbol.

182

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Keyword Variables

Variable Value

BASH_ENV The pathname of the startup file for noninteractive
shells

CDPATH The cd search path

COLUMNS The width of the display used by select

FCEDIT The name of the editor that fc uses by default

HISTFILE The pathname of the file that holds the history list

HISTFILESIZE The maximum number of entries saved in HISTFILE

HISTSIZE The maximum number of entries saved in the history
list

HOME The pathname of the user’s home directory; used as the
default argument for cd and in tilde expansion

IFS Internal Field Separator; used for word splitting

INPUTRC The pathname of the Readline startup file

LANG The locale category when that category is not
specifically set with an LC_*variable

LC_* A group of variables that specify locale categories
including LC_COLLATE, LC_CTYPE,
LC_MESSAGES, and LC_NUMERIC; use the locale

builtin to display a complete list with values

LINES The height of the display used by select

MAIL The pathname of the file that holds a user’s mail

MAILCHECK How often, in seconds, bash checks for mail

MAILPATH A colon-separated list of file pathnames that bash
checks for mail in

PATH A colon-separated list of directory pathnames that bash
looks for commands

183

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

PROMPT_COMMAND A command that bash executes just before it displays
the primary prompt

PS1 Prompt String 1; the primary prompt

PS2 Prompt String 2; the secondary prompt

PS3 The prompt issued by select

PS4 The bash debugging symbol

REPLY Holds the line that read accepts also used by select

Special Characters

Characters Use

NEWLINE Initiates the execution of a command page

; Separates commands

() Group commands for execution by a subshell or identifies a
function

(()) Expands an arithmetic expression

& Executes a command in the background

| Pipe

> Redirects standard output

>> Appends standard output

< Redirects standard input

<< Here document

* Any string of zero or more characters in an ambiguous file
reference

? Any single character in an ambiguous file reference

\ Quotes the following character

184

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

‘ Quotes a string, preventing all substitution

“ Quotes a string, allowing only variable and command
substitution

‘...’ Performs command substitution

[] Character class in an ambiguous file reference

$ Reference a variable

. Executes a command

Begins a comment

{ } Surrounds the contents of a function

: Returns true

&& Boolean AND

|| Boolean OR

! Boolean NOT

$() Performs command substitution

[] Evaluates an arithmetic expression

8.9 Processes

A process is the execution of a command by the Linux kernel. The shell that starts when you log in
is a command, or a process, like any other. When you give the name of a Linux utility on the
command line, you initiate a process. When you run a shell script, another shell process is started
and additional processes are created for each command in the script. Depending on how you
invoke the shell script, the script is run either by the current shell or, more typically, by a subshell
(child) of the current shell. A process is not started when you run a shell builtin, such as cd.

Process Structure

Like the file structure, the process structure is hierarchical, with parents, children, and even a root.
A parent process forks a child process, which in turn can fork other processes. The term fork
indicates that, as with a fork in the road, one process turns into two. Initially the two forks are
identical except that one is identified as the parent and one as the child. You can also use the term
spawn; the words are interchangeable. The operating system routine, or system call, that creates a
new process is named fork().When Linux begins execution when a system is started, it starts init, a
single process called a spontaneous process, with PID number 1. This process holds the same
position in the process structure as the root directory does in the file structure: It is the ancestor of
all processes the system and users work with. When a command-line system is in multiuser mode,

185

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

init runs getty or mingetty processes, which display login: prompts on terminals. When a user
responds to the prompt and presses RETURN, getty hands control over to a utility named login,
which checks the username and password combination. After the user logs in, the login process
becomes the user’s shell process.

Process Identification

Linux assigns a unique PID number at the inception of each process. As long as a process exists, it
keeps the same PID number. During one session the same process is always executing the login
shell. When you fork a new process—for example, when you use an editor—the PID number of the
new (child) process is different from that of its parent process. When you return to the login shell, it
is still being executed by the same process and has the same PID number as when you logged in.

• $ sleep 10 &

[1] 22789

• $ ps -f

UID PID PPID C STIME TTY TIME CMD

max 21341 21340 0 10:42 pts/16 00:00:00 bash

max 22789 21341 0 17:30 pts/16 00:00:00 sleep 10

max 22790 21341 0 17:30 pts/16 00:00:00 ps -f

The following example shows that the process running the shell forked (is the parent of) the process
running ps. When you call it with the –f option, ps displays a full listing of information about each
process. The line of the ps display with bash in the CMD column refers to the process running the
shell. The column headed by PID identifies the PID number. The column headed PPID identifies
the PID number of the parent of the process. From the PID and PPID columns you can see that the
process running the shell (PID 21341) is the parent of the process running sleep (PID 22789).The
parent PID number of sleep is the same as the PID number of the shell (21341).A second pair of
sleep and ps –f commands shows that the shell is still being run by the same process but that it
forked another process to run sleep:

• $ sleep 10 &

[1] 22791

• $ ps -f

UID PID PPID C STIME TTY TIME CMD

max 21341 21340 0 10:42 pts/16 00:00:00 bash

max 22791 21341 0 17:31 pts/16 00:00:00 sleep 10

max 22792 21341 0 17:31 pts/16 00:00:00 ps -f

You can also use pstree (or ps ––forest, with or without the –e option) to see the parent–child
relationship of processes

186

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The line that starts with –kdeinit shows a graphical user running many processes, including firefox,
gaim, and oclock. The line that starts with –login shows a textual user running sleep in the
background and running pstree in the foreground.

Executing a Command

When you give the shell a command, it usually forks [spawns using the fork() system call] a child
process to execute the command. While the child process is executing the command, the parent
process sleeps [implemented as the sleep() system call]. While a process is sleeping, it does not use
any computer time; it remains inactive, waiting to wake up. When the child process finishes
executing the command, it tells its parent of its success or failure via its exit status and then dies.
The parent process (which is running the shell) wakes up and prompts for another command.
When you run a process in the background by ending a command with an ampersand (&), the shell
forks a child process without going to sleep and without waiting for the child process to run to
completion. The parent process, which is executing the shell, reports the job number and PID
number of the child process and prompts for another command. The child process runs in the
background, independent of its parent. Although the shell forks a process to run most of the
commands you give it, some commands are built into the shell. The shell does not need to fork a
process to run builtins.

Variables Within a given process, such as your login shell or a subshell, you can declare, initialize,
read, and change variables. By default, however, a variable is local to a process. When a process
forks a child process, the parent does not pass the value of a variable to the child. You can make the
value of a variable available to child processes (global) by using the export builtin under bash or the
setenvbuiltin under tcsh.

8.10 History

The history mechanism, a feature adapted from the C Shell, maintains a list of recently issued
command lines, also called events. There are various features of this:

• It provides a quick way to reexecute any of the events in the list.

• Execute variations of previous commands and reuses arguments from them.

• Replicates complicated commands and arguments that you used earlier in this login
session or in a previous one.

• Enter a series of commands that differ from one another in minor ways.

• Serves as a record of what you have done.

• Keeps a record of a procedure that involved a series of commands.

187

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Variables That Control History

The TC Shell’s history mechanism is similar to bash’s but uses different variables and has other
differences.

Variable Default Function

HISTSIZE 500 events Maximum number of events saved during a session

HISTFILE ~/.bash_history Location of the history file

HISTFILESIZE 500 events Maximum number of events saved between session

• HISTSIZE: The value of the HISTSIZE variable determines the number of events
preserved in the history list during a session. A value in the range of 100 to 1,000 is
normal.

• HISTFILE: When you exit from the shell, the most recently executed commands are saved
in the file whose name is stored in the HISTFILE variable (the default is ~/.bash_history).
The next time you start the shell, this file initializes the history list.

• HISTFILESIZE: The value of the HISTFILESIZE variable determines the number of lines
of history saved in HISTFILE.

The Bourne Again Shell assigns a sequential event number to each command line. You can display
this event number as part of the bash prompt by including \! in PS1. Give the following command
manually, or place it in ~/.bash_profileto affect future sessions, to establish a history list of the 100
most recent events: $ HISTSIZE=100. The following command causes bash to save the 100 most
recent events across login sessions: $ HISTFILESIZE=100. After you set HISTFILESIZE, you can
log out and log in again, and the 100 most recent events from the previous login session will appear
in your history list. Give the command history to display the events in the history list. This list is
ordered so that the oldest events appear at the top. A tcsh history list includes the time the
command was executed. The following history list includes a command to modify the bash prompt
so it displays the history event number. The last event in the history list is the history command
that displayed the list.

32 $ history | tail

23 PS1="\! bash$ "

24 ls -l

25 cat temp

26 rm temp

27 vim memo

28 lpr memo

29 vim memo

30 lpr memo

31 rm memo

32 history | tail

As you run commands and your history list becomes longer, it may run off the top of the screen
when you use the history builtin. Pipe the output of history through less to browse through it, or
give the command history 10 or history | tail to look at the ten most recent commands.

188

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

History alias

Creating the following aliases makes working with history easier. The first allows you to give the
command h to display the ten most recent events. The second alias causes the command hg string
to display all events in the history list that contain string. Put these aliases in your ~/.bashrc file to
make them available each time you log in.

• $ alias 'h=history | tail'

$ alias 'hg=history | grep'

Reexecuting and Editing Commands

You can reexecute any event in the history list. This feature can save you time, effort, and
aggravation. Not having to reenter long command lines allows you to reexecute events more easily,
quickly, and accurately than you could if you had to retype the command line in its entirety. You
can recall, modify, and reexecute previously executed events in three ways:

• fc builtin,

• exclamation point commands ,

• Readline Library

fc: Displays, Edits, and Reexecutes Commands

The fc (fix command) builtin (not in tcsh) enables you to display the history list and to edit and
reexecute previous commands. It provides many of the same capabilities as the command-line
editors. When you call fc with the –l option, it displays commands from the history list. Without
any arguments, fc –l lists the 16 most recent commands in a numbered list, with the oldest
appearing first:

$ fc -l

1024 cd

1025 view calendar

1026 vim letter.adams01

1027 aspell -c letter.adams01

1028 vim letter.adams01

1029 lpr letter.adams01

1030 cd ../memos

1031 ls

1032 rm *0405

1033 fc -l

1034 cd

1035 whereisaspell

1036 man aspell

1037 cd /usr/share/doc/*aspell*

1038 pwd

1039 ls

1040man-htm

The fc builtin can take zero, one, or two arguments with the –l option. The arguments specify the
part of the history list to be displayed: fc –l [first [last]]. The fc builtin lists commands beginning
with the most recent event that matches first. The argument can be an event number, the first few
characters of the command line, or a negative number, which is taken to be the nth previous
command. Without last, fc displays events through the most recent. If you include last, fc displays

189

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

commands from the most recent event that matches first through the most recent event that
matches last. The next command displays the history list from event 1030 through event 1035:
 $ fc -l 1030 1035

1030 cd ../memos

1031 ls

1032 rm *0405

1033 fc -l

1034 cd

1035 whereisaspell

This command lists the most recent event that begins with view through the most recent command
line that begins with whereis: $ fc -l view whereis

1025 view calendar

1026 vim letter.adams01

1027 aspell -c letter.adams01

1028 vim letter.adams01

1029 lpr letter.adams01

1030 cd ../memos

1031 ls

1032 rm *0405

1033 fc -l

1034 cd

1035 whereisaspell

To list a single command from the history list, use the same identifier for the first and second
arguments. The following command lists event 1027: $ fc -l 1027 1027

1027 ell -c letter.adams01

You can use fc to edit and reexecute previous commands:fc [–e editor] [first [last]]. When you call
fc with the –e option followed by the name of an editor, fc calls the editor with event(s) in the Work
buffer. By default, fc invokes the nano editor. Without first and last, it defaults to the most recent
command: $ fc -e vi. The fc builtin uses the stand-alone vim editor. If you set the FCEDIT variable,
you do not need to use the –e option to specify an editor on the command line. Because the value of
FCEDIT has been changed to /usr/bin/emacs and fc has no arguments, the following command
edits the most recent command using the emacs editor:

$ export FCEDIT=/usr/bin/emacs

$ fc

If you call it with a single argument, fc invokes the editor on the specified command. This
command starts the editor with event 1029 in the Work buffer. When you exit from the editor, the
shell executes the command: $ fc 1029. You can identify commands with numbers or by specifying
the first few characters of the command name. This command calls the editor to work on events
from the most recent event that begins with the letters vim through event 1030:$ fc vim 1030. You
can reexecute previous commands without using an editor. If you call fc with the –s option, it skips
the editing phase and reexecutes the command. This command reexecutes event 1029: $ fc -s 1029

lpr letter.adams01

This command reexecutes the previous command:

190

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

$ fc -s

When you reexecute a command, you can tell fc to substitute one string for another.This command
substitutes the string john for the string adams in event 1029 and executes the modified event:

$ fc -s adams=john 1029

lpr letter.john01

Using an Exclamation Point (!) to Reference Events

The C Shell history mechanism uses an exclamation point to reference events. For example, the !!

command reexecutes the previous event, and the shell replaces the!$ token with the last word on
the previous command line. You can reference an event by using its absolute event number, its
relative event number, or the text it contains. All references to events, called event designators,
begin with an exclamation point (!). One or more characters follow the exclamation point to specify
an event. You can put history events anywhere on a command line. To escape an exclamation point
so that the shell interprets it literally instead of as the start of a history event, precede the
exclamation point with a backslash (\) or enclose it within single quotation marks.

Event Designators

An event designator specifies a command in the history list.

You can reexecute the previous event by giving a !! command. In the following example, event 45
reexecutes event 44:

44 $ ls -l text

-rw-rw-r-- 1 max group 45 Apr 30 14:53 text

Designator Meaning

! Starts a history event unless followed immediately by SPACE,
NEWLINE, = or (.

!! The previous command

!n Command number n in the history list

!-n The nth preceding command

!string The most recent command line that started with string

!?string[?] The most recent command that contained string. The last ? Is optional

!# The current command

!{event} The event is an event designator. The braces isolate event from the
surrounding text.

191

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

45 $!!

ls -l text

-rw-rw-r-- 1 max group 45 Apr 30 14:53 text

A number following an exclamation point refers to an event. If that event is in the history list, the
shell executes it. Otherwise, the shell displays an error message. A negative number following an
exclamation point references an event relative to the current event. For example, the command !–3
refers to the third preceding event. After you issue a command, the relative event number of a
given event changes (event –3 becomes event –4). Both of the following commands reexecute event
44:

51 $!44

ls -l text

-rw-rw-r-- 1 max group 45 Apr 30 14:53 text

52 $!-8

ls -l text

-rw-rw-r-- 1 max group 45 Apr 30 14:53 text

When a string of text follows an exclamation point, the shell searches for and executes the most
recent event that began with that string. If you enclose the string within question marks, the shell
executes the most recent event that contained that string. The final question mark is optional if a
RETURN would immediately follow it.

The Readline Library

Command-line editing under the Bourne Again Shell is implemented through the Readline Library,
which is available to any application written in C. Any application that uses the Readline Library
supports line editing that is consistent with that provided by bash. Programs that use the Readline
Library, including bash, read ~/.inputrc for key binding information and configuration settings.
The ––noediting command-line option turns off command-line editing in bash.You can choose one
of two editing modes when using the Readline Library in bash: emacs or vi(m). Both modes
provide many of the commands available in the standalone versions of the emacs and vim editors.
You can also use the ARROW keys to move around. Up and down movements move you backward
and forward through the history list. In addition, Readline provides several types of interactive
word completion. The default mode is emacs; you can switch to vi mode with the following
command: $ set -o vi. This command switches back to emacs mode:$ set -o emacs

Before you start, make sure the shell is in vi mode. When you enter bash commands while in vi
editing mode, you are in Input mode. As you enter a command, if you discover an error before you
press RETURN, you can press ESCAPE to switch to vim Command mode.

Unlike the vim editor, emacs is modeless. You need not switch between Command mode and Input
mode because most emacs commands are control characters, allowing emacs to distinguish
between input and commands. Like vim, the emacs command-line editor provides commands for
moving the cursor on the command line and through the command history list and for modifying
part or all of a command. However, in a few cases, the emacs command-line editor commands
differ from those in the stand-alone emacs editor. In emacs you perform cursor movement by using
both CONTROL and ESCAPE commands.

You can use the TAB key to complete words you are entering on the command line. This facility,
called completion, works in both vi and emacs editing modes and is similar to the completion
facility available in tcsh. Several types of completion are possible, and which one you use depends
on which part of a command line you are typing when you press TAB.

192

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Command Completion

If you are typing the name of a command (usually the first word on the command line), pressing
TAB initiates command completion, in which bash looks for a command whose name starts with
the part of the word you have typed. If no command starts with the characters you entered, bash
beeps. If there is one such command, bash completes the command name. If there is more than one
choice, bash does nothing in vi mode and beeps in emacs mode. Pressing TAB a second time causes
bash to display a list of commands whose names start with the prefix you typed and allows you to
continue typing the command name. In the following example, the user types bz and presses TAB.
The shell beeps (the user is in emacs mode) to indicate that several commands start with the letters
bz. The user enters another TAB to cause the shell to display a list of commands that start with bz
followed by the command line as the user had entered it so far:

$ bz → TAB (beep) → TAB

bzcatbzdiff bzip2 bzless

bzcmpbzgrep bzip2recover bzmore

$ bz■

Next the user types c and presses TAB twice. The shell displays the two commands that start with
bzc. The user types a followed by TAB. At this point the shell completes the command because only
one command starts with bzca.

$ bzc → TAB (beep) → TAB

bzcatbzcmp

$ bzca → TAB →t ■

Pathname Completion

Pathname completion, which also uses TABs, allows you to type a portion of a pathname and have
bash supply the rest. If the portion of the pathname you have typed is sufficient to determine a
unique pathname, bash displays that pathname. If more than one pathname would match it, bash
completes the pathname up to the point where there are choices so that you can type more. When
you are entering a pathname, including a simple filename, and press TAB, the shell beeps (if the
shell is in emacs mode—in vi mode there is no beep). It then extends the command line as far as it
can.

$ cat films/dar → TAB (beep) cat films/dark_

In the films directory every file that starts with dar has k_ as the next characters, so bash cannot
extend the line further without making a choice among files. The shell leaves the cursor just past
the _ character. At this point you can continue typing the pathname or press TAB twice. In the
latter case bash beeps, displays your choices, redisplays the command line, and again leaves the
cursor just after the _ character.

$ cat films/dark_ → TAB (beep) → TAB

dark_passagedark_victory

$ cat films/dark_

When you add enough information to distinguish between the two possible files and press TAB,
bash displays the unique pathname. If you enter p followed by TAB after the _ character, the shell
completes the command line: $ cat films/dark_p → TAB → assage. Because there is no further
ambiguity, the shell appends a SPACE so you can finish typing the command line or just press
RETURN to execute the command. If the complete pathname is that of a directory, bash appends a
slash (/) in place of a SPACE.

Variable Completion

When you are typing a variable name, pressing TAB results in variable completion, wherein bash
attempts to complete the name of the variable. In case of an ambiguity, pressing TAB twice displays
a list of choices:

$ echo $HO → TAB → TAB

193

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

$HOME $HOSTNAME $HOSTTYPE

$ echo $HOM → TAB → E

.inputrc: Configuring the Readline Library

The Bourne Again Shell and other programs that use the Readline Library read the file specified by
the INPUTRC environment variable to obtain initialization information. If INPUTRC is not set,
these programs read the ~/.inputrc file. They ignore lines of .inputrc that are blank or that start
with a pound sign (#).You can set variables in .inputrc to control the behavior of the Readline
Library using the following syntax:set variable value.

Readline variables

Variable Effect

editing-mode Set to vi to start Readline in vi mode. Set to emacs to start

Readline in emacs mode (the default). Similar to the set –o vi and set –o
emacs shell commands

horizontal-scroll-
mode

Set to on to cause long lines to extend off the right edge of the display
area. Moving the cursor to the right when it is at the right edge of the
display area shifts the line to the left so you can see more of the line. You
can shift the line back by moving the cursor back past the left edge. The
default value is off, which causes long lines to wrap onto multiple lines
of the display.

mark-directories Set to off to cause Readline not to place a slash (/) at the end of directory
names it completes. The default value is on.

mark-modified-lines Set to on to cause Readline to precede modified history lines with an
asterisk. The default value is off.

8.11 Alias

An alias is a usually short name that the shell translates into another usually longer name or
complex command. Aliases allow you to define new commands by substituting a string for the first
token of a simple command. They are typically placed in the ~/.bashrc (bash) or ~/.tcshrc (tcsh)
startup files so that they are available to interactive subshells. Under bash the syntax of the alias
builtin is:alias [name[=value]]. Under tcsh the syntax is: alias [name[value]].

In the bash syntax no SPACEs are permitted around the equal sign. If value contains SPACEs or
TABs, you must enclose value within quotation marks. Unlike aliases under tcsh, a bash alias does
not accept an argument from the command line in value. Use a bash function when you need to use
an argument. An alias does not replace itself, which avoids the possibility of infinite recursion in
handling an alias such as the following: $ alias ls='ls -F'. You can nest aliases. Aliases are disabled
for noninteractive shells (that is, shell scripts). To see a list of the current aliases, give the command
alias. To view the alias for a particular name, give the command alias followed by the name of the
alias. You can use the unalias builtin to remove an alias. When you give an alias builtin command
without any arguments, the shell displays a list of all defined aliases:

194

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

$ alias

alias ll='ls -l'

alias l='ls -ltr'

alias ls='ls -F'

alias zap='rm -i'

Give an alias command to see which aliases are in effect. You can delete the aliases you do not want
from the appropriate startup file.

Single Versus Double Quotation Marks in Aliases

The choice of single or double quotation marks is significant in the alias syntax when the alias
includes variables. If you enclose value within double quotation marks, any variables that appear in
value are expanded when the alias is created. If you enclose value within single quotation marks,
variables are not expanded until the alias is used. The PWD keyword variable holds the pathname
of the working directory (Shown in next slide).Max creates two aliases while he is working in his
home directory. Because he uses double quotation marks when he creates the dirA alias, the shell
substitutes the value of the working directory when he creates this alias. The alias dirA command
displays the dirA alias and shows that the substitution has already taken place:

$ echo $PWD

/home/max

$ alias dirA="echo Working directory is $PWD"

$ alias dirA

alias dirA='echo Working directory is /home/max'

When Max creates the dirB alias, he uses single quotation marks, which prevent the shell from
expanding the $PWD variable. The alias dirB command shows that the dirB alias still holds the
unexpanded $PWD variable:

$ alias dirB='echo Working directory is $PWD'

$ alias dirB

alias dirB='echo Working directory is $PWD'

After creating the dirA and dirB aliases, Max uses cd to make cars his working directory and gives
each of the aliases as commands. The alias he created using double quotation marks displays the
name of the directory he created the alias in as the working directory (which is wrong). In contrast,
the dirB alias displays the proper name of the working directory.

$ cd cars

$ dirA

Working directory is /home/max

$ dirB

Working directory is /home/max/cars

Examples of Aliases

The following alias allows you to type r to repeat the previous command: $ alias r='fc -s'. If you use
the command ls –ltr frequently, you can create an alias that substitutes ls –ltr when you give the
command l:

$ alias l='ls -ltr'

195

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

$ l

total 41

-rw-r--r-- 1 max group 30015 Mar 1 2008 flute.ps

-rw-r----- 1 max group 3089 Feb 11 2009 XTerm.ad

-rw-r--r-- 1 max group 641 Apr 1 2009 fixtax.icn

-rw-r--r-- 1 max group 484 Apr 9 2009 maptax.icn

drwxrwxr-x 2 max group 1024 Aug 9 17:41 Tiger

drwxrwxr-x 2 max group 1024 Sep 10 11:32 testdir

-rwxr-xr-x 1 max group 485 Oct 21 08:03 floor

drwxrwxr-x 2 max group 1024 Oct 27 20:19 Test_Emacs

Another common use of aliases is to protect yourself from mistakes. The following example
substitutes the interactive version of the rm utility when you give the command zap:

$ alias zap='rm -i'

$ zap f*

rm: remove 'fixtax.icn'? n

rm: remove 'flute.ps'? n

rm: remove 'floor'? n

The –i option causes rm to ask you to verify each file that would be deleted, thereby helping you
avoid deleting the wrong file. You can also alias rm with the rm –i command: alias rm='rm –i'.This
aliases cause the shell to substitute ls –l each time you give an ll command and ls –F each time you
use ls:

$ alias ls='ls -F'

$ alias ll='ls -l'

$ ll

total 41

drwxrwxr-x 2 max group 1024 Oct 27 20:19 Test_Emacs/

drwxrwxr-x 2 max group 1024 Aug 9 17:41 Tiger/

-rw-r----- 1 max group 3089 Feb 11 2009 XTerm.ad

-rw-r--r-- 1 max group 641 Apr 1 2009 fixtax.icn

-rw-r--r-- 1 max group 30015 Mar 1 2008 flute.ps

-rwxr-xr-x 1 max group 485 Oct 21 08:03 floor*

-rw-r--r-- 1 max group 484 Apr 9 2009 maptax.icn

drwxrwxr-x 2 max group 1024 Sep 10 11:32 testdir/

The –F option causes ls to print a slash (/) at the end of directory names and an asterisk (*) at the
end of the names of executable files. In this example, the string that replaces the alias ll (ls –l) itself
contains an alias (ls). When it replaces an alias with its value, the shell looks at the first word of the
replacement string to see whether it is an alias. In the preceding example, the replacement string
contains the alias ls, so a second substitution occurs to produce the final command ls –F –l.When
given a list of aliases without the =value or value field, the alias builtin responds by displaying the
value of each defined alias. The alias builtin reports an error if an alias has not been defined:

196

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

$ alias ll l lszapwx

alias ll='ls -l'

alias l='ls -ltr'

alias ls='ls -F'

alias zap='rm -i'

bash: alias: wx: not found

You can avoid alias substitution by preceding the aliased command with a backslash (\):

$ \ls

Test_Emacs XTerm.ad flute.ps maptax.icn

Tiger fixtax.icn floor testdir

Because the replacement of an alias name with the alias value does not change the rest of the
command line, any arguments are still received by the command that gets executed:

$ ll f*

-rw-r--r-- 1 max group 641 Apr 1 2009 fixtax.icn

-rw-r--r-- 1 max group 30015 Mar 1 2008 flute.ps

-rwxr-xr-x 1 max group 485 Oct 21 08:03 floor*

You can remove an alias with the unalias builtin. When the zap alias is removed, it is no longer
displayed with the alias builtin and its subsequent use results in an error message:

$ unalias zap

$ alias

alias ll='ls -l'

alias l='ls -ltr'

alias ls='ls -F'

$ zap maptax.icn

8.12 Functions

A bash shell function (tcsh does not have functions) is similar to a shell script in that it stores a
series of commands for execution at a later time. However, because the shell stores a function in the
computer’s main memory (RAM) instead of in a file on the disk, the shell can access it more quickly
than the shell can access a script. The shell also preprocesses (parses) a function so that it starts up
more quickly than a script. Finally the shell executes a shell function in the same shell that called it.
If you define too many functions, the overhead of starting a subshell can become unacceptable. You
can declare a shell function in the ~/.bash_profile startup file, in the script that uses it, or directly
from the command line. You can remove functions with the unset builtin. The shell does not retain
functions after you log out.

Removing variables and functions

If you have a shell variable and a function with the same name, using unset removes the shell
variable. If you then use unset again with the same name, it removes the function. The syntax that
declares a shell function is

[function] function-name ()

{

197

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

commands

}

The word function is optional, function-name is the name you use to call the function, and
commands comprise the list of commands the function executes when you call it. The commands
can be anything you would include in a shell script, including calls to other functions. There are
some features of functions:

• The opening brace ({) can appear on the same line as the function name.

• Aliases and variables are expanded when a function is read, not when it is executed.

• You can use the break statement within a function to terminate its execution.

• Shell functions are useful as a shorthand as well as to define special commands.

• It creates a simple function that displays the date, a header, and a list of the people who
are logged in on the system. This function runs the same commands as the whoson script.

• The greater than (>) signs are secondary shell prompts (PS2); do not enter them.

$ function whoson ()

> {

> date

> echo "Users Currently Logged On"

> who

> }

$ whoson

Sun Aug 9 15:44:58 PDT 2009

Users Currently Logged On

hls console Aug 8 08:59 (:0)

max pts/4 Aug 8 09:33 (0.0)

zach pts/7 Aug 8 09:23 (bravo.example.com)

Functions in startup files

If you want to have the whoson function always be available without having to enter it each time
you log in, put its definition in ~/.bash_profile. Then run .bash_profile, using the . (dot) command
to put the changes into effect immediately:

$ cat ~/.bash_profile

export TERM=vt100

stty kill '^u'

whoson ()

{

date

echo "Users Currently Logged On"

who

}

$. ~/.bash_profile

198

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

You can specify arguments when you call a function. Within the function these arguments are
available as positional parameters. The following example shows the arg1 function entered from
the keyboard:

$ arg1 () {

> echo "$1"

> }

$ arg1 first_arg

first_arg

8.13 Command Line Options

Two kinds of command-line options are available: short and long. Short options consist of a hyphen
followed by a letter. Long options have two hyphens followed by multiple characters. Long options
must appear before short options on a command line that calls bash.

Option Explanation Syntax

Help Displays a usage message. --help

No edit Prevents users from using the Readline Library to
edit command lines in an interactive shell.

--noediting

No profile Prevents reading these startup files:

/etc/profile, ~/.bash_profile, ~/.bash_login, and
~/.profile.

--noprofile

No rc Prevents reading the ~/.bashrcstartup file. This
option is on by default if the shell is

called as sh.

--norc

POSIX Runs bash in POSIX mode. --posix

Version Displays bash version information and exits. --version

Login Causes bash to run as though it were a login shell. -l (lowercase “l”)

Shopt Runs a shell with the opt shopt option . A –O
(uppercase “O”) sets the option; +O unsets it.

[±] 0 [opt]

End of
options

On the command line, signals the end of options.
Subsequent tokens are treated as arguments even if
they begin with a hyphen (–).

--

199

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

8.14 Shell Features

You can control the behavior of the Bourne Again Shell by turning features on and off. Different
features use different methods to turn features on and off. The set builtin controls one group of
features, while the shoptbuiltin controls another group. You can also control many features from
the command line you use to call bash.

set ±o: Turns Shell Features On and Off

The bash set builtin (there is a set builtin in tcsh, but it works differently), when used with the –o or
+o option, enables, disables, and lists certain bash features. For example, the following command
turns on the noclobber feature: $ set -o noclobber. You can turn this feature off (the default) by
giving the command: $ set +o noclobber. The command set –o without an option lists each of the
features controlled by set, followed by its state (on or off).The command set +o without an option
lists the same features in a form you can use as input to the shell.

shopt: Turns Shell Features On and Off

The shopt (shell option) builtin (not available in tcsh) enables, disables, and lists certain bash
features that control the behavior of the shell. For example, the following command causes bash to
include filenames that begin with a period (.) when it expands ambiguous file references (the –s
stands for set): $ shopt -s dotglob. You can turn this feature off (the default) by giving the following
command (the –u stands for unset): $ shopt -u dotglob. The shell displays how a feature is set if
you give the name of the feature as the only argument to shopt:$ shoptdotglobdotglob off. The
command shopt without any options or arguments lists the features controlled by shopt and their
state. The command shopt –s without an argument lists the features controlled by shopt that are set
or on. The command shopt –u lists the features that are unset or off.

bash features

Feature Description Syntax Alternate
Syntax

allexport Automatically exports all variables
and

functions you create or modify after
givingthis command.

set –o allexport set –a

braceexpand Causes bash to perform brace
expansion

set –o
braceexpand

set –B

cdspell Corrects minor spelling errors in
directorynames used as arguments
to cd.

shopt –s cdspell

cmdhist Saves all lines of a multiline
command inthe same history entry,
adding semicolonsas needed.

shopt –s cmdhist

200

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

dotglob Causes shell special characters
(wildcards) in an ambiguous file
referenceto match a leading period
in a filename. By default, special
characters do not match aleading
period. You must always specify the
filenames . and .. explicitly because
nopattern ever matches them.

shopt –s dotglob

emacs Specifies emacs editing mode for
command-line editing

set –o emacs

errexit Causes bash to exit when a simple
command (not a control structure)
fails.

set –o errexit set –e

execfail Causes a shell script to continue
running when it cannot find the file
that is given as an argument to exec. By
default a script terminates when exec
cannot find the file that is given as its
argument.

shopt –s execfail

expand_

aliases

Causes aliases to be expanded(by
default it is on for interactive shells and
off for noninteractive shells).

shopt –s
expand_alias

hashall Causes bash to remember where
commands it has found using PATH

are located (default).

set –o hashall set –h

histappend Causes bash to append the history list
to the file named by HISTFILE when
the shell exits. By default bash
overwrites this file.

shopt –s
histappend

histexpand Turns on the history mechanism (which
uses exclamation points by default. Turn
this feature off to turn off history
expansion.

set –o histexpand set –H

history Enables command history set –o history

huponexit Specifies that bash send a SIGHUP signal
to all jobs when an interactive login shell
exits.

shopt –s
huponexit

ignoreeof Specifies that bash must receive ten EOF
characters before it exits. Useful on noisy
dial-up lines.

set –o ignoreeof

201

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

monitor Enables job control set –o monitor set –m

nocaseglob Causes ambiguous file references to
match filenames withoutregard to case
(off by default).

shopt –s
nocaseglob

noclobber Helps prevent overwriting files set –o noclobber set –C

noglob Disables pathname expansion set –o noglob set –f

notify With job control enabled, reports the
termination status of background

jobs immediately. The default behavior is
to display the status just before the next
prompt.

set –o notify set –b

nounset Displays an error and exits from a shell
script when you use an unset variable in
an interactive shell. The default is to
display a null value for an unset variable.

set –o nounset set –u

nullglob Causes bash to expand ambiguous file

References that do not match a filename to
a null string. By default bash passes these
file references without expanding them.

shopt –s
nullglob

posix Runs bash in POSIX mode. set –o posix

verbose Displays command lines as bash
readsthem.

set –o verbose set –v

vi Specifies vi editing mode for
commandline

Editing

set –o vi

xpg_echo Causes the echo builtin to expand
backslash escape sequences without the
need for the –e option

shopt –s
xpg_echo

xtrace Turns on shell debugging set –o xtrace set –x

8.15 The TC Shell

The TC Shell (tcsh) provides an interface between you and the Linux operating system. The TC
Shell is an interactive command interpreter as well as a high-level programming language. You use
only one shell at any given time. The TC Shell is an expanded version of the C Shell. The “T” in TC
Shell comes from the TENEX and TOPS-20 operating systems. A number of features not found in

202

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

csh are present in tcsh, including file and username completion, command-line editing, and
spelling correction.

Assignment statement

The tcsh assignment statement has the following syntax:set variable = value. Having SPACEs on
either side of the equal sign, although illegal in bash, is allowed in tcsh. The default tcsh prompt is a
greater than sign (>), but it is frequently set to a single $ character followed by a SPACE.

Shell Scripts

The TC Shell can execute files containing tcsh commands. If the first character of a shell script is a
pound sign (#) and the following character is not an exclamation point (!), the TC Shell executes the
script under tcsh. If the first character is anything other than #, tcsh calls the sh link to dash or bash
to execute the script. The tcsh echo builtin accepts either a –n option or a trailing \c to get rid of the
RETURN that echo normally displays at the end of a line.

Checking shell

• ps: If you are not sure which shell you are using, use the ps utility to find out. It shows

whether you are running tcsh, bash, sh (linked to bash), or possibly another shell.

• finger: The finger command followed by your username displays the name of your login

shell, which is stored in the /etc/passwd file.

Entering the TC Shell

You can execute tcsh by giving the command tcsh.If you want to use tcsh as a matter of course, you

can use the chsh (change shell) utility to change your login shell:

bash $ chsh

Changing shell for sam.

Password:

New shell [/bin/bash]: /bin/tcsh

Shell changed.

bash $

Leaving the tc shell

You can leave tcsh in several ways. The approach you choose depends on two factors:whether the
shell variable ignoreeof is set and whether you are using the shell that you logged in on (your login
shell) or another shell that you created after you logged in.If you are not sure how to exit from tcsh,
press CONTROL-D on a line by itself with no leading SPACEs, just as you would to terminate
standard input to a program. You will either exit or receive instructions on how to exit.If you have
not set ignoreeof and it has not been set for you in a startup file, you can exit from any shell by
using CONTROL-D (the same procedure you use to exit from the Bourne Again Shell).When
ignoreeof is set, CONTROL-D does not work. The ignoreeof variable causes the shell to display a
message telling you how to exit. You can always exit from tcsh by giving an exit command. A
logout command allows you to exit from your login shell only.

203

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Startup Files

When you log in on the TC Shell, it automatically executes various startup files. You must have
read access to a startup file to execute the commands in it.When you log in on the TC Shell, it
automatically executes various startup files. You must have read access to a startup file to execute
the commands in it.

1) etc/csh.cshrc and /etc/csh.login:

The shell first executes the commands in /etc/csh.cshrc and /etc/csh.login. A user working with

root privileges can set up these files to establish systemwide default characteristics for tcsh

users.They contain systemwide configuration information, such as the default path, the location to

check for mail, and so on.

2) .tcshrc and .cshrc:

Next the shell looks for ~/.tcshrc or, if it does not exist, ~/.cshrc.You can use these files to establish

variables and parameters that are local to your shell. Each time you create a new shell, tcsh

reinitializes these variables for the new shell.

3) .history

Login shells rebuild the history list from the contents of ~/.history. If the histfile variable exists,

tcsh uses the file that histfile points to in place of .history.

4).login

Login shells read and execute the commands in ~/.login. This file contains commands that you

want to execute once, at the beginning of each session.

5) /etc/csh.logoutand .logout

The TC Shell runs the /etc/csh.logout and ~/.logout files, in that order, when you exit from a login

shell.

Features Common to the Bourne Again and TC Shells

Most of the features common to both bash and tcsh are derived from the original C Shell:

• Command-line expansion (also called substitution)

• History

• Aliases

• Job control

• Filename substitution

• Directory stack manipulation

• Command substitution

Command-Line Expansion (Substitution)

The tcsh man page uses the term substitution instead of expansion; the latter is used by bash. The
TC Shell scans each token for possible expansion in the following order:

204

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

1. History substitution

2. Alias substitution

3. Variable substitution

4. Command substitution

5. Filename substitution

6. Directory stack substitution

1) History substitution:

The TC Shell assigns a sequential event number to each command line. You can display this event
number as part of the tcsh prompt. As in bash, the tcsh history builtin displays the events in your
history list. The list of events is ordered with the oldest events at the top. The last event in the
history list is the history command that displayed the list. In the following history list, which is
limited to ten lines by the argument of 10 to the history command, command 23 modifies the tcsh
prompt to display the history event number. The time each command was executed appears to the
right of the event number.

32 $ history 10

23 23:59 set prompt = "! $ "

24 23:59 ls -l

25 23:59 cat temp

26 0:00 rm temp

27 0:00 vim memo

28 0:00 lpr memo

29 0:00 vim memo

30 0:00 lpr memo

31 0:00 rm memo

32 0:00 history

The same event and word designators work in both shells. For example, !! refers to the previous

event in tcsh, just as it does in bash. The command !328 executes event number 328; !?txt? executes

the most recent event containing the string txt.

• Few tcsh word modifiers not found in bash.

Modifier Function

u Converts the first lowercase letter into uppercase

l Converts the first uppercase letter into lowercase

a Applies the next modifier globally within a single word

205

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• Variables to control history

Variable Default Function

history 100 words Maximum number of events saved during a session

histfile ~/.history Location of the history file

savehist not set Maximum number of events saved between sessions

2) Aliases Substitution

The alias builtin has a slightly different syntax: alias name value. The following command creates
an alias for ls: tcsh $ alias ls "ls -lF". The tcsh alias allows you to substitute command-line
arguments, whereas bash does not:

$ alias nam "echo Hello, \!^ is my name"

$ nam Sam

Hello, Sam is my name

The string \!* within an alias expands to all command-line arguments:$ alias sortprint "sort \!* |

lpr"

The next alias displays its second argument:$ alias n2 "echo \!:2"

3) Job Control

Job control is similar in both bash and tcsh. You can move commands between the foreground and

the background, suspend jobs temporarily, and get a list of the current jobs. The % character

references a job when it is followed by a job number or a string prefix that uniquely identifies the

job. You will see a minor difference when you run a multiple-process command line in the

background from each shell. Whereas bash displays only the PID number of the last background

process in each job, tcsh displays the numbers for all processes belonging to a job.

4) Filename Substitution

The TC Shell expands the characters *, ?, and [] in a pathname just as bash does. * matches any

string of zero or more characters, ? matches any single character, [] defines a character class, which

is used to match single characters appearing within a pair of brackets. The TC Shell expands

command-line arguments that start with a tilde (~) into filenames in much the same way that bash

does, with the ~ standing for the user’s home directory or the home directory of the user whose

name follows the tilde. The bash special expansions ~+ and ~– are not available in tcsh.Brace

expansion is available in tcsh. Like tilde expansion, it is regarded as an aspect of filename

substitution even though brace expansion can generate strings that are not the names of actual files.

5) Manipulating the Directory Stack

Directory stack manipulation in tcsh does not differ much from that in bash. The dirsbuiltin
displays the contents of the stack, and the pushd and popdbuiltins push directories onto and pop
directories off of the stack.

206

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

6) Command Substitution

The $(...) format for command substitution is not available in tcsh. In its place you must use the
original ‘...‘ format. Otherwise, the implementation in bash and tcsh is identical.

Summary

• The Bourne Again Shell and TC Shell are command interpreters and high-level

programming languages.

• Login shells are, by their nature, interactive.

• Pressing the suspend key (usually CONTROL-Z) immediately suspends (temporarily

stops) the job in the foreground and displays a message that includes the word Stopped.

• Keyword shell variables have special meaning to the shell and usually have short,

mnemonic names.

• Like the file structure, the process structure is hierarchical, with parents, children, and

even a root. A parent process forks a child process, which in turn can fork other processes.

• You can declare a shell function in the ~/.bash_profile startup file, in the script that uses it,

or directly from the command line.

• You can remove functions with the unset builtin. The shell does not retain functions after

you log out.

• The shopt (shell option) builtin (not available in tcsh) enables, disables, and lists certain

bash features that control the behavior of the shell.

• The TC Shell is an interactive command interpreter as well as a high-level programming

language.

Keywords

• BASH_ENV: Noninteractive shells look for the environment variable BASH_ENV (or

ENV if the shell is called as sh) and execute commands in the file named by this variable.

• File Descriptors: A file descriptor is the place a program sends its output to and gets its

input from.

• Shell Script:A shell script is a file that holds commands that the shell can execute. The

commands in a shell script can be any commands you can enter in response to a shell

prompt.

• Positional Parameters:Positional parameters enable you to access command-line

arguments, a capability that you will often require when you write shell scripts.

• MAIL:The MAIL variable (mail under tcsh) contains the pathname of the file that holds

your mail (your mailbox, usually /var/mail/name, where name is your username).

• MAILPATH:The MAILPATH variable (not available under tcsh) contains a list of

filenames separated by colons. If this variable is set, the shell informs you when any one of

the files is modified.

• MAILCHECK: This variable (not available under tcsh) specifies how often, in seconds, the

shell checks for new mail. The default is 60 seconds. If you set this variable to zero, the

shell checks before each prompt.

• Process:A process is the execution of a command by the Linux kernel.

• Events:The history mechanism, a feature adapted from the C Shell, maintains a list of

recently issued command lines, also called events.

207

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• HISTSIZE: The value of the HISTSIZE variable determines the number of events

preserved in the history list during a session. A value in the range of 100 to 1,000 is

normal.

• HISTFILE: When you exit from the shell, the most recently executed commands are saved

in the file whose name is stored in the HISTFILE variable (the default is ~/.bash_history).

The next time you start the shell, this file initializes the history list.

• HISTFILESIZE: The value of the HISTFILESIZE variable determines the number of lines

of history saved in HISTFILE.

• Alias:An alias is a usually short name that the shell translates into another usually longer

name or complex command.

• ps: If you are not sure which shell you are using, use the ps utility to find out. It shows

whether you are running tcsh, bash, sh (linked to bash), or possibly another shell.

• finger: The finger command followed by your username displays the name of your login

shell, which is stored in the /etc/passwd file.

Self Assessment

1. The shoptbuiltin _________________ the features that control the bash.
A. Enables

B. Disables

C. Lists

D. All of the above mentioned

2. The short command line options consists of
A. Hyphen

B. A letter

C. Hyphen followed by a letter

D. None of the above

3. Using ______, we can recall, modify and re-execute previously executed events.
A. Fc builtin

B. Exclamation point commands

C. Readline libraries

D. All of the above mentioned

4. Event designators start with
A. &

B. !

C. @

D. #

5. Which key is used for pathname and command completion?
A. CTRL

B. TAB

C. RETURN

208

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

D. SHIFT

6. Which of these variables gives the location of history file?
A. HISTSIZE

B. HISTFILE

C. HISTFILESIZE

D. None of the above

7. Which builtin sets the attributes and values for shell variables?
A. declare

B. typeset

C. Both declare and typeset

D. None of the above mentioned

8. PS4 is ____________
A. Primary prompt

B. Secondary prompt

C. Prompt issued by select

D. Bash debugging symbol

9. What is the naming convention for global variables?
A. Only lowercase letters

B. Only uppercase letters

C. Mixed case letters

D. Only numbers

10. What is the correct syntax for assigning a value to a variable in Bourne Again Shell?
A. VARIABLE=value

B. VARIABLE = value

C. VARIABLE= value

D. VARIABLE =value

11. Which keyword holds the pathname of the working directory?
A. pwd

B. work

C. dir

D. key

12. You can specify arguments when you call a function. Within the function these arguments

are available as _____________
A. Special parameters

B. Positional parameters

C. Uni parameters

209

Unit 08: The Bourne Again Shell and TC Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

D. None of the above

13. Which built in is used to make the value of a variable available to the child processes?
A. echo

B. export

C. cat

D. avail

14. What is used to see the parent-child relationship?
A. pstree

B. treeps

C. trpsee

D. eesptr

15. The directory stack implements _________ rule.
A. FIFO

B. LIFO

C. RIRO

D. None of the above

16. To remove a directory from the stack, use the ________ builitin.
A. popd

B. pushd

C. remd

D. None of the above

17. Which variable gives the maximum number of events saved between the session?
A. history

B. histfile

C. savehist

D. None of the above

18. Which of these features are common in bash and tcsh?
A. Aliases

B. Job control

C. Command substitution

D. All of the above mentioned

210

The Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Answers for Self Assessment

1. D 2. C 3. D 4. B 5. B

6. B 7. C 8. D 9. B 10. A

11. A 12. B 13. B 14. A 15. A

16. A 17. C 18. D

Review Questions

1) What are startup files? Explain in detail.

2) What are file descriptors? Explain.

3) How can we manipulate a directory stack? Explain the operations.

4) What are shell variables? Explain its types in details.

5) What are keyword variables? Explain with examples.

6) What is a process in Linux? Explain it.

7) What is history feature in Linux? Write its features. Which variables that control history?

8) How can we re-execute and edit commands? Write the different ways to do this.

9) What is an alias? Write its syntax. What is the use of single and double quotation marks in

alias? Explain with example.

10) What are shell features? Write bash features.

11) What is TC shell? How can we enter and leave the TC shell? Write its startup files.

12) Write the features common to Bourne again shell and TC shell.

Further Readings

Mark G. Sobell, A Practical Guide to Linux Commands, Editors, and Shell
Programming, Second Edition, Prentice Hall, Pearson Education, Inc.

Web Links

https://www.bottomupcs.com/file_descriptors.xhtml

https://www.ibm.com/docs/en/aix/7.2?topic=concepts-shell-features

211

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 09: Programming the Bourne Again Shell

CONTENTS

Objectives

Introduction

9.1 Control Structures

9.2 File Descriptor

9.3 Parameters and Variables

9.4 Builtin Commands

9.5 Expressions

9.6 Operators

9.7 Increment and Decrement

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

 After studying this unit, you will be able to:

• Understand the control structures

• Understand the file descriptors

• Know the parameters and variables

• Understand the builtins

• Understand the expressions

Introduction

The programming languages are used for writing the programs. A simple program executes a
sequence of statements without any jump or condition. In a programming language, we have
various kinds of control structures which basically interrupts the flow of statements based upon
conditions. The control flow commands alter the order of execution of commands within a shell
script. It specifies the order in which computations are performed.

9.1 Control Structures

There are various control structures:

• if...then,

• for...in,

• while,

• until,

• break,

212

Dr. Divya, Lovely Professional University

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• Continue

• case statements

if...then

This control structure is used to express the decisions. The if...then control structure has the
following syntax:

iftest-command

then

commands

fi

If the statement given in test_command turns out to be true, then the commands given must be
executed. In this control structure, there is no command that needs to be printed when the
test_command turns out to be false. The flow of if … then control structure is shown below:

Here, one example is taken in which the value of a is 1 and b is 2 and the test condition is to check
whether both values are equal or not. If the condition is true, then only the statement “Hi, LPU”
will be printed. Otherwise, the control will exit. The control structure is ended using fi.

The output of the program is ” ”. It will print nothing as the condition is false here. The control will
just exit.

213

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Task: Write a shell script to display square of a number

if...then...else

This control structure is also used to represent the decisions. Here the else part can be optional. The
test-command will be evaluated. If this turns out to be true, then commands after that will be
printed. If the test-commands turns out to be false, then the statements given in else will be printed.
The if...then...else control structure has the following syntax:

if test-command

then

commands

else

commands

fi

The flow of if… then… else is shown below:

214

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Here in this example, two variables are taken, i.e., a and b. If the values of a and b are equal, then
the statement “a and b are equal” otherwise “a and b are not equal” is printed. The structure is
ended with fi.

The output of the program is: The value of a is 1 and b is 2. It will print “a and b are not equal”.

215

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Task: Write a shell script to check whether a person is eligible to vote or not.

if...then...elif

This sequence of if statements is the most general way of writing a multi-way decision. The
expressions are evaluated in order; if an expression is true, the statement associated with it is
executed, and this terminates the whole chain. As always, the code for each statement is either a
single statement, or a group of them in braces. The last else part handles the ``none of the above'' or
default case where none of the other conditions is satisfied.The if...then...elif control structure has
the following syntax:

if test-command

then

commands

elif test-command

then

commands

. . .

else

commands

fi

216

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The values of a and b are taken. The condition is to check the value of and b. If both are equal, then
it should print “a and b are equal”, If not, it should check if a is greater than b, if yes, then it should
print “a is greater than b”. Otherwise “a is less than b”.

The value of a is 1 and b is 2. So, the output of the program is “a is less than b”.

217

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Task: Write a shell script to display grades as per the following ranges of %age:

>= 80 ‘A+’

>=60 &&<80 ‘A’

> = 50 &&< 60 ‘B’

> = 40 &&<50 ‘C’

<40 ‘E’.

for...in

A loop is a sequence of instructions that is continually repeated until a certain condition is reached.
It is a block of code that will repeat repeatedly. The for loop operates on lists of items. It repeats a
set of commands for every item in a list. The for...in control structure has the following syntax:

for loop-index in argument-list

do

commands

done

Here loop index is the variable you specify in the do section and will contain the item in the loop
that you are on. The list of arguments can be anything that returns a space or newline separated list.

218

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The output of the program is printing of numbers starting from 0 till 9.

Task: Write a shell script to sum of all numbers starting from 1 to 100 using for loop

219

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

While

As long as the test-command (Figure 10-5) returns a true exit status, the while structure continues
to execute the series of commands delimited by the do and done statements. Before each loop
through the commands, the structure executes the test command. When the exit status of the test-
command is false, the structure passes control to the statement after the done statement. The while
control structure (not available in tcsh) has the following syntax:

while test-command

do

commands

done

The variable a is taken and initialized with 0. Till the value of a is less than 10, it keeps on printing
and incrementing the values.

220

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The output of the program is: The values starting from 0 till 9 will be printed.

Task: Write a shell script to count odd numbers from 10 to 100.

Until

The until continues to loop until the test-command returns a true exit status. The while loop is

perfect for a situation where you need to execute a set of commands while some condition is true.
Sometimes you need to execute a set of commands until a condition is true. The syntax of until is:

until command

do

Statement(s) to be executed until command is true

done

Task: Write a shell script to take input for a number and keep on counting the chances
how many times user has not entered a valid number. ‘Valid number is -99’.

221

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

break and continue

You can interrupt a for, while, or until loop by using a break or continue statement.The break
statement transfers control to the statement after the done statement, thereby terminating execution
of the loop. The continue command transfers control to the done statement, continuing execution of
the loop.

222

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Task: Write a shell script to display square of all numbers from m to n when first
multiple of 10 is reached loop should terminate.

Case

You can use multiple if...elif statements to perform a multi way branch. However, this is not
always the best solution, especially when all the branches depend on the value of a single variable.
It supports case...esac statement which handles exactly this situation, and it does so more efficiently
than repeated if...elif statements. The case structure is a multiple-branch decision mechanism. The
path taken through the structure depends on a match or lack of a match between the test-string and
one of the patterns. The pattern in the case structure is analogous to an ambiguous file reference. It
can ne any special character like *, ?, […] or |.The case control structure has the following syntax:

case test-string in

pattern-1)

commands-1

;;

pattern-2)

commands-2

;;

pattern-3)

commands-3

;;

. . .

esac

223

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The next program asks to enter any character: A,B or C. If you have entered A, it prints “You
entered A”. If you have entered B, it prints “ You entered B”. If you have entered C, it prints “ You
entered C”. If any other character is entered, it prints “ You did not enter A, B, or C”. The structure
ends with esac.

The output of the program is:

Task: Write a shell script to implement arithmetic calculator.

224

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Select

The select control structure is based on the one found in the Korn Shell. It displays a menu, assigns
a value to a variable based on the user’s choice of items, and executes a series of commands. The
select control structure has the following syntax:

select varname [in arg . . .]

do

commands

done

The select structure displays a menu of the arg items. If you omit the keyword in and the list of
arguments, select uses the positional parameters in place of the arg items. The menu is formatted
with numbers before each item.

The output of the program is:

225

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

9.2 File Descriptor

Before a process can read from or write to a file, it must open that file. When a process opens a file,
Linux associates a number (called a file descriptor) with the file. A file descriptor is an index into
the process’s table of open files. Each process has its own set of open files and its own file
descriptors. After opening a file, a process reads from and writes to that file by referring to its file
descriptor. When it no longer needs the file, the process closes the file, freeing the file descriptor. A
typical Linux process starts with three open files: standard input (file descriptor 0), standard output
(file descriptor 1), and standard error (file descriptor 2). Often these are the only files the process
needs.

Opening a file descriptor

The Bourne Again Shell opens files using the exec built in as follows: exec n> outfileopens outfile
for output and holds it open, associating it with file descriptor n. The exec m< infileopens infile for
input and holds it open, associating it with file descriptor m.

Duplicating a file descriptor

The <& token duplicates an input file descriptor; >& duplicates an output file descriptor. You can
duplicate a file descriptor by making it refer to the same file as another open file descriptor, such as
standard input or output. To open or redirect file descriptor n as a duplicate of file descriptor m:
exec n<&m

Once you have opened a file, you can use it for input and output in two ways. First, you can use
I/O redirection on any command line, redirecting standard output to a file descriptor with >&n or
redirecting standard input from a file descriptor with <&n. Second, you can use the read and echo
builtins. If you invoke other commands, including functions, they inherit these open files and file
descriptors. When you have finished using a file, you can close it using: exec n<&–

9.3 Parameters and Variables

There are various parameters and variables which are used. These are:

• Array Variables

• Locality of Variables

• Functions

• Special Parameters

• Positional Parameters

Array Variables

The Bourne Again Shell supports one-dimensional array variables. The subscripts are integers with
zero-based indexing (i.e., the first element of the array has the subscript 0). The declaration and
assignment of values to an array can be done as:name=(element1 element2 ...). An example of
assigning four values to the array NAMES can be done as:$ NAMES=(max helen sam zach). It
references a single element of an array as follows:$ echo ${NAMES[2]}

sam

The declare builtin with the –a option displays the values of the arrays (and reminds you that bash
uses zero based indexing for arrays):
$ A=("${NAMES[*]}")
$ B=("${NAMES[@]}")
$ declare -a
declare -a A='([0]="max helen sam zach")'
declare -a B='([0]="max" [1]="helen" [2]="sam" [3]="zach")'

226

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

...

declare -a NAMES='([0]="max" [1]="helen" [2]="sam" [3]="zach")'

Locality of Variables

By default, variables are local to the process in which they are declared. Thus, a shell script does not
have access to variables declared in your login shell unless you explicitly make the variables
available (global). Under bash, export makes a variable available to child processes. Under tcsh,
setenv assigns a value to a variable and makes it available to child processes.

Locality of Variables(Without export)

$ cat extest1

cheese=american

echo "extest1 1: $cheese"

subtest

echo "extest1 2: $cheese"

$ cat subtest

echo "subtest 1: $cheese"

cheese=swiss

echo "subtest 2: $cheese"

$./extest1

extest1 1: american

subtest 1:

subtest 2: swiss

extest1 2: American

Locality of Variables(With export)

$ cat extest2

export cheese=american

echo "extest2 1: $cheese"

subtest

echo "extest2 2: $cheese"

$./extest2

extest2 1: american

subtest 1: american

subtest 2: swiss

extest2 2: American

An export builtin can optionally include an assignment:export cheese=American. The preceding
statement is equivalent to the following two statements:

 cheese=american

 export cheese

An export builtin can optionally include an assignment:export cheese=american

227

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The preceding statement is equivalent to the following two statements:

 cheese=american

 export cheese

Functions

Because functions run in the same environment as the shell that calls them, variables are implicitly
shared by a shell and a function it calls.

$ function nam () {

>echo $myname

>myname=zach

>}

$ myname=sam

$ nam

sam

$ echo $myname

zach

The myname variable is set to sam in the interactive shell. The nam function then displays the value
of myname (sam) and sets myname to zach. The final echo shows that, in the interactive shell, the
value of myname has been changed to zach. Local variables are helpful in a function written for
general use. Because the function is called by many scripts that may be written by different
programmers, you need to make sure the names of the variables used within the function do not
conflict with (i.e., duplicate) the names of the variables in the programs that call the function. Local
variables eliminate this problem. When used within a function, the typeset builtin declares a
variable to be local to the function it is defined in.

Special parameters

Special parameters enable you to access useful values pertaining to command-line arguments and
the execution of shell commands. You reference a shell special parameter by preceding a special
character with a dollar sign ($).As with positional parameters, it is not possible to modify the value
of a special parameter by assignment.

$$: PID Number

The shell stores in the $$ parameter the PID number of the process that is executing it. In this
example, echo displays the value of this variable and the ps utility confirms its value. Both
commands show that the shell has a PID number of 5209:

$ echo $$

5209

$ ps

PID TTY TIME CMD

5209 pts/1 00:00:00 bash

6015 pts/1 00:00:00 ps

Because echo is built into the shell, the shell does not create another process when you give an echo
command. However, the results are the same whether echo is a built in or not, because the shell

228

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

substitutes the value of $$ before it forks a new process to run a command. Incorporating a PID
number in a filename is useful for creating unique file names when the meanings of the names do
not matter; this technique is often used in shell scripts for creating names of temporary files. When
two people are running the same shell script, having unique filenames keeps the users from
inadvertently sharing the same temporary file.

$?: Exit Status

When a process stops executing for any reason, it returns an exit status to its parent process. The
exit status is also referred to as a condition code or a return code. The $? ($status under tcsh)
variable stores the exit status of the last command. By convention a nonzero exit status represents a
false value and means the command failed. A zero is true and indicates the command executed
successfully. The first ls command succeeds and the second fails, as demonstrated by the exit status:

$ ls es

es

$ echo $?

0

$ ls xxx

ls: xxx: No such file or directory

$ echo $?

1

You can specify the exit status that a shell script returns by using the exit builtin, followed by a
number, to terminate the script. If you do not use exit with a number to terminatea script, the exit
status of the script is that of the last command the script ran.

$ cat es
echo This program returns an exit status of 7.
exit 7
$ es
This program returns an exit status of 7.
$ echo $?
7
$ echo $?

0

Positional Parameters

Positional parameters comprise the command name and command-line arguments. These
parameters are called positional because within a shell script, you refer to them by their position on
the command line. Only the set builtin allows you to change the values of positional parameters.
However, you cannot change the value of the command name from within a script. The tcsh set
builtin does not change the values of positional parameters.

$#: Number of Command-Line Arguments

The $# parameter holds the number of arguments on the command line (positional parameters), not
counting the command itself:

 $ cat num_args

 echo "This script was called with $# arguments."

 $./num_args sam max zach

 This script was called with 3 arguments.

229

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

$0: Name of the Calling Program

The shell stores the name of the command you used to call a program in parameter $0. This
parameter is numbered zero because it appears before the first argument on the command line:

$ cat abc

echo "The command used to run this script is $0"

$./abc

The command used to run this script is ./abc

$ ~sam/abc

The command used to run this script is /home/sam/abc

$1–$n: Command-Line Arguments

The first argument on the command line is represented by parameter $1, the second argument by
$2, and so on up to $n. For values of n greater than 9, the number must be enclosed within braces.
For example, the twelfth command-line argument is represented by ${12}. The following script
displays positional parameters that hold command-line arguments:

$ cat display_5args

echo First 5 arguments are $1 $2 $3 $4 $5

$./display_5args zach max helen

First 5 arguments are zach max helen

shift: Promotes Command-Line Arguments

The shift builtin promotes each command-line argument. The first argument (which was $1) is
discarded. The second argument (which was $2) becomes the first argument (now $1), the third
becomes the second, and so on. Because no “unshift” command exists, you cannot bring back
arguments that have been discarded. An optional argument to shift specifies the number of
positions to shift (and the number of arguments to discard); the default is 1.

The following demo_shift script is called with three arguments. Double quotation marks around
the arguments to echo preserve the spacing of the output. The program displays the arguments and
shifts them repeatedly until no more arguments are left to shift:

$ cat demo_shift

echo "arg1= $1 arg2= $2 arg3= $3"

shift

echo "arg1= $1 arg2= $2 arg3= $3"

shift

echo "arg1= $1 arg2= $2 arg3= $3"

shift

echo "arg1= $1 arg2= $2 arg3= $3"

shift

$./demo_shift alice helen zach

arg1= alice arg2= helen arg3= zach

arg1= helen arg2= zach arg3=

arg1= zach arg2= arg3=

230

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

arg1= arg2= arg3=

set: Initializes Command-Line Arguments

When you call the set builtin with one or more arguments, it assigns the values of the arguments to
the positional parameters, starting with $1 (not available in tcsh). The following script uses set to
assign values to the positional parameters $1, $2, and $3:

$ cat set_it

set this is it

echo $3 $2 $1

$./set_it

it is this

$* and $@: Represent All Command-Line Arguments

The $* parameter represents all command-line arguments, as the display_all program
demonstrates:

$ cat display_all

echo All arguments are $*

$./display_all a b c d e f g h i j k l m n o p

All arguments are a b c d e f g h i j k l m n o p

9.4 Builtin Commands

Builtin commandsdo not fork a new processwhen you execute them.

Builtins Funcexittions

: Returns 0 or true

. Executes a shell script as part of the current process

bg Puts a suspended job in the background

break Exits from a looping control structure

cd Changes to another working directory

continue Starts with the next iteration of a looping control structure

231

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

echo Displays its arguments

eval Scans and evaluates the command line

exec Executes a shell script or program in place of the current process

export Exits from the current shell

fg Brings a job from the background into the foreground

getopts Parses arguments to a shell script

jobs Displays a list of background jobs

kill Sends a signal to a process or job

pwd Displays the name of the working directory

read Reads a line from standard input

readonly Declares a variable to be readonly

set Sets shell flags or command-line argument variables; with no argument,
lists all variables

shift Promotes each command-line argument

test Compares arguments

times Displays total times for the current shell and its children

trap Traps a signal

type Displays how each argument would be interpreted as a command

232

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

umask Returns the value of the file-creation mask

unset Removes a variable or function

wait Waits for a background process to terminate

9.5 Expressions

An expression comprises constants, variables, and operators that the shell can process to return a
value. It contains arithmetic, logical and conditional expressions and operators.

Arithmetic Evaluation

The Bourne Again Shell can perform arithmetic assignments and evaluate many different types of
arithmetic expressions, all using integers. The shell performs arithmetic assignments in a number of
ways.

One is with arguments to the let builtin:$ let "VALUE=VALUE * 10 + NEW". Within a let statement
you do not need to use dollar signs ($) in front of variable names. Double quotation marks must
enclose a single argument, or expression, that contains SPACEs. Because most expressions contain
SPACEs and need to be quoted, bash accepts ((expression)) as a synonym for let "expression",
obviating the need for both quotation marks and dollar signs: $ ((VALUE=VALUE * 10 + NEW))

Logical expressions

You can use the ((expression)) syntax for logical expressions, although that task is frequently left to
[[expression]].

$ cat age2

#!/bin/bash

echo -n "How old are you? "

read age

if ((30 < age && age < 60)); then

echo "Wow, in $((60-age)) years, you'll be 60!"

else

echo "You are too young or too old to play."

fi

$./age2

How old are you? 25

You are too young or too old to play.

Logical Evaluation (Conditional expressions)

The syntax of a conditional expression is [[expression]]where expression is a Boolean (logical)
expression. You must precede a variable name with a dollar sign ($) within expression. The result
of executing this builtin, as with the test builtin, is a return status. The conditions allowed within
the brackets are almost a superset of those accepted by test. Where the test builtin uses –a as a

233

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Boolean AND operator, [[expression]] uses &&. Similarly, where test uses –o as a Boolean OR
operator, [[expression]] uses ||.

String comparisons

The test builtin tests whether strings are equal. The [[expression]] syntax adds comparison tests for
string operators. The > and < operators compare strings for order (for example, "aa" < "bbb"). The =
operator tests for pattern match, not just equality: [[string = pattern]] is true if string matches
pattern. This operator is not symmetrical; the pattern must appear on the right side of the equal
sign. For example,

[[artist = a*]] is true (= 0), whereas [[a* = artist]] is false (= 1):

$ [[artist = a*]]

$ echo $?

0

$ [[a* = artist]]

$ echo $?

1

String Pattern Matching

The Bourne Again Shell provides string pattern-matching operators that can manipulate pathnames
and other strings. These operators can delete from strings prefixes or suffixes that match patterns.

Operator Function

Removes minimal matching prefixes

Removes maximal matching prefixes

% Removes minimal matching suffixes

%% Removes maximal matching suffixes

The syntax for these operators is: ${varname op pattern}.

where op is one of the operators and pattern is a match pattern like that used for filename
generation.

9.6 Operators

Arithmetic expansion and arithmetic evaluation in bash use the same syntax, precedence, and
associativity of expressions as in the C language. Within an expression you can use parentheses to
change the order of evaluation.

234

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Type of Operator Function

Post

Var++ Postincrement

Var-- Postdecrement

Pre

++var Preincrement

--var Predecrement

Unary

+ Unary Plus

- Unary Minus

Negation

! Boolean NOT

~ Complement

Exponentiation

** Exponent

Multiplication, Division, Remainder

* Multiplication

/ Division

% Remainder

Addition, Subtraction

+ Addition

- Subtraction

235

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Bitwise Shifts

<< Left bitwise shift

>> Right bitwise shift

Comparison

<= Less than or equal to

>= Greater than or equal to

< less than

> Greater than

Equality, inequality

== Equality

!= Inequality

Bitwise

* Bitwise AND

^ Bitwise XOR

| Bitwise OR

Boolean (Logical)

&& Boolean AND

|| Boolean OR

Conditional Evaluation

?: Ternary Operator

Assignment

236

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

=, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |=
Assignment

Comma

, Comma

Pipe

The pipe token has higher precedence than operators. You can use pipes anywhere in a command
that you can use simple commands. For example, the command line:

$ cmd1 | cmd2 || cmd3 | cmd4 && cmd5 | cmd6

is interpreted as if you had typed

$ ((cmd1 | cmd2) || (cmd3 | cmd4)) && (cmd5 | cmd6)

9.7 Increment and Decrement

The post increment, post decrement, pre increment, and pre decrement operators work with

variables. The pre- operators, which appear in front of the variable name(as in ++COUNT and ––

VALUE), first change the value of the variable (++ adds 1;–– subtracts 1) and then provide the

result for use in the expression. The post- operators appear after the variable name (as in

COUNT++ and VALUE––); they first provide the unchanged value of the variable for use in the

expression and then change the value of the variable.

Remainder

The remainder operator (%) yields the remainder when its first operand is divided by its second.

Boolean

The result of a Boolean operation is either 0 (false) or 1 (true). The && (AND) and || (OR) Boolean
operators are called short-circuiting operators. If the result of using one of these operators can be
decided by looking only at the left operand, the right operand is not evaluated. The && operator
causes the shell to test the exit status of the command preceding it. If the command succeeded, bash
executes the next command; otherwise, it skips the remaining commands on the command line.
You can use this construct to execute commands conditionally.

Ternary

The ternary operator, ? :, decides which of two expressions should be evaluated, based on the value
returned by a third expression:expression1 ? expression2 : expression3

Assignment: The assignment operators, such as +=, are shorthand notations. For example, N+=3
is the same as ((N=N+3)).

Summary

• The while loop is perfect for a situation where you need to execute a set of commands

while some condition is true.

• You can interrupt a for, while, or until loop by using a break or continue statement.

237

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• The break statement transfers control to the statement after the done statement, thereby

terminating execution of the loop.

• The continue command transfers control to the done statement, continuing execution of

the loop.

• A file descriptor is an index into the process’s table of open files.

• A typical Linux process starts with three open files: standard input (file descriptor 0),

standard output (file descriptor 1), and standard error (file descriptor 2).

• The <& token duplicates an input file descriptor; >& duplicates an output file descriptor.

• The Bourne Again Shell supports one-dimensional array variables.

• By default, variables are local to the process in which they are declared.

• Special parameters enable you to access useful values pertaining to command-line

arguments and the execution of shell commands.

• Positional parameters comprise the command name and command-line arguments. These

parameters are called positional because within a shell script, you refer to them by their

position on the command line.

• An expression comprises constants, variables, and operators that the shell can process to

return a value.

Keywords

• Break: The break statement transfers control to the statement after the done statement,

thereby terminating execution of the loop.

• Continue: The continue command transfers control to the done statement, continuing

execution of the loop.

• File Descriptor: A file descriptor is an index into the process’s table of open files.

• exec n> outfile: It opens outfile for output and holds it open, associating it with file

descriptor n.

• exec m< infile: It opens infile for input and holds it open, associating it with file descriptor

m.

• exec n<&–: When you have finished using a file, you can close it using:exec n<&–

• export: Under bash, export makes a variable available to child processes.

• Setenv: Under tcsh, setenv assigns a value to a variable and makes it available to child

processes.

• Pipe:The pipe token has higher precedence than operators. You can use pipes anywhere in

a command that you can use simple commands.

Self Assessment

1. Continue statement

A. Breaks loop and goes to next statement after loop

B. does not break loop but starts new iteration

C. exits the program

D. Starts from beginning of program

238

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

2. >& duplicates

A. Input file descriptor

B. Output file descriptor

C. Error file descriptor

D. None of the above

3. << represents

A. Left bitwise shift

B. Right bitwise shift

C. Centre bitwise shift

D. None of the above

4. Which of these is assignment operator?

A. =

B. *=

C. /=

D. All of the above

5. Which of these builtin removes a variable or function?

A. set

B. unset

C. mask

D. umask

6. A typical Linux process has

A. File descriptor 0

B. File descriptor 1

C. File descriptor 2

D. All of the above mentioned

7. Before a file can read/write to a file, it must ______ the file.

A. Open

B. Close

C. Check

D. None of the above

8. We can reference a shell special parameter by preceding a special character with a _____

A. !

B. @

C. #

D. $

239

Unit 09: Programming the Bourne Again Shell

 LOVELY PROFESSIONAL UNIVERSITY

Notes

9. Which of these operators has the higher precedence?

A. Pipe

B. AND

C. OR

D. NOT

10. Instead of using if…..else multiple times, we can use one __________.

A. case….esac

B. if….fi

C. else……else

D. None of the above

11. Which of these control structures are available in Linux?

A. If…….then

B. For…….in

C. While

D. All of the above mentioned

12. The file descriptor is associated with _______

A. Opening of file

B. Reading from file

C. Writing from file

D. None of the above mentioned

13. The loops can be interrupted by using

A. break

B. continue

C. Both break and continue

D. None of the above

14. ^ represents

A. Bitwise AND

B. Bitwise OR

C. Bitwise XOR

D. None of the above

15. Which of these builtin removes a variable or function?

A. set

B. unset

C. mask

D. umask

240

Linux and Shell Programming

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Answers for Self Assessment

1. B 2. B 3. A 4. B 5. B

6. D 7. D 8. A 9. A 10. A

11. D 12. A 13. C 14. C 15. B

Review Questions

1. Write a shell script to use a switch statement to process a menu selection, using both

upper- and lower-case options.

2. Write a shell script that displays the names of all directory files, but no other types of files,

in the working directory.

3. What is a control structure? Explain different types of control structures with examples.

4. Explain the syntax of while and for…in loop with examples.

5. What is a file descriptor? How can we open and duplicate a file descriptor?

6. What are special and positional parameters in Linux?

7. What is a builtin? Give ten examples of builtin commands.

Further Readings

Mark G. Sobell, A Practical Guide to Linux Commands, Editors and Shell Scripting, Second
Edition, Prentice Hall.

Web Links

https://eng.libretexts.org/Bookshelves/Computer_Science/Operating_Systems/Linux_-
_The_Penguin_Marches_On_(McClanahan)/13%3A_Working_with_Bash_Scripts/4.10%3
A_Shell_Control_Statements

241

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 10: Linux System Administration

CONTENTS

Objectives

Introduction

10.1 System Administrator and Superuser

10.2 System Administration Tools

10.3 Rescue Mode

10.4 Security Enhanced Linux

10.5 Run levels

10.6 Booting the System

10.7 System Administration Utilities

10.8 Standard Rules in Configuration Files

10.9 The xinetd Superserver

10.10 DHCP: Configures Hosts

10.11 Important files and directories in Linux

10.12 Types of files

10.13 Filesystems

10.14 mount: Mounts a Filesystem

10.15 Configuring User and Group Accounts

10.16 Backing Up Files

10.17 Scheduling Tasks

Summary:

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to

• Know about the system administrator and superuser

• Understand the rescue mode

• Understand the SELinux

• Understand the system operations and system administration utilities

• Understand how to set up a server

• know important files and directories in Linux

• Understand the file types and file systems

• Know how to back up files and schedule tasks

• Understand how to configure user and group accounts, system reports and parted

242

Dr. Divya, Lovely Professional University

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Introduction

A well-maintained system:

• Runs quickly enough so users do not get too frustrated waiting for the system to respond
or complete a task.

• Has enough storage to accommodate users’ reasonable needs.

• Provides a working environment appropriate to each user’s abilities and requirements.

• Is secure from malicious and accidental acts altering its performance or compromising the
security of the data it holds and exchanges with other systems.

• Is backed up regularly, with recently backed-up files readily available to users.

• Has recent copies of the software that users need to get their jobs done.

• Is easier to administer than a poorly maintained system.

10.1 System Administrator and Superuser

A system administrator should be available to help users with all types of system-related problems
from logging in to obtaining and installing software updates to tracking down and fixing obscure
network issues. Much of what a system administrator does is work that ordinary user do not have
permission to do. When performing one of these tasks, the system administrator logs in as root to
have system wide powers that are beyond those of ordinary users: A user with root privileges is
referred to as Super user. The username is root by default.

Superuser has the following powers:

• Some commands, such as those that add new users, partition hard drives, and change
system configuration, can be executed only by root.

• Superuser can use certain tools, such as sudo, to give specific users permission to perform
tasks that are normally reserved for Superuser.

• Read, write, and execute file access and directory access permissions do not affect root:
Superuser can read from, write to, and execute all files, as well as examine and work in all
directories.

• Some restrictions and safeguards that are built into some commands do not apply to root.
For example, root can change any user’s password without knowing the old password.

When you are running with root (Superuser) privileges, the shell by convention displays a special
prompt to remind you of your status. By default, this prompt is or ends with a pound sign (#).

Gain Superuser Privileges

You can gain or grant Superuser privileges in several ways:

1) When you bring the system up in single-user mode, you are Superuser.

2) Once the system is up and running in multiuser mode, you can log in as root. When you supply
the proper password, you will be Superuser.

3) You can give an su (substitute user) command while you are logged in as yourself and, with the
proper password, you will have Superuser privileges.

4) You can use sudo selectively to give users Superuser privileges for a limited amount of time on a
per-user and per-command basis. The sudo utility is controlled by the /etc/sudoers file, which
must be set up by root.

5) Any user can create a setuid (set user ID) file. Setuid programs run on behalf of the owner of the
file and have all the access privileges that the owner has. While you are running as Superuser, you
can change the permissions of a file owned by root to setuid. When an ordinary user executes a file
that is owned by root and has setuid permissions, the program has full root privileges.

243

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

6) Some programs ask you for a password (either your password or the root password, depending
on the command and the configuration of the system) when they start. When you provide the root
password, the program runs with root privileges.

10.2 System Administration Tools

Many tools can help you be an efficient and thorough system administrator.

• su: Gives You Another User’s Privileges

• console helper: Runs Programs as root

• kill: Sends a Signal to a Process

su: Gives You Another User’s Privileges

The su (substitute user) utility can create a shell or execute a program with the identity and
permissions of a specified user. Follow su on the command line with the name of a user; if you are
working with root privileges or if you know the user’s password, you take on the identity of that
user. When you give an su command without an argument, su defaults to Superuser so that you
take on the identity of root (you have to know the root password). It is better to use /bin/su which
is the official version of su to avoid the trouble. When you give an su command to become
Superuser, you spawn a new shell, which displays the # prompt. You return to your normal status
(and your former shell and prompt) by terminating this shell: Press CONTROL-D or give an exit
command.

Console helper: Runs Programs as root

The console helper utility can make it easier for someone who is logged in on the system console
but not logged in as root to run system programs that normally can be run only by root.

kill: Sends a Signal to a Process

The kill built in sends a signal to a process. This signal may or may not terminate (kill) the process,
depending on which signal is sent and how the process is designed.

10.3 Rescue Mode

Rescue mode is an environment you can use to fix a system that does not boot normally. To bring a
system up in rescue mode, boot the system from the first installation CD, the Net Boot CD, or the
install DVD. From the install DVD, select Rescue installed system from the Welcome menu. From
the first installation CD and the Net Boot CD, enter the rescue (FEDORA) or boot rescue (RHEL)
boot parameter. In rescue mode, you can change or replace configuration files, check, and repair
partitions using fsck, rewrite boot information, and more. The rescue screen first asks if you want to
set up the network interface. This interface is required if you want to copy files from other systems
on the LAN or download files from the Internet.

Avoiding a Trojan Horse

A Trojan horse is a program that does something destructive or disruptive to a system while
appearing to be benign. As an example, you could store the following script in an executable file
named mkfs:

while true

do

echo 'Good Morning Mr. Jones. How are you? Ha Ha Ha.' > /dev/console

done

244

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

If you are running as Superuser when you run this command, it would continuously write a
message to the console. If the programmer were malicious, it could do worse. The only thing
missing in this plot is access permissions. A malicious user could implement this Trojan horse by
changing Superuser’s PATH variable to include a publicly writable directory at the start of the
PATH string. A good way to help prevent the execution of a Trojan horse is to make sure that your
PATH variable does not contain a single colon (:) at the beginning or end of the PATH string or a
period (.) or double colon (::) anywhere in the PATH string. This precaution ensures that you will
not execute a file in the working directory by accident.

10.4 Security Enhanced Linux

Traditional Linux security, i.e., DAC is based on users and groups. Because a process run by a user
has access to anything the user has access to, fine-grained access control is difficult to achieve.
SELinux was developed by the U.S. NSA, implements MAC in the Linux kernel. MAC enforces
security policies that limit what a user or program can do. It defines a security policy that controls
some or all objects, such as files, devices, sockets, and ports, and some or all subjects, such as
processes. Using SELinux, you can grant a process only those permissions it needs to be functional,
following the principle of least privilege. MAC is an important tool for limiting security threats that
come from user errors, software flaws, and malicious users. The kernel checks MAC rules after it
checks DAC rules.

States/Modes of SELinux

SELinux can be in one of three states (modes):

• Enforcing— This is the default state.

• Permissive— This is the diagnostic state.

• Disabled— No policy.

Policies of SELinux

SELinux implements one of the following policies:

• Targeted—Applies SELinux MAC controls only to certain (targeted) processes (default).

• MLS—Multilevel Security protection.

• Strict—Applies SELinux MAC controls to all processes (RHEL).

Turning off SELinux

There are two ways to disable SELinux: You can modify the /etc/selinux/config file so that it
includes the line SELINUX=disabled and reboot the system, or you can use system-config-selinux.

config: The SELinux Configuration File

The /etc/selinux/config file, which has a link at /etc/sysconfig/selinux, controls the state of
SELinux on the local system. Although you can modify this file, it may be more straightforward to
work with system-config-selinux. In the following example, the policy is set to targeted, but that
setting is of no consequence because SELinux is disabled:

$ cat /etc/selinux/config

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.

245

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

disabled - SELinux is fully disabled.

SELINUX=disabled

SELINUXTYPE= type of policy in use. Possible values are:

targeted - Only targeted network daemons are protected.

strict - Full SELinux protection.

SELINUXTYPE=targeted

To put SELinux in enforcing mode, change the line containing the SELINUX assignment to
SELINUX=enforcing. Similarly, you can change the policy by setting SELINUXTYPE.

getenforce, setenforce, and sestatus: Work with SELinux

The getenforce and setenforce utilities report on and temporarily set the SELinux mode. The
sestatus utility displays a summary of the state of SELinux:

getenforce

Enforcing

setenforce permissive

sestatus

SELinux status: enabled

SELinuxfs mount: /selinux

Current mode: permissive

Mode from config file: enforcing

Policy version: 24

Policy from config file: targeted

Setting the Targeted Policy with system-config-selinux

The system-config-selinux utility displays the SELinux Administration window, which controls
SELinux. To run this utility, enter system-config-selinux from a command line in a graphical
environment or select Main menu: System􀁄Administration􀁄SELinux Management.

246

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

SELinux Administration window

With Status highlighted on the left side of the SELinux Administration window, choose Enforcing
(default), Permissive, or Disabled from the drop-down list labeled System Default Enforcing Mode.
The mode you choose becomes effective next time you reboot the system. You can use the drop-
down list labeled Current Enforcing Mode to change between Enforcing and Permissive modes
immediately. When you change the mode using this list, the system resumes the default mode
when you reboot it. To modify the SELinux policy, highlight Boolean on the left side of the SELinux
Administration window and scroll through the list of modules. To find modules that pertain to
NFS, type nfs in the text box labeled Filter and then press RETURN. The SELinux Administration
window displays all modules with the string nfs in their descriptions. The modules with tick marks
in the Active column are in use.

10.5 Run levels

Number Name Login Level Filesystems

0 Halt

1 Single user Textual Down Mounted

2 Multiuser
without NFS

Textual Up Mounted

3 Multiuser Textual Up Mounted

4 User Defined

5 Multiuser with X Graphical Up Mounted

6 Reboot

247

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• Default Run level: By default, Fedora systems boot to graphical multiuser mode (runlevel 5).

• runlevel utiity: The runlevel utility displays the previous and current runlevels. This utility is
a transitional tool; it provides compatibility with SysVinit. In the following example, the N
indicates that the system does not know what the previous runlevel was and the 5 indicates
that the system is in multiuser mode.

$ runlevel

N 5

• telinit utility: The telinit utility allows a user with root privileges to bring the system down,
reboot the system, or change between recovery (single-user) and multiuser modes. The telinit
utility is a transitional tool; it provides compatibility with SysVinit. The format of a telinit
command is: telinit runlevel.

• Recovery mode and the root password: When the system enters recovery (single-user) mode,
init requests the root password before displaying the root prompt. When the system enters
graphical multiuser mode, it displays a graphical login screen.

10.6 Booting the System

Booting a system is the process of reading the Linux kernel into system memory and starting it
running. As the last step of the boot procedure, Linux runs the init program as PID number 1. The
init program is the first genuine process to run after booting and is the parent of all system
processes. (That is why when you run as root and kill process 1, the system dies.)

• initdefault: The initdefault entry in the /etc/inittab file tells init which runlevel to bring
the system to. Set initdefault to 3 to cause the system to present a text login message when
it boots; set it to 5 to present a graphical login screen (default).

• init daemon: As the last step of the boot procedure, Linux starts the init daemon as PID
number 1. The init daemon is the first genuine process to run after booting and is the
parent of all system processes.

Init Scripts: Start and Stop System Services

The first script that runs is /etc/rc.d/rc.sysinit, which performs basic system configuration,
including setting the system clock, hostname, and keyboard mapping; setting up swap partitions;
checking the filesystems for errors; and turning on quota management.

service: Configures Services I

Fedora/RHEL provides service, a handy utility that can report on or change the status of any of the
system services in /etc/rc.d/init.d.

system-config-services: Configures Services II

The system-config-services utility displays the Service Configuration window. This utility has two
functions: It turns system services on and off immediately, and it controls which services are
stopped and started when the system enters and leaves runlevels 2–5. The system-config-services
utility works with many of the services listed in /etc/rc.d/init.d as well as with those controlled by
xinetd and listed in /etc/xinetd.d (or specified in /etc/xinetd.conf). To run system-config-services,
enter system-config-services from a command line in a graphical environment or select Main menu:
System | Administration | Services.

chkconfig: Configures Services III

The chkconfig character-based utility duplicates much of what the system-config services utility
does: It makes it easier for a system administrator to maintain the /etc/rc.d directory hierarchy.

248

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

This utility can add, remove, list startup information, and check the state of system services. It
changes the configuration only—it does not change the current state of any service.

Single-User Mode

When the system is in single-user mode, only the system console is enabled. You can run programs
from the console in single-user mode just as you would from any terminal in multiuser mode. The
only difference is that few of the system daemons will be running. The scripts in /etc/rc.d/rc1.d
are run as part of single-user initialization. With the system in single-user mode, you can perform
system maintenance that requires file systems to be unmounted or that requires just a quiet
system—no one except you using it, so that no user programs interfere with disk maintenance and
backup programs.

Going to Multiuser Mode

After you have determined that all is well with the filesystems, you can bring the operating system
up to multiuser mode. When you exit from the single-user shell, init brings the system to the
default run level—usually 5. Alternatively, you can give the following command in response to the
Superuser prompt to bring the system to textual multiuser mode (use 5 to go to graphical multiuser
mode): # /sbin/telinit 3. When it goes from single-user to textual multiuser mode, the system
executes the K (kill or stop) scripts and then the S (start) scripts in /etc/rc.d/rc3.d.

Graphical Multiuser Mode

Graphical multiuser mode is the default state for a Fedora/RHEL system. In this mode all
appropriate filesystems are mounted, and users can log in from all connected terminals, dial-up
lines, and network connections. All support services and daemons are enabled and running. Once
the system is in graphical multiuser mode, a login screen appears on the console. Most systems are
set up to boot directly to graphical multiuser mode without stopping at single-user mode.

Logging In

• Textual login

• Graphical login

Textual login

With a textual login, the system uses init, mingetty, and login to allow a user to log in; login uses
PAM modules to authenticate users. The system is in multiuser mode, the Upstart init daemon is
responsible for spawning a mingetty process on each of the lines that a user can use to log in.

Graphical login

With a graphical login, the Upstart init daemon starts gdm (the GNOME display manager) by
default on the first free virtual terminal, providing features similar to those offered by mingetty and
login. The gdm utility starts an X server and presents a login window. The gdm display manager
then uses PAM to authenticate the user and runs the scripts in the /etc/gdm/PreSession directory.

Logging Out

When the system displays a shell prompt, you can either execute a program or exit from the shell. If
you exit from the shell, the process running the shell dies and the parent process wakes up. When
the shell is a child of another shell, the parent shell wakes up and displays a prompt. Exiting from a
login shell causes the operating system to send Upstart a signal that one of its children has died.
Upon receiving this signal, Upstart takes action based on the contents of the appropriate tty job
definition file. In the case of a process controlling a line for a terminal, Upstart informs mingetty
that the line is free for another user. When you are at runlevel 5 and exit from a GUI, the GNOME
display manager, gdm, initiates a new login display.

249

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Bringing the System Down

The shutdown and halt utilities perform the tasks needed to bring the system down safely. These
utilities can restart the system, prepare the system to be turned off, put the system in single-user
mode, and, on some hardware, power down the system. The poweroff and reboot utilities are
linked to halt. If you call halt when the system is not shutting down (runlevel 0) or rebooting
(runlevel 6), halt calls shutdown. CONTROL-ALT-DEL: Reboots the System

Crash

A crash occurs when the system stops suddenly or fails unexpectedly. A crash may result from
software or hardware problems or from a loss of power. As a running system loses power, it may
behave in erratic or unpredictable ways. In a fraction of a second, some components are supplied
with enough voltage; others are not. Buffers are not flushed, corrupt data may be written to the
hard disk, and so on. IDE drives do not behave as predictably as SCSI drives under these
circumstances. After a crash, you must bring the operating system up carefully to minimize
possible damage to the filesystems. On many occasions, little or no damage will have occurred.

10.7 System Administration Utilities

These utilities can help you perform system administration tasks.

Fedora/RHEL configuration tools

Most of the Fedora/RHEL configuration tools are named system-config-*. These tools bring up a
graphical display when called from a GUI; some display a textual interface when called from a non-
GUI command line. Some, such as system-configfirewall-tui, use a name with a –tui extension for
the textual interface.

Tool Function

system-
config-
authentication

Displays the Authentication Configuration window with three tabs.

User Information tab: It allows you to enable NIS, LDAP, Hesiod, and Winbind
support.

Authentication tab: It allows you to work with Kerberos, LDAP, Smart Card,
Fingerprint Reader, and Windbind.

Options tab: It allows you to use shadow and sha512 passwords as well as to
enable other system options.

system-
config-bind

Displays the Domain Name Service window.

system-
config-boot

Allows you to specify a default kernel and timeout for the grub.conf file

system-
config-display

Brings up the Display Settings window with three tabs: Settings, Hardware, and
Dual Head.

250

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

system-config-
date

Displays the Date/Time Properties window with two tabs: Date & Time and Time
Zone.

Date & Time: You can set the date and time or enable NTP (Network Time
Protocol) from the first tab.

Time: The Time Zone tab allows you to specify the time zone of the system clock
or set the system clock to UTC

system-config-
firewall[-tui]
(FEDORA)

Displays the Firewall Configuration window

system-config-
httpd

Displays the HTTP window with four tabs: Main, Virtual Hosts, Server, and
Performance Tuning

system-config-
keyboard

Displays the Keyboard window, which allows you to select the type of keyboard
attached to the system. You use this utility to select the keyboard when you install
the system.

system-config-
language

Displays the Language Selection window, which allows you to specify the default
system language from among those that are installed. You use this utility to select
the system language when you install the system.

system-config-
lvm

Displays the Logical Volume Management window, which allows you to modify
existing logical volumes

system-config-
network[-tui]

Displays the Network Configuration window

system-config-
network-cmd

Displays the parameters that system-config-network uses.

system-config-
nfs

Displays the NFS Server Configuration window

system-config-
packages
(RHEL)

Runs pirut

system-config-
printer

Displays the Printer Configuration window, which allows you to set up printers
and edit printer configurations

system-config-
rootpassword

Displays the Root Password window, which allows you to change the root
password. While logged in as root, you can also use passwd from a command line
to change the root password.

system-config-
samba

Displays the Samba Server Configuration window, which can help you configure
Samba

251

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

system-config-
selinux
(FEDORA)

Displays the SELinux Administration window, which controls SELinux

system-config-
services

Displays the Service Configuration window, which allows you to specify which
daemons (services) run at each runlevel.

system-config-
soundcard
(RHEL)

Displays the Audio Devices window, which tells you which audio device the
system detected and gives you the option of playing a sound to test the device

system-config-
users

Displays the User Manager window, which allows you to work with users and
groups

Command-Line Utilities

• chsh: Changes the login shell for a user. When you call chsh without an argument, you
change your own login shell. Superuser can change the shell for any user by calling chsh
with that user’s username as an argument.

• clear: Clears the screen. You can also use CONTROL-L from the bash shell to clear the
screen.

• dmesg: Displays the kernel ring buffer.

• e2label: Displays or creates a volume label on an ext2, ext3, or ext4 filesystem. An e2label
command has the following format: e2label device [newlabel]

where device is the name of the device (e.g., /dev/hda2, /dev/sdb1, /dev/fd0) you want to work
with. When you include the optional newlabel parameter, e2label changes the label on device to
newlabel. Without this parameter, e2label displays the label. You can also create a volume label
with the –L option of tune2fs.

• mkfs: Creates a new filesystem on a device. This utility is a front end for many utilities,
each of which builds a different type of filesystem. By default, mkfs builds an ext2
filesystem and works on either a hard disk partition or a floppy diskette. Although it can
take many options and arguments, you can use mkfs simply as # mkfs device

where device is the name of the device (e.g., /dev/hda2, /dev/sdb1, /dev/fd0) you want to make
a file system on.

• ping: Sends packets to a remote system. This utility determines whether you can reach a
remote system through the network and tells you how much time it takes to exchange
messages with the remote system.

• reset (link to tset): Resets terminal characteristics. The value of the environment variable
TERM determines how to reset the screen. The screen is cleared, the kill and interrupt
characters are set to their default values, and character echo is turned on. When given
from a graphical terminal emulator, this command also changes the size of the window to
its default. The reset utility is useful to restore your screen to a sane state after it has been
corrupted.

• setserial: Gets and sets serial port information. Superuser can use this utility to configure a
serial port. The following command sets the input address of /dev/ttys0 to 0x100, the
interrupt (IRQ) to 5, and the baud rate to 115,000 baud:

 # setserial /dev/ttys0 port 0x100 irq 5 spd_vhi

• stat: Displays information about a file or filesystem. Giving the –f (filesystem) option
followed by the device name or mount point of a filesystem displays information about
the filesystem including the maximum length of filenames.

$ stat -f /dev/sda

252

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

File: "/dev/sda"

ID: 0 Namelen: 255 Type: tmpfs

Block size: 4096 Fundamental block size: 4096

Blocks: Total: 121237 Free: 121206 Available: 121206

Inodes: Total: 121237 Free: 120932

• umask: shell builtin that specifies a mask the system uses to set up access permissions
when you create a file. A umask command has the following format: umask [mask].

-where mask is a three-digit octal number or a symbolic value such as you would use with chmod.
The mask specifies the permissions that are not allowed.

When mask is an octal number, the digits correspond to the permissions for the owner of the file,
members of the group the file is associated with, and everyone else. Because mask specifies the
permissions that are not allowed, the system subtracts each of the three digits from 7 when you
create a file. A mask that you specify using symbolic values indicates the permissions that are
allowed.

• uname: Displays information about the system. Without any arguments, this utility
displays the name of the operating system (Linux). With a –a (all) option, it displays the
operating system name, hostname, version number and release date of the operating
system, and type of hardware you are using:

 $ uname -a

 Linux F12 2.6.31.6-145.fc12.i686.PAE #1 SMP Sat Nov 21 16:12:37 EST 2009 i686 athlon i386
GNU/Linux

10.8 Standard Rules in Configuration Files

Most configuration files, which are typically named *.conf, rely on the following conventions:

1) Blank lines are ignored.

2) A # anywhere on a line starts a comment that continues to the end of the line. Comments
are ignored.

3) When a name contains a SPACE, you must quote the SPACE by preceding it with a
backslash (\) or by enclosing the entire name within single or double quotation marks.

4) To make long lines easier to read and edit, you can break them into several shorter lines.
Break a line by inserting a backslash (\) immediately followed by a NEWLINE (press
RETURN in a text editor).

Specifying Clients

Some common ways to specify a host or a subnet:

Client name pattern Matches

n.n.n.n One IP address.

name One hostname, either local or remote.

Name that starts
with .

Matches a hostname that ends with the specified string. For example, .tcorp.com
matches the systems kudos.tcorp.com and speedy.tcorp.com, among others.

253

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

IP address that ends
with .

Matches a host address that starts with the specified numbers. For example,
192.168.0. matches 192.168.0.0 – 192.168.0.255. If you omit the trailing period,
this format does not work.

Starts with @ Specifies a netgroup.

n.n.n.n/m.m.m.m or
n.n.n.n/mm

An IP address and subnet mask specify a subnet.

Starts with / An absolute pathname of a file containing one or more names or addresses as
specified in this table.

Wildcard Matches

* and ? Matches one (?) or more (*) characters in a simple hostname or IP address. These
wildcards do not match periods in a domain name.

ALL Always matches.

LOCAL Matches any hostname that does not contain a period.

Operator Function

EXCEPT Matches anything in the preceding list that is not in the following list. For
example, a b c d EXCEPT c matches a, b, and d. Thus you could use 192.168.
EXCEPT 192.168.0.1 to match all IP addresses that start with 192.168. except
192.168.0.1.

Specifying a Subnet

When you set up a server, you frequently need to specify which clients are allowed to connect to
the server. Sometimes it is convenient to specify a range of IP addresses, called a subnet. Usually,
you can specify a subnet as

n.n.n.n/m.m.m.m

or

n.n.n.n/maskbits

where n.n.n.n is the base IP address and the subnet is represented by m.m.m.m (the subnet mask)
or maskbits (the number of bits used for the subnet mask). Example: 192.168.0.1/255.255.255.0
represents the same subnet as 192.168.0.1/24. In binary, decimal 255.255.255.0 is represented by 24
ones followed by 8 zeros. The /24 is shorthand for a subnet mask with 24 ones.

254

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Different ways to represent a subnet

Bits Mask Range

10.0.0.0/8 10.0.0.0/255.0.0.0 10.0.0.0 – 10.255.255.255

172.16.0.0/12 172.16.0.0/255.240.0.0 172.16.0.0 – 172.31.255.255

192.168.0.0/16 192.168.0.0/255.255.0.0 192.168.0.0 – 192.168.255.255

rpcinfo: Displays Information About rpcbind

Fedora uses the rpcbind daemon while RHEL uses portmap for the same purpose. The rpcinfo
utility displays information about programs registered with rpcbind and makes RPC calls to
programs to see if they are alive. The rpcinfo utility takes the following options and arguments:

rpcinfo –p [host]

rpcinfo [–n port] –u | –t host program [version]

rpcinfo –b | –d program version

There are various options available, and the associated functions are given in the below table:

Option Function

-b
(broadcast)

Makes an RPC broadcast to version of program and lists hosts that respond.

-d (delete) Removes local RPC registration for version of program. Available to Superuser only.

-n (port
number)

With –t or –u, uses the port numbered port instead of the port number specified by
rpcbind.

-p (probe) Lists all RPC programs registered with rpcbind on host or on the local system if host
is not specified.

-t (TCP) Makes a TCP RPC call to version (if specified) of program on host and reports
whether it received a response.

-u (UDP) Makes a UDP RPC call to version (if specified) of program on host and reports
whether it received a response.

Give the following command to see which RPC programs are registered with the rpcbind daemon
(portmapper) on the system named peach:

$ /usr/sbin/rpcinfo -p peach

program vers proto port

100000 2 tcp 111 portmapper

100000 2 udp 111 portmapper

255

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

100024 1 udp 32768 status

100024 1 tcp 32768 status

100021 1 udp 32769 nlockmgr

100021 3 udp 32769 nlockmgr

Locking down rpcbind

Because the rpcbind daemon holds information about which servers are running on the local
system and which port each server is running on, only trusted systems should have access to this
information.

• One way to ensure only selected systems have access to rpcbind is to lock it down in the
/etc/hosts.allow and /etc/hosts.deny files.

• Put the following line in hosts.deny preventing all systems from using rpcbind on the local
(server) system: rpcbind: ALL

10.9 The xinetd Superserver

RHEL uses the xinetd daemon, a more secure replacement for the inetd superserver that was
originally shipped with 4.3BSD. Fedora uses the Upstart init daemon for runlevel control and most
servers. However, some Fedora servers still require xinetd to be installed and running. The xinetd
superserver listens for network connections. When one is made, it launches a specified server
daemon and forwards the data from the socket to the daemon’s standard input. The version of
xinetd distributed with Fedora/RHEL is linked against libwrap.so, so it can use the
/etc/hosts.allow and /etc/hosts.deny files for access control. Using TCP wrappers can simplify
configuration but hides some of the more advanced features of xinetd. The base configuration for
xinetd is stored in the /etc/xinetd.conf file. If this file is not present, xinetd is probably not
installed. Working as root, give the following command to install xinetd: # yum install
xinetd. The default xinetd.conf file is well commented.

Securing a Server

You may secure a server either by using TCP wrappers or by setting up a chroot jail.

TCP Wrappers: Client/Server Security (hosts.allow and hosts.deny)

When you open a local system to access from remote systems, you must ensure that the following
criteria are met: Open the local system only to systems you want to allow to access it. Allow each
remote system to access only the data you want it to access. Allow each remote system to access
data only in the appropriate manner (readonly, read/write, write only). As part of the client/server
model, TCP wrappers, which can be used for any daemon that is linked against libwrap.so, rely on
the /etc/hosts.allow and /etc/hosts.deny files as the basis of a simple access control language. This
access control language defines rules that selectively allow clients to access server daemons on a
local system based on the client’s address and the daemon the client tries to access.

Each line in the hosts.allow and hosts.deny files has the following format:

 daemon_list : client_list [: command]

where daemon_list is a comma-separated list of one or more server daemons (such as rpcbind,
vsftpd, or sshd), client_list is a comma-separated list of one or more clients and the optional
command is the command that is executed when a client from client_list tries to access a server
daemon from daemon_list.

When a client requests a connection with a local server, the hosts.allow and hosts.deny files are
consulted in the following manner until a match is found:

 1. If the daemon/client pair matches a line in hosts.allow, access is granted.

 2. If the daemon/client pair matches a line in hosts.deny, access is denied.

256

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 3. If there is no match in either the hosts.allow or hosts.deny files, access is granted.

Setting Up a chroot Jail

On early UNIX systems, the root directory was a fixed point in the filesystem. On modern UNIX
variants, including Linux, you can define the root directory on a preprocess basis. The chroot utility
allows you to run a process with a root directory other than /. The root directory appears at the top
of the directory hierarchy and has no parent: A process cannot access any files above the root
directory (because they do not exist). If, for example, you run a program (process) and specify its
root directory as /home/sam/jail, the program would have no concept of any files in /home/sam
or above: jail is the program’s root directory and is labeled / (not jail). By creating an artificial root
directory, frequently called a (chroot) jail, you prevent a program from accessing or modifying—
possibly maliciously—files outside the directory hierarchy starting at its root. You must set up a
chroot jail properly to increase security: If you do not set up the chroot jail correctly, you can make
it easier for a malicious user to gain access to a system than if there were no chroot jail.

10.10 DHCP: Configures Hosts

Instead of storing network configuration information in local files on each system, DHCP (Dynamic
Host Configuration Protocol) enables client systems to retrieve network configuration information
each time they connect to the network. A DHCP server assigns IP addresses from a pool of
addresses to clients as needed. Assigned addresses are typically temporary but need not be. This
technique has several advantages over storing network configuration information in local files:

1) A new user can set up an Internet connection without having to deal with IP addresses,
netmasks, DNS addresses, and other technical details. An experienced user can set up a connection
more quickly.

2) DHCP facilitates assignment and management of IP addresses and related network information
by centralizing the process on a server. A system administrator can configure new systems,
including laptops that connect to the network from different locations, to use DHCP; DHCP then
assigns IP addresses only when each system connects to the network. The pool of IP addresses is
managed as a group on the DHCP server.

3) IP addresses can be used by more than one system, reducing the total number of IP addresses
needed. This conservation of addresses is important because the Internet is quickly running out of
IPv4 addresses. Although a particular IP address can be used by only one system at a time, many
end-user systems require addresses only occasionally, when they connect to the Internet. By
reusing IP addresses, DHCP lengthens the life of the IPv4 protocol.

DHCP is particularly useful for administrators who are responsible for maintaining many systems
because individual systems no longer need to store unique configuration information.

How DHCP Works

The client daemon, dhclient (part of the dhcp package), contacts the server daemon, dhcpd, to
obtain the IP address, netmask, broadcast address, nameserver address, and other networking
parameters. The server provides a lease on the IP address to the client. The client can request the
specific terms of the lease, including its duration; the server can, in turn, limit these terms. While
connected to the network, a client typically requests extensions of its lease as necessary, so its IP
address remains the same. The lease can expire once the client is disconnected from the network,
with the server giving the client a new IP address when it requests a new lease. You can also set up
a DHCP server to provide static IP addresses for specific clients

DHCP Client

A DHCP client requests network configuration parameter from the DHCP server and uses those
parameters to configure its network interface. The prerequisites is to install the following package:
dhclient. When a DHCP client system connects to the network, dhclient requests a lease from the
DHCP server and configures the client’s network interface(s). Once a DHCP client has requested

257

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

and established a lease, it stores information about the lease in a file named dhclient.leases, which is
stored in the /var/lib/dhclient directory. This information is used to reestablish a lease when
either the server or the client needs to reboot. The DHCP client configuration file,
/etc/dhclient.conf, is required only for custom configurations.

DHCP Server

The DHCP server maintains a list of IP addresses and other configuration parameters. When
requested to do so, the DHCP server provides configuration parameters to a client. The
prerequisites is to install the following package: dhcp. Run chkconfig to cause dhcpd to start
when the system enters multiuser mode: # /sbin/chkconfig dhcpd on.

Start dhcpd: # /sbin/service dhcpd start. A simple DHCP server allows you to add clients to a
network without maintaining a list of assigned IP addresses. A simple network, such as a home
LAN sharing an Internet connection, can use DHCP to assign a dynamic IP address to almost all
nodes. The exceptions are servers and routers, which must be at known network locations to be
able to receive connections. If servers and routers are configured without DHCP, you can specify a
simple DHCP server configuration in /etc/dhcp/dhcpd.conf (FEDORA) or /etc/dhcpd.conf
(RHEL):

$ cat /etc/dhcp/dhcpd.conf

default-lease-time 600;

max-lease-time 86400;

option subnet-mask 255.255.255.0;

option broadcast-address 192.168.1.255;

option routers 192.168.1.1;

option domain-name-servers 192.168.1.1;

subnet 192.168.1.0 netmask 255.255.255.0 {

range 192.168.1.2 192.168.1.200;

}

Once you have configured a DHCP server, you can start (or restart) it by using the dhcpd init
script: # /sbin/service dhcpd restart. Once the server is running, clients configured to obtain an IP
address from the server using DHCP should be able to do so.

Static IP Addresses

Routers and servers typically require static IP addresses. While you can manually configure IP
addresses for these systems, it may be more convenient to have the DHCP server provide them
with static IP addresses. When a system that requires a specific static IP address connects to the
network and contacts the DHCP server, the server needs a way to identify the system so the server
can assign the proper IP address to the system. The DHCP server uses the MAC address of the
system’s Ethernet card (NIC) as an identifier. When you set up the server, you must know the MAC
address of each system that requires a static IP address. You can use ifconfig to display the MAC
addresses of the Ethernet cards (NICs) in a system. The MAC addresses are the colon-separated
series of hexadecimal number pairs following HWaddr:

$ /sbin/ifconfig | grep -i hwaddr

eth0 Link encap:Ethernet HWaddr BA:DF:00:DF:C0:FF

eth1 Link encap:Ethernet HWaddr 00:02:B3:41:35:98

10.11 Important files and directories in Linux

Filesystems hold directories of files. These structures store user data and system data that are the
basis of users’ work on the system and the system’s existence.

258

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

~/.bash_profile

It Contains an individual user’s login shell initialization script. The shell executes the commands in
this file in the same environment as the shell each time a user logs in. The file must be located in a
user’s home directory. The default Fedora/RHEL .bash_profile file executes the commands in
~/.bashrc. You can use .bash_profile to specify a terminal type (for vi, terminal emulators, and
other programs), run stty to establish the terminal characteristics, set up aliases, and perform other
housekeeping functions when a user logs in. A simple .bash_profile file specifying a vt100 terminal
and CONTROL-H as the erase key follows:

$ cat .bash_profile

export TERM=vt100

stty erase '^h'

~/.bashrc

It Contains an individual user’s interactive, nonlogin shell initialization script. The shell executes
the commands in this file in the same environment as the (new) shell each time a user creates a new
interactive shell. The .bashrc script differs from .bash_profile in that it is executed each time a new
shell is spawned, not just when a user logs in. The default Fedora/RHEL .bash_profile file executes
the commands in ~/.bashrc so that these commands are executed when a user logs in.

 /dev

It contains files representing pseudo devices and physical devices that may be attached to the
system.

• /dev/fd0: The first floppy disk. The second floppy disk is named /dev/fd1.

• /dev/had: The master disk on the primary IDE controller. The slave disk on the primary
IDE controller is named /dev/hdb. This disk may be a CDROM drive.

• /dev/hdc: The master disk on the secondary IDE controller. The slave disk on the
secondary IDE controller is named /dev/hdd. This disk may be a CD-ROM drive.

• /dev/sda: Traditionally the first SCSI disk; now the first non-IDE drive, including SATA
and USB drives. Other, similar drives are named /dev/sdb, /dev/sdc, etc.

These names, such as /dev/sda, represent the order of the devices on the bus the devices are
connected to, not the device itself. For example, if you swap the data cables on the disks referred to
as /dev/sda and /dev/sdb, the drive’s designations will change. Similarly, if you remove the
device referred to as /dev/sda, the device that was referred to as /dev/sdb will now be referred to
as /dev/sda.

 /dev/disk/by-id

It holds symbolic links to local devices. The names of the devices in this directory identify the
devices. Each entry points to the device in /dev that it refers to.

/dev/disk/by-uuid

It holds symbolic links to local devices. The names of the devices in this directory consist of the
UUID numbers of the devices. Each entry points to the device in /dev that it refers to.

 /dev/null

It is also called a bit bucket, output sent to this file disappears. The /dev/null file is a device file
and must be created with mknod. Input that you redirect to come from this file appears as nulls,
creating an empty file. You can create an empty file named nothing by giving the following
command:

259

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

$ cat /dev/null > nothing

or

$ cp /dev/null nothing

or, without explicitly using /dev/null,

$ > nothing

 /dev/pts

The /dev/pts pseudofilesystem is a hook into the Linux kernel; it is part of the pseudoterminal
support. Pseudoterminals are used by remote login programs, such as ssh and telnet, and xterm as
well as by other graphical terminal emulators. The following sequence of commands demonstrates
that the user is logged in on /dev/pts/1. After using who am i to verify the line the user is logged
in on and using ls to show that this line exists, the user redirects the output of an echo command to
/dev/pts/1, whereupon the output appears on the user’s screen:

$ who am i

alex pts/1 2006-02-16 12:30 (bravo.example.com)

$ ls /dev/pts

0 1 2 3 4

$ echo Hi there > /dev/pts/1

Hi there

/dev/random and /dev/urandom

These files are interfaces to the kernel’s random number generator. You can use either one with dd
to create a file filled with pseudorandom bytes.

$ dd if=/dev/urandom of=randfile2 bs=1 count=100

100+0 records in

100+0 records out

100 bytes (100 B) copied, 0.001241 seconds, 80.6 kB/s

The preceding command reads from /dev/urandom and writes to the file named randfile. The
block size is 1 and the count is 100 so randfile is 100 bytes long. For bytes that are more random,
you can read from /dev/random.

 /dev/zero

Input you take from this file contains an infinite string of zeros (numerical zeros, not ASCII zeros).
You can fill a file or overwrite a file with zeros with a command such as the following

$ dd if=/dev/zero of=zeros bs=1024 count=10

10+0 records in

10+0 records out

10240 bytes (10 kB) copied, 0.000195 seconds, 52.5 MB/s

$ od -c zeros

0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

*

0024000

 /etc/aliases

260

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

It is used by the mail delivery system (typically sendmail) to hold aliases for users. Edit this file to
suit local needs.

/etc/at.allow, /etc/at.deny, /etc/cron.allow, and /etc/cron.deny

By default, users can use the at and cron tab utilities. The at.allow file lists the users who are
allowed to use at. The cron.allow file works in the same manner for crontab. The at.deny and
cron.deny files specify users who are not permitted to use the corresponding utilities. As
Fedora/RHEL is configured, an empty at.deny file and the absence of an at.allow file allows anyone
to use at; the absence of cron.allow and cron.deny files allows anyone to use crontab. To prevent
anyone except Superuser from using at, remove the at.allow and at.deny files. To prevent anyone
except Superuser from using crontab, create a cron.allow file with the single-entry root.

 /etc/dumpdates

It contains information about the last execution of dump. For each filesystem, it stores the time of
the last dump at a given dump level. The dump utility uses this information to determine which
files to back up when executing at a particular dump level.

 /etc/fstab

Filesystem (mount) table Contains a list of all mountable devices as specified by the system
administrator. Programs do not write to this file but only read from it.

 /etc/group

Groups allow users to share files or programs without giving all system users access to those files
or programs. This scheme is useful when several users are working with files that are not public.
The /etc/group file associates one or more usernames with each group (number). An entry in the
/etc/group file has four fields arranged in the following format: group-name:password:group-
ID:login-name-list

The group-name is the name of the group. The password is an optional encrypted password. This
field frequently contains an x, indicating that group passwords are not used. The group-ID is a
number, with 1–499 reserved for system accounts. The login-name-list is a comma-separated list of
users who belong to the group. The login-name-list is a comma-separated list of users who belong
to the group. If an entry is too long to fit on one line, end the line with a backslash (\), which quotes
the following RETURN, and continue the entry on the next line.

/etc/hosts

The /etc/hosts file stores the name, IP address, and optional aliases of the other systems that the
local system knows about. At the very least, this file must have the hostname and IP address that
you have chosen for the local system and a special entry for localhost. This entry supports the
loopback service, which allows the local system to talk to itself (for example, for RPC services). The
IP address of the loopback service is always 127.0.0.1. Following is a simple /etc/hosts file for the
system named rose with an IP address of 192.168.0.10:

$ cat /etc/hosts

Do not remove the following line, or various programs

that require network functionality will fail.

127.0.0.1 rose localhost.localdomain localhost

192.168.0.1 bravo.example.com bravo

192.168.0.4 mp3server

192.168.0.5 workstation

192.168.0.10 rose

261

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

...

 /etc/inittab (RHEL)

Initialization table Under RHEL, this file controls how the System V init process behaves. Fedora
has replace the System V init daemon with the Upstart init daemon. Each line in inittab contains
four colon-separated fields: id:runlevel:action:process. The id uniquely identifies an entry
in the inittab file. The runlevel is the system runlevel(s) at which process is executed. The runlevel
consists of zero or more characters chosen from 0123456S. If more than one runlevel is listed, the
associated process is executed at each of the specified runlevels. The action is one of the following
keywords: respawn, wait, once, boot, bootwait, ondemand, powerfail, powerwait, powerokwait,
powerfailnow, ctrlaltdel, kbrequest, off, ondemand, initdefault, or sysinit. The wait keyword
instructs init to start the process and wait for it to terminate.

 /etc/motd

It contains the message of the day, which can be displayed each time someone logs in using a
textual login. This file typically contains site policy and legal information. Keep this file short
because users tend to see the message many times.

 /etc/mtab

When you call mount without any arguments, it consults this file and displays a list of mounted
devices. Each time you (or an init script) call mount or umount, these utilities make the necessary
changes to mtab. Although this is an ASCII text file, you should not edit it.

 /etc/netgroup

It defines netgroups, which are used for checking permissions when performing remote logins and
remote mounts and when starting remote shells.

 /etc/nsswitch.conf

It specifies whether a system uses as the source of certain information NIS, DNS, local files, or a
combination, and in what order it consults these services.

/etc/pam.d

Files in this directory specify the authentication methods used by PAM applications.

 /etc/passwd

It describes users to the system. Do not edit this file directly. Each line in passwd has seven colon-
separated fields that describe one user: login-name:dummy-password:user-ID:group-ID:info:
directory: program

The login-name is the user’s username—the name you enter in response to the login: prompt or
GUI login screen. The value of the dummy-password is the character x. An encrypted/hashed
password is stored in /etc/shadow. For security reasons, every account should have a password.
By convention, disabled accounts have an asterisk (*) in this field. The user-ID is a number, with 0
indicating Superuser and 1–499 being reserved for system accounts. The group-ID identifies the
user as a member of a group. It is a number, with 0–499 being reserved for system accounts; see
/etc/group. You can change these values and set maximum values in /etc/login.defs. The info is
information that various programs, such as accounting programs and email, use to identify the user
further. Normally it contains at least the first and last names of the user. It is referred to as the
GECOS field. The directory is the absolute pathname of the user’s home directory. The program is
the program that runs once the user logs in. If program is not present, a value of /bin/bash is
assumed. You can put /bin/tcsh here to log in using the TC Shell or /bin/zsh to log in using the Z
Shell, assuming the shell you specify is installed.

262

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

/etc/printcap

The printer capability database. This file describes system printers and is derived from 4.3BSD
UNIX.

 /etc/profile

It contains a systemwide interactive shell initialization script for environment and start-up
programs. When you log in, the shell immediately executes the commands in this file in the same
environment as the shell. Following is an example of a /etc/profile file that displays the message of
the day (the /etc/motd file), sets the file-creation mask, and sets the interrupt character to
CONTROL-C:

cat /etc/profile

cat /etc/motd

umask 022

stty intr '^c'

/etc/protocols

It provides protocol numbers, aliases, and brief definitions for DARPA Internet TCP/IP protocols.
Do not modify this file.

/etc/rc.d

It holds the system init scripts, also called run command (rc) scripts. The init program executes
several init scripts each time the system changes state or runlevel.

/etc/resolv.conf

The resolver configuration file, used to provide access to DNS. The following example shows the
resolv.conf file for the example.com domain. A resolv.conf file usually has at least two lines—a
domain line and a nameserver line: # cat /etc/resolv.conf

domain example.com

nameserver 10.0.0.50

nameserver 10.0.0.51

/etc/rpc

It maps RPC services to RPC numbers. The three columns in this file show the name of the server
for the RPC program, the RPC program number, and any aliases.

 /etc/services

It lists system services. The three columns in this file show the informal name of the service, the
port number/protocol the service frequently uses, and any aliases for the service. This file does not
specify which services are running on the local system, nor does it map services to port numbers.
The services file is used internally to map port numbers to services for display purposes.

 /etc/shadow

It contains encrypted or MD5 hashed user passwords. Each entry occupies one line composed of
nine fields, separated by colons: login-name: password: last-mod: min: max: warn: inactive:

expire: flag. The login-name is the user’s username—the name that the user enters in response to
the login: prompt or GUI login screen. The password is an encrypted or hashed. The last-mod field

263

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

indicates when the password was last modified. The min is the minimum number of days that must
elapse before the password can be changed. The max is the maximum number of days before the
password must be changed. The warn specifies how much advance warning (in days) to give the
user before the password expires. The account will be closed if the number of days between login
sessions exceeds the number of days specified in the inactive field. The account will also be closed
as of the date in the expire field. The last field in an entry, flag, is reserved for future use. You can
use the Password Info tab in system-config-users to modify these fields.

/etc/sysconfig

A directory containing a hierarchy of system configuration files.

 /proc

The /proc pseudofilesystem provides a window into the Linux kernel. Through /proc you can
obtain information on any process running on your computer, including its current state, memory
usage, CPU usage, terminal, parent, and group. You can extract information directly from the files
in /proc.

 /sbin/shutdown

A utility that brings the system down.

swap

Even though swap is not a file, swap space can be added and deleted from the system dynamically.
Swap space is used by the virtual memory subsystem. When it runs low on real memory (RAM),
the system writes memory pages from RAM to the swap space on the disk. Which pages are written
and when they are written are controlled by finely tuned algorithms in the Linux kernel. When
needed by running programs, these pages are brought back into RAM—a technique called paging.
When a system is running very short on memory, an entire process may be paged out to disk.

 /sys

The /sys pseudofilesystem was added in the Linux 2.6 kernel to make it easy for programs running
in kernelspace, such as device drivers, to exchange information with programs running in
userspace.

 /usr/share/magic

Most files begin with a unique identifier called a magic number. This file is a text database listing
all known magic numbers on the system. When you use the file utility, it consults
/usr/share/magic to determine the type of a file. Occasionally you may acquire a new tool that
creates a new type of file that is unrecognized by the file utility. In this situation you need to update
the /usr/share/magic file

/var/log

It holds system log files.

/var/log/messages

It contains messages from daemons, the Linux kernel, and security programs. For example, you will
find filesystem full warning messages, error messages from system daemons (NFS, rsyslog, printer
daemons), SCSI and IDE disk error messages, and more in messages. Check /var/log/messages
periodically to keep informed about important system events. Much of the information displayed

264

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

on the system console is also sent to messages. If the system experiences a problem and you cannot
access the console, check this file for messages about the problem.

 /var/log/secure

It holds messages from security-related programs such as su and the sshd daemon.

10.12 Types of files

Linux supports many types of files:

1) Ordinary files, directories, links, and inodes.

2) Symbolic links.

3) Special files.

4) FIFO special file.

5) Sockets.

6) Block and character devices.

7) Raw devices.

Ordinary Files, Directories, Links, and Inodes

Ordinary and directory files

An ordinary file stores user data, such as textual information, programs, or images, such as a jpeg
or tiff file. A directory is a standard-format disk file that stores information, including names, about
ordinary files, and other directory files.

Inodes

An inode is a data structure, stored on disk, that defines a file’s existence and is identified by an
inode number. An inode contains critical information, such as the name of the owner of the file,
where it is physically located on the disk, and how many hard links point to it. In addition, SELinux
stores extended information about files in inodes. A directory relates each of the filenames it stores
to an inode. When you move (mv) a file within a filesystem, you change the filename portion of the
directory entry associated with the inode that describes the file. You do not create a new inode.

If you move a file to another filesystem, mv first creates a new inode on the destination filesystem
and then deletes the original inode. You can also use mv to move a directory recursively, in which
case all files in the directory are copied and deleted. When you remove (rm) a file, you delete the
directory entry that describes the file. When you remove the last hard link to a file, the operating
system puts all blocks the inode pointed to back in the free list (the list of blocks that are available
for use on the disk) and frees the inode to be used again.

The . and .. directory entries

Every directory contains at least two entries (. and ..). The . entry is a link to the directory itself. The
.. entry is a link to the parent directory. In the case of the root directory, there is no parent and the ..
entry is a link to the root directory itself. It is not possible to create hard links to directories.

Symbolic links

Because each filesystem has a separate set of inodes, you can create hard links to a file only from
within the filesystem that holds that file. To get around this limitation, Linux provides symbolic
links, which are files that point to other files. Files that are linked by a symbolic link do not share an
inode. Therefore, you can create a symbolic link to a file from any filesystem. You can also create a
symbolic link to a directory, device, or other special file.

265

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Special Files

Special files represent Linux kernel routines that provide access to an operating system feature.
FIFO (first in, first out) special files allow unrelated programs to exchange information. Sockets
allow unrelated processes on the same or different computers to exchange information. One type of
socket, the UNIX domain socket, is a special file. Symbolic links are another type of special file.

Device files

Device files, which include both block and character special files, represent device drivers that let
you communicate with peripheral devices, such as terminals, printers, and hard disks. By
convention, device files appear in the /dev directory and its subdirectories. Each device file
represents a device: You read from and write to the file to read from and write to the device it
represents. For example, using cat to send an audio file to /dev/dsp plays the file. The following
example shows part of the output that an ls –l command produces for the /dev directory:

$ ls -l /dev

total 0

crw-rw---- 1 root root 14, 12 Jan 25 08:33 adsp

crw------- 1 root root 10, 175 Jan 25 08:33 agpgart

crw------- 1 zach root 14, 4 Jan 25 08:33 audio

drwxr-xr-x 3 root root 60 Jan 25 08:33 bus

lrwxrwxrwx 1 root root 3 Jan 25 08:33 cdrom -> hdb

lrwxrwxrwx 1 root root 3 Jan 25 08:33 cdwriter -> hdb

.........................

The first character of each line is always –, b, c, d, l, or p, representing ordinary (plain), block,
character, directory, symbolic link, or named pipe (see the following section), respectively. The next
nine characters identify the permissions for the file, followed by the number of hard links and the
names of the owner and group. Where the number of bytes in a file would appear for an ordinary
or directory file, a device file shows major and minor device numbers separated by a comma. The
rest of the line is the same as any other ls –l listing.

udev

The udev utility manages device naming dynamically. It replaces the earlier devfs and moves the
device naming functionality from the kernel to userspace. Because devices are added to and
removed from a system infrequently, the performance penalty associated with this change is
minimal. The benefit of the move is that a bug in udev cannot compromise or crash the kernel. The
udev utility is part of the hotplug system. When a device is added to or removed from the system,
the kernel creates a device name in the /sys pseudofilesystem and notifies hotplug of the event,
which is received by udev. The udev utility then creates the device file, usually in the /dev
directory, or removes the device file from the system. The udev utility can also rename network
interfaces.

Hotplug

The hotplug system allows you to plug a device into the system and use it immediately. Although
hotplug was available in the Linux 2.4 kernel, the 2.6 kernel integrates hotplug with the unified
device driver model framework.

FIFO Special Files (Named Pipe)

A FIFO special file, also called a named pipe, represents a pipe: You read from and write to the file
to read from and write to the pipe. The term FIFO stands for first in, first out—the way any pipe

266

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

works. In other words, the first information that you put in one end is the first information that
comes out the other end. When you use a pipe on a command line to send the output of a program
to the printer, the printer outputs the information in the same order that the program produced it
and sent it to the pipe. The UNIX and Linux systems have included pipes for many generations.
Without named pipes, only processes that were children of the same ancestor could use pipes to
exchange information. Using named pipes, any two processes on a single system can exchange
information. When one program writes to a FIFO special file, another program can read from the
same file. The programs do not have to run at the same time or be aware of each other’s activity.
The operating system handles all buffering and information storage. This type of communication is
termed asynchronous (async) because programs on the ends of the pipe do not have to be
synchronized.

Sockets

Like a FIFO special file, a socket allows asynchronous processes that are not children of the same
ancestor to exchange information. Sockets are the central mechanism of the interprocess
communication that forms the basis of the networking facility. When you use networking utilities,
pairs of cooperating sockets manage the communication between the processes on the local
computer and the remote computer. Sockets form the basis of such utilities as ssh and scp.

Major and Minor Device Numbers

A major device number points to a driver in the kernel that works with a class of hardware devices:
terminal, printer, tape drive, hard disk, and so on. In the list of the /dev directory, all of the hard
disk partitions have a major device number of 3. A minor device number represents a particular
piece of hardware within a class. Although all hard disk partitions are grouped together by their
major device number, each has a different minor device number (sda1 is 1, sda2 is 2, and so on).
This setup allows one piece of software (the device driver) to service all similar hardware yet to be
able to distinguish among different physical units.

Block and Character Devices

A block device is an I/O (input/output) device that is characterized by

• Being able to perform random access reads.

• Having a specific block size.

• Handling only single blocks of data at a time.

• Accepting only transactions that involve whole blocks of data.

• Being able to have a filesystem mounted on it.

• Having the Linux kernel buffer its input and output.

Appearing to the operating system as a series of blocks numbered from 0 through n – 1, where n is
the number of blocks on the device. Block devices commonly found on a Linux system include hard
disks, floppy diskettes, and CDs.

A character device is any device that is not a block device. Examples of character devices include
printers, terminals, tape drives, and modems. The device driver for a character device determines
how a program reads from and writes to that device. For example, the device driver for a terminal
allows a program to read the information you type on the terminal in two ways:

• First, a program can read single characters from a terminal in raw mode—that is, without
the driver doing any interpretation of the characters.

• Alternatively, a program can read one line at a time. When a program reads one line at a
time, the driver handles the erase and kill characters, so the program never sees typing
mistakes that have been corrected. In this case, the program reads everything from the
beginning of a line to the RETURN that ends a line; the number of characters in a line can
vary.

267

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Raw Devices

Device driver programs for block devices usually have two entry points so they can be used in two
ways: as block devices or as character devices. The character device form of a block device is called
a raw device. A raw device is characterized by

• Direct I/O (no buffering through the Linux kernel).

• A one-to-one correspondence between system calls and hardware requests.

• Device-dependent restrictions on I/O.

An example of a utility that uses a raw device is fsck. It is more efficient for fsck to operate on the
disk as a raw device, rather than being restricted by the fixed size of blocks in the block device
interface. Because it has full knowledge of the underlying filesystem structure, fsck can operate on
the raw device using the largest possible units. When a filesystem is mounted, processes normally
access the disk through the block device interface, which explains why it is important to allow fsck
to modify only an unmounted filesystem. On a mounted filesystem, there is the danger that, while
fsck is rearranging the underlying structure through the raw device, another process could change
a disk block using the block device, resulting in a corrupted filesystem.

10.13 Filesystems

Filesystem Features

adfs Advanced Disc Filing System. Used on Acorn computers. The word Advanced
differentiated this filesystem from its predecessor, DFS, which did not support
advanced features such as a hierarchical filesystem.

affs Amiga Fast Filesystem (FFS).

autofs Automounting filesystem

coda CODA distributed filesystem

devpts A pseudofilesystem for pseudoterminals

ext2 A standard filesystem for Fedora/RHEL systems, usually with the ext3
extension.

ext3 A journaling extension to the ext2 filesystem. It greatly improves recovery time
from crashes (it takes a lot less time to run fsck), promoting increased
availability. As with any filesystem, a journaling filesystem can lose data
during a system crash or hardware failure.

ext4 An extension of the ext3 filesystem

GFS Global Filesystem. GFS is a journaling, clustering filesystem. It enables a cluster
of Linux servers to share a common storage pool.

hfs Hierarchical Filesystem: used by older Macintosh systems. Newer Macintosh

268

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

systems use hfs+.

hpfs High-Performance Filesystem: the native filesystem for IBM’s OS/2.

iso9660 The standard filesystem for CD-ROMs.

minix Very similar to Linux, the filesystem of a small operating system that was written
for educational purposes by Andrew S. Tanenbaum

msdos The filesystem used by DOS and subsequent Microsoft operating systems. Do not
use msdos for mounting Windows filesystems; it does not read VFAT attributes.

ncpfs Novell NetWare NCP Protocol Filesystem: used to mount remote filesystems under
NetWare.

nfs Network Filesystem. Developed by Sun Microsystems, this protocol allows a
computer to access remote files over a network as if they were local

ntfs NT Filesystem: the native filesystem of Windows NT.

proc An interface to several Linux kernel data structures that behaves like a filesystem

qnx4 QNX 4 operating system filesystem

reiserfs A journaling filesystem, based on balanced-tree algorithms.

romfs A dumb, readonly filesystem used mainly for RAM disks during installation

smbfs Samba Filesystem

software RAID RAID implemented in software.

sysv System V UNIX filesystem.

ufs Default filesystem under Sun’s Solaris operating system and other UNIXs.

umsdos A full-feature UNIX-like filesystem that runs on top of a DOS FAT filesystem.

vfat Developed by Microsoft, a standard that allows long filenames on FAT partitions.

xfs SGI’s journaled filesystem (ported from Irix).

269

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

10.14 mount: Mounts a Filesystem

The mount utility connects directory hierarchies—typically filesystems—to the Linux directory
hierarchy. These directory hierarchies can be on remote and local disks, CDs, and floppy diskettes.
Linux also allows you to mount virtual filesystems that have been built inside ordinary files,
filesystems built for other operating systems, and the special /proc filesystem, which maps useful
Linux kernel information to a pseudodirectory.

Mount point:

The mount point for the filesystem/directory hierarchy that you are mounting is a directory in the
local filesystem. This directory must exist before you can mount a filesystem; its contents disappear
as long as a filesystem is mounted on it and reappear when you unmount the filesystem. Without
any arguments, mount lists the currently mounted filesystems, showing the physical device
holding each filesystem, the mount point, the type of filesystem, and any options set when each
filesystem was mounted:

$ mount

proc on /proc type proc (rw)

/dev/hdb1 on / type ext2 (rw)

/dev/hdb4 on /tmp type ext2 (rw)

/dev/hda5 on /usr type ext3 (rw)

/dev/sda1 on /usr/X386 type ext2 (rw)

/dev/sda3 on /usr/local type ext2 (rw)

/dev/hdb3 on /home type ext3 (rw)

/dev/hda1 on /dos type msdos (rw,umask=000)

tuna:/p04 on /p04 type nfs (rw,addr=192.168.0.8)

/dev/scd0 on /mnt/cdrom type iso9660 (ro,noexec,nosuid,nodev)

The mount utility gets this information from the /etc/mtab file. The first entry in the preceding
example shows the /proc pseudofilesystem. The next six entries identify disk partitions holding
standard Linux ext2 and ext3 filesystems. These partitions are found on three disks: two IDE disks
(hda, hdb) and one SCSI disk (sda). Disk partition /dev/hda1 has a DOS (msdos) filesystem
mounted at the directory /dos in the Linux filesystem. You can access the DOS files and directories
on this partition as if they were Linux files and directories, using Linux utilities and applications.
The line starting with tuna shows a mounted, remote NFS filesystem. The last line shows a CD
mounted on a SCSI CD drive (/dev/scd0).

Do not mount anything on root (/):

Always mount network directory hierarchies and removable devices at least one level below the
root level of the filesystem. The root filesystem is mounted on /; you cannot mount two filesystems
in the same place. If you were to try to mount something on /, all files, directories, and filesystems
that were under the root directory would no longer be available, and the system would crash.

Mount Options

The mount utility takes many options, which you can specify on the command line or in the
/etc/fstab file. For a complete list of mount options for local filesystems, see the mount man page;
for remote directory hierarchies, see the nfs man page. The noauto option causes Linux not to
mount the filesystem automatically. The nosuid option forces mounted setuid executables to run
with regular permissions (no effective user ID change) on the local system (the system that
mounted the filesystem). Unless you specify the user, users, or owner option, only Superuser can
mount and unmount a filesystem. The user option means that any user can mount the filesystem,
but the filesystem can be unmounted only by the same user who mounted it; users means that any

270

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

user can mount and unmount the filesystem. These options are frequently specified for CD and
floppy drives. The owner option, which is used only under special circumstances, is similar to the
user option except that the user mounting the device must own the device.

Mounting a Linux Floppy Diskette

Mounting a Linux floppy diskette is similar to mounting a partition of a hard disk. Put an entry
similar to the following in /etc/fstab for a diskette in the first floppy drive:

/dev/fd0 /mnt/floppy auto noauto,users 0 0

Specifying a filesystem type of auto causes the system to probe the filesystem to determine its type
and allows users to mount a variety of diskettes. Create the /mnt/floppy directory if necessary.
Insert a diskette and try to mount it. The diskette must be formatted (use fdformat). Use mkfs to
create a filesystem—but be careful, because mkfs destroys all data on the diskette: # mount

/dev/fd0

mount: you must specify the filesystem type

mkfs /dev/fd0

mke2fs 1.41.9 (22-Aug-2009)

Filesystem label=

OS type: Linux

Block size=1024 (log=0)

Fragment size=1024 (log=0)

184 inodes, 1440 blocks

72 blocks (5.00%) reserved for the super user

First data block=1

Maximum filesystem blocks=1572864

1 block group

8192 blocks per group, 8192 fragments per group

184 inodes per group

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 24 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

Try the mount command again:

mount /dev/fd0

mount

...

/dev/fd0 on /mnt/floppy type ext2 (rw,noexec,nosuid,nodev)

df -h /dev/fd0

Filesystem Size Used Avail Use% Mounted on

/dev/fd0 1.4M 19K 1.3M 2% /mnt/floppy

The mount command without any arguments and df –h /dev/fd0 show the floppy is mounted and
ready for use.

271

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

umount: Unmounts a Filesystem

The umount utility unmounts a filesystem as long as it does not contain any files or directories that
are in use (open). For example, a logged-in user’s working directory must not be on the filesystem
you want to unmount. The next command unmounts the CD mounted earlier: $ umount

/mnt/cdrom. Unmount a floppy or a remote directory hierarchy the same way you would unmount
a partition of a hard drive. The umount utility consults /etc/fstab to get the necessary information
and then unmounts the appropriate filesystem from its server. When a process has a file open on
the filesystem that you are trying to unmount, umount displays a message similar to the following:

umount: /home: device is busy

Use the –a option to umount to unmount all filesystems, except for the one mounted at /, which
can never be unmounted. You can combine –a with the –t option to unmount filesystems of a given
type (ext3, nfs, or others). For example, the following command unmounts all mounted nfs
directory hierarchies that are not being used: # umount -at nfs

fstab: Keeps Track of Filesystems

The system administrator maintains the /etc/fstab file, which lists local and remote directory
hierarchies, most of which the system mounts automatically when it boots. The fstab file has six
columns, where a hyphen is a placeholder for a column that has no value:

1) Name—The name, label, or UUID number of a local block device or a pointer to a remote
directory hierarchy. When you install the system, Fedora/RHEL uses UUID numbers for fixed
devices. It prefaces each line in fstab that specifies a UUID with a comment that specifies the device
name. Using UUID numbers in fstab during installation circumvents the need for consistent device
naming.

2) Mount point—The name of the directory file that the filesystem/directory hierarchy is to be
mounted on. If it does not already exist, create this directory using mkdir.

3) Type—The type of filesystem/directory hierarchy that is to be mounted. Local filesystems are
generally of type ext2, ext3, or iso9660, and remote directory hierarchies are of type nfs or cifs.

4) Mount options—A comma-separated list of mount options, such as whether the filesystem is
mounted for reading and writing (rw, the default) or readonly (ro).

5) Dump—Used by dump to determine when to back up the filesystem.

6) Fsck—Specifies the order in which fsck checks filesystems. Root (/) should have a 1 in this
column. Filesystems that are mounted to a directory just below the root directory should have a 2.
Filesystems that are mounted on another mounted filesystem (other than root) should have a 3.

The following example shows a typical fstab file:

cat /etc/fstab

LABEL=/1 / ext3 defaults 1 1

LABEL=/boot1 /boot ext3 defaults 1 2

devpts /dev/pts devpts gid=5,mode=620 0 0

tmpfs /dev/shm tmpfs defaults 0 0

LABEL=/home1 /home ext3 defaults 1 2

proc /proc proc defaults 0 0

sysfs /sys sysfs defaults 0 0

LABEL=SWAP-hda5 swap swap defaults 0 0

/dev/hda3 /oldhome ext3 defaults 0 0

tuna:/p04 /p04 nfs defaults 0 0

/dev/fd0 /mnt/floppy auto noauto,users 0 0

272

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

fsck: Checks Filesystem Integrity

The fsck (filesystem check) utility verifies the integrity of filesystems and, if possible, repairs any
problems it finds. Because many filesystem repairs can destroy data, particularly on a
nonjournaling filesystem, such as ext2, by default fsck asks you for confirmation before making
each repair. The following command checks all unmounted filesystems that are marked to be
checked in /etc/fstab except for the root filesystem: # fsck -AR

The –A option causes fsck to check filesystems listed in fstab. The –R option checks the same
filesystems as –A except it does not check the root filesystem. You can check a specific filesystem
with a command similar to one of the following:

fsck /home

or

fsck /dev/sda6

Crash flag: The /etc/rc.d/rc.sysinit start-up script looks for two flags in the root directory of each
partition to determine whether fsck needs to be run on that partition before it is mounted. The
.autofsck flag (the crash flag) indicates that the partition should be checked.

tune2fs: Changes Filesystem Parameters

The tune2fs utility displays and modifies filesystem parameters on ext2, ext3, and ext4 filesystems.
This utility can also set up journaling on an ext2 filesystem, turning it into an ext3 filesystem. With
the introduction of increasingly more reliable hardware and software, systems are rebooted less
frequently, so it is important to check filesystems regularly. By default, fsck is run on each partition
while the system is brought up, before the partition is mounted. Depending on the flags, fsck may
do nothing more than display a message saying that the filesystem is clean. The larger the partition,
the more time it takes to check it, assuming a nonjournaling filesystem. These checks are often
unnecessary. The tune2fs utility helps you to find a happy medium between checking filesystems
each time you reboot the system and never checking them. It does so by scheduling when fsck
checks a filesystem (these checks occur only when the system is booted). You can use two
scheduling patterns: time elapsed since the last check and number of mounts since the last check.
The following command causes /dev/sda6 to be checked when fsck runs after it has been mounted
eight times or after 15 days have elapsed since its last check, whichever happens first:

tune2fs -c 8 -i 15 /dev/sda6

tune2fs 1.41.9 (22-Aug-2009)

Setting maximal mount count to 8

Setting interval between checks to 1296000 seconds

The next tune2fs command is similar but works on a different partition and sets the current mount
count to 4. When you do not specify a current mount count, it is set to zero:

tune2fs -c 8 -i 15 -C 4 /dev/sda6

tune2fs 1.41.9 (22-Aug-2009)

Setting maximal mount count to 8

Setting current mount count to 4

Setting interval between checks to 1296000 seconds

RAID Filesystem

RAID (Redundant Arrays of Inexpensive/Independent Disks) spreads information across several
disks to combine several physical disks into one larger virtual device. RAID improves performance
and creates redundancy. More than six types of RAID configurations exist. Using Fedora/RHEL

273

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

tools, you can set up software RAID. Hardware RAID requires hardware that is designed to
implement RAID. RAID can be an effective addition to a backup. Fedora/RHEL offers RAID
software that you can install either when you install a Fedora/RHEL system or as an afterthought.
The Linux kernel can automatically detect RAID disk partitions at boot time if the partition ID is set
to 0xfd, which fdisk recognizes as Linux raid autodetect. Software RAID, as implemented in the
kernel, is much cheaper than hardware RAID. Not only does this software avoid specialized RAID
disk controllers, but it also works with the less expensive IDE disks as well as SCSI disks.

10.15 Configuring User and Group Accounts

More than a username is required for a user to be able to log in and use a system. At a minimum a
user must have an entry in the /etc/passwd and /etc/shadow files and a home directory.

system-config-users: Manages User Accounts

The system-config-users utility displays the User Manager window and enables you to add, delete,
and modify system users and groups. To display the User Manager window, enter system-config-

users on a command line or select Main menu: System | Administration | Users and Groups.

This window has two tabs: Users and Groups, where each tab displays information appropriate to
its name.

Search filter

The Search filter, located just below the toolbar, selects users or groups whose names match the
string, which can include wildcards, that you enter in the Search filter text box. The string matches
the beginning of a name. For example, *nob matches nobody and nfsnobody, whereas nob matches
only nobody.

Adding a user

To create a new user, click the Add User button on the toolbar. The User Manager displays the
Create New User window. Enter the information for the new user and click OK.

274

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

275

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Modifying a user

Once you create a user, you can modify the user to add/change/remove information. To modify a
user, highlight the user in the User Manager window and click Properties on the toolbar; the utility
displays the User Properties window.

276

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The User Properties window has four tabs: User Data, Account Info, Password Info, and Groups.

• User Data tab: It holds basic user information such as name and password.

• Account Info tab: It allows you to specify an expiration date for the account and to lock
the account so the user cannot log in.

• Password Info tab: It allows you to turn on password expiration and specify various
related parameters.

• Groups tab: You can specify the groups that the user is a member of.

Working with groups

• Click the Groups tab in the User Manager window to work with groups.

277

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• To create a group, click Add Group on the toolbar and specify the name of the group.

• To change the name of a group or to add or remove users from a group, highlight the
group and click Properties on the toolbar.

Help:

• The User Manager provides extensive help. To access it, click Help on the toolbar.

• When you are done working with users and groups, close the window.

278

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

useradd: Adds a User Account

The useradd utility adds a new user account to the system. By default, useradd assigns the next
highest unused user ID to a new account and specifies bash as the user’s login shell. This command
creates the user’s home directory (in /home), specifies the user’s group ID, and puts the user’s full
name in the comment field: # useradd -g 500 -c "Alex Watson" alex

userdel: Removes a User Account

The userdel utility deletes user accounts. This command removes alex’s account and his home
directory hierarchy: # userdel -r alex. To turn off a user’s account temporarily, you
can use usermod to change the expiration date for the account. Because it specifies that his account
expired in the past (December 31, 2009), the following command line prevents alex from logging in:

 # usermod -e "12/31/09" alex

groupadd: Adds a Group

Just as useradd adds a new user to the system, groupadd adds a new group by adding an entry for
it in /etc/group. creates a new group named rtfm: # groupadd -g 1024 rtfm

Unless you use the –g option to assign a group ID, the system picks the next available sequential
number greater than 500. The –o option allows the group ID to be nonunique if you want to have
multiple names for the same group ID.

10.16 Backing Up Files

The backup copies are vital in three instances:

1) When the system malfunctions and files are lost,

2) When a catastrophic disaster (fire, earthquake, and so on) occurs,

3) When a user or the system administrator deletes or corrupts a file by accident.

Even when you set up RAID, you still need to back up files. Although RAID provides fault

tolerance (helpful in the event of disk failure), it does not help when a catastrophic disaster occurs

279

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

or when a file is corrupted or accidentally removed. You must back up filesystems on a regular
basis. Backup files are usually kept on magnetic tape or some other removable media. A full

backup makes copies of all files, regardless of when they were created or accessed. An incremental

backup makes copies of those files that have been created or modified since the last (usually full)
backup. The more people using the system, the more often you should back up the filesystems. One
popular schedule is to perform an incremental backup one or two times a day and a full backup one
or two times a week.

Choosing a Backup Medium

If the local system is connected to a network, you can write your backups to a tape drive on another
system. This technique is often used with networked computers to avoid the cost of having a tape
drive on each computer in the network and to simplify management of backing up many
computers in a network. Most likely you want to use a tape system for backups. Other options for
holding backups are writable CDs, DVDs, and removable hard disks. These devices, although not
as cost-effective or able to store as much information as tape systems, offer convenience and
improved performance over using tapes.

Backup Utilities

A number of utilities help you back up the system, and most work with any media. Most Linux
backup utilities are based on one of the archive programs—tar or cpio— and augment these basic
programs with bookkeeping support for managing backups conveniently. You can use any of the
tar, cpio, or dump/restore utilities to construct full or partial backups of the system. Each utility
constructs a large file that contains, or archives, other files. In addition to file contents, an archive
includes header information for each file it holds.

The amanda utility (Advanced Maryland Automatic Network Disk Archiver), one of the more
popular backup systems, uses dump or tar and takes advantage of Samba to back up Windows
systems. The amanda utility backs up a LAN of heterogeneous hosts to a single tape drive. You can
use yum to install amanda.

tar: Archives Files

The tar (tape archive) utility stores and retrieves files from an archive and can compress the archive
to conserve space. If you do not specify an archive device, tar uses standard output and standard
input. For displaying the options: # tar ––help | less

It combines single-letter options into a single command-line argument: # tar –ztvf /dev/st0. This
command uses descriptive words for the same options: # tar ––gzip ––list ––verbose ––file

/dev/st0. Both commands tell tar to generate a (v, verbose) table of contents (t, list) from the tape on
/dev/st0 (f, file), using gzip (z, gzip) to decompress the files.

Option Effect

––append (–r) Appends files to an archive

––catenate (–A) Adds one or more archives to the end of an existing archive

––create (–c) Creates a new archive

––delete Deletes files in an archive (not on tapes)

––diff (–d) Compares files in an archive with disk files ––extract

280

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

––extract (–x) Extracts files from an archive

––help Displays a help list of tar options

––list (–t) Lists the files in an archive

––update (–u) Like the –r option, but the file is not appended if a newer version is already
in the archive

cpio: Archives Files

The cpio (copy in/out) program is similar to tar but can use archive files in a variety of formats,
including the one used by tar. Normally cpio reads the names of the files to insert into the archive
from standard input and produces the archive file as standard output. When extracting files from
an archive, cpio reads the archive as standard input.

Performing a Simple Backup

When you prepare to make a major change to a system, such as replacing a disk drive or updating
the Linux kernel, it is a good idea to archive some or all of the files so you can restore any that
become damaged if something goes wrong. For this type of backup, tar or cpio works well. For
example, if you have a SCSI tape drive as device /dev/st0 that is capable of holding all the files on a
single tape, you can use the following commands to construct a backup tape of the entire system:

cd /

tar –cf /dev/st0 .

The tar command then creates an archive (c) on the device /dev/st0 (f). # tar –cjf /dev/st0 . You can
back up the system with a combination of find and cpio. These commands create an output file and
set the I/O block size to 5120 bytes (the default is 512 bytes):

cd /

find . –depth | cpio –oB > /dev/st0

This command restores the files in the /home directory from the preceding backup. The options
extract files from an archive (–i) in verbose mode, keeping the modification times and creating
directories as needed.

cd /

cpio –ivmd /home/* < /dev/st0

dump, restore: Back Up and Restore Filesystems

The dump utility, which first appeared in UNIX version 6, backs up either an entire filesystem or
only those files that have changed since the last dump. The restore utility restores an entire
filesystem, an individual file, or a directory hierarchy. This command backs up all files (including
directories and special files) on the root (/) partition to SCSI tape 0. Frequently there is a link to the
active tape drive, named /dev/tape, which you can use in place of the actual entry in the /dev
directory.

 # dump -0uf /dev/st0 /

The option specifies that the entire filesystem is to be backed up (a full backup). There are ten dump
levels: 0–9. Zero is the highest (most complete) level and always backs up the entire filesystem.
Each additional level is incremental with respect to the level above it. For example, 1 is incremental
to 0 and backs up only files that have changed since the last level 0 dump; 2 is incremental to 1 and
backs up only files that have changed since the last level 1 dump; and so on. The u option updates

281

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

the /etc/dumpdates file with filesystem, date, and dump level information for use by the next
incremental dump.

• The f option and its argument write the backup to the device named /dev/st0.

• The u option updates the /etc/dumpdates file with filesystem, date, and dump level
information for use by the next incremental dump.

• The f option and its argument write the backup to the device named /dev/st0. This
command makes a partial backup containing all files that have changed since the last level
0 dump. The first argument is a 1, specifying a level 1 dump:

 # dump -1uf /dev/st0 /

• To restore an entire filesystem from a tape, first restore the most recent complete (level 0)
backup. Perform this operation carefully because restore can overwrite the existing
filesystem. When you are logged in as Superuser, cd to the directory the filesystem is
mounted on and give this command: # restore -if /dev/st0

 i: Interactive mode

 f: specifies the name of the device that the backup medium is mounted on.

10.17 Scheduling Tasks

It is a good practice to schedule certain routine tasks to run automatically. For example, you may
want to remove old core files once a week, summarize accounting data daily, and rotate system log
files monthly.

crond and crontab: Schedule Routine Tasks

Using crontab, you can submit a list of commands in a format that can be read and executed by
crond. Working as Superuser, you can put commands in one of the /etc/cron.* directories to be run
at intervals specified by the directory name, such as cron.daily.

at: Runs Occasional Tasks

Like the cron utility, at allows you to run a job sometime in the future. Unlike cron, at runs a job
only once.

System Reports

Many utilities report on one thing or another. The who, finger, ls, ps, and other utilities generate
simple end-user reports. In some cases, these reports can help with system administration.

vmstat: Reports Virtual Memory Statistics

The vmstat utility (procps package) generates virtual memory information along with (limited)
disk and CPU activity data.

282

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

vmstat column heads

This shows virtual memory statistics in 3-second intervals for seven iterations. The first line covers
the time since the system was last booted; the rest of the lines cover the period since the previous
line.

procs Process information

r Number of waiting, runnable processes

b Number of blocked processes (in uninterruptable sleep)

Memory Memory Information in Kilobytes

swpd Used virtual memory

free Idle memory

buff Memory used as buffers

cache Memory used as cache

swap System paging activity in kilobytes per second

si Memory swapped in from disk

so Memory swapped out to disk

io System I/O activity in blocks per second

bi Blocks received from a block device

283

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

bo Blocks sent to a block device

system Values are per second

in Interrupts (including the clock)

cs Context switches

cpu Percentage of total CPU time spent in each of these states

us User (nonkernel)

sy System (kernel)

id Idle

wa Waiting for I/O

top: Lists Processes Using the Most Resources

The top utility is a useful supplement to ps. At its simplest, top displays system information at the
top and the most CPU-intensive processes below the system information. The top utility updates
itself periodically; type q to quit.

top: interactive commands

284

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Command Function

F Specify a sort field.

h or ? Displays a Help screen.

k Prompts for a PID number and type of signal and sends the process that signal.
Defaults to signal 15 (SIGTERM); specify 9 (SIGKILL) only when 15 does not
work.

M Sorts processes by memory usage.

O Specify a sort field.

P Sorts processes by CPU usage (default).

q Quits.

S Prompts for time between updates in seconds. Use 0 for continuous updates.

SPACE Updates the display immediately.

T Sorts tasks by time.

W Writes a startup file named ~/.toprc so that next time you start top, it uses the
same parameters it is currently using.

parted: Reports on and Partitions a Hard Disk

• The parted (partition editor) utility reports on and manipulates hard disk partitions.

The following example shows how to use parted from the command line

Partitions

285

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

parted: Reports on and Partitions a Hard Disk

The print command displays the following columns:

• Number—The minor device number of the device holding the partition. This number is
the same as the last number in the device name. In the example, 5 corresponds to
/dev/sda5.

• Start—The location on the disk where the partition starts. The parted utility specifies a
location on the disk as the distance (in bytes) from the beginning of the disk. Thus
partition 3 starts 12 gigabytes from the beginning of the disk.

• End—The location on the disk where the partition stops. Although partition 2 ends 12
gigabytes from the beginning of the disk and partition 3 starts at the same location, parted
takes care that the partitions do not overlap at this single byte.

• Size—The size of the partition in kilobytes (kB), megabytes (MB), or gigabytes (GB).

• Type—The partition type: primary, extended, or logical.

• File system—The filesystem type: ext2, ext3, fat32, linux-swap, and so on.

• Flags—The flags that are turned on for the partition, including boot, raid, and lvm. In the
example, partition 1 is bootable

Summary:

• Superuser can use certain tools, such as sudo, to give specific users permission to perform

tasks that are normally reserved for Superuser.

• To bring a system up in rescue mode, boot the system from the first installation CD, the

Net Boot CD, or the install DVD.

• SELinux can be in one of three states: enforcing, permissive and disabled.

• The system-config-selinux utility displays the SELinux Administration window, which

controls SELinux.

• By default, Fedora systems boot to graphical multiuser mode (runlevel 5).

• The system-config-services utility displays the Service Configuration window.

• The shutdown and halt utilities perform the tasks needed to bring the system down safely.

• The key combination CONTROL-ALT-DEL Reboots the System

286

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• Most of the Fedora/RHEL configuration tools are named system-config-*.

• When you set up a server, you frequently need to specify which clients are allowed to

connect to the server. Sometimes it is convenient to specify a range of IP addresses, called

a subnet.

• RHEL uses the xinetd daemon, a more secure replacement for the inetd superserver that

was originally shipped with 4.3BSD.

• You may secure a server either by using TCP wrappers or by setting up a chroot jail.

• An ordinary file stores user data, such as textual information, programs, or images, such

as a jpeg or tiff file.

• A character device is any device that is not a block device. Examples of character devices

include printers, terminals, tape drives, and modems.

Keywords

• System Administrator: A system administrator should be available to help users with all

types of system-related problems—from logging in to obtaining and installing software

updates to tracking down and fixing obscure network issues.

• su: The su (substitute user) utility can create a shell or execute a program with the identity

and permissions of a specified user.

• Consolehelper: The consolehelper utility can make it easier for someone who is logged in

on the system console but not logged in as root to run system programs that normally can

be run only by root.

• Trojan House: A Trojan horse is a program that does something destructive or disruptive

to a system while appearing to be benign.

• runlevel utiity: The runlevel utility displays the previous and current runlevels. This

utility is a transitional tool; it provides compatibility with SysVinit.

• Booting: Booting a system is the process of reading the Linux kernel into system memory

and starting it running.

• rpcinfo: The rpcinfo utility displays information about programs registered with rpcbind

and makes RPC calls to programs to see if they are alive.

• Inode: An inode is a data structure, stored on disk, that defines a file’s existence and is

identified by an inode number.

• Sockets: Sockets allow unrelated processes on the same or different computers to

exchange information.

• Hotplug: The hotplug system allows you to plug a device into the system and use it

immediately.

• Mount point: The mount point for the filesystem/directory hierarchy that you are

mounting is a directory in the local filesystem.

• umount: The umount utility unmounts a filesystem as long as it does not contain any files

or directories that are in use (open).

Self Assessment

1. su stands for

A. substitute user

B. switch user

C. substandard user

287

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

D. None of the above

2. Which of these tools gives you another user’s privileges?

A. kill

B. su

C. consolehelper

D. None of the above

3. Which of these tools runs programs as a root?

A. kill

B. su

C. consolehelper

D. None of the above

4. Who is a superuser in Linux environment?

A. Root

B. Normal user

C. Machine

D. None of the above

5. What are the modes of SELinux?

A. Enforcing

B. Permissive

C. Disabled

D. All of the above

6. The policies of SELinux are

A. Targeted

B. MLS

C. Strict

D. All of the above

7. Which of these key combinations reboots the system?

A. CTRL-ALT-HOME

B. CTRL-DEL-END

C. CTRL-ALT-DEL

D. CTRL-TAB-DEL

8. Which of these utility displays the kernel ring buffer?

A. chsh

B. clear

C. dmesg

D. None of the above

288

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

9. Which of these utility creates a new filesystem on device?

A. mkfs

B. chsh

C. dmesg

D. clear

10. Which superserver listens for network connection?

A. xinted

B. Machine

C. Fedora

D. None of the above

11. How can we secure a server?

A. By using TCP wrappers

B. By setting up a chroot jail

C. By using both of the above

D. None of the above

12. The user’s interactive non-login shell initialization script is located in _______ file.

A. ~/.bash_profile

B. ~/.bashrc

C. /dev

D. None of the above

13. Which of these is known as a bit bucket?

A. /dev/empty

B. /dev/bucket

C. /dev/null

D. None of the above

14. The __________ option causes Linux not to mount the filesystem automatically.

A. noauto

B. nosuid

C. nomount

D. None of the above

15. The _________ backup makes copies of all the files.

A. Full

B. Incremental

C. Decremental

D. Half

289

Unit 10: Linux System Administration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Answer for Self Assessment

1. A 2. B 3. C 4. A 5. D

6. D 7. C 8. C 9. A 10. A

11. C 12. B 13. C 14. A 15. A

Review Questions

1. What is a well-maintained system? What kind of powers a superuser has?

2. How can we gain/grant the superuser privileges?

3. What are system administration tools? Explain.

4. What is a rescue mode? How can we avoid trojan horse?

5. What is security enhanced linux? What are states and policies of SELinux?

6. What is a run-level? Explain various utilities associated with this.

7. What is Fedora/RHEL configuration tools? Explain.

8. What are command line utilities?

9. What are standard rules in configuration files? How can we specify cilents?

10. How can we secure a server?

11. What are important files and directories?

12. What kind of files are supported by Linux?

13. What is fstab? How can we keep track of filesystems? Explain the columns of fstab file.

14. What is a special file in Linux?

15. Explain various types of file systems in Linux?

16. What is backing up of files? How can we choose a backup medium? Explain various

backup utilities.

17. How can we schedule tasks? What are vmstat column heads?

Further Readings

Mark G. Sobell, A Practical Guide to Fedora and RedHat Enterprise Linux, Fifth Edition,
Prentice Hall

Web Links

https://www.beyondtrust.com/resources/glossary/superuser-superuser-
accounts#:~:text=In%20Linux%20and%20Unix%2Dlike,any%20permissions%20for%20othe
r%20users.

https://searchsecurity.techtarget.com/definition/sudo-superuser-do

290

https://www.beyondtrust.com/resources/glossary/superuser-superuser-accounts#:~:text=In%20Linux%20and%20Unix%2Dlike,any%20permissions%20for%20other%20users
https://www.beyondtrust.com/resources/glossary/superuser-superuser-accounts#:~:text=In%20Linux%20and%20Unix%2Dlike,any%20permissions%20for%20other%20users
https://www.beyondtrust.com/resources/glossary/superuser-superuser-accounts#:~:text=In%20Linux%20and%20Unix%2Dlike,any%20permissions%20for%20other%20users

Unit 11: Web Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 11: Web Server Configuration

CONTENTS

Objectives

Introduction

11.1 The Apache Web Server

11.2 Installing Apache

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions:

Further Readings

Objectives

After studying this unit, you will be able to

• Know what a web server is

• Understand how to set up a web server

• Know how to install a web server on Linux machine

• Understand Apache web server

• Understand the important packages of Apache web server

Introduction

A web server is nothing but software and hardware that uses the Hypertext Transfer Protocol,
commonly known as HTTP, and some other protocols that respond to request from clients made on
the World Wide Web. The main job that the webserver performs is to display the content of the
website, which it does by storing, then processing, and eventually delivering the webpages to the
user who has requested it. The web server also supports Simple Mail Transfer Protocol or SMTP
and File Transfer Protocol or FTP and HTTP. These are used to transfer files for emailing and even
for storage.

The web server hardware gets connected to the internet, allowing the exchange of data with the
other devices related to it. The web server software controls how the user assesses the files that
have been hosted. The web server process is basically a client and server model example. All the
computers that host websites should have the webserver software. Web serves find use in web
hosting or the hosting of data for websites as well as for all kinds of web-based applications. The
web server software gets accessed using the domain name of a website. This then ensures that the
content of the site gets delivered to the user who has requested it. The software part of the
webserver is also made up of various components and has at least a single HTTP server. The HTTP
server understands the URLs and the HTTP. The web server hardware is basically a computer that
will store the webserver software as well as the files that are related to the website. These include
documents, HTML, JavaScript files, and images.

Uses of Web Server

The web server is basically a part of a large internet package. It also offers many programs that are
related to the intranet. The web server is used to:

291

Dr. Divya, Lovely Professional University

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

• Send and receive emails.

• Download the file transfer protocol or FTP request

• Build and publish webpages.

The basic kinds of web servers can support the scripting on the server-side, which is used to
employ the scripts on the webserver. This can be customized as per the request of the client. The
serve side scripting works on the server machine, and this comes with a broad feature set that offers
access to the database. The server-side scripting makes use of Active Server Pages or ASP,
Hypertext Pre-processor or PHP, and many other scripting languages. The process also lets the
HTML documents to get created.

Dynamic and Static Web Servers

A web server may be used as static or dynamic content. The static content is the one that is fixed.
The static web server contains HTTP software and computer. This is static because the server sends
hosted files as is present to the browser.

On the other hand, the dynamic web browser will have the webserver and the software like the
database and the applications server. This is dynamic because the application server is used to
update the files hosted before these are sent to the browser. The web server generates content when
the database requests it. The process is flexible but complicated too.

A web server can host a single website or many websites with the help of the same software and
hardware resource. This is called virtual hosting. The answer to what is the role of a web server is
here. Web servers are also capable of limiting the speed of the response to various clients, which in
turn does not allow a single client to dominate the resources. This is used to satisfy the requests of
many clients. The web servers will typically host the websites that are internet accessible. These can
also be used to communicate between the web clients and the servers in the local network area. This
could be like through the intranet of a company. The web server could be embedded in a device
like a digital camera. This lets the users communicate with the device using a commonly available
web browser.

Basic Common Features

HTTP: The support for one or more versions of HTTP protocol in order to send versions of HTTP
responses compatible with versions of client HTTP requests, e.g., HTTP/1.0, HTTP/1.1 plus, if
available, HTTP/2, HTTP/3.

Logging: Usually web servers have also the capability of logging some information, about client
requests and server responses, to log files for security and statistical purposes.

Setting up a web server

When we want to publish web pages on the Internet or on an intranet, we use a web server. In
essence, a web server is an application that does two things:

1) It listens for page requests.

2) When it receives a page request, it examines the request and responds with the page that was
requested.

Of course, there are many different web browsers in existence (including Mozilla, Opera, Internet
Explorer, and others), and there are also a great many types of web server software. To enable a
browser to request pages from a web server, they communicate using Hypertext Transfer Protocol
(HTTP) − this is the standard protocol for the Internet. The request and response messages are
composed using HTTP, and this is what allows any browser to request web pages from any type of
web server. By default, all web servers listen for HTTP requests on port 80. Web servers also use
port 443 to listen for requests made through secure HTTP connections, over SSL (secure sockets

292

Unit 11: Web Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

layer), through a protocol called HTTPS. So, if you want to publish your own web site, you'll need a
machine with some web server software.

Why to install a web server on Red Hat Linux Machine

Well, here are two scenarios:

• First, if you're building a web site, then you'll need a web server so that you can test your
site as you're developing it·

• Second, although you might not host an Internet site from your own machine, you might
host an intranet site − a private web site available only to other machines inside your
private network.

Commercial and open-source web servers

Commercial

• Netscape

• Iplanet

• SunONE

• Microsoft

• Zeus

Open Source

• Apache

• Thttpd

• Redhat TUX

11.1 The Apache Web Server

At the time of writing, 66% of all web sites are hosted on Apache web servers, most of them
running on Linux or Unix operating systems. Apache's popularity is due not only of its open-source
pedigree, but also to its highly competitive levels of performance, functionality, stability, flexibility,
and security.

1) Flexibility: Apache's flexibility comes from the fact that it is a modular web server. That

means that you can meet your requirements by plugging any number of external modules

into the core httpd daemon. Of course, being open-source software, you also have access

to Apache's source code, which you can customize to fit your needs.

2) Scalable & Portable: Apache is also very scalable. You can run Apache on high−end

hardware, and it's possible to increase the capacity of Apache web servers by sharing the

load across any number of servers. It's also very portable, being available for several

operating systems.

3) Security: Apache's security is very good in comparison to other web servers. Moreover,

the Apache Foundation is extremely active in the continued defense of Apache from

security problems − particularly in the form of announcements and patches.

4) Functionality: Apache performs very well − it boasts a highly optimized daemon for

serving static content which dramatically outperforms its nearest rivals. Moreover, it

rarely crashes and achieves extremely long up−times.

5) Documentation: Apache comes with detailed documentation, which helps to make the

setup and configuration easy.

6) Support: There's a wide network of support for Apache, in the form of mailing lists,

newsgroups, and commercial vendors like Red Hat.

7) Stability: Apache development is active. The Apache Foundation is actively involved in

development of new modules; new versions of Apache to make it reliable stable and

secure.

293

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

11.2 Installing Apache

Apache is a modular server − the core server provides the basic functionality, with extended
features available in various modules. This makes it very flexible and easy to configure, because
you need to configure only the modules you need. So, it's worth looking at how to control the
installation and removal of these modules. There are two ways to start RPM’s graphical interface:

One is to go to Main Menu| then System Settings | then Add/Remove Applications. Other is to
open $ red hat-config-packages.

In this we need to search web server package.

294

Unit 11: Web Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Important packages

There are some important packages which needs to be installed for web server. These are:

Package Description

httpd−manual Contains the documentation for the Apache web server. After installation, you can
access this documentation from the command line by typing man httpd.

hwcrypto Provides support for hardware SSL acceleration cards. This package should be
installed if you have hardware SSL acceleration cards like Ncipher Nforce on your
server.

mod_ssl Provides an SSL interface to the HTTPS web server, and hence enables the Apache
web server to support SSL. This package should be installed if you want to provide
secure connections to your clients.

Php Provides the PHP module for Apache, which enables the web server to serve PHP
web pages. This package is required if you if you want to host web sites which
contain pages written with the PHP scripting language.

webalizer

Provides programs for web server log file analysis. This package enables you to
generate HTML usage reports for your website.

295

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Apache Configuration Files

There are various configuration files for configuring the Apache web server in the computer
system.

1) The /etc/httpd/httpd.conf file is Apache's main configuration file.

2) The /etc/httpd/conf.d directory contains configuration files for any installed modules
(such as PHP, SSL, and so on).

3) The /etc/httpd/logs directory is a symbolic link to /var/log/httpd directory, which
contains all the Apache log files.

4) The /etc/httpd/modules directory is a symbolic link to /usr/lib/httpd/modules
directory, which contains all the Apache modules configured as dynamic shared objects.
Dynamic shared objects (or DSOs) are modules that are compiled separately from the
Apache httpd binary. They are so−called because they can be loaded on demand.

5) The /etc/httpd/run directory is a symbolic link to /var/run, which contains the process
ID file (httpd.pid) of the httpd process.

6) · /etc/rc.d/init.d/httpd is a shell script, used for starting and stopping the Apache web
server.

Starting Apache for the First Time

There are two ways by which Apache can be started. These are:

1) Main Menu | System Settings | Server Settings |Services

2) $ redhat−config−services

We can opt any of the ways. It would ask for root password if you started as a normal user.

Service Configuration Dialog: Here we need to start the service.

296

Unit 11: Web Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Httpd need to be checked here.

When this is done. We need to save the changes and quit.

297

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

To control the Apache web server from the command line, we can use the service command to fire
the httpdscript. Here's how we use it to start the web server:

service httpd start

Starting httpd: [OK]

If there are difficulties in starting the web server, then you'll find out about it here. For example, if
youattempt to do this without root privileges, then you'll get a message telling you that permission
is denied. Andhere's another example:

service httpd start

Starting httpd: httpd: Could not determine the server's fully qualified

domain name, using 192.168.0.99 for ServerName [OK]

Testing the Apache Web Server

Once you've started the Apache web server, you should test it to see if it's working properly. To do
that, we'll use a web browser to request a web page from our server!. There's a page provided by
default for this purpose, and you can request it via the URL http://localhost. So, launch a web
browser (Main Menu | Internet | Mozilla Web Browser), and type this URL into the address box:

Configuring your Web Server

Launch the gedit text editor (by selecting Main Menu | Accessories | Text Editor).Use it to open
the file /etc/httpd/conf/httpd.conf.Select Search | Find and use the resulting dialog to find the
word Server Admin in the file. The first occurrence should be the Server Admin directive. Write
your own email id here in the place of root@localhost.

298

Unit 11: Web Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

299

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Next thing we are going to search is ServerName. So in front of ServerName, new.host.name:80 is
written. Here, we need to write the IP address of our machine.

By giving the command ip addr show, it will show us the ip address of the machine. So, in front of
ServerName write the ip address of the machine.

300

Unit 11: Web Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Configuring your Web Server

Again we need to restart the httpd service by writing service httpd restart.

301

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Once this is done. Again open httpd://localhost

Setting up Your First Web Page

• This involves creating a simple HTML web page, and saving it to a location on the hard
disk that is used by the web server to store published web pages.

• Then, when a user requests the page, the web server will be able to respond by retrieving
it from this location and sending it to the requestor.

• Launch an editor (gedit).

302

Unit 11: Web Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Summary

• A web server is required When we want to publish web pages on the Internet or on an

intranet.

303

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

• The standard protocol for internet is Hypertext Transfer Protocol (HTTP).

• All web servers listen for HTTP requests on port 80.

• Apache's popularity is due not only of its open source pedigree, but also to its highly

competitive levels of performance, functionality, stability, flexibility, and security.

• There are two ways to start RPM’s graphical interface: One is: Main Menu | System

Settings | Add/Remove Applications and another is $ redhat-config-packages.

• The important package httpd_manual contains the documentation for the Apache web

server. After installation, you can access this documentation from the command line by

typing man httpd.

• The /etc/httpd/httpd.conf file is Apache's main configuration file.

• A web server is an application that does two things:It listens for page requests and when it

receives a page request, it examines the request and responds with the page that was

requested.

Keywords

• Web server: web server performs is to display the content of the website, which it does by

storing, then processing, and eventually delivering the webpages to the user who has

requested it.

• Static Web Server:The static content is the one that is fixed. The static web server contains

HTTP software and computer. This is static because the server sends hosted files as is

present to the browser.

• Dynamic Web Server: The dynamic web browser will have the webserver and the

software like the database and the applications server. This is dynamic because the

application server is used to update the files hosted before these are sent to the browser.

• Apache Web Server: Apache is a modular server − the core server provides the basic

functionality, with extended features available in various modules. This makes it very

flexible and easy to configure, because you need to configure only the modules you need.

• HTTP: Hypertext Transfer Protocol (HTTP) is an application-layer protocol for

transmitting hypermedia documents, such as HTML. It was designed for communication

between web browsers and web servers, but it can also be used for other purposes.

Self Assessment

1. When we are talking about the web servers, how many packages are available?
A. 15

B. 16

C. 17

D. 18

2. Which package contains the documentation of httpd web server?

A. httpd-manual

B. hwcrypto

C. php

D. php-image

304

Unit 11: Web Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

3. We can install the web server package if we have logged in as

A. Root

B. Normal user

C. Either root or normal user

D. None of the above

4. When we are installing web server, which service should be started from service

configuration dialog?

A. echo

B. httpd

C. cups

D. None of the above

5. The configuration file is modified by searching

A. ServerAdmin

B. ServerName

C. Both of the above

D. None of the above

6. Where do we provide the ip address of machine when the modification of configuration

file is done?

A. ServerAdmin

B. ServerName

C. Both of the above

D. None of the above

7. The important packages for Apache web server are
A. httpd-manual

B. mod_ssl

C. php

D. All of the above mentioned

8. Which command is used to check the ip address of the Linux machine?

A. ip addr show

B. internet address show

C. ip address show

D. None of the above mentioned

9. Why do we require web server on a Linux machine?

A. To test the site that is under development

B. To test a private website only available in private network

C. Both of the above

D. None of the above

305

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

10. With which way we can open RPM’s graphical interface?

A. Main Menu | System Settings | Add/Remove Applications

B. $ redhat-config-packages

C. Either of these mentioned

D. None of the above

11. HTTP stands for
A. Host text transfer protocol

B. Hypertext transfer protocol

C. High text transfer protocol

D. None of the above

12. The commercial web servers are

A. Zeus

B. Microsoft

C. SunOne

D. All of the mentioned

13. Which of these features belongs to Apache web server?

A. Portability

B. Scalability

C. Security

D. All of the above mentioned

14. What is the task of a web server?
A. Listens for a page request.

B. Examines and responds with the page requested

C. Both of the above

D. None of the above

15. Which one is the standard protocol of internet?

A. HTTP

B. PTTH

C. PTHT

D. None of the above

Answers for Self Assessment

1. C 2. A 3. A 4. B 5. C

6. B 7. D 8. A 9. C 10. C

11. B 12. D 13. D 14. C 15. A

306

Unit 11: Web Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Review Questions:

1. What is a web server? What is the need of installing web server on RedHat Linux

machine? Give some examples of commercial and open source web servers.

2. What is Apache web server? Write some features of it in detail.

3. Write in detail how can we install Apache in RedHat Linux machine.

4. What are the important packages and configuration files of Apache web service. Give

details.

5. How can we start and test Apache web server? Write in detail about its configuration.

Further Readings

Sandip Bhattacharya,Pancrazio De Mauro,Shishir Gundavaram,Mark Mamone,Kalip

Sharma,Deepak Thomas, and Simon Whiting, Beginning Red Hat Linux 9, Wiley

Publishing, Inc.

Web Links

https://www.sumologic.com/blog/apache-web-server-introduction/

307

Unit 12: File Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 12: File Server Configuration

CONTENTS

Objectives

Introduction

12.1 Installing the vsftpd FTP Server

12.2 Installing the vsftpd FTP Server

12.3 Starting your FTP Server

12.4 Testing Your FTP Server

12.5 Using an FTP Client to Test Anonymous Read Access

12.6 Configuring an Anonymous FTP Server for File Upload

12.7 Using an FTP Client to Test Anonymous Write Access

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to

• Understand the FTP protocol

• Understand the relevance and use of FTP

• How to start FTP server

• How to test FTP server

• How to use FTP client to test anonymous read access

Introduction

FTP stands for File Transfer Protocol. At its core, the file transfer protocol is a way to connect two
computers to one another in the safest possible way to help transfer files between two or more
points. To put it simply, it’s the means by which files are securely shared between parties. FTP
servers are the solutions used to facilitate file transfers across the internet. If you send files using
FTP, files are either uploaded or downloaded to the FTP server. When you’re uploading files, the
files are transferred from a personal computer to the server. When you’re downloaded files, the
files are transferred from the server to your personal computer. TCP/IP (Transmission Control
Protocol/Internet Protocol), or the language the internet uses to execute commands, is used to
transfer files via FTP. So, the main points in consideration are:

• If you want to enable other users to download files from a location on your server's hard disk,

and/or to upload files to that location, then one solution is to install an FTP server.

• You can think of an FTP server essentially as an area of disk space that is used for storing files,

plus the software and configuration required to allow other users to upload and download

files.

308

Dr. Divya, Lovely Professional University

https://www.ftptoday.com/blog/the-difference-between-a-ftp-server-and-a-file-server
https://www.ftptoday.com/blog/the-difference-between-a-ftp-server-and-a-file-server

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• When users want to upload or download from your FTP server, they use a program called an

FTP client.

These communications between FTP server and FTP client take place using the File Transfer
Protocol (FTP). FTP is a TCP protocol that is designed specifically for the transfer of files over a
network, and it's one of the oldest Internet protocols still in widespread use.

Relevance of FTP

The availability of so many different FTP client programs, and the fact that many operating systems
come with FTP software pre−installed, are indications of how relevant FTP still is today. FTP also is
more efficient at large file transfers than HTTP and requires a password for access. FTP keeps a log
of data transmission, where HTTP does not. All these components combined create a system that
the common user might not notice, but which is incredibly important for professionals working
with IT.FTP and its derivatives are the best choices when dealing with the manipulation of larger
quantities of data. Rather than simply giving one-way access, FTP services allow users an
enormous amount of control, and this can be extremely beneficial to individuals and business
which update regularly.

Security of FTP

FTP is generally considered to be an insecure protocol because it relies on clear-text usernames and
passwords for authentication and does not use encryption. Data sent via FTP is vulnerable to
sniffing, spoofing, and brute force attacks, among other basic attack methods. It is not considered a
secure protocol, because communication between the FTP client and server are unencrypted.
Consequently, Secure FTP (SFTP) is also becoming popular (and, indeed, is part of the openssh
package that comes with Red Hat Linux 9).It's also possible to configure your FTP server in other
ways, for example by forcing users to log in, or by using access control lists (ACLs) to allow
different rights to different groups of users.

Did you know?

The FTP was not built to be secure. The communication between the FTP client and
server are unencrypted.

Anonymous FTP Access

• Anonymous FTP is called anonymous because you don’t need to identify yourself before
accessing files. In fact, many FTP servers still allow anonymous FTP access, which means
that the FTP server allows any user to access its disk space and download its files.

• Anonymous FTP access is used mostly to enable users to access freely available documents
and files via the Internet without access control.

Despite the security issues, FTP remains popular − it's fast and easy to use, and it is the Internet
standard protocol for file transfer.

FTP Servers in the Red Hat Linux Distribution

There are few FTP servers available in Red Hat Linux distribution. These are:

FTP Server Remarks

vsftpd It is a simplified FTP server implementation. It is designed to be a very secure FTP
server and can also be configured to allow anonymous access.

TUX It is a kernel−based, threaded, extremely high-performance HTTP server, which
also has FTP capabilities. TUX is perhaps the best in terms of performance but offers
less functionality than other FTP server software. TUX is installed by default with
Red Hat Linux 9.

309

Unit 12: File Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

wu-ftpd It is a highly configurable and full−featured FTP daemon, which was popular in
earlier versions of Red Hat Linux but has since given way to the more
security−conscious vsftpd.

gssftpd It is a kerberized FTP daemon, which means that it is suitable for use with the
Kerberos authentication system.

12.1 Installing the vsftpd FTP Server

The easiest way to install the vsftpd FTP Server package is via the RPM GUI tool. There are two
ways by which we can open the RPM GUI tool. These are:

• Main Menu | System Settings | Add/Remove Applications

• $ redhat-config-packages

12.2 Installing the vsftpd FTP Server

For installation of FTP server, we will see the category ‘Servers’. In this we will click on FTP server.
By clicking on details link, we can see the packages available in that. As in FTP server we have just
one package. After clicking on update button, we can

310

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

311

Unit 12: File Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

12.3 Starting your FTP Server

When the installation is done. We need to start the FTP Service, we can use the Service
Configuration tool. There are again two ways to start FTP server. These are:

• Main Menu | System Settings | Server Settings | Services

• $ redhat−config−services

Again, you'll be prompted for the root password, unless you're already logged on as root. After
logging in as a root, it will open service configuration dialog.

312

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Here we need to start the service. By clicking on start button, it will start the service. After it, we
need to save the changes and quit. It's also possible to start and stop these FTP services from the
command line, using the service command to start and stop the vsftpd script:

service vsftpd start
Starting vsftpd: [OK]
service vsftpd stop
Stopping vsftpd: [OK]

Again, if you run the script without an option, the resulting usage message reveals all the available
options:
service vsftpd

Usage: vsftpd {start|stop|restart|condrestart|status}

12.4 Testing Your FTP Server

After setting up the FTP server, we need to test it. From the client side, we will test the server
whether it is working fine or not. From a command line, issue the ftp command to start an FTP
session, naming your FTP server as the server that you want to connect to.You should get a Name
login prompt like the one shown above − this is enough to confirm to us that the vsftpd server is
running. Press Ctrl−C to terminate this FTP session and return to the command line.

313

Unit 12: File Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Configuring an Anonymous FTP Server for File Download

Anonymous users cannot read from just any directory on your Linux server. By default, the vsftpd
package creates a directory tree starting at /var/ftp, and enables 'anonymous read access' to this
directory and the directory structure beneath it. For this we'll adopt the role of one of these users,
and run a client FTP session to access the FTP server,examine the contents of the FTP site, and
download a copy of the test file.

Setting up the FTP Server

All we need to do here is place some test content somewhere under the /var/ftp directory, so that
other users can access it. The owner of the /var/ftp is the root account, and by default is the only
one with permission to write to the directory. For this we need to enter as a root user, so use a
command line to switch to the root user:

$ su −

Password:

Then you can place whatever content you want under the /var/ftp directory. For example, you can
easily use acommand such as echo to create a simple test file:

cd /var/ftp/pub

echo "This is the contents of a test file!" > test.txt

12.5 Using an FTP Client to Test Anonymous Read Access

Now you can test for anonymous read access, by using an FTP client to try to grab a copy of this
test file via an FTP connection. You can use any FTP client, and you can test from a Windows or
Linux machine −provided the client machine can see the FTP server across a network. You can even
use your Linux server as a client if you have only one machine.For example, in both Windows and
Linux you can use the ftp program at the command line.In the following, we'll use the ftp program
as FTP client to connect to the FTP server, examine the contents of the FTP site, and then download
the file test.txt:

1) Start by connecting to the FTP server. When you're prompted for a username, specify
anonymous (as shown below) or ftp to indicate that you want anonymous access:

$ ftp 192.168.245.129
Connected to 192.168.245.129 (192.168.245.129).
220 (vsFTPd 1.1.3)

314

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Name (192.168.0.99:none): anonymous
331 Please specify the password.
Password:
230 Login successful. Have fun.
Remote system type is UNIX.

Using binary mode to transfer files.

2) Now, we can start to examine the contents of the FTP site that are available to users with
anonymous access. For example, here we'll use the ls command to examine the contents of the FTP
root directory which happens to be the directory /var/ftp on the server:

ftp>ls
220 Entering Passive Mode (192,168,245,129,29,204)
150 Here comes the directory listing.
drwxr−r−x 2 0 0 4096 Apr13 15:38 pub

226 Directory send OK.

This shows that the root directory contains just one subdirectory, called pub. Now we'll use cd to
change to this directory, and we'll list its contents.

315

Unit 12: File Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

3) Now, we'll attempt to download the test.txt file we've just located. To do this, we'll use the get
command:

ftp> get test.txt
local: test.txt remote: test.txt
227 Entering Passive Mode (192, 168, 245, 129, 33, 9)
150 Opening BINARY mode data connection for test.txt (36 bytes).

226 File send OK.

316

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

4) Finally, we'll end the session:

ftp> bye
221 Goodbye.

$

12.6 Configuring an Anonymous FTP Server for File Upload

Anonymous FTP users can write only to the directories that we allow them to write to.
By default, vsftpd does not allow users to upload to the FTP server at all; we must first configure
the server toallow anonymous users write access to some directory. So, we'll set up the FTP server
for anonymous write access first; then we'll test it again using an FTP client.

Setting up the FTP Server for Anonymous Write Access

317

Unit 12: File Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

There are four steps here. We'll need to create the folder, set the appropriate permissions, and then
enable uploading in the FTP server configuration:

1. First, we need to create a writeable directory. Again, you'll need the root account for this.

Let's createa directory called /upload (in the /var/ftp/pub directory):

cd /var/ftp/pub
mkdir upload

2. Next, we need to set the permission of the upload directory so that it allows write−only

access to anonymous FTP users (so that they can write to the directory but not to

download from it – this restricts file sharing among FTP users). To do this, we'll first use

the chgrp command to change the group associated with the upload directory:

chgrp ftp upload

Now, the owner of the folder is still root, but the directory's group is ftp − the set of FTP
users. Nowwe'll use the chmod command to assign read/write/execute access to the
owner, write/access only tothe group, and deny access to other users:
chmod −R u=rwx, g=wx, o−rxw upload

3. Finally, we must configure the vsftpd server to allow anonymous upload. To do this, we

simply editthe configuration file, /etc/vsftpd/vsftpd.conf. Open this file using gedit (or

your favorite text editor),and locate the following lines:

Uncomment this to allow the anonymous FTP user to upload files. This only
has an effect if the above global write enable is activated. Also, you will
obviously need to create a directory writable by the FTP user.
#anon_upload_enable=YES

Just remove the leading # character in the last line, and save the file:
anon_upload_enable=YES

4. Finally, restart the vsftpd service by using the Restart button in the Server Configuration

dialog, ortyping the following at the command line:

service vsftpd restart

12.7 Using an FTP Client to Test Anonymous Write Access

So, let's test our configuration with another simple session on our FTP client:

1. Connect to the client and log in (using the username anonymous or ftp) as you did before:

$ ftp 192.168.0.99
Connected to 192.168.0.99 (192.168.0.99).
220 (vsFTPd 1.1.3)

Name (192.168.0.99:none): anonymous

331 Please specify the password.
Password:
230 Login successful. Have fun.
Remote system type is UNIX.
Using binary mode to transfer files.

2. Change directory to the pub/upload directory. Try to list its contents − you'll find that you

can't,

because that's the way we configured the permissions on the upload directory:
ftp> cd /pub/upload
250 Directory successfully changed.
ftp> ls
227 Entering Passive Mode (192, 168, 0, 99, 95, 148)
150 Here comes the directory listing.
226 Transfer done (but failed to open directory).

318

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

3. However, you can upload a file. To prove it, use the put command to upload a simple file

like this:

ftp> put uploadtest.txt
local: uploadtest.txt remote: uploadtest.txt
227 Entering Passive Mode (192,168,0,99,133,229)
150 Ok to send data.
226 File receive OK.
40 bytes send in 0.000101 secs (2.1e+02 Kbytes/sec)

4. That's it. Now you can close the FTP session:

ftp> bye
221 Goodbye.

Summary

• If you want to enable other users to download files from a location on your server's hard

disk, and/or to upload files to that location, then one solution is to install an FTP server.

• FTP is not considered a secure protocol, because communication between the FTP client

and server are unencrypted.

• The easiest way to install the vsftpd FTP Server package is via the RPM GUI tool. One way

is: Main Menu | System Settings | Add/Remove Applications and another is $ redhat-

config-packages.

• Press Ctrl−C to terminate this FTP session and return to the command line.

• FTP is a TCP protocol that is designed specifically for the transfer of files over a network,

and it's oneof the oldest Internet protocols still in widespread use.

Keywords

• FTP Client: When users want to upload or download from your FTP server, they use a
program called an FTP client.

• File Transfer Protocol: These communications between FTP server and FTP client take
place using the File Transfer Protocol (FTP).

• vsftpd: It is a simplified FTP server implementation. It is designed to be a very secure FTP
server and can also be configured to allow anonymous access.

• FTP Server:FTP servers are the solutions used to facilitate file transfers across the internet.
If you send files using FTP, files are either uploaded or downloaded to the FTP server.

• TUX: It is a kernel−based, threaded, extremely high-performance HTTP server, which also
has FTP capabilities. TUX is perhaps the best in terms of performance but offers less
functionality than other FTP server software. TUX is installed by default with Red Hat
Linux 9.

Self Assessment

1. FTP is
A. Easy to use

B. Free

C. Internet standard protocol for file transfer

D. All of the above mentioned

319

https://www.ftptoday.com/blog/the-difference-between-a-ftp-server-and-a-file-server

Unit 12: File Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

2. How can we open the RPM’s GUI tool?
A. Main Menu | System Settings | Add/ Remove Applications

B. $ redhat-config-packages

C. By using either of these ways

D. None of the above

3. FTP stands for
A. File transfer protocol

B. First transfer protocol

C. First temperature protocol

D. None of the above

4. Who is the owner of /var/ftp?
A. All normal users

B. Only root

C. Owner can be anyone

D. None of the above

5. Who can install FTP in the system?
A. Only root

B. Normal user

C. Any of the above

D. None of the above

6. Why FTP client program is used?
A. To upload the files to FTP server

B. To download the files from FTP server

C. Both upload and download

D. None of the above

7. Which utility is used to change the directories?
A. cd

B. changedir

C. chdirectory

D. None of the above

8. Which key combination is used to terminate the FTP session?
A. CTRL-A

B. CTRL-B

C. CTRL-C

D. CTRL-D

9. Why FTP is not considered secure?
A. Communications are fake

B. Communications are unencrypted

320

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

C. Communications are available to everyone

D. None of the above

10. FTP server can be considered as
A. Area of disk space used for storing files

B. Software to allow access

C. Configuration files to allow access

D. All of the above mentioned

11. FTP is a
A. TCP protocol

B. HTTP protocol

C. SMTP protocol

D. None of the above

12. SFTP stands for
A. Second file transfer protocol

B. Secure file transfer protocol

C. Steamed file transfer protocol

D. None of the above

13. In FTP server, the software and configuration files are required for
A. Giving the user access for download

B. Giving the user access for upload

C. Both mentioned above

D. None of the above

14. What indicates the relevance of FTP today?
A. Availability of different FTP client programs

B. Many OS come with FTP preinstalled

C. Both above mentioned

D. None of the above

15. Which of these are FTP servers?
A. vsftpd

B. TUX

C. Both of the above

D. None of the above

Answers for Self Assessment

1. D 2. C 3. A 4. B 5. A

6. C 7. A 8. C 9. B 10. D

321

Unit 12: File Server Configuration

 LOVELY PROFESSIONAL UNIVERSITY

Notes

11. A 12. B 13. C 14. C 15. C

Review Questions

1. What is a FTP server? Write the FTP servers available in Red Hat Linux Distribution.

2. Write the installation procedure of vsftpd FTP server. How can we start the FTP server?

3. After installation and testing of FTP server, how can we use it? Explain various issues

encountered in this.

4. How can we configure anonymous FTP server for file download?

5. How can we configure anonymous FTP server for file upload?

Further Readings

Sandip Bhattacharya, Pancrazio De Mauro, Shishir Gundavaram, Mark Mamone, Kalip

Sharma, Deepak Thomas and Simon Whiting, Beginning Red Hat Linux 9, Wiley

Publishing, Inc.

Web Links

https://www.techopedia.com/definition/26108/ftp-server

322

Unit 13: Samba Servers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 13: Samba Servers

CONTENTS

Objectives

Introduction

13.1 Installing SAMBA

13.2 Starting and Stopping the Samba Service

13.3 Samba Configuration Files and Utilities

13.4 Samba Configuration with SWAT

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to

• Understand the SAMBA server

• Installing, starting and stopping the server

• SAMBA configuration with SWAT, starting SWAT service

• Adding SAMBA user

• Creating and configuring SAMBA share

Introduction

Samba is an implementation of the Windows SMB and CIFS protocols on Unix. The Samba project
was started by Andrew Tridgell, who wanted to mount his Unix server disk space onto a DOS PC.
When he'd solved the problem, Tridgell discovered that what he'd built was an implementation of
the SMB (servermessage block) protocol − a protocol for sharing files and other resources. Tridgell
named his implementation

Samba, and published version 1.0 in early 1992. Since that time, the Samba project has grown
tremendously,and today there is still Samba development going on in the open-source
community.So, Samba is a collection of programs that make it possible to share files and printers
between computersequipped to use the SMB protocol − Windows by default, Linux/Unix with
Samba, and (more recently) MacOS X. Samba is freely available under GNU General Public License
and is included as part of the Red HatLinux 9 distribution.

13.1 Installing SAMBA

The installation of SAMBA Server suite can be done via the RPM GUI tool. One of the way of this is
Main Menu | System Settings | Add/Remove Applications and another way is by using the
terminal and writing the command $ redhat-config-packages.

323

Dr. Divya, Lovely Professional University

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

In package management window, we will look for the servers category. In servers, we will go for
Windows File Server.

By clicking on the details, we can see the packages available in this. There are two standard
packages available in this. These are: samba which is the Samba SMB server and samba-client
which is SMB client programs.

324

Unit 13: Samba Servers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

After clicking on update button, the packages will be installed. The popup will show the required
diskspace. After clicking on continue, it will queue the packages for installation.

After few seconds, the update will complete. Click on OK.

325

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

13.2 Starting and Stopping the Samba Service

There are several ways to start and stop the Samba service. Once again,we can do so via the Service
Configuration GUI tool. To launch the tool, select Main Menu | System Settings |Server Settings |
Services or type the following command at the command line:$ redhat−config−services.

Click on smb in this. Now the service is stpped. We need to start it by clicking on the start button.

326

Unit 13: Samba Servers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

It's also a good idea to check the checkbox, to configure the samba service to start automatically
whenever you boot up the system. For example, if you ever have to perform an emergency reboot
on your file server, then the "automatic start“ configuration means that the file server is
immediately available to users after the reboot. When you've done this, select File | Save Changes
to save your new setting.

Alternatively, you can also stop and start smb service at the command line, using the service
command to run the /etc/rc.d/init.d/smb script we mentioned earlier. Typing the script name at
the command line like this reveals the possible usages:

servicesmb

Usage: /etc/rc.d/smb {start|stop|restart|reload]status|condrestart}

As you can see, it works in much the same way as the httpd and vsftpd scripts we've seen in earlier
sections of this chapter. So, to start the service we'd type this:

servicesmb start

Starting SMB services: [OK]

Starting NMB services: [OK]

This command starts both SMB and NMB (NetBIOS name server), which are both services related
to Samba. To stop the service, we'd type this:

servicesmb stop

Shutting down SMB services: [OK]

Shutting down NMB services: [OK]

327

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

13.3 Samba Configuration Files and Utilities

Samba's configuration files are contained in the directory /etc/samba.

Configuration
File

Description

smb.conf This is the main configuration file for Samba.

lmhosts This contains Samba's NetBIOS−to−IP address mappings.

secrets.tdb This is the Samba secrets database. It stores private information such
as the local SID and machine trust password. It is generated by
machine and cannot be read in a text editor.

smbusers

This is a text file that maps your Linux system's users to various
SMB−specific usernames.

smbpasswd

This is an encrypted password file. This file doesn't exist when you
first install Samba, but is created when you add Samba users.

Some of themost important utilities provided by Samba. They're all contained in the directory
/usr/bin.

Program Purpose

smbclient
This is an FTP−like client, used to access SMB/CIFS resources on a file
server.

smbadduser
This is a script, used for adding Samba users. It updates the smbusers
and smbpasswd
files.

smbpasswd
This changes a Samba user's SMB password. It is similar to the Unix
passwd command

smbmount This is used to mount an SMB filesystem.

smbumount This is used to unmount an SMB file system.

smbstatus This lists the current Samba connections.

testparm This checks the smb.conf configuration file for correctness.

nmblookup
This is used to query NetBIOS names and map them to IP addresses in
a network using NetBIOS over TCP/IP.

328

Unit 13: Samba Servers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

In addition, we'll also make use of the script /etc/rc.d/init.d/smb, which we use to start and stop
the Samba fileservice.

13.4 Samba Configuration with SWAT

Perhaps the easiest way to configure Samba is by using the Samba Web Administration
Tool(SWAT). SWAT is a web−based interface, which means that you can use it to configure and
manage your Samba server through a web browser − if you want, you can even do it remotely
across a network or even across the Internet.

Installing SWAT

1) Launch a terminal window, and switch to the root user account by using this command:
 $ su–

2) Insert Red Hat Linux 9 distribution Disk 2. Change to the directory on the CD that
contains the RPM package files: # cd /mnt/cdrom/RedHat/RPMS

3) Use the ls command to find out the exact version of samba−swat contained on the disk.
For example: # ls samba−swat*.rpm

samba−swat−2.2.7a−6.i386.rpm

If this command doesn't find any matches, then remove the disk, replace it with Disk 1 or
Disk 2, and return to Step 2.

4) Install the samba−swat package you've just found, by using the rpm command:

rpm −ivh samba−swat−2.2.7a−6.i386.rpm

Starting the SWAT Service

Starting the SWAT service is a two step process:

1) Launch gedit or your favorite text editor, and open the file /etc/xinetd.d/swat. This

is the configuration file for the SWAT service, and it looks like this:

default: off

description: SWAT is the Samba Web Admin Tool. Use swat \

to configure your Samba server. To use SWAT, \

connect to port 901 with your favorite web browser.

service swat

{

port = 901

socket_type = stream

wait = no

only_from = 127.0.0.1

user = root

server = /usr/sbin/swat

log_on_failure += USERID

disable = yes

}

Change disable value, like this: disable = no. Save the file, and close your text editor.

329

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

2) Restart the xinetd service. (We must do this because SWAT runs as an xinetd service.

To do this, first launch the Service Configuration GUI tool by selecting Main Menu | System
Settings | Server Settings | Services. Then locate and select the service called xinetd, and click
Restart. You'll get a dialog to confirm that the restart was successful; then you can exit the tool by
clicking on Quit.

Using SWAT for the First Time

Now we can test SWAT. Open a browser on the Linux server and type in the URL
http://localhost:901. You'llbe prompted for a username and password − use the system's root
username and password. Then you shouldsee the SWAT HOME page:

There are also eight buttons listed across the top of this page, which provide access to SWAT's
various utilities:

330

Unit 13: Samba Servers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• HOME − the home page of SWAT, and the first page that you see when you fire up the
SWAT interface.

• GLOBALS − for setting the global variable values of the /etc/samba/smb.conf
configuration file.

• SHARES − for creating and deleting Samba shares, and setting Samba parameters.

• PRINTERS − for creating and deleting Samba printer shares and setting printer
parameters.

• WIZARD − like GLOBALS, this is also for setting various values in /etc/samba/smb.conf.

• STATUS − for viewing the Samba server's status, and starting and stopping
Samba−related services

• VIEW − for viewing the content of the /etc/samba/smb.conf configuration file

• PASSWORD − for adding, removing, enabling, and disabling Samba users, and for
setting Samba users' passwords

Adding a Samba User

To grant a system account access to the Samba services, you can use SWAT's PASSWORD feature.
Once you've logged into SWAT using the root username and password, click the PASSWORD
button, and you'll see the following screen:

In the Server Password Management section, enter the name of an existing account on the system,
and supply a password. Then click the Add New User button. This will add an entry to Samba's
smbpasswd configuration file, to indicate that this user has access to Samba's services.

Creating and Configuring a Samba Share

1) Create a directory, which we'll call /share, to be used for the file server. With root

permission, you can do this at the command line using this command: # mkdir /share

2) If you haven't done so already, use the Mozilla browser (or your favorite web browser) to

browse to the SWAT home page at http://localhost:901, and log in using the root user

account.

3) Click on the GLOBALS toolbar icon. In the Base Options section, use the Workgroup field

to enter the name of the workgroup that you want your server to appear in when clients

use it. (If you haven't set up a workgroup, then this is probably the default value,

331

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

WORKGROUP). You should also name the service, by entering a value in the server string

field − it can be any string that you want your Samba clients to see.

4) Now click on SHARES toolbar button at the top of the screen. We'll share our /share

directory by giving it a share name; let's call it linuxbox−share. You should first check the

entries in the drop−down list on this page, to ensure that your chosen share name hasn't

already been used for a different share; then, enter the share name in the Create Share

field.

5) Now click on Create Share button to create the share. This will present you with another

screen in which you can specify the properties of your share. You will certainly need to set

the path field to the path of your share directory (in this example, it's /share).

6) Here, we've set the read only field to No to make it a writeable share; the browseable field

to Yes, to allow the contents of the /share directory to be visible; and the available field to

Yes, to "enable" the share (that is, make it available to users). We've also added a comment

to remind us what the share is for. When you're done, click on the Commit Changes

button to commit these settings to the Samba configuration file.

7) Restart the Samba service, so that the configuration changes can take effect. To do this,

click on STATUS button and then click on the Restart smbd button to restart the service.

Wait for the page to reload, and then click on the Restart nmbd button to restart that

service too.

Summary

• Samba is an implementation of the Windows SMB and CIFS protocols on Unix.

• Samba is freely available under GNU General Public License and is included as part of the

Red Hat Linux 9 distribution.

• There are two ways to install the SAMBA Server suite via the RPM GUI tool: Main Menu |

System Settings | Add/Remove Applications and $ redhat-config-packages.

• There are two standard packages available in this: samba and samba-client.

• There are two ways to start the SAMBA Service, we can use the Service Configuration tool.

These are: Main Menu | System Settings | Server Settings | Services and $

redhat−config−services.

• If you ever have to perform an emergency reboot on your file server, then the “automatic

start” configuration means that the file server is immediately available to users after the

reboot.

Keywords

• Samba: It is is a collection of programs that make it possible to share files and printers

between computers equipped to use the SMB protocol − Windows by default and

Linux/Unix with Samba.

• Windows File Server: This package group allows you to share files between Linux and

MS windows system.

• smb.conf: This is the main configuration file for Samba.

• Smbclient: This is an FTP−like client, used to access SMB/CIFS resources on a file server.

• SWAT: It is a web−based interface, which means that you can use it to configure and

manage your Samba server through a web browser − if you want, you can even do it

remotely across a network or even across the Internet.

332

Unit 13: Samba Servers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• Xinetd: xinetd is an open-source super-server daemon which runs on many Unix-like

systems and manages Internet-based connectivity.

Self Assessment

1. In package group “Windows File Server”, which standard packages are available?
A. samba

B. samba-client

C. Both of the above

D. None of the above

2. Which of these is the main configuration file of SAMBA?
A. secrets.tdb

B. smb.conf

C. samba.conf

D. imhosts

3. Starting of SWAT service is _______ step process.
A. One

B. Two

C. Three

D. Four

4. SAMBA server on UNIX is an implementation of
A. Windows SMB

B. CIFS protocol

C. Both of the above

D. None of the above

5. Which server group will be chosen for installing SAMBA server?
A. DNS name server

B. FTP server

C. Mail server

D. Windows File server

6. Which of these commands will stop the smb service?
A. # servicesmb stop

B. # servicesmb end

C. # service stop smb

D. # service end smb

7. Which of these is unmount an SMB file system?
A. smbunmount

333

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

B. smbumount

C. smbmount

D. None of the above

8. For configuration of SAMBA, which service is required?
A. SWAT

B. FTP

C. TCP

D. None of the above

9. SWAT service will run as ________ service.
A. FTP

B. TCP

C. xinted

D. None of the above

10. Which of these utility is used to create a directory?
A. crtdir

B. mkdir

C. dircreate

D. None of the above

11. Because of the SAMBA server, it is possible to
A. Share files between computers

B. Share printers between computers

C. Both of the above

D. None of the above

12. SAMBA server on UNIX is an implementation of
A. Windows SMB

B. CIFS protocol

C. Both of the above

D. None of the above

13. How can we start the RPM GUI tool?

A. Main Menu | System Settings | Add/Remove Applications

B. $ redhat-config-packages

C. By using either of the way mentioned above

D. Something other than this

14. Which service needs to be started for SAMBA server through service configuration?
A. smbd

B. nmbd

334

Unit 13: Samba Servers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

C. Both of the above mentioned

D. None of the above

15. By using which way, we can start the SAMBA service?
A. Main Menu | System Settings | Server Settings | Services

B. $ redhat−config−services

C. By using either of the way mentioned above

D. None of the above

Answers for Self Assessment

1. C 2. B 3. B 4. C 5. D

6. A 7. B 8. A 9. C 10. B

11. C 12. C 13. C 14. C 15. C

Review Questions

1. What is a SAMBA server? What are the different ways to start RPM GUI tool for

installation of SAMBA server?

2. What are the standard packages for SAMBA servers? How can we install the SAMBA

server in the Linux system?

3. How can we start and stop the SAMBA service?

4. What are the different configuration files and utilities of SAMBA server? Explain.

5. What is SWAT? How can we install SWAT?

6. How can we start the SWAT service? How to use the SWAT service for first time?

7. How can we create and configure a SAMBA share?

Further Readings

Sandip Bhattacharya, Pancrazio De Mauro, Shishir Gundavaram, Mark Mamone,

Kalip Sharma, Deepak Thomas and Simon Whiting, Beginning Red Hat Linux 9,

Wiley Publishing, Inc.

Web Links

https://linux.die.net/man/8/swat

335

Unit 14: Network File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 14: Network File Systems

CONTENTS

Objectives

Introduction

14.1 Setting Up an NFS Client

14.2 Setting Up an NFS Server

14.3 Testing the Server Setup

14.4 Automount: Automatically MountsDirectory Hierarchies

Summary:

Keywords:

Self Assessment

Answers for Self Assessment

Review Questions:

Further Readings

Objectives

After studying this unit, you will be able to:

• Understand NFS

• Plan NFS installation

• Configure NFS server and client

• Use automount service

• Examine NFS security

Introduction

NFS stands for Network Filesystem protocol. It is a UNIX de facto standard originally developed
by Sun Microsystems. It allows a server to share selected local directory hierarchies with client
systems on a heterogeneous network. NFS runs on UNIX, DOS, Windows, VMS, Linux, and more.
Files on the remote computer (the fileserver) appear as if they are present on the local system (the
client).The physical location of a file is irrelevant to an NFS user.

NFS reduces storage needs and system administration workload. As an example, each system in a
company traditionally holds its own copy of an application program. To upgrade the program, the
administrator needs to upgrade it on each system. NFS allows you to store a copy of a program on
a single system and give other users access to it over the network. This scenario minimizes storage
requirements by reducing the number of locations that need to maintain the same data. In addition
to boosting efficiency, NFS gives users on the network access to the same data (not just application
programs), thereby improving data consistency and reliability. By consolidating data, NFS reduces
administrative overhead and provides a convenience to users. The flow of data from a client to
server can be seen in the figure given below.

An NFS directory hierarchy appears to users and application programs as just another directory
hierarchy. By looking at it, you cannot tell that a given directory holds a remotely mounted NFS
directory hierarchy and not a local ext3 filesystem. The NFS server translates commands from the
client into operations on the server’s filesystem.

336

Dr. Divya, Lovely Professional University

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

1) Diskless systems: In many computer facilities, user files are stored on a central fileserver

equipped with many large-capacity disk drives and devices that quickly and easily make

backup copies of the data. A diskless system boots from a fileserver (netboots), a CD, or a

floppy diskette and loads system software from a fileserver. The Linux Terminal Server

Project (ltsp.org) Web site says it all: “Linux makes a great platform for deploying diskless

workstations that boot from a network server. The LTSP is all about running thin client

computers in a Linux environment. ”Because a diskless workstation does not require a lot

of computing power, you can give older, retired computers a second life by using them as

diskless systems.

2) Netboot/PXE: You can netboot systems that are appropriately set up. Fedora/RHEL

includes the PXE (Preboot Execution Environment) server package for netbooting Intel

systems. Older systems sometimes use tftp (Trivial File Transfer Protocol) for netbooting.

Non-Intel architectures have historically included netboot capabilities, which

Fedora/RHEL also supports. You can build the Linux kernel so that it mounts root (/)

using NFS. Given the many ways to set up a system, the one you choose depends on what

you want to do. See the Remote-Boot mini-HOWTO for more information.

3) Dataless systems: Another type of Linux system is a dataless system, in which the client

has a disk but stores no user data (only Linux and the applications are kept on the disk).

Setting up this type of system is a matter of choosing which directory hierarchies are

mounted remotely.

df: shows where directory hierarchies are mounted: The df utility displays a list of the

directory hierarchies available on the system, along with the amount of disk space, free

and used, on each. The –h (human) option makes the output more intelligible. Directory

hierarchy names that are prepended with hostname: are available through NFS.

337

Unit 14: Network File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

4) Errors: Sometimes you may lose access to remote files. For example, a network problem or

a remote system crash may make these files temporarily unavailable. When you try to

access a remote file in these circumstances, you get an error message, such as NFS server

speedy not responding. When the local system can contact the remote server again, you

see another message, such as NFS server speedy OK. Setting up a stable network and

server (or not using NFS) is the best defense against these kinds of problems.

5) Security: NFS is based on the trusted-host paradigm and therefore has all the security

shortcomings that plague other services based on this paradigm. In addition, NFS is not

encrypted. Because of these issues, you should implement NFS on a single LAN segment

only, where you can be (reasonably) sure that systems on a LAN segment are what they

claim to be. Make sure a firewall blocks NFS traffic from outside the LAN and never use

NFS over the Internet.

14.1 Setting Up an NFS Client

The Prerequisites for setting up an NFS client is to install the following packages:

 nfs-utils

 system-config-nfs (optional)

Under RHEL, the portmap utility must be running to enable reliable file locking. Under FEDORA,
this function is served by rpcbind.

JumpStart I: Mounting a Remote Directory Hierarchy

To set up an NFS client, mount the remote directory hierarchy the same way you mount a local
directory hierarchy.

- mount: Mounts a Remote Directory Hierarchy

There are various assumption for mounting a remote directory hierarchy. These are: (1) Speedy is
on the same network as the local system and is sharing /home and /export with the local system.

(2) The /export directory on speedy holds two directory hierarchies that you want to mount:
/export/progs and /export/oracle.

(3) The example mounts speedy’s /home directory on /speedy.home on the local system,
/export/progs on /apps, and /export/oracle on /oracle.

First use mkdir to create the directories that are the mount points for the remote directory
hierarchies:

- # mkdir /speedy.home /apps /oracle

You can mount any directory from an exported directory hierarchy. In this example, speedy exports
/export and the local system mounts /export/progs and /export/oracle. The following commands
manually mount the directory hierarchies one time:

mount speedy:/home /speedy.home

mount -o ro,nosuid speedy:/export/progs /apps

mount -o ro speedy:/export/oracle /oracle

The first command mounts the /home directory hierarchy from speedy on the local directory
/speedy.home. The second and third commands use the –o ro option to force a readonly mount.
The second command adds the nosuid option, which forces setuid executables in the mounted
directory hierarchy to run with regular permissions on the local system. If you receive the error
mount: RPC: Program not registered, it may mean NFS is not running on the server. By default,
directory hierarchies are mounted read-write, assuming the NFS server is exporting them with
read-write permissions.

338

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

- nosuid option:

If a user could run a setuid program, that user has the power of Superuser. This ability should be
limited. Unless you know that a user will need to run a program with setuid permissions from a
mounted directory hierarchy, always mount a directory hierarchy with the nosuid option. For
example, you would need to mount a directory hierarchy with setuid privileges when a diskless
workstation has its root partition mounted using NFS.

- nodev option

Mounting a device file creates another potential security hole. Although the best policy is not to
mount untrustworthy directory hierarchies, it is not always possible to implement this policy.
Unless a user needs to use a device on a mounted directory hierarchy, mount directory hierarchies
with the nodev option, which prevents character and block special files on the mounted directory
hierarchy from being used as devices.

- fstab file

If you mount directory hierarchies frequently, you can add entries for the directory hierarchies to
the /etc/fstab file.

$ cat /etc/fstab

...

speedy:/home /speedy.home nfs - 0 0

speedy:/export/progs /apps nfsr,nosuid 0 0

speedy:/export/oracle /oracle nfs r 0 0

A file that is mounted using NFS is always type nfs on the local system, regardless of what type it is
on the remote system. Typically, you do not run fsck on or back up an NFS directory hierarchy. The
entries in the third, fifth, and sixth columns of fstab are usually nfs (filesystem type), 0 (do not back
up this directory hierarchy with dump), and 0 (do not run fsck on this directory hierarchy).The
options for mounting an NFS directory hierarchy differ from those for mounting an ext3 or other
type of filesystem.

- umount: Unmounts a Remote Directory Hierarchy

Use umount to unmount a remote directory hierarchy the same way you would unmount a local
filesystem

mount: Mounts a Directory Hierarchy

The mount utility associates a directory hierarchy with a mount point (a directory). You can use
mount to mount an NFS (remote) directory hierarchy.

Attribute Caching

File attributes, which are stored in a file’s inode, provide information about a file, such as file
modification time, size, links, and owner. File attributes do not include the data stored in a file.
Typically file attributes do not change very often for an ordinary file; they change even less often
for a directory file. Even the size attribute does not change with every write instruction: When a
client is writing to an NFS-mounted file, several write instructions may be given before the data is
transferred to the server

ac (noac) (attribute cache): It permits attribute caching (default). The noac option disables attribute
caching. Although noac slows the server, it avoids stale attributes when two NFS clients actively
write to a common directory hierarchy.

acdirmax=n (attribute cache directory file maximum): The n is the number of seconds, at a
maximum, that NFS waits before refreshing directory file attributes (default is 60 seconds).

acdirmin=n (attribute cache directory file minimum): The n is the number of seconds, at a
minimum, that NFS waits before refreshing directory file attributes (default is 30 seconds).

339

Unit 14: Network File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

acregmax=n (attribute cache regular file maximum): The n is the number of seconds, at a
maximum, that NFS waits before refreshing regular file attributes (default is 60 seconds).

acregmin=n (attribute cache regular file minimum): The n is the number of seconds, at a
minimum, that NFS waits before refreshing regular file attributes (default is 3 seconds).

actimeo=n (attribute cache timeout): This option sets acregmin, acregmax, acdirmin, and acdirmax
to n seconds (without this option, each individual option takes on its assigned or default value).

Error Handling

Various options control what NFS does when the server does not respond or when an I/O error
occurs. To allow for a mount point located on a mounted device, a missing mount point is treated
as a timeout.

• fg (bg) (foreground): The option fg retries failed NFS mount attempts in the foreground

(default). The bg (background) option retries failed NFS mount attempts in the

background.

• hard (soft) : This option displays server not responding on the console on a major timeout

and keeps retrying (default). The soft option reports an I/O error to the calling program

on a major timeout. In general, it is not advisable to use soft. As the mount man page says

of soft, “Usually it just causes lots of trouble.”

• nointr (intr) (no interrupt): This option does not allow a signal to interrupt a file

operation on ahard mounted directory hierarchy when a major timeout occurs (default).

The intr option allows this type of interrupt.

• retrans=n (retransmission value): After n minor timeouts, NFS generates a major timeout

(default is 3). A major timeout aborts the operation or displays server not responding on

the console, depending on whether hard or soft is set.

• retry=n (retry value): The number of minutes that NFS retries a mount operation before

giving up (default is 10,000).

• timeo=n (timeout value): The n is the number of tenths of a second that NFS waits before

retransmitting following an RPC, or minor, timeout (default is 7). The value is increased

at each timeout to a maximum of 60 seconds or until a major timeout occurs. On a busy

network, in case of a slow server, or when the request passes through multiple

routers/gateways, increasing this value may improve performance.

Miscellaneous Options

• lock (nolock): Permits NFS locking (default). The nolock option disables NFS locking
(does not start the lockd daemon) and is useful with older servers that do not support NFS
locking.

• mounthost=name: The name of the host running mountd, the NFS mount daemon.

• mountport=n: The port used by mountd.

• nodev (no device): Causes mounted device files not to function as devices.

• port=n: The port used to connect to the NFS server (defaults to 2049 if the NFS daemon is
not registered with rpcbind/portmap). When n=0 (default), NFS queries rpcbind/portmap
on the server to determine the port.

• rsize=n (read block size) The number of bytes read at one time from an NFS server. The
default block size is 4096.

• wsize=n (write block size): The number of bytes written at one time to an NFS server. The
default block size is 4096.

340

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• tcp: Use TCP in place of the default UDP protocol for an NFS mount. This option may
improve performance on a congested network; however, some NFS servers support UDP
only.

• udp: Use the default UDP protocol for an NFS mount.

Improving Performance:

• hard/soft: Several parameters can affect the performance of NFS, especially over slow

connections such as a line with a lot of traffic or one controlled by a modem. If you have a

slow connection, make sure hard is set (this is the default) so that timeouts do not abort

program execution.

• Block size: One of the easiest ways to improve NFS performance is to increase the block

size—that is, the number of bytes NFS transfers at a time. The default of 4096 is low for a

fast connection using modern hardware. Try increasing rsize and wsize to 8192 or higher.

Experiment until you find the optimal block size. Unmount and mount the directory

hierarchy each time you change an option.

• Timeouts: NFS waits the amount of time specified by the timeo option for a response to a

transmission. If it does not receive a response in this amount of time, it sends another

transmission. The second transmission uses bandwidth that, over a slow connection, may

slow things down further. You may be able to increase performance by increasing timeo.

/etc/fstab: Mounts Directory Hierarchies Automatically

The /etc/fstabfile lists directory hierarchies that the system mounts automatically as it comes up.
This example line from fstab mounts grape’s /gc1 filesystem on the /grape.gc1 mount point:

grape:/gc1 /grape.gc1 nfsrsize=8192,wsize=8192 0 0

A mount point should be an empty, local directory. Files in a mount point are hidden when a
directory hierarchy is mounted on it.The type of a filesystem mounted using NFS is always nfs,
regardless of its type on the local system. You can increase the rsize and wsize options to improve
performance.This example from fstab mounts a filesystem from speedy:

speedy:/export /speedy.export nfstimeo=50,hard 0 0

Because the local system connects to speedy over a slow connection, timeo is increased to 5 seconds
(50 tenths of a second). This example from fstab shows a remote-mounted home directory. Because
speedy is a local server and is connected via a reliable, high-speed connection, timeo is decreased
and rsize and wsize are increased substantially:

speedy:/export/home /home nfstimeo=4,rsize=16384,wsize=16384 0 0

14.2 Setting Up an NFS Server

The prerequisites for setting up NFS server is to install the following packages:

 nfs-utils

 system-config-nfs (optional)

After this run chkconfig to cause nfs to start when the system enters multiuser mode:

/sbin/chkconfignfs on

The nfs can be started by:

341

Unit 14: Network File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 # /sbin/service nfs start

The nfsinit script starts mountd, nfsd, and rquotad.RHEL Under RHEL, the portmap daemon must
be running to enable reliable file locking.

JumpStart II: Configuring an NFS ServerUsing system-config-nfs:

To display the NFS Server Configuration window, enter the command system-config-nfs or select
Main Menu: System| Administration | Server Settings | NFS. From this window you can generate
an /etc/exports file, which is almost all there is to setting up an NFS server. The system-config-nfs
utility allows you to specify which directory hierarchies are shared and how they are shared using
NFS. Each exported hierarchy is called a share. To add a share, click Add on the toolbar. To modify
a share, highlight the share and click Properties on the toolbar. Clicking Add displays the Add NFS
Share window, while clicking Properties displays the Edit NFS Share window. The Add/Edit NFS
Share window has three tabs: Basic, General Options, and User Access. These are given as:

• Basic tab: You can specify the pathname of the root of the shared directory hierarchy, the

names or IP addresses of the systems (hosts) that the hierarchy will be shared with, and

whether users from the specified systems will be able to write to the shared files. The

selections in the other two tabs correspond to options that you can specify in the /etc/exports

file.

• General Options tab: In this tab, make the following changes:

Allow connections from ports 1024 and higher: insecure

Allow insecure file locking: no_auth_nlm or insecure_locks

Disable subtree checking:no_subtree_check

Sync write operations on request: sync

Force sync of write operations immediately: no_wdelay

Hide filesystems beneath: nohide

Export only if mounted: mountpoint

• User Access tab: In this tab, make the following changes:

Treat remote root user as local root: no_root_squash

Treat all client users as anonymous users: all_squash

Local user ID for anonymous users: anonuid

Local group ID for anonymous users: anongid

After making the changes you want, click OK to close the Add/Edit NFS Share window and click
OK again to close the NFS Server Configuration window. There is no need to restart any daemons.

Exporting a Directory Hierarchy

Exporting a directory hierarchy makes the directory hierarchy available for mounting by a client on
the network. “Exported” does not mean “mounted”: When a directory hierarchy is exported, it is
placed in the list of directory hierarchies that can be mounted by other systems. An exported
directory hierarchy may be mounted (or not) at any given time. A server holds three lists of
exported directory hierarchies:

• /etc/exports— Access control list for exported directory hierarchies. The system
administrator can modify this file by editing it or by running system-config-nfs.

342

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• /var/lib/nfs/xtab— Access control list for exported directory hierarchies. Initialized from
/etc/exports when the system is brought up. Read by mountd when a client asks to
mount a directory hierarchy. Modified by exportfs as directory hierarchies are mounted
and unmounted by NFS.

• Kernel’s export table— List of active exported directory hierarchies. The kernel obtains
this information from /var/lib/nfs/xtab. You can display this table by giving the
command cat /proc/fs/nfs/exports.The /etc/exports file is the access control list for
exported directory hierarchies that NFS clients can mount; it is the only file you need to
edit to set up an NFS server.The exports file controls the following aspects:

1) Which clients can access files on the server?

2) Which directory hierarchies on the server each client can access

3) How each client can access each directory hierarchy

4) How client usernames are mapped to server usernames

5) Various NFS parameters

Each line in the exports file has the following format:

export-point client1(options) [client2(options) ...]

where export-point is the absolute pathname of the root directory of the directory hierarchy to be
exported, client1-n is the name of one or more clients or is one or more IP addresses, separated by
SPACEs, that are allowed to mount the export-point. You can either use system-config-nfs to make
changes to exports or you can edit this file directly. The following simple exports file gives grape
read and write access and gives speedy readonly access to the files in /home:

cat /etc/exports

/home grape(rw,no_subtree_check)

/home speedy(ro,no_subtree_check)

General options

• auth_nlm (no_auth_nlm) or secure_locks (insecure_locks): This causes the server to require

authentication of lock requests (using the NLM [NFS Lock Manager] protocol). Use

no_auth_nlm for older clients when you find that only files that anyone can read can be

locked.

• mountpoint[=path]: It allows a directory to be exported only if it has been mounted. This

option prevents a mount point that does not have a directory hierarchy mounted on it from

being exported and prevents the underlying mount point from being exported.

• nohide (hide): When a server exports two directory hierarchies, one of which is mounted on

the other, a client must mount both directory hierarchies explicitly to access both. When the

second (child) directory hierarchy is not explicitly mounted, its mount point appears as an

empty directory and the directory hierarchy is hidden. The nohide option causes the

underlying second directory hierarchy to appear when it is not explicitly mounted, but this

option does not work in all cases.

• ro (rw) (readonly): It permits only read requests on an NFS directory hierarchy. Use rw to

permit read and write requests.

• secure (insecure): It requires that NFS requests originate on a privileged port so that a

program without root permissions cannot mount a directory hierarchy. This option does not

guarantee a secure connection.

343

Unit 14: Network File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• subtree_check (no_subtree_check): It checks subtrees for valid files. Assume that you have

an exported directory hierarchy that has its root below the root of the filesystem that holds it

(that is, an exported subdirectory of a filesystem). When the NFS server receives a request

for a file in that directory hierarchy, it performs a subtree check to confirm the file is in the

exported directory hierarchy.

• sync (async) (synchronize): It specifies that the server is to reply to requests only after disk

changes made by the request are written to disk. The async option specifies that the server

does not have to wait for information to be written to disk and can improve performance,

albeit at the cost of possible data corruption if the server crashes or the connection is

interrupted.

• Wdelay (no_wdelay) (write delay): Causes the server to delay committing write requests

when it anticipates that another, related request follows, thereby improving performance by

committing multiple write requests within a single operation. The no_wdelay option does

not delay committing write requests and can improve performance when the server receives

multiple, small, unrelated requests.

User ID Mapping Options

Each user has a UID number and a primary GID number on the local system. The local
/etc/passwd and /etc/group files map these numbers to names. When a user makes a request of
an NFS server, the server uses these numbers to identify the user on the remote system. It raises
several issues: the user may not have the same ID numbers on both systems and may therefore
have owner access to files of another user. You may not want the root user on the client system to
have owner access to root-owned files on the server. You may not want a remote user to have
owner access to some important system files that are not owned by root (such as those owned by
bin).

Owner access means that the remote user can execute, remove, or—worse—modify the file. NFS
gives you two ways to deal with these cases:

• You can use the root_squash option to map the ID number of the root user on a client to
the nfsnobody user on the server.

• You can use the all-squash option to map all NFS users on the client to nfsnobody on the
server

NIS and NFS: When you use NIS for user authorization, users automatically have the same UIDs
on both systems. If you are using NFS on a large network, it is a good idea to use a directory service
such as LDAP or NIS for authorization. Without such a service, you must synchronize the passwd
files on all the systems manually.

root_squash (no_root_squash): It maps requests from root on a remote system so that they appear
to come from the UID for nfsnobody, an unprivileged user on the local system, or as specified by a
nonuid. It does not affect other sensitive UIDs such as bin. The no_root_squash option turns off this
mapping so that requests from root appear to come from root.

no_all_squash (all_squash): It does not change the mapping of users making requests of the NFS
server. The all_squash option maps requests from all users, not just root, on remote systems to
appear to come from the UID for nfsnobody, an unprivileged user on the local system, or as
specified by a nonuid. This option is useful for controlling access to exported public FTP, news, and
other directories.

344

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

anonuid=un and anongid=gn: It sets the UID or the GID of the anonymous account to un or gn,
respectively. NFS uses these accounts when it does not recognize an incoming UID or GID and
when instructed to do so by root_squash or all_squash.

showmount:

It displays NFS status information. Without any options, the showmount utility displays a list of
systems that are allowed to mount local directories.To display information for a remote system,
give the name of the remote system as an argument. You typically use showmount to display a list
of directory hierarchies that a server is exporting. The information that showmount provides may
not be complete, however, because it depends on mountd and trusts that remote servers are
reporting accurately. In the following example, bravo and grape can mount local directories, but
you do not know which ones:

/usr/sbin/showmount

Hosts on localhost:

bravo.tcorp.com

grape.tcorp.com

If showmount displays an error such as RPC: Program not registered, NFS is not running on the
server. Start NFS on the server with the nfsinit script

–a (all): It tells which directories are mounted by which remote systems. This information is stored
in /etc/exports.

/usr/sbin/showmount -a

All mount points on localhost:

bravo.tcorp.com:/home

grape.tcorp.com:/home

–e (exports): It displays a list of exported directories.

/usr/sbin/showmount -e

Export list for localhost:

/home bravo.tcorp.com,grape.tcorp.com

exportfs: Maintains the List of ExportedDirectory Hierarchies

The exportfs utility maintains the kernel’s list of exported directory hierarchies. Without changing
/etc/exports, exportfs can add to or remove from the list of exported directory
hierarchies.Anexportfs command has the following format:

 /usr/sbin/exportfs [options] [client:dir ...]

where options is one or more options (as detailed in the next section), client is the name of the
system that dir is exported to, and dir is the absolute pathname of the directory at the root of the
directory hierarchy being exported.The system executes the following command when it comes up
(it is in the nfsinit script). This command reexports the entries in /etc/exports and removes invalid
entries from /var/lib/nfs/xtab so that /var/lib/nfs/xtab is synchronized with /etc/exports:

 # exportfs -r

Options: There are various options which we can use:

• –a (all): Exports directory hierarchies specified in /etc/exports. This option does not
unexport entries you have removed from exports (that is, it does not remove invalid
entries from /var/lib/nfs/xtab); use –r to perform this task.

345

Unit 14: Network File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• –i (ignore): Ignores /etc/exports; uses what is specified on the command line only.

• –o (options): Specifies options. You can specify options following –o the same way you do
in the exports file. For example, exportfs –i –o ro speedy:/home/sam exports /home/sam
on the local system to speedy for readonly access.

• –r (reexport): Reexports the entries in /etc/exports and removes invalid entries from
/var/lib/nfs/xtab so that /var/lib/nfs/xtab is synchronized with /etc/exports.

• –u (unexport) Makes an exported directory hierarchy no longer exported. If a directory
hierarchy is mounted when you unexport it, you will see the message Stale NFS file
handle if you try to access the directory hierarchy from the remote system.

• –v (verbose): Provides more information. Displays export options when you use exportfs
to display export information.

14.3 Testing the Server Setup

From the server, run the nfsinit script with an argument of status. If all is well, the system displays
something like the following:

/sbin/service nfs status

rpc.mountd (pid 15795) is running...

nfsd (pid 15813 15812 15811 15810 15809 15808 15807 15806) is running...

rpc.rquotad (pid 15784) is running...

Next, from the server, use rpcinfo to make sure NFS is registered with rpcbind/portmap:

$ /usr/sbin/rpcinfo -p localhost | grep nfs

100003 2 udp 2049 nfs

100003 3 udp 2049 nfs

Repeat the preceding command from the client, replacing localhost with the name of the server.
The results should be the same. Finally, try mounting directory hierarchies from remote systems
and verify access.

14.4 Automount: Automatically MountsDirectory Hierarchies

With distributed computing, when you log in on any system on the network, all of your files,
including startup scripts, are available. In a distributed computing environment, all systems are
commonly able to mount all directory hierarchies on all servers: Whichever system you log in on,
your home directory is waiting for you.As an example, assume that /home/alex is a remote
directory hierarchy that is mounted on demand. When you issue the command ls /home/alex,
autofs goes to work: It looks in the /etc/auto.home map, finds that alex is a key that says to mount
bravo:/export/home/alex, and mounts the remote directory hierarchy. Once the directory
hierarchy is mounted, ls displays the list of files you want to see. If you give the command ls /home
after this mounting sequence, ls shows that alex is present within the /home directory. The df
utility shows that alex is mounted from bravo.

Prerequisites

The prerequisites is to install the following package: autofs

Run chkconfig to cause autofs to start when the system enters multiuser mode:

 # /sbin/chkconfigautofs on

Start autofs:

346

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 # /sbin/service autofs start

An autofs directory hierarchy is like any other directory hierarchy, but remains unmounted until it
is needed, at which time the system mounts it automatically (demand mounting). The system
unmounts an autofs directory hierarchy when it is no longer needed—by default after five minutes
of inactivity. Automatically mounted directory hierarchies are an important part of administrating
a large collection of systems in a consistent way. The automount daemon is particularly useful
when an installation includes many servers or many directory hierarchies. It also helps to remove
server–server dependencies. When you boot a system that uses traditional fstab-based mounts and
an NFS server is down, the system can take a long time to come up as it waits for the server to time
out. Similarly, when you have two servers, each mounting directory hierarchies from the other, and
both systems are down, both may hang as they are brought up and each tries to mount a directory
hierarchy from the other. This situation is called a server–server dependency. The automount
facility gets around these issues by mounting a directory hierarchy from another system only when
a process tries to access it. When a process attempts to access one of the directories within an
unmounted autofs directory hierarchy, the kernel notifies the automount daemon, which mounts
the directory hierarchy. You must give a command, such as cd /home/alex, that accesses the autofs
mount point (in this case /home/alex) to create the demand that causes automount to mount the
autofs directory hierarchy so you can see it. Before you issue the cd command, alex does not appear
to be in /home. The main file that controls the behavior of automount is /etc/auto.master.
Example:

cat /etc/auto.master

/free1 /etc/auto.misc --timeout 60

/free2 /etc/auto.misc2 --timeout 60

The auto.master file has three columns.

• The first column names the parent of the autofs mount point—the location where the
autofs directory hierarchy is to be mounted (/free1 and /free2 in the example are not
mount points but will hold the mount points when the directory hierarchies are mounted).

• The second column names the files, called map files, that store supplemental configuration
information.

• The optional third column holds mount options for map entries that do not specify an
option.

Although the map files can have any names, one is traditionally named auto.misc. Following are
the two map files specified in auto.master:

cat /etc/auto.misc

sam -fstype=ext3 :/dev/sda8

cat /etc/auto.misc2

helen -fstype=ext3 :/dev/sda9

Before the new setup can work, you must create directories for the parents of the mount points
(/free1 and /free2 in the preceding example) and start (or restart) the automount daemon using the
autofsinit script.The following command displays information about configured and active autofs
mount points:

 # /sbin/service autofs status

Summary:

• NFS runs on UNIX, DOS, Windows, VMS, Linux, and more. Files on the remote

computer (the fileserver) appear as if they are present on the local system (the

client). The physical location of a file is irrelevant to an NFS user.

347

Unit 14: Network File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• NFS is based on the trusted-host paradigm and therefore has all the security

shortcomings that plague other services based on this paradigm.

• To display the NFS Server Configuration window, enter the command system-

config-nfs or select Main Menu: System |Administration |Server Settings | NFS.

• A file that is mounted using NFS is always type nfs on the local system,

regardless of what type it is on the remote system.

• The mount utility associates a directory hierarchy with a mount point (a

directory). You can use mount to mount an NFS (remote) directory hierarchy.

• A server holds three lists of exported directory hierarchies. These are:

/etc/exports, /var/lib/nfs/xtab and kernel’s export table.

Keywords:

• NFS: NFS stands for Network Filesystem protocol. It is a UNIX de facto standard

originally developed by Sun Microsystems. It allows a server to share selected

local directory hierarchies with client systems on a heterogeneous network.

• NFS Server: The NFS server translates commands from the client into operations

on the server’s filesystem.

• df utility: The df utility displays a list of the directory hierarchies available on the

system, along with the amount of disk space, free and used, on each.

• portmap utility: The portmap utilitymust be running to enable reliable file

locking.

• umount: It unmounts a remote directory hierarchy.Use umount to unmount a

remote directory hierarchy the same way you would unmount a local filesystem

• Share: The system-config-nfs utility allows you to specify which directory

hierarchies are shared and how they are shared using NFS. Each exported

hierarchy is called a share.

• exportfs: The exportfs utility maintains the kernel’s list of exported directory

hierarchies. Without changing /etc/exports, exportfs can add to or remove from

the list of exported directory hierarchies

Self Assessment

1. The problem in NFS security is
A. NFS is encrypted

B. NFS is not encrypted

C. NFS does not respond

D. None of the above

2. Which of these options disables a signal to interrupt a file operation on hardmounted

directory hierarchy?
A. intr

B. nointr

C. unintr

D. None of the above

348

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

3. Which of these options displays a list of exported directories?

A. -a

B. -e

C. -list

D. None of the above

4. In FEDORA, which utility is used for setting up an NFS client?
A. portmap

B. rpcbind

C. setupnfs

D. None of the above

5. By default block size in wsize and rsize is _____________
A. 128

B. 256

C. 1468

D. 4096

6. Which of these options are used to mount a remote directory hierarchy?
A. mount

B. automount

C. Both of the above

D. None of the above

7. Which utility displays a list of directory hierarchies available on the system?
A. df

B. dir

C. dirhier

D. None of the above

8. Which of these options disables the attribute caching?
A. ac

B. noac

C. unac

D. None of the above

9. Which of these options permits only read access on an NFS directory hierarchy?
A. r

B. ro

C. rw

D. or

10. NFS
A. Reduces the storage requirement

349

Unit 14: Network File Systems

 LOVELY PROFESSIONAL UNIVERSITY

Notes

B. Boosts efficiency

C. Reduces administration workload

D. All of the above

11. If a user can run a setuid program, that user
A. Is a normal user

B. Has the power of a superuser

C. Hides the identity

D. None of the above

12. Kernel’s export table consists of
A. Active exported directory hierarchies

B. Inactive exported directory hierarchies

C. Both active and inactive

D. None of the above

13. NFS stands for
A. Network FileSystem

B. Not a FileSystem

C. New Filesystem

D. None of the above

14. In RHEL, which utility is used for setting up an NFS client?
A. portmap

B. rpcbind

C. setupnfs

D. None of the above

15. The NFS performance can be improved by ___________
A. Increasing the block size

B. Decreasing the block size

C. Block size should remain constant

D. None of the above

Answers for Self Assessment

1. B 2. B 3. B 4. B 5. D

6. C 7. A 8. B 9. B 10. D

11. B 12. C 13. A 14. A 15. A

350

Linux and Shell Scripting

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Review Questions:

1. What is NFS? Explain the flow of data from client to server with the help of a diagram.

2. Explain the various features of NFS.

3. How to set up an NFS client? Explain.

4. Explain the utility which is used to mount a directory hierarchy with various options

available with it.

5. What is error handling? Also explain various options available with it.

6. How to set up an NFS server?

7. How to export a directory hierarchy? Explain the lists associated with this.

8. How to test the server setup? Explain autofs.

Further Readings

Mark G Sobell, A Practical Guide to Fedora and RedHat Enterprise Linux, Fifth Edition,
Prentice Hall

Web Links

https://cloud.netapp.com/blog/azure-anf-blg-linux-nfs-server-how-to-set-up-server-
and-client

351

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-300360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY

	ECAP448 - U01 - D - Finalized.pdf
	ECAP448 - U02 - D - Finalized.pdf
	ECAP448 - U03 - D - Finalized.pdf
	ECAP448 - U04 - D - Finalized.pdf
	ECAP448 - U05 - D - Finalized.pdf
	ECAP448 - U06 - D - Finalized.pdf
	ECAP448 - U07 - D - Finalized.pdf
	ECAP448 - U08 - D - Finalized.pdf
	ECAP448 - U09 - D - Finalized.pdf
	ECAP448 - U10 - D - Finalized.pdf
	ECAP448 - U11 - D - Finalized.pdf
	ECAP448 - U12 - D - Finalized.pdf
	ECAP448 - U13 - D - Finalized.pdf
	ECAP448 - U14 - D - Finalized.pdf

