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PREFACE

The book Digital Electronics contains twelve chapters with comprehensive
material, discussed in a very systematic, elabgratnd lucid manner. The stress is given
on the design of digital circuits. It will prove toe good text book for B.E./B.Tech.
students of all the engineering colleges in Indliawvill also cater to the needs of the
students of B.Sc. (Electronics), B.Sc. (ComputeerS®), M.Sc. (IT) and MCA.

The book has been systematically organized argeptdorm help the students to
understand the fundamentals of digital electronics.

| am deeply indebted terof. P. J. George, Chairman, Depatment of Eleixtron
Science, Kurukshetra University, Kururkshetra forrgg me inspiration and enormous
encouragement in completion of this book.

The author wishes to thank to Prof. Sandeep Aryai@an, Department of
Electronics, G. J. University, Hisar, for the hagltliscussions on the subject.

The author gratefully acknowledges the motivatioom all colleagues and
friends with special reference to Shri. Rajesh Kladfurer in electronics, Dayanand
College, Hisar.

| am grateful to Prof. Subhash Sharma, Principahe college, for his constant
encouragement, guidance and blessings.

| also express my deep gratitude to my wife PhatitKaushik and son Amit
Kaushik, for their patience, understanding and eoajon during the preparation of the
manuscript.

Finally, the author wishes to thank Mr. K.K.Kapodfr. Tarun Kapoor and Mr.
Sumit Kapoor, Publishers, Dhanpat Rai Publishingn@any, New Delhi for their keen
interest in bringing out the first edition of tlosok.

Any constructive comments, suggestions and citicirom the faculty members
and the students for further improvement of thesegbent edition will be highly
appreciated and thankfully acknowledged.

HISAR D. K. KAUSHIK



SALIENT FEATURES:

The material contained in the book is as per dasm lectures. The material is
neither too large nor too short.

Written in the simple language but strong pedagdgipproach.

A large number of simple as well complicated solyablems have been
introduced. Some unsolved problems with their amswkave also been
introduced at the end of each chapter.

The contents are symmetrically arranged.

It will prove to be good text book for all those evistudy digital Electronics. It
will help the students preparing for NET/SET conitpat examination.
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Number System

1.1 Number System Every one is familiar with one number system knoas
decimal number system. The ‘deci’ means ten sodfssem has 10 distinct digits or
symbols:

0123456789

The decimal numbers falls in the category of posal number system, since the
position of a digit indicates the significance te &ttached to that digit. For example
consider a number 7639. This number Aahousands6 hundreds3 tens and units,
which may be written as:

7639 = 7x 1000 + 6x 100 + 3x 10 + 9x 1
=7x 10°+ 6x 107 + 3x 10'+ 9x 1

If a fractional decimal number is considered sa§/h42, then it may be written
in the positional form as:

5367.42= % 10°+ 3x 10° + 6x 10"+ 7x 1P+ 4x 10* + 2x 102

In general any number in decimal number systenmbeanritten as:
N=ax10...+a,x10 +a,x1F +ax10 +a,x10 +a,x10" +a,x10” +....a_ X0

where the coefficientsa, to a_,are the elements or digits in the decimal
numbers. Further these weighted coefficients arkiphead by the some power raised to
10. The power raised to 10 depends on the positiaoefficients. In other words one
may say in decimal system coefficierds to a_, may be any number between 0 to 9

{i.e. between 0 to (10 — 1)} and the positional ows raised to 10, which is known as
the radix or the base of this decimal number system



On the basis of decimal number system discussedeabne may define very
easily some more number systems. The general fbemyonumber system may be given
as:

m

N=ax(r)"...+ax(r)* +ax(r)* +ax(r)" +ax(r)” +ax(r) " +ax(r) > +...a,x(r)”

wherer is called as radix or base of the number systdra.Weighted coefficients
a, to a_,, may be any number (or digit) between Orte {). The coefficienta_,, is

called as the least significant digit (LSD) aagis known as the most significant digit
(MSD).

1.2 Binary Number System On the analogy of decimal number system one may
define another number system whose radix or baseadsf = 2) and its elements or
digits will be0 & 1 only. This system is known as binary number sysasnits radix is
two (binary meang). The digitsO & 1 of this system are known as bits. This number
system finds extensive use in digital electronidse table 1.1 illustrates the counting in
binary system with their decimal equivalents.

Table 1.1
Binary Numbers Decimal equivalent Binary Numbers| cibD®l equivalent
0 0 1101 13
1 1 1110 14
10 2 1111 15
11 3 10000 16
100 4 10001 17
101 5 10010 18
110 6 10011 19
111 7 10100 20
1000 8 10101 21
1001 9 10110 22
1010 10 10111 23
1011 11 11000 24
1100 12 and so on

The binary numbers are pronounced in the followiramnner:
0 is pronounced as zero
1 s pronounced as one
10 is pronounced as one zero not ten
11 is pronounced as one one not eleven
and so on.

The decimal equivalent of a binary number (say 0014 22, which can be
verified as follows applying the same pattern asuksed in decimal number system.



(10110 =1x 2+ 0x 22+ 1x 22+ 1x 2'+ 0x 2°
=1®+4+2+0
:la)’z

It is very essential to show the suffix to the nemsbwhich indicates the base of
the number system.

Example 1.2 Find the decimal equivalent of the binary numb#911001.0101.
Solution:
(11011001.010F 1x 2"+ 1x 2% + Ox 22+ 1x 2*+ 1x 22 + 0x 2 + Ox2' + 1x2° + 0
x2'+ 1x 2%+ 0x 2%+ 1x 2*
=128+64+0+16+8+0+1+0+0.25+0+0.125
= (217.3%5)

1.3 Octal Number System The radix or base of the octal number system @@
means 8) and its digits will be 0 to 7 i.e. 0, 1324, 5, 6, 7. The table 1.2 illustrates the
counting in octal system with their decimal equerds.

Table 1.2
Octal Numbers Decimal equivalent Octal Numbers Detiequivalent

0 0 15 13
1 1 16 14
2 2 17 15
3 3 20 16
4 4 21 17
5 5 22 18
6 6 23 19
7 7 24 20
10 8 25 21
11 9 26 22
12 10 27 23
13 11 28 24
14 12 SO on

The decimal equivalent of octal number 24 is:
(24 =2x8' +4x &
=16+4
- (20)0

Examplel.2 Find the decimal equivalent of the octal numhE26.45.
Solution:
(7126.45)=7x8 + 1x 8 +2x8' + 6x 8 + 4x 81+ 5x 82
=512+64+16 + 6 + 0.125 + ©.6.078125
= (598.70312%)




1.4 Hexadecimal Number System In hexadecimal number system the radix or
base is 16 and its digits will be 16 distinct elatsevhich are given a§; 1, 2, 3, 4, 5, 6,
7,8,9, A B, C, D, E, FThe table 1.3 illustrates the counting in Hexadetimumber
system with their decimal equivalents.

Table 1.3
Hexadecimal Decimal equivalent Hexadecimal Decimal equivalent
Numbers Numbers
0 0 D 13
1 1 E 14
2 2 F 15
3 3 10 16
4 4 11 17
5 5 12 18
6 6 13 19
7 7 14 20
8 8 15 21
9 9 16 22
A 10 17 23
B 11 18 24
C 12 and so on
It can be verified that the decimal equivalentted hexadecimal number (1d)s
(23)o.
(17)6 = 1x (16)" + 7x (16
=16 +7
= (23)

Examplel.3 Find the decimal equivalent of the Hexadecimahher 3BC7.46
Solution:
(3BC7.46)6

=3x (16 + 11x (16Y + 12x (16) +7x (16)° + 4x (16)* + 6x (16)?

= 12288 +2816 + 192 + 7 + 0.25 + 0.Z343

= (15303.48437h)

1.5 Conversion of Integer Decimal Number to BinaryNumber: 1t is
necessary to know the techniques with which thezemion of integer decimal number is
possible directly to binary number. Consider aegetr decimal numbet which can be
represented as:

d=a,2"+a, 2" +..+a,.2' +a,2°

If we divided by a factor o (radix of the binary number system), we obtain the
guotientq as:




q :%: a2™+a 2" +..+a.2°

and the coefficienty becomes the remainder. Thus the least signifibdrd, is
determined. Again on dividing the quotiemby 2, the second least significant &jtis
obtained. If this procedure of division is contidudl the quotient becomes zero, all the
coefficientsa, to ap will be obtained.

In general one can convert the integer decimal mumbo their equivalent
numbers in other number system by dividing the matinumber by the radix of the
required number system. The remainders will giwertdguired result.

Examplel.4 Convert the following decimal numbers into biar
@ 35 (i) 127

Solution: (i)
2 35
2 17 14
2 8 1
2 4 0
2 2 0
2 1 0
0 1
So (35)= (10011
(ii) 2 127
2 63 1 1
2 31 1
2 15 1
2 7 1
2 3 1
2 1 1
0 1




So (127)0 = (1111111

Examplel.5 Convert the following decimal numbers into octal
(i) 567 (i) 1276

Solution: (i) 8 567
8 | 70 71
8 8 6
8 1 0
0 1

So (567)0 = (1067}

(ii) 8 1276
8 159 4 1

8 19 7

8 2 3

0 2
So (1276) = (2374)

Examplel.6. Convert the following decimal numbers into hexeichal.
(i) 8537 (ii) 98765

Solution: (i) 16 8537
16 | 533 of
16 | 33 5
16 | 2 1
0 2

So (8537) = (2159)6



(ii) 16 | 98765
16 | 6172 Dt
16 | 385 C
16 | 24 1
16 | 1 8
0 1

So (98765) = (181CD)s

1.6 Conversion of Fractional Decimal Number to Binsy Number:

Consider a fractional decimal number f represemeats equivalent binary form
given by:

f=a,2%+a,2%+..+a 2"
In order to find the coefficients a; a_, .. a_, the fraction numbef is

multiplied by a factor of 2 (radix of the binarymber) as:

2xf =a, +a, 2 +...+a 2"

v v
MSD fractional part say f
(Oor1l)

In this way the coefficienta _ ; is obtained which is an integer 0 or 1. The
fractional part f1 of the product is further muligal by the factor 2 to have the
coefficienta_,. The procedure of multiplication is continuedittile fractional part of the
product becomes zero. Sometimes the fractionaldmes not become zero, in that case
the multiplication process is stopped after gettihg four five coefficients or till the
recurring occurs.

A similar procedure may be used to convert theindgc fraction into its
equivalent other number system by successive rlia#itppn by the radix of the number
system into which the number is required.

Examplel.7. Convert the following decimal numbers into binar
(i) 0.625 (i) 0.6

Solution: (i) Decimal Product Integer part
.625x 2 1.25 1
.250x 2 050
.500x 2 10 1
0

Stop



(0.625)0 = (0.101)

(i) Decimal Product Iggy part
0.600x 2 1.200 1
0.200x 2 0.400 0
0.400x 2 0.800 0
0.800x 2 1.600 1

In this example non - terminating binary fractianabtained as 0.6 recur beyond this
point.
So (0.690 = (0.1001(1001) ..)

Examplel.8 Do the following conversions:
(1) (965.125)y to octal
(i) (8765.025), to hexadecimal
(i)  (6754.05) to decimal.

Solution: (i) Integer part
8 965
8 | 120 51
8 15 0
8 1 7
0 1
Fractional part
Decimal Product Integart
0.125x 8 1. 00 1 l
So (965.125) = (1705.1)
(i) Integer part
16 8765
16 | 547 Dt
16 34 3
16 2 2
0 2




Fractional part

Decimal Product Integart
0.025x 16 0.4 0
0.4x16 6.4 6 l
0.4x16 6.4 6

repeated value
So (8765.025) = (223D.0666...)

(i)  (6754.05) to decimal

6754.05 = 88° + 7x8% + 58" + 4x& + x8* + 5x82
= 3072 + 448 + 40 +4 +0 +.071285
= 3564.078125
So (6754.05) (3564.078125)

1.7 Conversion of Octal to Binary and Vice — Versa The eight symbols of octal
numbers 0, 1, 2, ....7 can be represented in to thiteeinary numbers as®2 8. So
starting with the least significant bit of the bipaaumber, the successive three bits are
arranged together in the form of groups. Thesepgai three bits are replaced by their
octal equivalents as shown in table 1.4.

Table 1.4

Octal Numbers Binary Numbers
000
001
010
011
100
101
110
110

~N~No o h~wNPEFEO

The binary numbers are converted to the octal nusniyg making the groups of
three bits from right to left in the integer pafttbe binary number and from left to right
on the binary fractional part.. If the need arigganaking the groups of three bits one or
two zeros may be added to the left of most sigaifidit; and / or to the right of the least
significant bit of the fractional part of the biganumber. The octal equivalent of the
groups may be written using the table 1.4. Simjl&slconvert the octal number to binary
number, the binary equivalent of each octal nunerritten using the table 1.4.

Example1.9 Do the following conversions:
0) (1100110111110.1014)to octal



(i) (2467.534y to binary

Octal Equivalent: 1 4 6 7 63 4

Solution: (i) Binary number : _00100110111110. 101100

So (1100110111110.1031% (14676.34)

(i) Octal number : 2 4 &@. 5 3 4
Binary Equivalent: 010 100 110 111.101 011 100

So  (2467.534) = (10100110111.10101%1)

1.8 Conversion of Hexadecimal to Binary and Vice Yersa: As is well
known that the hexadecimal system has a base*16 {B) so every hexadecimal digit
can be represented as a group of 4 bits as shovable 1.5. For conversion of octal to
binary and vice versa one can proceed in the girfalshion as in the case of octal to
binary and vice versa.

Table 1.5

Hexadecimal umbers Binary Numbers
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TMUOW>OOo~NOOUNWNREO

Example1.10 Do the following conversions:
(1) (110011010110111110.101)0 hexadecimal
(i) (2AB6E7.5D4)¢ to binary

Solution:
(i) Binary number : 0010011 0101 1011 1110. 1010
Hexadecimal Equivalent: 3 35 B E A

So (110011010110111110.1915 (335BE.A)e



(i) Hexadecimal: 2 A B 6 E 7.5 D 4
Binary 0010 1010 1011 0110 1110 0111.01amo1 0100

So (2AB6E7.5D4) = (1010101011011011100111.0101110301)

Example 1.11 Convert the hexadecimal number 4AC7.4B in to itsiement octal
number.

Solution:  The given hexadecimal number is first conwette binary number and then
converted to octal number.

Hexadecimal: 4 A C 7 4 B

Binary: 0100 1010 1100 0111 .0@11011

Now (100101011000111.0100101 19 octal
100101011000111.01001011 = 1001 011 000 111.010 010 110

Octal : 4 5 3 0 7 2 26
Thus (4AC7.4B)s = (45307.226)

1.9 Binary Addition: The counting of numbers in any system is a fofraddition since
successive numbers, while counting, are obtainedadiding 1. In decimal number
system, the successive addition is obtained asvell

0+1=1

1+1=2

2+1=3

3+1=4

8+1=9
9+1=10 i.e. the sum is zero but have a carry to the
next position.
From the above discussion it is clear that whes &dded to the last digit of a
number system, sum becomes zero and has one adhg hext position.
In the similar fashion if this rule is applied the binary system the binary
addition may be illustrated as follows:

0+1=1
1+1=10 i.e.sumis zero and carry is 1.
Table 1.6 shows the addition of two katandb, having the sum and carry to the
next position. There are four possible combinations



Table 1.6

a b sum carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

This table is known as Half adder table, as it gitree simple addition of two bits
aandb. Table 1.7 known as full adder table shows thetedof maximum of three bits.
These bits are the carry bits, if any, from thevimes stage of addition, and the augend
and addend bits.

Table 1.7
Augend | Addend Carry from Sum Carry to
bit bit previous stage next stage
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
Examplel1.12: Perform the following binary additions.
() 110111 +11010 Yii101101.101 + 101011.011
(i)  1101101.101 + 110110.01
Solution:
@M Cary _, 111110
110111
011010
1010001
gp Cary _, 10111111
101101.1201
101011.011
[1011001.0D0
(i) Cary _, 111110000
1101101.101
0110110.010
/10100011.1011




1.10 Binary Subtraction Half — subtractor table is used for subtractmilar to
one used for addition. It is clear from the tahi@ that wherl is subtracted from, alis
to be borrowed from the next adjacent higher pasiti

Table 1.8
a b difference borrow
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

A full — subtractor table having the minuend, saband and the borrow bit of the
previous stage as the inputs and which gives tifereince as well as the borrow bit to be
taken from the next stage, is shown in table 1.9.

Table 1.9
Minuend | Subtrahend Borrow bit | Difference| Borrow
from previous from the
stage next stage
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
Examplel1.12: Perform the following binary operations.

() 1101101 - 1100111 (i) 11011.01-41aQ0D.11
(i)  1101.101 —1001.011

Solution:

(i) Borrow _, 0000110
1101101
1100111
|l o0o00110

(i) Borrow __, 010110
11011.01
10101.11
| 00101.10




(i) Borrow __,

ok o
Njeh o)
ol© oo
ol o

10
101
011
010

1.11 Signed Numbers: The positive numbers were discussed so far in tbeggling
sections of this chapter. But most of the digitgdtems handle not only the positive
numbers but also the negative numbers. Some meantharefore, required to represent
the sign of the binary numbers. In general, anaelit is provided at the extreme left of
the number. This extra bit is known as the sign Dite extra bit is isolated from the
magnitude of the binary number by a comma. The bigis 0 or 1. By convention, a 0
bit is used for the positive numbers and a 1 hitsisd for negative numbers.
For example: + 9 is represented by 0, 1001
and —9is represented by 1, 1001

Though this method of representing the signed nusnisestraight forward, yet it
is not normally used in the digital system since tealization of this method by digital
circuit is very complex. The most commonly used hrodt for representing the signed
binary numbers is 2’'s complement method. Beforeudising signed binary arithmetic
operations using the 2’s complement method, iesessary to show the 1’s complement
and 2’'s complement representation of binary numbers

1.11.1 1's Complement RepresentationThe 1's complement of a binary number is
obtained by converting each 0 bit of the binary banto a 1, and each 1 bit by a 0. The
1's complement value represents the negative nuoflie binary number.

For example: The 1's complement of the binary ben1011101 is obtained as:

1011101

BEREAR.

0100010
Thus 1's complement of binary number 1011101 i0010.

1.11.2 2's Complement Representation The 2's complement of a binary number is
obtained by taking the 1's complement of the nunavel adding 1 to the least significant
bit position. The process for obtaining the 2’s ptement of (25) = (11001) is given
below:

11001 binary equivalent of 25
00110 1's complement of 25

+ 1 add 1 to get 2's complement
00111

The 2's complement of 1100% 00111.

The another method of obtaining the 2’s complenadra binary number is to
scan the number from right to left and complemdinbigs appearing after the first scan
ofa‘l".



For example 2's complement of (425 (101010) is 010110. Since first ‘1’
appears in the second place from the right hang, sid all the bits after occurring first
‘1’ at the second place are complemented. Thisbeawverified by using the first method
discussed above.

1.12 Signed Numbers using 2's Complement: Computer systems always
process the words (digital) in a uniform fashiowihg a maximum limit ofN bits. AnN

— bit machine can handle the unsigned decimal ntsribem 0 to 2 — 1. Thus a 4 bit
machine can handle 0 to 15 decimal numbers (undjgepresented by binary numbers
ranging from 0000 to 1111. Similarly an 8 — bit miae can handle 0 to 255 decimal
numbers having binary numbers ranging from 00000@0Q1111111. However, for
signed binary numbers, 4 bit machine will have thege from — 8 to +7 and 8 bit
machine will have the range from — 128 to +127.1&4ab10 illustrates how the 4 bit
machine represents the signed binary numbers.

Table 1.10
Decimal value Signed binary numbers
-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111
0 0000
+1 0001
+2 0010
+3 0011
+4 0100
+5 0101
+6 0110
+7 0111
Similarly, 8 bit machine will have the signed numbeanging from — 128

(1000000) to +127 (011111%).

The following inferences are obtained from thideab

1. The largest negative number in ldr- bit machine is —®~ % and the largest
positive number is +{(3 =Y - 1).

2. All the positive numbers have most significant &g 0 and the negative
numbers as.1

3. All the negative numbers are the 2's complemenpasditive numbers. For
example 2’s complement of 0110 (+6) is 1010 (-a®dl the 2's complement
of 01111113 (+127) is 10000001 which equal to —127 in 8 bithiae.



If the 2's complement method is used to represhet negative numbers as
discussed above then the subtraction of signed atsrdan easily be performed only by
the addition method. This will lead a simplification the hardware circuits.

Example 1.13 What is the range of unsigned and signed decimalbers as well as
binary numbers that can be represented in a 1y/siem?

Solution: The range of unsigned decimal numbers will be:
0to 1023 (¥-1) in the 10 bit system
i.e. 0000000009t0 11111111124

The range of signed decimal number will be — 532 to +511 (2 - 1)
ie. 10000000080to 0111111114

Example 1.14 Represent the following decimal numbers as &ilgited numbers in the
2’'s complement form.
(i) +25 (i) —68 (iii))—128

Solution: (i) +25 =00011001
(i) —68 = 2’'s complement of + 68 (0100020
= 10111200
(iii) — 128 =10000000

1.13 Addition/Subtraction of Signed Numbers in 2’'sComplement
Representation In the signed numbers the addition and subtraatibibinary
numbers are the same. The subtraction of two pesitumbers means the addition of a
negative number to the positive number. The negatiumber infect is the 2’s
complement of the positive number. During the addibf two signed numbers, if there
is an end around carry, it should be ignored. Bsalt is interpreted using the convention
discussed above i.e. if MSB of the result is Ontllee answer is positive and on the
contrary if MSB is 1, then the answer is negatine2(s complement form). This can be
illustrated by taking the following examples:

(i) Addition of positive number with smaller negatve number. Consider the addition
of +15 and — 9. The numbers +15 and -9 are repiexsem 5 bits signed binary form.
These numbers can not be represented in 4 bitcsigmeber as 4 bit machine will have
the range from — 8 to +7.

+15 01111

-9 10111 (10111 is the 2’s complement of +9)

+6 1 00110

There is an end around carry which is ignored.Hgoainswer is correct as 00110

represents + 6.




(i) Addition of positive number with larger negative rumber: Consider the addition
of +9 and —-15.

+ 9 01001
-15 10001 (10001 is the 2's complement of +15)
- 6 11010

There is no end around carry so the answer is ivegahich is verified by the
MSB of the answer. The answer is correct as 118pfesents — 6.

(iif) Addition of two positive nhumbers: consider the addition of positive numbers +15
and +9:

+15 01111
+ 9 01001
+24 11000

The result 11000 is correct in unsigned binary nemmlbut incorrect in signed
binary numbers as 11000 represents — 8 in 5 hitedigoinary numbers. The correct
answer could be obtained if 6 bit signed binaryeyswas considered.

+15 001111
+ 9 001001
+24 011000

Now the answer is correct.

(iv) Addition of two negative numbers  Consider the addition of —15 and — 9.

-15 10001 (10001 is the 2's complement of +15)
-9 10111 (10111 is the 2's complement of +9)
—24 1 01000

After ignoring the end around carry the answer @L@ incorrect, as the
maximum limit of 5 bit signed binary numbers is -tb6+15. To get the correct answer
each number should have been represented in Sidpitsd binary form as follows:

-15 110001 (110001 is the 2's complement of +15)
-9 110111 (110111 is the 2's complement of +9)
-24 1101000

Now the answer is correct as after ignoring the @mound carry 101000
represents —24 in signed binary form.

The overflow is said to have occurred in the abtwe examples as initially
insufficient number of bits were used for represgnthe signed binary numbers. While
working with 2’'s complement addition, one shouldw@® that the positive and negative
number are expressed in 2’s complement represemtatid the sum also lie within the
specified range, otherwise wrong result will occHowever, in computers a special

circuit is provided to detect any overflow conditiand indicate the erroneous result



Example 1.15 Perform the following operations in 8-bit systelsing 2's complement

method. (i) —49-26 (i) 67 — 39 (jii) — 87142 .
Solution:
(i) -49 11001111 (2's complement of +49)

— 26 11100110 (2's complement of +26)
—75 110110101
The end around carry is ignored. So the answe®140101 (-75).

(ii) +67 01000011
-39 11011001 (2's complement of +39)
+28 1 00011100

The end around carry is ignored. So the answe®(@4 D100 (+28).

(i) -87 10101001 (2's complement of +87)
+112 01110000
+25 1 00011001

The end around carry is ignored. So the answed(@4 D001 (+25).

1.14 Nine's and Ten’'s Complement of Decimal Numbet In the preceding
section, 1's and 2’'s complement of binary numbeeemiscussed, to represent the
signed numbers. In the similar fashion 9's and 1€dnplement representation of
decimal numbers may be used to represent the megatimbers. The 9’s complement of
a decimal number is obtained by subtracting eadit diom 9. For example, 9's
complement of 2457 is (9999 — 2457) = 7542 andcéimplement of 89031 is (99999 —
89031) = 10968. It is analogous to 1's complemehtbimary numbers. The 1's
complement of binary number is obtained by suhlitrgceach bit by 1, the largest or
highest bit or digit of the number system (or bieichanging each bit by 0 to 1 and vice-
versa).

Similarly, 10’'s complement of a decimal number Igained by adding 1 to the
9’'s complement of that decimal number. For exanmiffis complement of 3697 is 6303
(9’'s complement of 3697 + 1). The other method eftigg 10's complement of a

decimal number of digits is to subtract that number fra6f.
i.e. 10’s complement of 19874 (50° -19874=100000-19874 = 80126

The 10’s complement can be used for the additiosigned decimal numbers as
given in the following example.

Example 1.16: Add the following signed decimal numbers usiglomplement.
(i) Add (+6230) and (— 2394) (i) Add (— 5260)daf+2987)



Solution:
(i) 6230
7606 (10’s complement of 2394)
1 3836
The end around carry is ignored. So the answeB$86.

(ii) 4740 (10’s complement of 5260)
2987

27
There is no end around carry so answer is negatiekis in 10’'s complement
formi.e. — 2273 (10’s complement of 7727).

1.14.1 r's and ( — 1)'s complement In general one can define two types of
complements in a number system of base

(i) (r = 1)'s complement: The ¢ 1)’'s complement in any number system of radix r
is obtained by subtracting each digit of the numbbem (— 1). For example 7’s
complement of 347 in octal number system is (7747}3 (4303 and 5’s complement of
23450 in a number system whose radix value is 5555 — 23450) = (32105)

(i) r's complement or true complement: Tiie complement of nonzero number in
a number system of radixis obtained by getting the £1)'s complement of that number
and adding 1 to it. If a number is zerorits complement or true complement is also zero.
For example 8's complement of 37401 in octal nungystem is (77777-37401) + 1 =
(403773 and 5's complement of 23410 in a number system wadix value is 5, is
(44444 — 23410) + 1 = 21035 = (21040)

1.15 Binary Multiplication: The process of multiplication of binary numbers is
similar to that of decimal multiplication. The proxt of two binary numbers whose
magnitude is n bits each, can be 2n bits long.olkatigs are the steps used in the
multiplication of two binary numbers:

Step 1: Multiplier is scanned from the right handes If LSB is 1 the
multiplicand is copied as the first partial produétLSB is zero, then
zeros are entered as the first partial product.

Step 2: Next bit (left to the previous bit) of thmltiplier is examined, if it is 1
the multiplicand is copied as the next partial pidafter shifting left
this partial product by one bit. If it is zero thenter zeros as the next
partial product after shifting it left by one bit.

Step 3: Repeat step 2 till all bits in the multéplhave been considered.
Step 4:  The final product is obtained by addingtal partial products.

This method of multiplication is known as long hamdiltiplication which is generally
done by using paper and pencil. However, in digitathines, the multiplication of two
binary numbers is considered in slightly differemanner. Instead of providing digital
circuits to store all the shifted partial produetsd finally adding these products, the



partial products corresponding to each bit of thdtiplier are simultaneously added into
the previous product which is shifted right by daiterather than shifting to the left.

Examplel.17 Multiply 10101 by 10011.

Solution:

Multiplicand 10101
Multiplier 10011
Partial products 10101

10101

00000
00000
10101
Product 110001111

1.16 Binary Division: The process of division of binary numbers isikinto that of
decimal division. The long hand division methodused for this purpose. In decimal
division it is seen how many times the divisor gaa® the dividend, but in binary
division there are only two possibilities o and.&. if the divisor goes into the dividend,
the quotient becomes 1, if it does not the quotldtomes zero. The divisor is then
subtracted from dividend. The next bit of the dand is copied in the remainder of the
subtraction and again seen if the divisor goestimodividend. This process is continued
till all the bits of the dividend are consideredowtver, in digital machines in the
division the subtraction is performed using the@smplement method.



Example 1.17:Divide 1101101 by 101.
Quotient

Solution: Divisor }Divident

10101.11..
10@1101101

101
00111
00101
0001001
0000101
00001000
00000101
000000110
000000101

000000001
So quotient is (10101.14and remainder (.01)

1.17 Floating Point Representation of Binary Numbes: It is well known
that the very small and very large decimal numbarsbe expressed in scientific notation
e.g. 2.48x 10%* and 6.75x 10" Binary numbers can also be represented in théasim
fashion. This form of notation will have a binarymber of few bits known as the
mantissa and an exponent of 2 (radix of binary rems)p The format of such
representation will be different for different coating machines. The 16 bit machine
will have 10 bit mantissa and 6 bit exponent andbi24nachine will have 15 bit mantissa
and 9 bit exponent. The format of 16 bit machingiven below.

10 bit Mantissa 6 Bxponent
10 110011010] 1010110

Fig. 1.

The mantissa is in 2’s complement form; the leftimus is, therefore, used as
sign bit. The binary point will be to the right dfe sign bit. The 6 bit exponent can
represent 0 to 63 or in the signed number from t032 31. However, a common system
is used to represent exponent part. The exponenisp@&presented in excess 32 notation
i.e. the number (32 or (100000) is added to the desired exponent. The table 1.11
illustrates representation of exponent part in sigsgtem.



Table 1.11

Desired | 2's complement Excess 32 notation Binary
Exponent | representation (in 6 bits) Representation

- 32 100000 100000+100000 = 000000 000000
- 31 100001 100001+100000 = 000001 000001
- 30 100010 100010+100000 = 000010 000010
- 15 110001 110001+100000 = 010001 010001

0 000000 000000+100000 = 100000 100000
+ 1 000001 000001+100000 = 100001 100001
+ 15 001111 001111+100000 =101111 101111
+ 30 011110 011110+100000 =111110 111110
+ 31 011111 011111+100000 =111111 111111

As discussed above the floating point number giaehe above format is:

The mantissa part .110011010
The exponent part 101010
Subtracting 100000 001010

The number is N + (.11001101Q) 2*°
=+ (1100110100.09)

=+ (820)

Example 1.18 What floating point number do the following nuemb represent? (i)
0100101001101011 (ii) 1010010110101111
(i) 0110111010011101

Solution: (i) 0100101001101011

The mantissa part .100101001
The exponent part 101011
Subtracting 100000 001011

The numberis N + (.10010100L)x 2™
=+ (10010100100.90)

=+ (1188),
(i) 1010010110101111
The mantissa part 1.010010110
— .101101010

The exponent part 101111

Subtracting 100000 001111

The numberis & —(.10110101QK 2%
=—(101101010000000,0)
=—(23168)

(i) 0110111010011101



The mantissa part 110111010
The exponent part 011101
Subtracting 100000 101011
The number is N+ (.11011101Qx 2™
=+ (.00000000000000000000011011201)

Example 1.19 Express the following decimal numbers into 16 fwating point
number.
(i) (45365.125), (i) — (335.625)

Solution:

0] Binary equivalent of (45365.125) 1011000100110101.001
Binary format .10110001001101042*°
Mantissa +.101100010
Exponent 010000
Equivalent exponent 010000 + 100000 =

110000
So the floating point format will be 0101100010000
(i)  Binary equivalent of —(335.62h) -101001111.101
1010110000.011
Binary format —.010110000 x 2
Mantissa — .010110000
Exponent 001001
Equivalent exponent 001001 + 100000 =
101001

So the floating point format will be 1010110000001

Example 1.20 In a number system of radiX A andB are the successive digits such
that AB)r = (28)0 and BA)r = (35) . Find the radixR of the number system and the
values ofA andB.

Solution: According to the problem:

AxR + BxR =28 and BxR + AxR’ =35
or AxR+ B =28 BxR+ A=35
also B=A+1
SO AXR+ A=27 and AXR+R+A=35

After solving these equations we get:
R=8 , A=3 and B=4

Example 1.21 Determine the radix value in the following cases



() vODr =)
(i) QDg + (29r = A0,

Solution: (i) Decimal equivalent of the problem is giveyt b

VBXR+1=6
Squaring on both side:

5R+1=36
or R=7

(i) Decimal equivalent of the problem is given by;

IXR+1+ 2xR+5 =1xR* + OxR+ 2xR°
or R*-3R-4=0
Solving forR we have:

R=4and R=-1

The radix can not be negative, so the requiredtrissd.

Problems:

1. Discuss decimal number system. Define radix.

2. Define octal number system. How the countingdtal number system is made?

3. Define hexadecimal number system. Write the togrnfrom 0 to 40 decimal
numbers into its equivalent hexadecimal numberesyst

4. How the decimal integer numbers are convertdairtary numbers? Explain.

5. How the decimal fractional numbers are convetteoinary numbers? Explain.

6. Define a number system whose radix value is BteWwhe counting of first 30
decimal numbers into the system whose radix valise i

7. Define a number system whose radix value is riteWshe counting of first 30
decimal numbers into the system whose radix vaure i

8. Discuss how the octal numbers are convertediistequivalent binary numbers
and vice — versa.

9. Discuss how the hexadecimal numbers are comvante its equivalent binary
numbers and vice — versa.

10. Write numbers from 1 to 30 in the following noen systems:
(1) Binary (ii) Octal (i)  Hexadecimal
(iv) to a system whose radix value is 6.

11. Discuss how the addition of binary numbersagggmed. Draw the half adder
and full adder tables.

12. Discuss how the subtraction of binary numbergerformed. Draw the half
subtractor and full subtractor tables.

13. What are signed numbers? Give the differentswayrepresenting the signed
binary numbers in a digital system.

14. Explain the 1's and 2’'s complement represemtati binary numbers.

15.  What is the range of unsigned and signed déammabers as well as binary
numbers that can be represented in a 12 bit system?

16. Explain the Addition/Subtraction method of SignrNumbers in 2's complement

representation taking suitable examples.



17.

18.
19.
20.
21.
22.

23.

24.

25.

26.

27.

28.

29.

Discuss 9’'s and 10’s complement of decimal rensibHow 10’s complement is

used for the addition of signed decimal numbers.

Discussr(— 1)'s and’s complement of a number system whose radix is

Discuss how the multiplication of the binarywhers is performed.

Explain the floating representation of binawynbers in 16 bit machine.

Explain the floating representation of binawynbers in 24 bit machine.

Convert the following decimal numbers into thegjuivalent binary numbers: (i)
336 (i) 679 (iii)) 5797 (iv) 4391

Ans.: (i) 101010000 (ii) 1010100111 (jii)) 1011010101

(iv) 1000100100111

Convert the following binary numbers into thequivalent decimal numbers: (i)
1010111 (ii) 1110101 (iii) 100010011 (iv) 11@®O1
Ans.: (i) 87 (ii) 117 (iii) 275 (iv) 401
Covert the following binary numbers into theaotal, hexadecimal and decimal
equivalent: (i) 1011101 (ii) 10101011101 (jii)ai®10111 (iv) 10111101
Ans.: (i) (135}, (5Dhs, (93)o (i) (2535), (55D)s, (1373)0
(i) (1127)%, (257)6, (599)0 (iv) (275)%, (BD)s, (189)0

Convert the following hexadecimal number taaibynand then to octal
(i) 2BAFC (i) 67DEF (iii) 2567C (iv) 2AB76
Ans.: (i) (1010111010111111Q0) (5353749

(i) (11001111101111011141) (1476757

(iii) (101010101101110119) (5255669

Convert the following octal numbers into thagcimal equivalent:
(i) 26775 (i) 67344 (iii) 53276 (iv) 165
Ans.: (i) (11773) (ii) (28388)¢ (iii) (22206)o (iv) (6917)¢

Convert the following octal numbers into tHamary equivalent:
() 126705 (i) 207344 (iii)) 350276 (ivy15005
Ans.: (i) (101011011100010:1)ii) (10000111011100109€)

(i) (11101000010111119)(iv) (100001101000000104)

Express the following decimal numbers intortleguivalent octal and
hexadecimal numbers.
(i) 798562 (ii) 179856 (i) 369852 (ivP120305
Ans.: (i) (3027542), (C2F62)s (i) (5372203, (2BE90)s
(i) (1322274) (5A4BC)s (iv) (426250619 ,( 8B2A31)6

Convert the following decimal numbers into lbynaumbers.
(i) 697.625 (i) 1457.23 (iii) 22097.96iv) 39870.0625
Ans.: (i) (1010111001.101)

(i) (10110110001.0011101011100001 »...)

(iii) (101011001010001. 1111010111000015...)

(iv) (1001101110111110.0001)



30. Convert the following decimal numbers into batambers.
(i) 4537.362 (i) 7192.025 (iii)) 4389.125v)i1767.3
Ans.: (i) (10671.27126010 .g.) (i) (16030.%
(iii) (3347.231463146.4)

31. Convert the following binary numbers to thejuialent octal and hexadecimal
numbers. (i) 11011011.011 (i) 101110111.1011
(i) 1011111001.111011 (iv) 1a©a011.011011
Ans.: (i) (333.3), (DB.6)s (i) (567.54), (177.B)e
(i) (1371.73), (2F9.ECjs (iv) (1053.333, (228.6Cys

32. Express the following hexadecimal numbers @rthquivalent binary and octal
numbers. (i) 3AC45B.20B (i) 6754A.2FE
(i) 4596BC.31DF (iv) 2369.2AB7
Ans.:
() (1110101100010001011011.0011000111012:111)
(16542133.143574)(ii) (1100111010101001010.00101111%11)
(1472512.1376)
(i) (10001011001011010111100.0011000111011411)
(21313274.143574)iv) (10001101101001.0010101010110%11)
(21551.125334)

33. Convert the following decimal numbers into theguivalent numbers in base 3
and base 5.
(i) 8923 (i) 45967 (i) 543294 (iv) 30107
Ans.: (i) (110020113%) (2411433 (i) (2100001111y, (2432332 (iii)
(100012102100@Q), (114341134) (iv) (1112022002), (1430412
34. Add the following numbers in binary:

(1) (45h0+ (67)o (i)  (246)0+ (3970
(iii) (6754)0+ (2450)0  (iv) (4096)0 + (256)0
Ans.: (i) (1110000) (i)  (1010000014)

(ili) (100011111101Q0)(iv) (1000100000009)
35. Subtract the following numbers in binary:
(i) 257630— 2454, (i) 98320— 24320
(iii) 4506;0— 2004 (iv) 9006, — 45980
Ans.: (i) 1011011000011@1 (ii) 1110011101000
(iii) 100111000119 (iv) 10001001110Q0
36. Perform the following binary additions.
() 11010111 +1011010 )(L0111101.101 + 10101001.011
(i)  100101101.101 +10010110.01
(iv) 111010110.1101+10111011.0101
Ans.: (i) 100110001 (ii) 101100111.000 (iii))100011.111
(iv) 1010010010.0010
37. Perform the following binary subtraction.
() 11010011 — 1010010 )(0100101.101 - 10111001.001



38.

39.

40.

41.

42.

(i) 100101011.001 —10100110.01
(iv) 110010110.1001-10100011.0111
Ans.: (i) 10000001 (i) —10011.100 (ii)0000100.111
(iv) 11110011.0010
Solve the following:
() (11011} x (101 = (?»
(i) (1100107 x (1011} = (?»
(i) (1101.011) x(101.01) = (?»
(v)  (1.10011)x(10.101) = (?)
Ans.: (i) 10000111 (i) 1000100110 (i) 1000100111
(iv) 100.00101111
Solve the following:
() (11001) ~ (1011 = (?) (i) (10101Q) ~ (1001) = (?)
(iii) (10101.011) = (100.11) = (?) (iv) (1.00101) ~ (10.10) =(?)
Ans.: (i) Quotient (13)and remainder (11)
(if) Quotient (100) and remainder (1198)
(i) Quotient (100.1) and remainder (09)
(iv) Quotient (.011)and remainder (.113)
Perform the following operations in 12-bittgys using 2's complement method.
() — 149 — 126 (ii) 607 — 319 (iii) — 871 + 1{i2) 312 — 540.
Ans.: (i) 111011101101 (ii) 000100100000 (iii)}a1d0001001
(iv) 111100011100
Subtract the following using 10’s complementhod:
() 94562074 — 495421 (ii) 3216547 — 9876540
Ans.: (i) 94066653 (ii) — 6659993
What floating point number do the following noens represent?
() 0111101001101110 (i) 1011110110101001
(i) 0110100010010111 (iv) 1110100011010100
Ans.: (i) + (11110100100000.00)
(i) —(100001010.00Q) (jii) +(111101001000.00)
(iv) —-(.000000000000001011101)



Binary Codes

In the preceding chapter the usage of binary nusnlzgrd their arithmetic
operations have been discussed. While working digfital machines which use binary
numbers, the data is generally given to the inpuvell the information is taken from the
output in form of decimal numbers, because we arsiliar only with the decimal
numbers. The conversion of decimal numbers intaryirand vice — versa is a slow
process, which leads a communication problem betwke man and the machine. In
order to simplify this problem of communication Wween the man and the machine a
number of codes for the decimal numbers have beeise. In the present chapter these

codes known as binary codes will be discussedtalde

2.1 Binary Coded Decimal Numbersin a digital system which is capable of accepting
or string only O’'s and 1's, the usual way of comi@n of decimal numbers to binary
number and vice —versa is a slow process and esguarge electronic circuitry.
Therefore, instead of converting the decimal numberbinary, it will be simpler to
convert each decimal digit to binary, i.e. a codaygtem is used for the conversion of
each decimal digit to binary. Such a coding sysgekmown as Binary Coded Decimal or
BCD in short. For example, a decimal number 13imaty is written as 1101 whereas in
BCD form individual decimal digit 1 and 3 may beittén in four bit binary numbers as
0001 0011.

A large number of coding schemes is possible to@a 10 distinct symbols of
decimal system namely, 01 2 ..... 9. To represectt sgmbol of decimal system in the
form of 0’s and 1's of binary system, at least & laire required as’ 2 8 <10 and 2= 16
>10. There are 16 possible combinations in whichr fots are arranged and it is required
to have only 10 combinations of 4 bits. In this waypick up an ordered sequence of 10
out of 16 items, as many as 30 billion (3X¥)Qvays or codes are there. Out of these
codes only a few are of importance which may bestfi@d in the following categories.

1. Weighted codes

2. Self complementing codes

3. Cyclic codes

4. Error detecting codes

5. Error correcting codes



2.2 Weighted Codes In the weighted codes, weights or values are asdign the
binary bits as per their bit position. The decimalue of a code is the algebraic sum of
weighted bits. In other words, the decimal nunibén the weighted codes is given by:

4
N => Wb
i=1
whereW, denotes the weight that is assigned"tbinary bit,
b is the binary bit (0 or 1) in th& bit position.

The most popular weighted codes @421, 84 21, 5421, 2421, 5211, 7421
etc. These weighted codes are given in Table 2.1.

Table 2.1

Decimal Weighted codes

Numbers | 8 4 2 1|8 42 1 5421 2421 5211 74 2|1
D
0 0000|0OO0O0O 0000 OO0OO (OOO0O0 |OO0O0O
1 0001|0111 0001 0001 (0001 0001
2 0010|0110 0010 0010 (0011 001210
3 0011|0101 0011 0011|0101 |00112
4 0100|0100 0100 0100 (0111 0100
5 0101|1011 1000 (2011|1000 (01012
6 0110|2010 1001 12100 1(1010|0110
7 011112001 10102101 |1100 (1000
8 1000(1000 1011 1110|1110 (1001
9 1001|1111 1100 2111|1111 1010

In the 8421 code, the weight assigned to bit pmsiti(i = 1) is 1, second position
(i=2)is 2, third position (i = 3) is 4 and wetghssigned to forth position (i = 3) is 8. So
the binary number 0110 represents the decimal @igis @8+1x4+1x2+0x1 = 6. In the
similar fashion the representation of decimal nural§@ through 9) in different weighted
codes is done. In the weighted codes, the negateights may also be assigned e.g.
8 42 1 have the negative weight (—1) to the least sigaift bit and (—2) to the second
least significant bit.

It is important to note that 8421 code is nothing bses the natural weights for
the representation of binary numbers hence 842ks@iso called as natural binary
coded decimal (NBCD).

2.3 Self Complementing Codes A code is said to be self complementing if the
binary representation of a decimal number D in ttade is 1's complement of the



decimal number (9 — D). For example let D = 5 imsacode then that code will be self
complementing if the binary representation of D &d D) are 1's complement of each

other. The weighted codes 2421, 5211 and314 are self complementing whereas
8421 code is not self complementing, which may bsfied from the table (2.1). A
necessary condition for a weighted code to beetiplementing is that the sum of the
weights of the code should be 9.

It is important to note that the binary represeatadf decimal digits in 2421 and
5211 may be done in different ways, but these epegesented in the sequence as are
given in the table 2.1, otherwise the codes wilt show the self complementing

property.

Further it is not a necessary condition that orig tveighted codes are self
complementing. Another important code is the exee3¢XS -3)code, which is shown in
table 2.2. This code in not a weighted code butvshie self complementing property.
Excess — code is derived from 8421 code by addif@031) to all code groups. The
arithmetic becomes simple by the use of this cotehlwvwill be discussed in the later
section.

Table 2.2
Decimal numbers Excess — 3 code

D

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100
Example 2. Encode the following decimal numbers into 842422 and excess —
3 codes.

1548 , 7896, 5602
Solution:
Decimal
No. 8421 2421 Excess — 3

1548 0001010101001000 0001101101001110 01MAMO1111011
7896 0111100010010110 11011110111211100 1010101111001001
5602 0101011000000010 1011110000000010 1000100100110101

13 00010011 00010011 01000110



Example 2.2 Decode the following BCD numbers:

(i) 01000001 0111000000010010 1001000110000110

(i) 01100001 0101000101010000 010100000000000
Solution:

(i) 41 7012 9186

(i) 61 5150 5001

2.4 Cyclic Codes Another class of binary codes is the cyclic d&efore discussing
the cyclic codes it is necessary to explain the marg distance first. Hamming distance
is defined as the number of places the binarydffsr in two consecutive numbers in a
particular code. For example in 8421 code hammiistadce between 0 (0000) and
1(0001) is one, as there is a change only in tleeboinposition (0 to 1 of LSB). Similarly,
the hamming distance between 1 and 2 is 2; bet®esmd 4 is 3. Hence one can say that
the hamming distance between two successive cadgpgof 8421 code in not constant.
There are many other codes in which the hammingute is not unity. Cyclic codes
have the unit hamming distance property. In mamgtsal applications such as analog
to digital converter, codes of unit hamming diseace used. Gray code is a particularly
useful cyclic code and a four bit gray code is shdawtable 2.3.

Table 2.3
Decimal Number Gray Code
0 0000
1 0001
2 0011
3 0010
4 0110
5 0111
6 0101
7 0100
8 1100
9 1101
10 1111
11 1110
12 1010
13 1011
14 1001
15 1000




This code may also be shown as the elements ofmiép-(Karnaugh map) shown in
figure 2.1.

OO 01 11 10

00| O 1 2 3

A 4

01| 7 6 5 A

11 8 9 10 11

10| 15 14 13 1b Fig. 2.1

Gray code is also called as the reflected binadecd he reflected binary code is
given below. The method of writing the reflectedhdrly code is that O and then 1 is
written to the LSB and a mirror is supposed to laegd below 1. The mirror image of 0
& 1 will be 1 & 0. So sequence of the LSB of thedeowill be 0, 1, 1 & 0. Now O is
written at the second place (as the second LSByeabte mirror and 1 to the numbers
below the mirror. This code for two bits will be @8, 01, 11 & 10. For the extension of
this code to the three bits, a mirror is again sspp to be placed below 10. The mirror
image for the two bits will be 10, 11, 01 & 00. Tree third bit O is added to the binary
number above the mirror and 1 is added to the mimaged numbers of two bits. The
codes for three bits will, therefore, be 000, @11, 010, 110, 111, 101 & 100. Similarly
it can be extended for four bits, five bits etc.

Dec.No. Gray Code
0 0O 0 0 0O
1 0 0 0 01

2 0O 0 011
3 0O 0010
4 0 01 10
5 0 01 11
6 0 01 0 1
7 0O 01 0O
8 0 11 00
9 0 11 01
100 0 1 1 1 1
11 0 1 1 1 O
12 0 1 0 1 O
13 0 1 0 1 1
14 0 1 0 0 1
15 0 1 0 0 O
16 1 1 0 0 O



17 1 1 0 0 1
18 1 1 0 1 1
19 1 1 0 1 O
20 1 1 1 1 0
2. 1 1 1 1 1
22 1 1 1 0 1
231 1 1 0 O
24 1 0 1 0 O
25 1 0 1 0 1
26 1 0 1 1 1
27 1 0 1 1 0
28 1 0 0 1 O
29 1 0 0 1 1
30 1 0 0 0 1
31. 1 0 0 0 O

Further before discussing the method of conversibhinary to gray code and
vice versa, it is important to discuss the othepantant cyclic codes. In the gray code
discussed above is not suitable for its use asccB&D code, since when we move from
decimal number 9 to 0 (successive digits), the hemgrdistance is three. The cyclic
BCD code should have unit hamming distance forsaltcessive digits. The most
commonly used cyclic code is shown in table 2.4iaikdmap in figure 2.2

Table 2.4

Decimal Number Gray Code
0000
0001
0011
0010
0110
1110
1010
1011
1001
1000

Oo~NOOUA~WNEFO




OO 01 11 10

0w|lo 1 2 3
01 4
11 5

Fig. 2.2
109 8 7 8

It may also be observed that the cyclic code shimwthe table 2.4 is a reflected
BCD code. The reflection in any BCD code can batified by comparing the upper five
code words with the lower five. If the upper and/éo codes are mirror imaged except
for one bit, then the code is reflected. Reflectisnuseful property that makes 9’s
complementation easy to implement.
2.4.1 Conversion of Binary to Gray CodeThe gray code being the reflected
binary number is difficult to obtain for a largecdt@al number. So the conversion of
binary numbers to gray code is required to be obthidirectly. The method of
converting the binary number to gray code is fodow

The most significant bit is recorded as the firgisinsignificant bit of the gray
code, which is then added with the bit of next posi The sum is recorded as the next
bit of the gray code, of course neglecting theygafrany. This process is continued till
the LSB is reached. For example for the conversibbinary number 100010111 we
proceed as given below:

{33 %0 M g vy, e

1 1 0 0 1 1 1 0 0 Gray

The Gray equivalent of binary number (100010214)11001110Q)

Example 2.3 Find the gray equivalent of the following binarymbers:
() 100010111 (i) 111010110 (i) 100@aD11



Solution: (i)

S5 00N

Binary
1 1 0 0 1 1 1 0 0 Gray
So (10001011%)= (11001110Q)
(i)
1 1 1 0 1 0 1 1 0 Binary
1 0 0 1 1 1 1 0 1 Gray

So (11101011Q)= (10011110%)

(iii)

aaala'eaaaYava
1 0 0 0 0 1 0 1 0 1

1

So (10000101011) (1100011111Q)

2.4.2 Conversion of Gray Code to Binary The method of converting the gray code to
binary number is follows:

The most significant number of gray code is recdrde the most significant of
the binary number, which is then added with thet feixof the gray code. The sum is
recorded as the next bit of the binary number, ewglg the carry if any. The process is
continued till the least significant bit is obtathe



For example for the conversion of (110011}@0)binary we proceed as given
below:

1 1 0 0 1 1 1 0 0 Gray

1 0 0 0 1 0 1 1 1 Binary

So the binary equivalent of gray code (11001148Q)10001011%).

Example 2.4 Find the binary equivalent of the following gragyde numbers:
(i) 101010101 (i) 110010101 (iii) 10010101

Solution: (i)
1 0 1 0 1 0 1 0 1 Gray
1 1 0 0 1 1 0 0 1 Binary
S0 (10101010%)= (11001100%y).

(ii)
1 1 0 0 1 0 1 0 1 Gray
1 0 0 0 1 1 0 0 1 Binary

So (11001010%)= (10001100%).
(iii)

1 0 0 1 0 1 0 1 1 1 1 Gray

1 1 1 0 0 1 1 0 1 0 1 Binary

So (10010101113) (1110011010%).



2.5 Error Detecting Codes A group of bits is known as word and it moves as an
entity in the digital systems, i.e. a word is mo¥eain one block to other block of the
digital system or transmitted from one place to dti@er. During this transmission it is
very likely a bit might change resulting a changehe word and an error is said to have
occurred. The error (change in bit from O to 1 mewersa) is introduced due to the
external noise in the physical communication mediém error detecting code can be
used for the detection of error in the transmissidns code will simply detect the error
but will not correct the error. In forming the arrdetecting codes (also called error
checking codes), an additional bit is introducedhwihe word. The additional bit
included with the word is known as parity bit asdused to make the total number of 1's
in the word either even or odd.

Two types of parity may be considered for errdedgon namely even parity and
odd parity. For even parity, the parity bit is 8etl so that the sum of bits in the number
is even i.e. number of 1's in the number is eveoweler, for the odd parity, the parity
bit is set 1 so that the sum of bits in the numberdd. For example, in number 1001101
there are four 1's so a parity bit P introducedhviite given number is 1 for odd parity
(number of 1's becomes odd); and P is 0 for oddtyp&number of 1's remains even).
The number along with the parity bit will, therefprbe 10011011 for odd parity and
10011010 for even parity. A message of four bits pawity P is shown in table 2.5.

Table 2.5

Word of 4 bits| Parity bit P | Word of 4 | Parity bit

(Even) bits P (Odd)
0000 0 0000 1
0001 1 0001 0
0010 1 0010 0
0011 0 0011 1
0100 1 0100 0
0101 0 0101 1
0110 0 0110 1
0111 1 0111 0
1000 1 1000 0
1001 0 1001 1
1010 0 1010 1
1011 1 1011 0
1100 0 1100 1
1101 1 1101 0
1110 1 1110 0
1111 0 1111 1

For the error detection the parity bit P generdigdsome electronic circuitry is
transmitted along with the word at the transmiéed. The word along with the parity is
received at the receiving end where the data anty gat is checked. At the receiving
end there will be parity check network, which vdtect if the proper parity is received.
The parity check network will give an alarm or icalion if parity check fails. This error
detecting code is suitable if there is a changg onbne bit, three bits or to odd number



of bits. If on the other hand error occurs at twoeeen number of places, the double
parity check method is used.

For the double parity check consider a block ofb@6 recorded on a magnetic
tape in 6 tracks with 6 bits along each track. @ddty bit is added as the seventh bit to
each track. A seventh row (of 6 bits) is also idtroed as the odd parity row for each
column. The odd parity check network will be usedrbw as well as for the column. In
this way, if there is erroneously transmission ibfthee parity check fails, on the row and
column and the place of error is detected. Thikustrated in figure 2.3.

r Row parity bits—l

000000 1 000000 1
Block 001010 1 001010 1
of 36 001011 O 001011 O
bits 100011 O 10110 Parity
011011 1 011011 1 failure
. 000101 1 000101 1
Column 000010 000010

Parity bits
Parity failure

Fig. 2.3

2.6 Error Correcting Code or Hamming Code In the forgoing section the
error correcting codes were discussed which cay lmmlused to detect the error occurred
due to the transmission of binary information. dincneither indicate the place or bit
position of error nor correct the incorrect bit.rfaing code also called self correcting
code is most commonly used code which can not detgct the error but also finds the
error position and correct it.

This code is being discussed for correcting a simgtor on information of any
length. Suppose 8421 code bits are to be transirattd the error for one bit position is
to be corrected. For this at least 3 parity bits &r be used. So to find out the error
position 7 bit hamming code will be constructede Tvord format is given below:

7 6 5 4 3 2 1 «— Bit Number
D D Ds Py D; B PI Name of bit position

In the above format of the Hamming code, D represséine data bit and P
represents the parity bit. So the bit position2 &nd 4 (P, P, and B) are used for parity
check bits and bit positions 3, 5, 6 and 3, (D5, and B3) as 4 bit word (8421 code data).
P1 is the even parity bit for bits 3, 5, 74Ds and D)

P, is the even parity bit for bits 3, 6, 74Ds and D)
P4 is the even parity bit for bits 5, 6, 74D and )



The 7 bit Hamming code for 8421 data is shown Intet2.6.

Table 2.6

Decimal 7 6 5 4 3 2 1

numbers| D7 D6 D5 P4 D3 P2 P1
0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 1
2 0 1 0 1 0 1 0
3 1 1 0 0 0 0 1
4 0 0 1 1 0 0 1
5 1 0 1 0 0 1 0
6 0 1 1 0 0 1 1
7 1 1 1 1 0 0 0
8 0 0 0 0 1 1 1
9 1 0 0 1 1 0 0

The following procedure is used to detect and cbrtiee error after the code is
received:

1. If P, satisfies as the even parity bit for bits 3, Bhénh assum€; = 0 else
o 1.2. If P, satisfies as the even parity bit for bits 3, 8hénh assum€, = 0 else
et 3. If P; satisfies as the even parity bit for bits 5, 8hénh assum€; = 0 else
o 1.4. The decimal equivalent a@;C,C; gives the position of incorrect bit,

which may be corrected. @;C,C; = 000 then there is no error in the code.

For example a seven bit Hamming code is receiveti0@9010 and one has to
find if there is any error in the received data.

D De Ds PR D3 P P

1 0 0 0 0 1 0

Now C; is 1 as Pdoes not satisfy the even parity bit for bits 375

C, is 0 as Psatisfies the even parity bit for bits 3, 6, 7.

Csis 1 as Rdoes not satisfy the even parity bit for 5, 6, 7.

S0 C3C,Cy = 101, it indicates that there is an error in fifte place. At the fifth
place there is 0 which should be corrected to Ith8a@orrect hamming code is 1010010.

From the above discussion it is clear that thisecoah be used for detecting and
correcting the error by using extra digital cireyitThis code can also be extended to
transmit the data of any length by introducing muaéty bits.

Example 2.5 Write the 7 bit Hamming code for a four bit wdr@1Q
Solution:

D7 D6 D5 P4 D 3 I:)2 Pl
0 1 0 R 1 R P



P1 will be zero (even parity bit) for bits 3, 5, 7.
P, will be zero (even parity bit) for bits 3, 6, 7.
P, will be one (even parity bit) for bits 5, 6, 7.
So the 7 bit Hamming code will be 0101100.

Example 2.6 A seven bit Hamming code received at the recewer110100. Is there
any error in the received code? If yes, what iscthreect code?
Solution:

Dy Ds Ds Py D3 P, P

1 1 1 0 1 0 0

Now C; is 1 as lPdoes not satisfy the even parity bit for bits 375

C,is 1 as Rdoes not satisfy the even parity bit for bits 376

Csis 1 as Rdoes not satisfy the even parity bit for 5, 6, 7.

S0 C3C,Cy = 111, it indicates that there is an error in $eeenth place. At the
seventh place there is 1 which should be corretté] So the correct hamming code is
0110100.

2.7 BCD Addition: In the present section the addition of BCD numbeits be
discussed since in digital computers BCD numbegspancessed. The BCD code (8421
Code) represents the decimal numbers in the sirfalstnion as binary numbers. The
binary numbers 1010 through 1111 are the illegdksan 8421 code. Due to these illegal
codes the addition of decimal numbers in BCD wdlldifferent. To understand the BCD
addition, two cases of decimal addition are conside

Case l: decimal numbers 6 & 3 are to be added.
Decimal form BCD form

6 0110

+ 3 + 0011

9 1001

BCD number 1001 shows the correct answer as 10€duisl to 9.

Case Il : decimal numbers 6 & 7are to be added.
Decimal form BCD form
6 0110
+ 7 + 0111
13 1101

BCD number 1101 is not correct as it is an illegade since it does not occur in
BCD. The correct answer would be 0001 0011.

From the above discussion it is observed thatafdum is less than or equal to 9,
the correct answer will be obtained. If on the cary, the sum is more than 9, the
incorrect answer is obtained because 6 illegal €ddH 0 through 1111. So to get the
correct answer, 0000 is to be added if the suness khan or equal to 9; and 0110



(decimal 6) is to be added if the answer is moentl. The answer is observed to be
more than 9 if illegal codes 1010 through 1111 abained or a carry to the next BCD
number is occurred.

For example 476 and 394 are to be added using B@ibers.

BCD number for 476 is: 0100 0111 0110

BCD number for 394 is: 0011 1001 0100
1111 111 1

Additon: 0100 0111 0110

+ 0011 1001 0100
1000 0000 1010

Correction to be applied: + 0000 0110 0110
Correct answer: 1000 0111 0000

Decimal number 8 7 0
In this example 0110 is added to LSD and second h&tause 1010 is the illegal
code in 8421 and the second LSD gives a carrygd®8D.

Example 2.7 Add 8765 and 7043 in BCD code.

Solution:
BCD number for 8765 is: 1000 0111 0110 0101
BCD number for 3943 is: 0011 1001 0100 0011

111 111 1 111
Additon: 0000 1000 0111 o01p101
+_ 0000 0011 1001 0100 0011
0001 1100 0000 1010 1000
Correction to be applied: + 0000 0110 0110000000

Correct answer: 0001 0010 010000 1000
Decimal number 1 2 7 0O 8
So the correct answer is 0001 0010 0111 0000 1000.

2.8 Excess—3 Addition Addition of decimal numbers can also be perfatnusing
excess—3 codes. One may recall that in excesd&sdirst three and last three numbers
of 4 bit binary numbers (0000 through 0010 and 1thddugh 1111) are illegal codes. So
while adding the numbers in excess—-3 codes, thié=gali codes will have to be
eliminated. To understand the excess—3 additiory Bxamples given below are
considered:

Case | Two numbers 3 and 6 are to be added.

3 Excess- 3 of decimal number 3is: 0110



+

6 Excess- 3 of decimal number 6 is: + 1001
9 Sum of these numbers is: 1111

The sum is wrong due to illegal code 1111. Thegdlecode 1111 shows the
excess - 6 because 0011 (3) is added is each nuBdé¢o get the correct answer 0011
(3) is to be subtracted from the above sum.

ie. 1111 - 0011 =1100

1100 gives the correct answer, as it shows 9 ieexe 3 code.

Case Il Two numbers 7 and 8 are to be added.
7 Excess- 3 of decimal number 7 is: 1010
+ 8 Excess- 3 of decimal number 8 is: + 1011
15 Sum of these numbers is: 10101

In this case too the sum is wrong because of lbxgail code 0101. To avoid the
illegal code and to get the correct answer 0011s(ayded.
le. 0101 + 0011 = 1000

1000 shows the correct answer for the LSD as wvsHoin excess—3 code.

From the above discussion, one can get an inferiatef the sum is less than or
equal to 9, the correct answer is obtained by aubirg 0011 (3) from the incorrect
answer. However, if the sum is more than 9, thetil(@) is to be added to the incorrect
sum. The answer is observed to be more than 8afrg to the next digit is occurred.

For example addition of 45 and 38 using excess€ otay be given as:

Excess — 3 of 45 : 0111 1000
Excess — 3 of 38 : + 0110 1011
1110 0011

— 0011 + 0011

1011 0110 =83

Example 2.8 Add 876 and 704 in excess—3 code.
Solution:

Excess — 3 of 0876: 0011 1011 1010 1001
Excess -3 0f 0704 : + 0011 1010 0011 0111

0100 0101 1011 0000
- 0011 +0011 - 0011 +0011

0100 1000 1011 0011 =1580



2.9 Alphanumeric Codes In the preceding sections of this chapter, differen
codes for numeric data have been discussed. Bearmputers or in digital systems the
numeric data as well letters of alphabet, punabmatharks and other special characters
are also processed. So for representing this typaformation data, different codes
(groups of 0’s and 1's) are to be discussed. Thedes are called as alphanumeric codes.
To represent the decimal numbers 0 through 9 iarliform four bits are used a$ 2

16. However, in representing the 10 decimal numi#8supper case letters (A, B, C...,
Z), 26 lower case letters (a, b, c....., z), 7 puattun marks (, : ; ““. ? ), and about 20 to
40 special characters (+, -, <, >, =, $, % ...) canfesinimum of 6 bits are required. The
6 bit alphanumeric code referred to as internakdedghown in table 2.7.

Table 2.7
Character 6 bit Character 6 bit
internal code internal code

A 010 001 Y 111 000
B 010 010 Z 111 001
C 010 011 0 000 000
D 010 100 1 000 001
E 010 101 2 000 010
F 010 110 3 000 011
G 010 111 4 000 100
H 011 000 5 000 101
[ 011 001 6 000 110
J 100 001 7 000 111
K 100 010 8 001 000
L 100 011 9 001 001
M 100 100 BLANK 110 000
N 100 101 . 011 011
(@) 100 110 ( 111 100
P 100 111 + 010 000
Q 101 000 $ 101 011
R 101 001 * 101 100
S 110 010 ) 011 100
T 110 011 - 100 000
U 110 100 / 110 001
\Y 110 101 , 111 011
w 110 110 = 001 011
X 110 111




A more commonly used alphanumeric code is the AS&fherican Standard
Code for Information Interchange) code pronouncedas-kee”. Basically, it is a 7 bit
code which is shown in table 2.8. It is used foingers and teletypewriters when
interfaced with computers. The 8 bit ASCII codelso used for practical purposes, in
which 8" bit is added for parity.

Table 2.8
Character| 7 bit ASCIl | Hex Character 7 bit ASCII code Hex
code

0 011 0000 30 X 101 1000 58
1 011 0001 31 Y 101 1001 59
2 011 0010 32 Z 101 1010 5A
3 011 0011 33 [ 101 1011 5B
4 011 0100 34 \ 101 1100 5C
5 011 0101 35 ] 101 1101 5D
6 011 0110 36 A 101 1110 5E
7 011 0111 37 - 101 1111 5F
8 011 1000 38 . 110 0000 60
9 011 1001 39 a 110 0001 61
: 011 1010 3A b 110 0010 62
; 011 1011 3B c 110 0011 63
< 011 1100 3C d 110 0100 64
= 011 1101 3D e 110 0101 65
> 011 1110 3E f 110 0110 66
? 011 111 3F g 1100111 67
@ 100 0000 40 h 110 1000 68
A 100 0001 41 i 110 1001 69
B 100 0010 42 i 110 1010 6A
C 100 0011 43 k 110 1011 6B
D 100 0100 44 | 110 1100 6C
E 100 0101 45 m 110 1101 6D
F 100 0110 46 n 110 1110 6E
G 100 0111 47 0] 110 1111 6F
H 100 1000 48 p 111 0000 70
| 100 1001 49 q 111 0001 71
J 100 1010 4A r 111 0010 72
K 100 1011 4B s 111 0011 73
L 100 1100 4C t 111 0100 74
M 100 1101 4D u 111 0101 75
N 100 1110 4E v 111 0110 76
(@] 100 1111 4F w 1110111 77
P 101 0000 50 X 111 1000 78
Q 101 0001 51 y 111 1001 79
R 101 0010 52 z 111 1010 7A
S 101 0011 53 { 111 1011 7B
T 101 0100 54 : 111 1100 7C
U 101 0101 55 } 111 1101 7D
\% 101 0110 56 ~ 111 1110 7E
W 101 0111 57 DELETE 111 1111 7F




Another quite often used 8 bit alphanumeric cod&BCDIC (Extended BCD

Interchange Code) is shown in table 2.9.

Table 2.9
Character 8 bit Character 8 bit
EBCDIC code EBCDIC code
A 1100 0001 S 1110 0010
B 1100 0010 T 1110 0011
C 1100 0011 U 1110 0100
D 1100 0100 \Y 1110 0101
E 1100 0101 W 1110 0110
F 1100 0110 X 1110 0111
G 1100 0111 Y 1110 1000
H 1100 1000 Z 1110 1001
| 1100 1001 0 1111 0000
J 1101 0001 1 1111 0001
K 1101 0010 2 1111 0010
L 1101 0011 3 1111 0011
M 1101 0100 4 1111 0100
N 1101 0101 5 1111 0101
(@] 1101 0110 6 1111 0110
P 1101 0111 7 1111 0111
Q 1101 1000 8 1111 1000
R 1101 1001 9 1111 1001

Problems

o s

HBEBOONG

= o

12.

Distinguish between a binary and a BCD code. \BRD codes are use for
decimal numbers in digital systems?

Differentiate between weighted and non — weidhtinary codes. List some
weighted codes and define one of them.

What is self complementing code? Show that 2424 self complementing
code whereas 8421 is not a self complementing code.

Discuss the excess—3 code and show that geff aomplementing code.
Describe the gray code. What are charactesisiicgray code? It is also
known as reflected binary code — comment.

Explain how the gray code is converted to lyimumbers and vice— versa.
What is Hamming distance? Describe unit hamrdiatance cyclic code.
Discuss 7 bit even parity error correcting hangwode.

Explain how the BCD addition is performed.

Explain how the addition in excess—3 codgeiformed.

Name some alphanumeric codes. Write the A&datlé for decimal numbers 0
through 9.

Write the following decimal numbers in 842Heo

7958, 5689, 209



13.

14.

15.

16.

17.

18.

19.

(Ans: 0111100101011000, 0101011010001001, 0010@m101

Convert the following BCD (8421) code numbersiécimal numbers:

() 0100001100000110
(i) 0010100101110000
(iii) 1001100000000001
(iv) 0101010000100001

(Ans.: 4316, 2970, 9801, 5421)

Convert the following decimal numbers to XS3 (escel) code:
1026, 4375, 6980, 4415
(Ans.: 0100001101011001, 0111011010101000,
1001110010110011, 01110111 0100 1000)

Convert the following excess —codes to decimal remsib
0] 1100011101011001
(i)~ 0101011000110110
(i) 0110011101000101
(v)  1000010010111001
(Ans.: 9426, 2303, 3412, 5186)

Convert the following decimal numbers to 2421 codmbers:
1014, 2397, 6419, 8474
(Ans.: 0001000000010100, 0010001111111101,
1100010000011111, 11110010011010100)

Convert the following decimal numbers to gray code:
8975, 4568, 23501, 10254
(Hint.: first convert the decimal numbers to bin#rgn to gray code)
(Ans.: 11001010001000, 1100100110100, 11101100a1m10
11110000001001)

Convert the following gray code numbers to binauynbers.
0) (1010111010000101119)
(i) (1111001011011011014)
(i)  (10110111011111104)
(iv)  (10000100100100109)
(Ans.: (1100101100000110160)(10100011011011010%0)
(11011010010101004) (11111000111000114)

Construct 7 —bit even parity Hamming code for traitisng the following
digital data:
(i) 0101 (i) 1000 (iii) 0110
(Ans.: 1010010, 0000111, 0110011)



20.

21.

22.

23.

24.
25.
26.

A seven bit Hamming code received at the reces/1001001. Is there
any error in the received code? If yes, what iscthreect code?
(Ans.: yes, 1001011)

A seven bit Hamming code received at the recew@010100. Is there
any error in the received code? If yes, what isctireect code? What is
correct 4 bit data actually transmitted?

(Ans.: yes, 0110100, 1110)

Using the BCD (8421) code, perform the additionfafowing decimal
numbers verify your answer:

() 0781 + 123 (i) 1056 + 4891

(i) 254 +511 (iv) 3001+ 25

Using XS 3 code, perform the addition of decimambers given in
example 21 and verify your answer.

Write your name in ASCII code.

Encode 0 to 2 in ASCII, 8421, 5421 and 2421 codes.

Encode your name in 6 bit internal and 8 bit EBCDdIphanumeric
codes.



Boolean Algebraand
Logic Gates

In the last two chapters, number system, binarybars) binary codes and other
alphanumeric codes have been discussed becauggtat slystems or digital computers
binary numbers (groups of O's and 1's) are proaks3éese binary bits O or 1 are
designated by predefined voltage levels, makingethe the design of digital systems
very simple. George Boole, an English mathematitager on became famous as logician
developed an algebra called as Boolean algebragic blgebra or switching algebra
based on logics. Logic is basically human reasothagjtells us if certain proposition or
declarative statement is true. For example, “acdwig ON”, is a logic statement which is
either true or false. The logic functions or digitanctions for Boolean algebra will be
formed by logics. In this chapter logic operatioluglic gates and the Boolean algebra,
will be discussed which will be used as the toolsthe analysis and design of digital
circuits.

3.1 Logic Operations Three basic logic operations (AND, OR and NOT) ased
in Boolean algebra which will now be discussedetad.
AND operation: Consider a proposition or logical statement “Studsswving books
AND his identity card can enter the college”.

Outcome or the result of this statement is theyewnitthe student — True or False
(Allowed or not allowed).

Student should have two essential things:

(1) Books — True or False (Student has the books 9r not

(i) I. Card — True or False (Student has the I. Camboy.

Table 3.1 illustrates that only the student whe haoksAND has his identity
card, can enter the college. So the given propeositonsists of two simple propositions
(student having books and having his Identity camanected with AND connective.
This is known as AND operation.



Table 3.1

Student having Student
Books l. Card Entry
False False False
False True False
True False False
True True True

This composite proposition can be shown by an mlei circuit as shown in figure 3.1,
consisting of two switches A & B and a bulb L. Theitch A represents the logic
statement that the student having the books orilg. ON & OFF positions of the switch
A show the True and False of the above statememila®ly the two positions of the
switch B show the true and false of the secondchigitatement that the student has his
identity card. The On and off positions of the bslow the outcome or the result of the
composite statement. On and off positions of the bespectively represent the true and
false of the composite statement of the studemy @mthe college.

A B
) NO— oo
. Bul b
L
Fig. 3.1

Table 3.2 shows conditions for the bulb to gloeToulb will glow only when
both the switches are on, which is analogous testatement that the student can enter

the college when he has the books and his idetHity.



Table 3.2

Switch Bulb
A B L
off off off
off on off
on off off
on on on

The logical values may be assigned to the positidrike switches and the bulb.
For example logic 0 is assigned to off positiorthe switches and the bulb; and logic 1
for the on positions. The truth table for the ANPeaation will therefore be given as
shown in table 3.3.

Table 3.3
Switch Bulb
A B L
0 0 0
0 1 0
1 0 0
1 1 1

The AND operation may be represented in the matheahdrm or the logic form as:
L= AIB
It is pronounced as A dot B (A AND B)
Mathematically 0l0=0
0[1=1[0=0
1[1=1
It is clear from all the above discussion A AND EBams both. Both is the logic
behind the word AND. The logic circuit designed fttve demonstration of AND
operation is known as AND gate. The symbolic repméstion of two input AND gate is
shown in figure 3.2.

A_} Qut put
B A B

Fig. 3.2

The AND gates for more than two variables are alsfined in the similar
fashion.



OR operation: Consider another proposition “Student havingkstOR his identity

card can enter the college”.
Outcome or the result of this statement too isstrae; entry of the student — True

or False (Allowed or not allowed).
Student should have either of the two essentiag#h
0] Books — True or False (Student has the books 9r not

(i) 1. Card — True or False (Student has the I. Canboy.

Table 3.4 illustrates that only the student who h@sksOR has his identity card
can enter the college. So the given propositionsisté of two simple propositions
(student having booksr having his Identity card) connected with OR cortivec This is

known as OR operation.

Table 3.4
Student having Student
Books l. Card Entry
False False False
False True True
True False True
True True True

The switching or electronic circuit for this opeoat may be given as shown in
figure 3.3.
A

-

B

11l
I|||+

%Bulb
L

Fig. 3.3

The truth table for the OR operation is given ibléa3.5, after assigning the logical
values to the positions of the switches and thbe.tfebr example logic 0 is assigned to off
position of the switches and the bulb; and logforlthe on positions.



Table 3.5

Switch Bulb

I—‘I—‘OO>
R or ol
PPk O

The OR operation may be represented in the matheah&dirm or the logic form
as:
L=A+B
It is pronounced as A OR B
Mathematically 0+ 0=0
0+1=1+0=1
1+1=1
The logic circuit designed for the demonstratiorO&t operation is known as OR
gate. The symbolic representation of two input @egs shown in figure 3.3.

Aji Qut put
B A+B

Fig. 3.3
OR gates for more than two variables may also fiaet:

NOT operation: Consider the logic statement “The student wbeschot have the cell
phone, is allowed to enter the college”.

The student’s entry is the outcome or the reduthis statement — True or False
(Allowed or not allowed).

Student should not have the cell phone, the orfgrion at the check point. The
student has the cell Phone or not (True or False).
Table 3.6 illustrates that the student who doashave the cell phone is allowed to enter
the college. Hence it is known as NOT operator.



Table 3.6

Student has the| Student’s entry
cell phone
False True
True False

An electromagnetic relay may be used to demonstta#geNOT operation as
shown in figure 3.4. When a positive and constaitage is applied to the coil of the
relay it gets energized. The bulb does not glovit & connected to the normally close
position of the relay. The bulb glows when no vgétas applied to the coil, as relay coil
is de-energized. This shows the NOT or Invertesration.

A. C. Mai ns
()
N
N C
° =
To Const ant 5 000,
d.c. voltage — BULB L
= Rel ay
Fig. 3.4
Logically if input A is O the output is 1 represedtby A (A bar).
So
Table 3.7
Input Output
A A
0 1
1 0

The symbolic representation of NOT gate is showfigure 3.5.
AP A

Fig. 3.5

AND & OR gates are called the binary gates becauseto be operated on at
least two variables. The NOT or inverter gate israped only on one variable hence it is



called as Unary operator. The detailed design e$dhgates will be discussed in a later
chapter.

3.2 Postulates of Boolean Algebra The two binary operators AND & OR

([, + ) and one unary operator (NOT_) ( a bar on a variable) discussed in the

forgoing section are used in defining Boolean Argelihe operands for these operations
are the elements belong to a set. Let A and Brerelements which belong to a set S (A,
B O S). Huntington in 1904 defined the following pdatas of Boolean algebra.
Postulates are the basic or universal rules, whiehalways assumed to be true and thus
are not to be proved. The theorems of Boolean edgetay be derived from these
postulates.

Postulate * Closure Property: For every A,[BS
(i) D=A+B andDJ S: This is the closure property for
OR operation.

(ii) G=AB and GI S: This is the closure property for
AND operation.

Postulate 2 Commutative Law: If Aand B S then
i) A+B=B+A
i) A.B=B.A

Postulate 3 Identity Element:
0] The identity element for OR operator is O, ifASand Q1 S
then A+ 0=0+ A =A:0is known as additionndi¢y.
(i) The identity element for AND operator is 1LAfO0 S and 11S
thenA.1=1.A=A :lisknownas multgdiion identity.

Postulate 4 Distributive Law: If A, B, CLI S then
i) A.B+C)=A.B+A.C
i) A+B.C=(A+B).(A+C)

Postulate 5 Complementing Law: If AJ S, there exist an elemeat (known as
complement of a) which belong to & (0 S ) such that
(i) A+A=1
i A.A=0

Postulate 6: There are at least two elements A[JB such thatA # B.

Boolean algebra differs with ordinary algebra oa fitilowing points:
1. The distributive law A+ B . C = (A + B) . (A C) does not hold in ordinary
algebra.



2. Complementing law does not hold in ordinary htge i.e., there is no
equivalent of the unary operator (NOT operationpridinary algebra.

3. Boolean algebra does not have the additive savand multiplicative inverse
due to which no subtraction or division operatiensst.

4. Boolean algebra has only finite set of elemerisre as the ordinary algebra
deals with real numbers which constitute a set vitfinite number of
elements. Switching algebra, a special class ofld2oo algebra however,
deals with two valued elements. The elements shioaNe the values 0 and 1

only.

3.3 Two - Valued Boolean Algebra The postulates of special class of Boolean
algebra known as two valued Boolean algebra orckiy algebra, may be discussed on
the similar lines if a set of two elements 0 & le aassumed. The postulates are
summarized below:

Table 3.8
OR operation AND operation
0+ 0=0 11=1
0+1=1+0=1 1.0=0.1=0
1+1=1 0.0=0
0=1 1=0

These postulates are also given in the general &rm
0+A=A 1. A=A

A+A=1 AA=0

3.4 Duality Principle: According to this theorem the postulates or thesrerh
Boolean algebra are given for one type of operat@y be converted to other type of
operation (i.e. OR to AND or vice versa) just byeirchanging 0 with 1 and ‘+’ with *.’
This principle ensures that if a theorem is prousihg the postulates of Boolean algebra
then dual of this theorem automatically holds aeddnot to be proved separately.

3.5 Theorems of Boolean AlgebraThe following are the general theorems or
rules of Boolean algebra:

Theorem 1@ A+A=A 1b) A.A=A
Proof: 1(a)

When A=0: 0+0=0=A

When A = 1: 1+1=1=A Thus A+A=A isged.

1(b) is the dual of 1(a), which automatically reld

Theorem 2(a) A+1=1 2(b) A.0=0
Proof: 2(a):



When A=0: 0O+1=1
When A = 1: 1+1=1 Thus A+1=A s peov
2(b) is the dual of 2(a).

Theorem3(a) A+A.B=A 3(b) A.(A+B)=A
Proof 3(a):
LHS. =A+A.B
=A.1+A.B (sinceA.1=A)
=A.(1+B)
= Al (sincel+B=1)
=A Proved.

3(b) is the dual of 3(a).
This theorem is also called as absorption theof@mnollary of the absorption theorem is
given as follows:

A+ AIB = A AOA+B)= A
Theorem 4 Z: A
Proof;: .
WhenA=0 A=0=1,A=1=0= A
WhenA=1 A=1=0,A=0=1= A Thus A = A
Theorem 5(a) A+AIB=A+B 5b) AODA+B)= ADB
Proof 5(a): B
LHS.= A+ AI[B
=(A+ A)QA+ B) Distributive law
=1[(A+ B) (sinceA+ A=1)
=A+B Proved

5(b) is the dual of 5(a).
This theorem is also called second absorption #mo€Corollary of this theorem is given

as A+ A[B=A+8B AOA+B)= A[B

De Morgan’s Theorem De Morgan, a logician gave two very important tleeos
which are used in Boolean algebra, which is stated

The complement of a product of two variables isaqw the sum of the
complemented variables. In equation form it is gies:

AIB=A+B
The dual of this theorem is given in equation f@sn



Theorem 6(b) A+B=A[B
Which is stated as: The complement of a sum ofvar@bles is equal to the
product of the complemented variables.

Proof: Theorem 6(a) is illustrated in the truth table®)&s the columns 4 and 7 of this
table are identical. Theorem 6(b) is the dual af) 80 need not to be proved.

Table 3.9
A|B| AIB | AIB|A|B|A+B
0|0 0 1 11 1
0|1 1 0 1|0 0
1|0 1 0 01 0
1)1 1 0 0O 0

The De Morgan’s theorems hold good for n varialgigen below:

A DA, DA OIIA, = A + A, + A, + A,

A+A +A +03 A, = A DA, DA, OIIIA,

Example 3.1 Using the theorems of Boolean algebra, provddhewing identities:
() (A+B)QA+AB)IC+A[B+C)+AB+AMBIC=A+B+C
(i)  (A+AB){ALC+AIC{A+B))[(B+C)=AB+AIC
iiy AB+BIC+AIC=AB+BIC+AIC
Solution: (i) L.H.S.
(A+B)[{A+ AB)C+A[B+C)+AB+AMBIT
(A+B)[{A+A[B)C A+ (B+C)+A[B+A[BIC (Demorgan's law)

= (A+B)QA+B)[C+A+(B+C)+AB+AMBIC
(Absorption law)

= (AQA+B)+B{A+B))[C+A+B[C+AB+ADBIC (Distributive
law and Demorgan’s
law)

= (A+AB)[C+A+BIC+B[{A+AIC) (Absorption law)

- A[IC+A+BC +BOA+C) (Absorption law)

A+AC+BIC+BIOA+C (Manipulation)



A+C +B[A (Absorption law)

; A+B+C (Absorption law)
= R.H.S

(i) L.H.S.

= (A+ AB)ALC + A[C(A+B))(B+C)

= ALA(C+C(A+B)(B+C) (Absorption law
= A(C+A+B)(B+C) (Absorption lavy
= A(C+B)(B+C) (Absorption lay
= A(B + C) (Since AA=A)
= AB+AC

= R.H.S.

(i) LHS.

= AIB+B[C+ ALC

= A[B1+1[BIT + AT (Since A1 = A)

= ABOC+C)+(A+A)BIC+AB+B)[C (SinceA+A=1)

ABC+ABIC+ABIC+AMBIC+AMBIT+ABT
(Manipulatior)

ABC+ABIT+ABIC+ABIC+ABIC+A[BTC

BIC A+ A)+ ALCOB+B)+ ABC +C)

BIC +A[C + AlB

R.H.S.

3.6 Venn Diagram The postulates and theorems of Boolean algebra lneay

illustrated by the pictorial model known as Venagtam. The Venn diagram consists of
a rectangle inside which a number of circles irgeting each other are drawn. One circle
corresponds to one variable. Figure 3.6 shows then\iagram for one variable. The
area inside the circle represents the variabldf i(se. the shaded area in figure 3.6a
represents the variable A); and the area outsideciticle represents the complement of

that variable (shaded area in figure 3.6 b shays

>

Figure 3.6 a Figure 3.6 b



Figure 3.7 shows the Venn diagram for two varialolessisting of a rectangular
inside which two circles intersecting each otherdnawn. The area common between the
two circles shows the intersection of two variablegresented by ‘.’ sign. The shaded
area in figure 3.7a represents the intersectiamwofareasA[B. The union or the sum of
two areas represents the OR operation of two Vasad+B is represented by the shaded
area in figure 3.7b.

Fig. 3.7a Fig. 3.7 b

The shaded area represented in figure 3.8 shdU® as it the intersection oA
(outside area of A shown in figure 3.9 a) and Bedaof the circle B shown in figure
3.9b).

Fig. 3.8

Fig.3.9a Fig.39b

The Venn diagram forA[B is shown in figure 3.10. It is the intersection of
outside regions of the circles A and B (ref. figBa & b).



Fig. 3.10

Fig. 3.11a Fig. 3.11 b

Now the Boolean identityA[(B+C) = A[B+ AIC will be illustrated using

the Venn diagram. Left hand side of this identgyshown in figure 3.12 which is the
intersection of the A and (B+C).

Fig. 3.12

The right hand side of the identity is shown gufie 3.13.



Fig. 3.13

The shaded areas of figures 3.12 and 3.13 areigdénthich shows the given
identity is proved.

Example 3.2 Using the Venn diagram prove the following idgées:
(i) XY+ XY=(X+Y)[X+Y)
@i  X+Y=XIY

Solution: (i) Figure 3.14 shows the Venn diagram of left hsidé of the given identity
and the Venn diagram for right hand side is shawingure 3.15.

Union



Fig. 3.14

\ /

Intersection

|

Fig. 3.15

From these two figures it is clear that the shaateds are identical, so the
Boolean identity is proved.

(i) Figures 3.16 and 3.17 respectively show the Veagrdims of left
hand side and right hand side of the given

identity X +Y = X [Y.

Shaded areais X +Y Shaded areXis'Y



Fig. 3.16

Shaded area iX \ / Shaded area ¢

Intersection

Fig. 3.17

The shaded areas of the Venn diagram shown abevidemtical, which indicate

the given identity is proved.

3.7 Truth Table: Truth table gives the values of the output variafiler all the
possible combinations of the input variables. Caeisa Boolean function F = A . B of
the logic AND operation. In this function A & B atke two input independent variables
and will have 2 (22 = 4) possible input combinations, where N is thenher of input
variables. Each input combination gives rise ampwutAll possible values of input and
output variables listed in the form of a table roWwn as truth table. The truth table of

this AND operation is shown in table 3.10.
Table 3.10

Input Variables output

A B F=AIB
0 0 0
0 1 1
1 0 1
1 1 1

To draw the truth table of a given function follegiprocedure is followed:




A table is drawn having one column each for indeleat variables and one for
dependent variable. The entries of all the possiblees of the independent variables are
made in the different horizontal rows in binary gnession. The number of horizontal
rows will depend on the number of independent Wemgiven by 2 , where N is equal
to the number of independent variables. The valuéise dependent function are filled in
the table after calculating it from the given fuoot
Example 3.3 Draw the truth table of a Boolean function givesiow:

F=AB+C
Solution: The given expression has the three independerdhbtas, so it will have 8
different horizontal rows (as®*2= 8). Putting all possible values of the indeperide
variables in the binary progression and evaluatddes of the dependent variable F from

the given expressidh = A[B+C, the required truth table is obtained which isvaho
below (table 3.11).

Table 3.11
Input variables Dependent

A B C variable
F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

3.8 Canonical Forms for Boolean Function There are two basic forms of
Boolean function corresponding to a given truthlda@hese forms are Canonical SP
form (Sum of Products) and Canonical PS form (PcodtiSums).

3.8.1 Canonical SP (or SOP) Form The canonical SP form for Boolean function of
the truth table are obtained by summing (ORing) theduct (ANDed) terms
corresponding to the 1's entry in the output colushthe truth table. The product terms
also known as minterms are formed by ANDing the memented and un-
complemented variables in such a way that the comght of variable is taken for the
0’s entry to the input variable and the variabgelit is taken for 1's entry in the input
variable. The minterms (possible ANDed terms odpits) for the two variables A and
B are shown in table 3.12.

Input variables | Minterms

Table 3.12 B

PPk OoOol>

0 AlB
1 AlB
cl) AlB

AlB




Similarly, table 3.13 shows the minterms for thvadables truth table.

Table 3.13
Input variables Minterm
A B C notation
0 0 0| ABBIT m,
0 0 1| ABIT m,
0 1 O | ABTC m,
0 1 1| AaBT M
_ m,
1 0 O | AIBIC
m5
1 0 1| ABIC m,
1 1 0| ABIT m,
1 1 1 AIBIC

In general, there will be2different minterms for N variables. Further itaso
convenient to refer the minterms in the form of t@im notations as shown in table 3.13.
The subscript ton corresponds to the decimal equivalent of the pimnamber formed by

the independent variables. For example the mintemthe minterm notationMg is
A[B EE, as 110 is the binary equivalent of the decimahber 6 (subscript ah). There
will be 16 minterms for four variable truth tablef m to m,.

The required canonical SP form of the Boolean esgion corresponding to a
given truth table is finally obtained by ORing thenterms that produce 1 output in the

truth table.

Consider a truth table (table 3.14) whose Bookeguression in SP form is to be

obtained.

Table 3.14

A B

PRPrRERLROOOO
RPOROROROIN

PPRPOORFRL,EFL OO

PRPPOORFL,LOOM




The minterms corresponding to the input condititheg result 1 at the output in
the above table areA[B[C, A[BIC, ABIC, AI[BIC. The required Boolean
expression is obtained by ORing these minterms as:

F=ABIC+A[BIC+ABIC+ABIC - (3.1)

In minterm notation this expression is written as:
F = m, + m + m; + m,
=> (m,mmm) (3.2)

Or simply
F=> (2567) (3.3)

The decimal numbers in the above expression itelite subscript of the
minterm notation.
3.8.2 Canonical PS (or POS) Form The Boolean expression in canonical PS form of a
truth table can be obtained by taking the proddd@¥ing) of the sum (ORed) terms
corresponding to the O’s entry in the output columfrthe truth table. The ORed terms
are called as maxterms. The maxterms are formedRing the complemented and Un-
complemented variables present in a row of thehttable in such a way that the
complement of variable is taken for the 1's entrythie input variable and the variable
itself is taken for O’s entry in the input variable

The maxterms with their notations for three vdealare shown in table 3.15.

Table 3.15
Input variables Maxterms | Maxterm
A B C notation
0 0 0 | A+B+C M,
0 0 1| A+B+C M,
_ M
0 1 0 A+B+C " 2
0 1 1 _ 3
A+B+C M,
1 0 0| _
L 0 X é+B+E M
1 1 o | A*B+C M,
1 1 1 | A+B+C M,
A+B+C




The subscript toM corresponds to the decimal equivalent of the limamber
formed by the independent variables. For exammentmterm for the minterm notation

M 5 is A+B+C, as 101 is the binary equivalent of the decimahibper 5 (subscript of

M). There will be 16 minterms for four variable truable fromM, to Mss .

The Boolean expression in canonical PS form ot table given in table 3.14
is obtained by ANDing the maxterms that producesitput in the truth table.

The maxterms correspondlng to the |nput condititias result O at the output in

the table 3.14 aréA+B+C, A+B+C, A+B+C, A+B+C. The required Boolean
expression is therefore obtained as:

F(in PS form)=(A+B+C)[A+B+C)[[A+B+C)[(A+B+C) ---—-- (3.4)

In maxterm notation this expression is written as:

F(inPS formFr M, M M, M, (3.5)
=|_|(|\/|0,|\/|1,|\/|3, M4)
Or Simply
FinpPsform=[]1 O134) (3.6)

It is important to note that equations (3.1) aBdi) represent the Boolean
expressions in canonical SP and canonical PS foespectively of the same truth table
(table 3.14). These two expressions must be eguitial’he equivalence may be shown

by considering directly the expression férin SP form from table 3.14 as:

E (in SP form):Z:mO m,m;,m,

or F=ABIC+ABIC+ABIC+ABIC - (3.7)

Taking the complement on both side of this equatierget:

F=ABC+ABIC+ABC+ABC

= (A(BIC) [ABIT) [A(B(T) [(ABIT)

= (A+B+C)[{A+B+C)[{A+B+C)[{A+B+C)

=(A+B+C)JA+B+C)[{A+B+C){A+B+C)

------ (3.8)
The equation (3.8) is the same as equation (BH% method gives us a method
of getting thePS form from SP form of the same Boolean expression. Similarly, by

taking E (in PS form) and then complementing on both sitlesconversion of PS form
to SP form is obtained.

Thus F =[] (0134) in PS form is converted to
F = Z (2,5,6,7) in SP form.



From the above discussion it is concluded thatwtestandard forms of Boolean
function may be obtained from a given truth taflleese functions will not directly be
realized using the basic gates. These functionsodbe minimized using the theorem of
Boolean algebra or other methods, which will becassed in later chapter. It is clear
from the equation (3.9) that the conversion of stadard form to other is obtained by
interchanging>. and[] and having the numbers missing in the originaifor

Example 3.4 Express the following function into canonicairh:
() F=(X+Y+Z)QX+Y)QY +Z)
(i) G=ABIC+AB+BIC

Solution: () F=(X+Y+Z)X+Y)QY +2)
Expending the terms we get:

F =(X+Y+2Z)X+Y+ZZ) (X X +Y +Z)
S(X+Y+Z)AX+Y+Z)AX +Y +Z) X +Y + Z) (X +Y + 2)
=M,M,M M, M,
=[1(My,M;,M,,M;,My)

(ii) G=ABIC+A[B+BIT

Expending the terms we get:

G=ABIC+ABC+C)+(A+A BT

= AIB[C + A[B[C + ABIC + A[B[C + A(B[C

=m, +m+m, +m+m

=m +m, +m; +m; +my,

=) (m,m,,m;, m;,m,)

Example 3.5 Express the following Boolean function in P&fio
F=AB+BIC

Solution: We have F = A[B+BI[T

Applying the distributive law, we get:
F=(AB+B)(AB+C)
=BA+C){B+C)
=(A[A+B)[{A+BB+C)[{AA+B+C)
=(A+B){A+B){A+B+C)[{A+B+C)[{A+B+C)[{A+B+C)
=(A+B+CI[C)[{A+B+CI[C)[{A+B+C)[{A+B+C)[{A+B+C)[{A+B+C)



=(A+B+C)[{A+B+C)[{A+B+C)[{A+B+C){A+B+C){A+B+C){A+B+C)
=(A+B+C)[{A+B+C){A+B+C)[{A+B+C)[{A+B+C)

= M OM ZM 3M GM 7

=MN(M, M, M, M., M,)

Example 3.8 Express the following Boolean function in Sinfio

F=ADB+C
Solution: The given Boolean function is:

F=AB+C
Expending the terms we get:
:AEEEQC+E)+(A+Z)BD
= ABIC + A[B[C+AC+A[T
= AIBIC + ABLC + A{B + B) [C + A[{B + B) [C
= ABIT + A[BIC + AIBIC + A[BIT + AB[T + A[B[T
= A[B[T + A[BIC + AIBLC + A[B[T + A[BI[T + A(B[T
= A[BITC + A[B[C + A[B[T + AB[T + A(B[T
=My +m, +m;, +m; +m,
=m +m,+m, +m +m,
= 2(m, my, m,, my, m,)

Example 3.7 Using the theorems of Boolean algebra, reduedatiowing functions:
() F,.(A/B,C,D)=2% (0126,714]15)
(i) F,(X,Y,Z,W) =2 (236,7131415)

Solution:

(i) F,(A,B,C,D) =Y (01,26,71415)

~
=

,(X,Y,Z,W) =Y (236,7131415)
ZW+XYZW+XYZW+XYZW+XYZW+XYZW+XYZW
[Z QW +W) + X [Y [Z QW +W) + X [Y [Z W + X [Y [Z [QW +W)
Z+XYZ+XYZW+XYZ

QY +Y) + X Y {Z W + 2)

X X| X| x|
N KKK



=X Z+X Y W+
=XZ+XIYW+XYZ
=Z(X+XIY)+ X [Y W
=Z(X +Y)+ XYW

=X Z+Y[Z+XYW

(SinceZ +Z W =Z +W)

Example 3.8 Using the theorems of Boolean algebra, reduedatiowing functions:
(l) Fl(alblc) = I_l (011)415)7)

(ii) F,(a,b,c,d) =% (3,5,711 13 14 15)
Solution:
(i) F,(a,b,c) =1 (01,4,5,7)
=(a+b+c)[{a+b+c)qa+b+c){a+b+c)Ha+b+c)
={a+h+tcc) (atb+e cla+th+e Distributive law)
=(a+b)[{a+b)[{a+b+c) (Sirc& = 0)
=(a+b){a+bb+c)) (Distributive law)
=(a+b){a+blt)
=(a+b)[qa+b){a+c)
=(b+al®) [{a+c)
=b[a+c)

(i) F,(a,b,c,d) =3 (3,5,71113 14 15)

=(a+b+c+d) {a+b+c+d) a+b+c+d) [{a+b+c+d) {a+b+c+d) {a+b+c+d) fa+b+c+d)
=(b+c+d+al@) [{a+b+d+cld) {a+b+c+d){a+b+c+dd)

= (b+c+d) [{a+b+d) {a+b+c+d){a+b+c)
=(b+c+d)[{a+b+d){a+b+clc+d)) (Distributive law)
=(h+ec+d) (a+b+d) (a+b+e d) (Sincecc+d) = o)
=(b+c+d)[{a+b+d){a+b+c)[{a+b+d) Distributive law)
=(b+c+d)Qa+b+c)b+d+ala)

=(b+c+d){a+b+c){b+d)

=(d+bb+c)) {a+b+c){b+d)

=(d+blt){a+b+c){b+d)

=(d +b)[{d +c) {a+b+c){b+d)

=(d+b){d +c){a+b+c) (Sincala=a)



3.9 Realization of Boolean Function Using Gates The Boolean functions discussed
above nay be realized using AND, OR and NOT g#&lessider a Boolean function:

f=zable+ablt+ablec+able+ablec - (3.10)
Realization of this Boolean function is shown iguiie (3.16).
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Figure 3.16

AND, OR and Not gates are called as universal ghtzsause any Boolean
function can be realized using these gate. Itiithé&r noted that this circuit needs 9 gates
(three NOT gates, five 3 input AND gates and onephit OR gates) for its realization.
Use of Boolean algebra help in getting the miniB@ablean function as given below:

f=ablt+abe+abdt+alblc+alble

=albc+c)+ab{c+c)+alblc
—alb+alb+alble

—alb+b)+abt

—a+alblt

=a+bl¢ (Since+alb=a+b)

This reduced Boolean function need to have omgetlyates (one NOT gate, one
2 input AND gate and one 2 input OR gate) for éalization as shown in figure (3.17).



af by c¢?
f
o o o [e]
Figure 3.17

It is clear form the above discussion that theimized Boolean function needs
less number of gates for the realization. Thisifiggthe importance of Boolean algebra.
The minimized functions not only help in reduciig thumber of gates but also increase
the reliability of the circuit and speed of opeoati

3.10 Other Logic Operations and Logic Gates The use of three Boolean
operators namely AND, OR and NOT has been discusst forgoing sections of this
chapter. The gates for these operators are knowmiaersal gates as all the Boolean
functions can be realized using these gates. Bedinkese operators there are other
operators which will now be discussed. For two inpariables two truth tables are
known; one for AND operation and other for OR opiera However, for two variables

2 N
there may be 16 ¥ 2° ) different truth tables. In genera’l2 truth tables may be

constructed, where N is the number of input vagabBo for two variables 16 different
Boolean operators or functions may be defined. ffilth table of 16 functions for two
variablesA andB are shown in table 3.16.

Table 3.16

A B fO fl f2 f3 f4 f5 f6 f7 f8 f9 flO fll le f13 1:14 f15

PR OO
RPORroOo
[eoNeoNoNe)
ROOO
oOr OO
PR, OO
oOor O
RPORroOo
OrRREFROo
A =)
P OR R
e




Out of the 16 function listed in table 3.16, eightctions are basically the
complementation of other eight functions. Thesdub@tions are expressed algebraically
in table 3.17.

Table 3.17
Function Operator Symbol Comments
f,=0 NULL Always 0
f,=AlB AND AlB A and B
f, = AB INHIBITION AlB A but not B
f,=A Always A
f, = AB INHIBITION B/A B but not A
f.=B Always B
f,= AB+ A EXCLUSIVE —OR AOB A or B but not both
f,=A+B OR A+B AorB
fg = (A+B) NOR Al B Not (A or B)
f,=AB+AB | EQUIVALENCE Ao B A equals B
f,=B COMPLEMENT B Not B
f,=A+B IMPLECATION BOA If B then A
f,=A COMPLEMENT A Not A
f,=A+B IMPLECATION AOB If A then B
f, = AB NAND At B Not (A and B)
f.=1 IDENTITY Always 1

The Null, Identity, A and B functions are trivigince Null and Identity functions
always produce 0 and 1 respectively, and A and rigtfans always produce the input
itself. We are already familiar with AND, OR and @plement (NOT or A, B)
functions. The other functions are NAND, NOR, Exthe OR, Equivalence, Inhibition
and Implication. The NAND function is the complerhef AND and it is also known as
‘NOT of AND’. Similarly, NOR is the complement of ®which is also known as ‘NOT
of OR’. The Exclusive OR (also known as XOR or E@&gimilar to OR but produce an
output 1 when either of two inputs is 1 but nothbdt other words XOR produces output
1 if the inputs are dissimilar. The equivalencéhiss complement of XOR, hence it is also
known as Exclusive-NOR (or XNOR). This function guces output as 1 when both the
inputs are equal. The logicians may use the funstimplication and Inhibition but are
seldom used in computer logic, since they are aotroutative.

The electronic circuits which can perform the ofieraor functions discussed
above are known as gates. The symbolic represemtand truth tables for these gates
are shown in table 3.18.



Table 3.18
Logic gates Symbols De-Morgan’s Truth Table
representation




F=AO B
e -

equi val ence

e =1p
o r olm
o o r|m

The logic gates for Inhibition and Implication opers or functions are not
designed since these functions are not commutativéact, the binary logic gates are
designed only for the operators which satisfy thiwing factors:

(1) The operators should be commutative and associative

(i) The gates for the operators itself or in assoaatiith other gates should
be able to realize all the Boolean functions.

(i) It should be feasible to design the gates and disé for making the gates
should not be very large.

The exclusive-OR and Equivalence operators yatisd first two properties but
relatively more expensive to construct these gédesnore than two inputs. However,
NAND and NOR operators satisfy all the above proeeiso gates for these operators are
constructed and commonly used. These gates allml ¢hk universal gates are used in
preference to AND, OR, NOT gates.

It is necessary to discuss that the NAND/NOR afindd for only two inputs as
these operators are not associative, i.e.

(A1 Byt CzA1 (B1 O

and (AtB)IC£AL1 (B1C)
So multiple input NAND/ NOR gates are definedtess ¢complement of multiple
input AND/OR gates as shown in figure 3.18.

A Y A = .o
- AB.C
g — ) & BQD;”B*C
c c
NAND
A AFB+C__ A
M + C "A.B.C
Ensa e
c B
NOR
Figure 3.18

Further AND, OR, NOT gates can be implemented WiND’s or NOR’s alone
as follows:
() NAND as NOT: A=A[lA
A=

also All illustrated as shown in figure 3.19(a):



Fig. 3.19(a)

(i) NAND as AND: AlB = A[B =Complement ofA[B
which may be illustrated as shown in figure 3.19(b

Fig. 3.19(b)
(iii) NAND as OR:

A+B=A+B=AB=A1 B
which may be illustrated as shown in figure 3.19 (c

Fig. 3.19(c)

(i) NOR as NOT :
also

)>

A=
A= illustrated as shown in figure 3.20(a):

Fig.3.20(a)

(i) NOR as OR:

A+B=A+B= Complement of A+ B
which may be illustrated as shown in figure 3.20(b



A A+B A+B
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Fig. 3.20(b)

(iif) NOR as AND:

AB=AB=A+B=Al B
which may be illustrated as shown in figure 3.20 (

A @0 A+B=A . B A A
A B
<—> —
B — B
8 B
Fig. 3.20(c)

The minimization of Boolean expressions using tleotems of Boolean algebra
have already been discussed which help in redubimdjterals or variables. The reduced
Boolean expressions can be realized with less nunfb&@ND, OR, NOT gates and also
each (AND/OR) gate having minimum number of inpdtsere are also other methods
for minimizing the Boolean expressions which wik ldiscussed in a later chapter.
However, for realization of Boolean expressionshgsine NAND/NOR gates alone,
more number of these gates are required. This istrne when IC’s are used, since
several gates are available in an IC. So for makiegcircuit using the NAND/NOR
gates alone will not cost more.

3.11 Realization of Boolean expressions using NANUOR alone The
given Boolean expression is generally simplifiechgghe theorems Boolean algebra or
other methods to be discussed in a later chapterpbtain the minimal Boolean
expressions having less number of variables andabmplements. Now the logic circuit
diagram corresponding to the simplified Booleanregpion is drawn. If the Boolean
expression is in the sum of products (SP) formntNAND gates should be used for
realization. However, NOR gates should be useddalization, if the simplified Boolean
expression is in product of sums (PS) form. Thishoé enables the realization simple
and requires least number of cascading gates.

The general rules for NAND gates realization obBan expression given in SP
form, are given below:

1. For each product terms, use the literals or vagmlals inputs to NAND
gates.

2. Feed the output of all such NAND gates to a sedewel NAND gate.

3. Any literal appearing alone as a term is compleexr@nd connected to

the NAND gate at the second level.



For example letF = AD+BC+E is given for realization. NAND gates
realization of this expression is shown in figur213

} F

Fig. 3.21

Similarly, if we have a Boolean expression in PSrnfo as
F=(A+D)[(B+C)[E, the NAND realization of this expression is shouwnfigure

3.22. This circuit requires three levels of gatikgch level adds to the propagation delay.
The aim of the circuit designers should be thatettshould be minimum number levels
of gating. The realization of this circuit with NOgates will have only two levels of
gating. The NOR realization of this circuit is shovin figure 3.23. Hence NOR
realization is preferred for the Boolean expressiginen in PS form.

A A.D
D —h E F
. —f
=
C — -
B.C
E
Fig. 3.22
A A+D A
D = D
") O B
C . C

ml

Fig. 3.23



The general rules for NOR gates realization of Banl expression given in PS
form, are given below:

4. For each sum terms use the literals as inputs tB jales.
5. Feed the output of all such NOR gates to a secarel NOR gate.
6. Any literal appearing alone as a term is compleexr@snd connected to

the NOR gate at the second level.

Example 3.9 (i) Prove the associative law for exclusive — @geration.
(i) Prove that the NAND operation for three variables riot
associative.
Solution: (i) The associative law for exclusiv®©R operation is given as:
AO(BOC)=(AOB)OC
L.H.S. = A0O(BOC)
= A0 (BLT +BI[T)
:KE{I§BD+BBE)+AEQ§E3+BBE)
= A[B[T + AB[CT + A[{B[T) {B[T)
= A[B[T + A[B[T + A[{B+C)[{B+C)
= AIB[C + ABLC + A{B +C) (B +C)
=ZE_B[C+KEB[E+AEQBEQE+C)+EEQ§+C))
:KE_BBD+KEBBE+AEQBBD+EE_B)
= AIBIC + A[BIC + A[BIC + A[B[C
RHS. =(A0B)OC

=(AB+AB)OC
=(AB+ A[B) [T+ (AB+A[B) [T
=(AB)AB) T +ABIT+ABIT
=(A+B)[{A+B)[C+ABIC + ABIC
=(A+B)[{A+B)[C+ABIC +ABIC
= (AQA+B)+BA+B))[C+ABIC + ABIC
= ABIC + AB[C + A(BIC + A[B[C

L.H.S.=R.H.S Hence proved.

(i)  We are to prove thaA1 (B1 Q) Z(A1 B)1 C
L.H.S. =A1 (B1 C)
= A1 (BIT)
= A[{B[C)
='A+(BI[T)
= A+BIC



R.H.S. =(AtB)t1C
=(AB)[C
=AB+C
L.HS. # RH.S. Hence proved
PROBLEMS:
1. State and prove Demorgan’s law for two variableswHtan it be proved

10.

11.

for n variables?
Discuss the theorems of Boolean algebra.
What is the difference between the ordinary algalmihBoolean algebra?

What do you understand by logics? Discuss the AND @R operations
using the suitable diagram. Draw the truth tablettioee input AND and
OR operations.

What do you understand by logics? Discuss NOT djo&i® using a
suitable diagram.

What is Venn diagram? Prove the following idensitieésing Venn
diagrams:

() A[(B+C)=AlIB+AIC

(i) a+blc=(a+b)l(a+c)

iy a+a=a

(iv) a+b=alb

Prove the following postulates of Boolean algebna ghen verify the
following identities using Venn diagram.

() a+alb=a+b

(i) atalb=a

(i) atalb=a

(iv) al=a+b

Describe the method of constructing truth tableadoolean expression.
Taking a suitable function of three variables dthestruth table.

Discuss the method of getting canonical PS forBBaflean function of a
given truth table.

Discuss the method of getting canonical SP forBadlean function of a
given truth table.

Describe the method of converting the PS form odlBan function to SP
form.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Mention and explain the different Boolean operafoosn a two bit truth
table. How many of them are used to deign the gat¥sy NAND and
NOR gates are known as universal gates.

Explain how AND, OR, NOT gates can be realized gdWAND gates
alone.

Explain how AND, OR, NOT gates can be realized gsNOR gates
alone.

Prove the associative law for exclusive - OR andivadence (XNOR)
operators.

Prove that the associative law does not hold foNRAoperators for three
variables.

Prove that the associative law does not hold foRNgperators for three
variables.

Using the theorems of Boolean algebra , provedheviing identities:
() (A+B)[C+(B+C)[A+AB=A+B+C
(i) XOX+2)+Y+YZ=Y+Z
(i) A+AIC+BID=AB+D)
(iv) (ADOB)+A=AI[B
(V) AO(AOB)=B

Prove the following:
()  AIB+AIB=AIB+AIB
Using the theorems of Boolean algebra , provedheviing identities:

() XYZW + XYZW + XYZW + XZW + X YZW = YZ + XZW

(i) XYZW + XYZW + X YZW + X YZW + X YZW
+ XYZW + XYZW + XYZW + XYZW = X +YZW
(i) AB+A[C+BIC=AB+BIC

Construct the truth table of the Boolean expressiand from the truth
table find the canonical form of the Boolean expi@s.

(i) Z=AB+CD +BD
(i) F=XIY+YI[Z
Simplify the following functions using the theoreBsolean algebra.
(i) F(a,b,c,d) =) (0128910)
(i) F (a,b,c,d) = Z (01,4,6,9131415)
(iii) F(X,Y,Z,W)= z (0,458101215)



23.

24.

25.

26.

27.

28.

(vy F(AB,C,D)=> (L2356,79111415)
Realized the minimal Boolean expressions obtaimed@hove problem
(22) using

0] AND, OR NOT gates.
(i) NAND gates only.

Simplify the following functions using the theoremsolean algebra.

() P(X,Y,ZW)= |_| (4,612131415)

(i)  Z(AB,C,D)=[] (34671112131415)

(iii) F(X,Y,ZW)= |_| (01,2,38,910 111315)
Realized the minimal Boolean expressions obtaimedhbove problem
(24) using:

0] AND, OR NOT gates.
(i) NOR gates only.

Express the following function into canonical form:
() F(abc)=al+alt
(i) F(AB,C,D)=ABICID +ABIC+AD
iy FX,Y,ZW)=XYZ+YZ+XLYZW
(v) F(AB,C,D)=ACD+BIC+BD

Express the following function in to canonical S
Z(AB,C) = (A+C)[(B+C)

Express the following function in to canonical R&.
Z(A,B,C)= AIC+AIB



Simplification of Boolean
Functions

In the preceding chapter it has been discussedhkaBoolean functions can be
simplified using the theorems of Boolean algebitze Teduced Boolean expression helps
in getting the simple, less expensive and smaiteuit. This method of simplification is
not used in practice as it is difficult to applwyreher, it is impossible to guarantee that the
reduced expression is minimal and it cannot beaedleyond the obtained expression.
The two other methods for simplifications of Boaleaxpression will be discussed in the
following sections of this chapter. One is knowrKasnaugh map (K — map) method and
other is known as Quine — McClusky (Q — M) tabuneathod.

4.1 Karnaugh map (K — map) method  The Karnaugh map method is very
commonly used for the simplification of Boolean eegsions, since no algebraic rules
are applied in this method. It is simply a graphmethod and provides systematic
approach for getting the simplified Boolean expi@ss|f this method is properly used
then the available Boolean expression will be maliand will not further be simplified
by any method. The Karnaugh map also called K — mmgthod is suitable for
simplification Boolean expression which containsirf@r less number of variables (or
literals) with their complements.

4.1.2 Two Variable K — map For two variable K — map two lines are drawneo
horizontal and the other vertical. On one line¢bmplement of one variable followed by
the variable itself is written and on the otherlithe complement of the other variable
followed by that variable itself is written. Letehwo variables are A and B. Sb and
variable A, are written on vertical lindg and variable B are written on horizontal line or
otherwise as shown in figure (4.1). The other meétldd writing K — map for two
variables is that in place o, O is written and in place of A, 1 is written; ilastrated

in figure (4.2), where A and B are shown separater and below of a leaning line.
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Figure 4.2

These two figures are similar and show the samenimgaOne can use either of
the two ways mentioned above. Each K — map show $quares represented by four
mintermsmy, My, M, andmg. In the truth table of two variables if there drs entry
corresponding to the some minterms, then 1s arerexhtcorresponding to those
minterms. Let us assume that we have 1s entnhéontinterms mand m. The K — map
for the same is represented as shown in figure 4.3.

A

B 0 1
o 1] 1
1 ] 1

Figure 4.3

4.1.3 Three Variable K — map For three variables two adjacent variables akertan
either side (vertical line or horizontal line) tietK — map and the remaining one variable
on the other side. Let A, B and C are the thre@abées, the two variables will have four
combinations labeled on one sidea8, A.B, ABand AB ; C andC on the other
side as shown in figure 4.4.
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Fig. 4.4

The other method of writing K — map for three vhlés is that in place of the possible

combinations of two variables A & B it is writtes 80, 01, 11 and 10; and in placefof
& C, 0 & 1 are written; as illustrated in figure (1.5vhere AB and C are shown
separately over and below of a leaning line.

o

A B 0 1
A FB

C™_ 00 01 1 10 00| " &

ol " iy g iy 01
iy ey
1 ml .Pﬁ3 m‘]‘ .Pﬂj 11 mﬁ mT
0| Mg

Fig. 4.5

4.1.4 Four Variable K—map For four variables two adjacent variables aresmakn
either side (vertical line or horizontal line) ¢fet K — map and the two variables on the
other side. Let A, B, C and D are the four variapléne two variables will have four

combinations labeled on one side AB, AB, ABand AB : and other two will also



have the four combinations &D , C.D, C.D andC.D on the other side as shown in
figure 4.6.

A-B 4B AFB AF cD ©D ©bh ©bD
— 4.8
oD my m, PP mg mg m, m ty
= A.B| m L Mg Mg
m m 4 5
c.ol ™ 5 T My
C.O| ™y | mg Meg | ™0 A-B| mg Mg | myq | myg

Fig. 4.6

The possible combinations of AB and CD (discussbdva) may also be shown
separately over and below of a leaning line astilted in figure 4.7.

A B B oD
c.D an 01 11 10 ' 00 01 11 10
|:I|:I ml] I‘I'I‘ m.‘z ms DU I'I'In I‘I'I1 m3 I‘I'Iz
01 m, m5 m” mg 01 m4 m; m7 e
11 m, . "y My q 11| mqz myg | My M.
107wy | mg Mig | ™0 101 mg Mg | Mg | mg
Fig. 4.7

If a Boolean function of three variables or fourighles is given, the 1s entry in
the K — map is done for those combinations whiehpaesent in the given expression and
for the other combinations Os entry are made.

Example 4.2 Draw the K — maps for the following Boolean ftino of three variables.

F.(AB,C) =) (m,m;,m;,m;,m)



Solution: In the K — map of three variables 1s entry are enfut the combinations
m,,m;,m,, m,,m, and in the remaining combinations, Os are enterld. K — map for
the same is shown in figure 4.8.
A48
CN_00 01 11 10

ol O 0 1 0

Fig. 4.8

Example 4.2 Draw the K — maps for the following Boolean ftino of four variables.

F.(AB,C,D) =} (m,,m,,m,, Mg, m,, myy, My, M)
Solution: In the K — map of four variables 1s entry are mbmtethe combinations
m,, m;,m,, m;, m,,m,,m,,m. and in the remaining combinations, Os are entéfked.K
— map for the same is shown in figure 4.9.

. A B
cDN_ 00 01 11 10
00| 0 1 0 0
o1] © 0 0 0
11| 1 1 1 1
10] 1 1 1 0
Fig. 4.9

4.2 Encircling of Groups After constructing K — map, the pairs quads actets of
adjacent 1s in the K — map are made for gettingriimemal Boolean expression. A pair
eliminates one variable with its complement; a qaad an octet eliminate two variables
and three variables respectively with their comm@sta. Now it will be discussed how
pairs, quads and octets are formed in the K — nmaph&lp in minimizing the Boolean
expression.

4.2.1 Pairs In the three-variable or four variable K — magving 1s and O’s entry,
two adjacent 1s (vertically or horizontally) arecedled. The diagonally adjacent 1s are
never encircled. The encircled 1s forms the passhown in figure 4.10.
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Now it is clear from the K — map of three variab(esf. figure 4.10 a) that there
are two encircled pairs of adjacent 1s and thegs parrespond to the term&[B and

ALT . The method of writing these terms is that thealde, which gets changed from

complemented form to un-complemented form or vie¥sa, is dropped with its
complement. This can be illustrated as follows:

Consider the pair (fig. 4.10a) whose terna (8, the two 1s contained in the pair
has the binary numbers 000 and 001 for the vasahEBC. In the binary numbers, the

variable C changes from 0 to 1 (complemented teamplemented), so this variable is
dropped with its complement. The binary number iefO0 having the term (in SOP
form) asA[B. Similarly, consider the second pair whose termAlE. The two 1s
contained in this pair have the binary numbers &1A00 for variables ABC. The
variable B changes from 1 to O so this variablelngpped with its complement. The

remaining (common) binary number 10 for variablegS will have the term (in SOP)
asAlC .

The Boolean algebra is involved in getting theregpion for a pair. In the first
encircled pair (discussed above) of three vari&ble map, each 1 of the pair show the

terms AIB[C and ABLC (corresponding to binary numbers 000 & 001). Wheese
terms are ANDedA[B is obtained:

= ABIC + AB[T
= A[B(C +C)
= AB

Similarly, one can verify the terms correspondiiogencircled pairs in four
variable K — map as given in figure (4.10 b).



From the above discussion it is clear that a plminates one variable with its
complements, i.e., the pair will contain the terfmtveo variables in three variable K —
map and it will contain the term of three varialile$our variable K — map.

4.2.2 Quads In the K —map if four 1s are adjacent in a raveelumn or in the form of a
square, then these 1s are encircled called as gdadsm is written for each quad using
the same techniques discussed above. The varmabieb changes from complemented
to uncomplemented or vice versa are dropped andaiables which are common in all
the four 1s of a quad are considered to write terrBOP form. Consider a K — map
shown in figure 4.11.

wA-B
c.D a0 01 11 10
P
A5 oof I o |1 |1 _
c 00 01 11 10 1 pA-C
o|(T-IIo| A - or| 1] o (L] o)
’ 1| 0 0 0
1 |:| D //I D 0
E; o] o 0 0
v
4-5
Fig. 4.11a Fig.4.11b

In the K — map of three variables (figure 4.11h§ éncircled group of 1s shows
the quad whose four elements represent the binamybars 000, 010, 110 & 100 for
variables ABC. In the binary numbers, 0 for C @menon for all the four binary

numbers; soC (in SOP form) is the term for this quad. The viales AB are dropped as
each of the variable changes 0 to 1 or 1 to 0.Bdaean algebra is involved in getting
the expression for a quad. The quad is the combmatf two pairs (shown by dotted

encircles in figure 4.11a). In the encircled quie, two pairs will show the termA [T
and ALC . When these terms are ANDed, is obtained as:
= A[C+AIC
=CA+A)
=C
Similarly in the K — map of four variables (figu#ellb), the two quads are
encircled. One can verify the terms for each quad.
It is clearly illustrated that the quad will coimtahe term of one variable in a K —
map of three variables and it will contain the terof two variables in the K — map four

variables. It may, therefore, be stated that a celadinates two variables with their
complements.



4.2.3 Octets The eight adjacent 1s are encircled in a K — krapvn as octet. Figure
4.12 shows the encircled octet (solid line) in & Knap of 4 variables. The term for the
octet is B, which is written with the same techmigs used for pairs and quads.

WA B
cON_00 01 11 10
P —
00 0 ||i1 1l 0
: N m—.
ufo || | 0
i i
100 o || | 0
L A
Fig. 4.12

An octet eliminates three variables with their céenpents and gives a term of
one variable in a K —map of four variables. In fantoctet is a combination of two quads
as shown by dotted lines (figure 4.112). The tefondwo quads areB[C and BIC.
When these two terms are combined it gives:

=BIC+BIC

=B(C+C)

=B
4.2.4 Overlapping groups:While making encircled groups in the K — mapsialways
tried to have the groups of largest number of dst than others, i.e. octets are encircled
first than quads and than pairs. It is importantise same 1 more than once. In other

words same 1 may be used in more than one encigetegs. Such groups are called as
the overlapped groups. Some overlapped groupsharmensin figure 4.13.

A B A B
c.D 00 01 11 10 c.D an 01 11 10

00| O 0 0 0 oo| O 1) 0 0
-1 = ' Ny

01| © 1 1 0 o1] © || 1 0

1 [1 1 1 1 W 11| (1 M o
S E— "

10 L1 1 1 1 J 10| © 0 1 0

Fig. 4.13(a) Fig. 4.13(b)
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The terms for each encircled groups are writtethénsame manner as is done for
normal pairs, quads and octets.
4.2.5 Rolling groups: It is also allowed to roll the K — map so that grmg of
largest number of 1s may be formed. To understaisdconsider a K — map as shown in
figure (4.14a). In this K — map while encirclingiecan obtain two quads but using the
rolling of K — map, an octet may be formed as shawiigure (4.14b). Here the rolling is
done in such a way that the left hand side endrdead touches the right hand side
encircled quad. This in fact looks like an octdteTolling is shown by half encircling the
two groups as shown in figure (4.14b). Thus thenteorresponding to the rolled octet is
written in the same fashion as in normal encircling

. A B ~ A B
c.D 00 01 11 10 c.DN_ 00 01 11 10
et T T P
oo |1 0 0 1 ool 0 1 0 0
01 |1 0 0 1 o1 © 0 0 0
11 1 0 0 1 11 1 1 1 1
10] |1 0 0 1 10 1 1 1 0
R R I N S
_IE A;E \\A?’/
Fig. 4.14a Fig.4.14b

The rolling is possible for quads and pairs alsdlastrated in figure 4.15.
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Fig. 4.15b

The rolling is not only possible with the 1s of rexhe left columns and the 1s of
extreme right columns of the K — map, but it is gbke with the 1s of upper most row
and the 1s of lower most column as shown in figui.

A B

C.ON_ 00 01 11 10|
00 L1 1 1 1 J
U’l’ ‘ 0] 0 0 0

D,

Q\l\l 0 0] 0 8]
10 [1 1 1 1}

| |
Fig.4.16a

4.2.6 Redundant Groups

possibility that all the elements (1s) of some gf/gwups are overlapped by other
groups. Such a group whose all 1s are overlappenth®r groups is called a redundant
group. The redundant groups may be illustrated dnysiclering a K — map shown in

figure 4.17.

g

A B
cON_00 (01 11| 10 |
00| © 1 1 1
02| o 0 o |
0 g’ L NS
1N o 0 0 o |4
0] 1 [ 1 1 1 }

Fig. 4.16b

While encircling the groups in the K — mapserthis a
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In this K — map the encircled groups are: one qamd four pairs. But quad is
redundant since all its four 1s are used in fornotiger pairs. The quad is, therefore,
eliminated. So the valid encircled groups will lseshown in figure 4.18.
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The encircled groups of this figure are simplifmtke and the minimal expression
of this K — map is given as :
F=ABIC+BIC[D+BICID+ABIC

4.3.7 Procedure for Simplification The different rules for encircling the groupsfie
K — map have been discussed in the above sechimwg using these rules the method of
getting the minimal Boolean expression of the gitreth table (or function) will be

summarized below:



» After forming the K — map, enter 1s for the minatsrthat correspond to 1 in
the truth table (or enter 1s for the min-terms lné given function to be
simplified). Enter Os for the remaining min-terms.

» Encircle octets, quads and pairs of course rementheslling and
overlapping. Try to form the groups of maximum n@emof 1s.

* If any such 1s occur which are not used in anyheféncircled groups, then
these isolated 1s are encircled separately.

* Review all the encircled groups and remove themddnt groups, if any.
» Write the terms for each encircled group.

» The final minimal Boolean expression correspondmghe K — map will be
obtained by ORing all the terms obtained above.

Example 4.3 Using K —map simplify following Boolean functiaf three variables.

F(AB,C) =2 (m,,m,m,m;,m,)
Solution: The K —map for the given function is drawn, akecircling the groups of 1s,
as shown in figure 4.19. The required Boolean esgpom is given by:

F=AB+AB+BC

4.8

c 01 11 10

a0
0 m 0 ) 0
U 0 1 17
v D)

B 4.8 B
Figure 4.19
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Example 4.4 Using K —map simplify following Boolean functiaf four variables.
F(AB,C,D)=) (0124791112)

Solution: The K —map for the given function is drawn, afteciecling the groups of
1s, as shown in figure 4.20. The required Booleamassion is given by:

F=ABIC+ABD+BICD+ABD+AMBICD
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Example 4.5 Minimize the following function using K — map dnealize it with AND,

OR & NOT logic gates.
X(A,B,C,D)=> (0125810 1114 15)

Solution: The K —map drawn after encircling the groupd ef for the given function is
shown in figure 4.21. The required Boolean expms given by:

X =AC+BD+BICD
It is interested to note from this figure that floerr 1s at the corners of the K —

map forms a quad due to the rolling on both sidémse term will be BD .
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After getting the minimal Boolean expression, rzstion of the function will be
as shown in figure 4.22.

A B CD

Fig. 4.22

4.3 Incompletely Specified Functions In digital circuits we come across of two
types of functions; namely completely specified diions and incompletely specified
functions. The functions whose values are specif@dall min-terms are known as
completely specified functions and in the K —mahesi Os or 1s are entered for all the
min-terms; such functions have been consideredasoBut sometimes we encounter
situations in which some min-terms do not occum &wample: Input data to a digital
system are sent in 8421 code in which the comlmnatDO00 through 1001 occur, and
1010 through 1111 are known as illegal combinatiaasthese combinations do not
occur. So the combinations 0000 to 1001 will hahes dutput as 0 or 1 and accordingly
these values may be entered in the K — map. Théioatons 1010 to 1111 will have
the output neither 0 nor 1, as these combinati@anaat occur in the given system. So
these combinations are called as the incomplefgied functions. In the K —mapis
entered for every incompletely specified functiofhe ¢ is called as ‘don’t care’
condition. While encircling the groups in the K pmamay assume to be either 0 or 1,
whichever helps in giving the simplest expressidre don't cares are treated as 1s inside
encircled groups in the K —map and are treatedasitide the encircled groups.

This can be illustrated by taking an example. $8ppwe wish to minimize the
following function of four variable having the ‘dorcares’ also. The ‘don’t cares’ are
shown byp below the summation symbol.

X(A,B,C,D)=> (123513)+> (6,7891011)

This function shows that in the K —map 1s are redte€orresponding to the min-
terms 1,2,3,5,13 angd are entered for 6,7,8,9,10,11 and Os are entereithé remaining
terms. The K —map with these entries are showngimwd 4.23(a) and its encircling &
simplification is shown in figure 4.23(b). Thereedwo encircled quads amdwhich are
inside the encircled groups are treated as 1s.ld$tecolumn of this K —map is not



encircled to form the quad as its all elementsgark must be remembered that no such
group is formed whose all the elements @r&he minimal Boolean function of this K —
map is given by:

X =AC+CD
w4 B A B

cDN_00 01 11 10 cON_ 00 01 11 10

oo| O 0 0 ¢ 00| O 0 0 $
o1l 1] 1 1| ¢ o1 0 ] 1 1 [ ¢) a
D

1| 1| g 0 | ¢ 11 F P 0 | g

ol 1] ¢ 0 | g 10 b @ 0 |

ad
Fig. 4.23 a BHig@3 b

The general procedure of getting the minimal Baoleapression of a K-map
including the ‘don’t care’ conditions is summarizeelow:

» After forming the K — map, enter 1s for the minatsrthat correspond to 1 in
the truth table (or enter 1s for the min-terms loé given function to be
simplified). Enterp to the ‘don’t care’ conditions and Os for the remrag
min-terms.

* Remembering rolling and overlapping, encircle a;tquiads and pairs. The
may be treated as 1 if these help in forming largesups. No such group will
be formed whose all the elements @are

* If any such 1s occur which are not used in anyheféncircled groups, then
these isolated 1s are encircled separately.

* Review all the encircled groups and remove themddnt groups, if any.
* Write the terms for each encircled group.

» The final minimal Boolean expression correspondmghe K — map will be
obtained by ORing all the terms obtained above.

Example 4.6 Minimize the following function using K — map émnealize it with NAND
gates only.

FOW,X,Y,Z)=> (0235689)+> (101112131415
@



Solution:

The K —map is drawn for the given function amgiecling of the groups is
done as shown in figure 4.24. The required Booteqmression is given by:

F=W+YZ+XZ+XY+XYZ
z

WX e
Y ZN 00| or/® 1r. (10
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X7zt 7 \
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11 ¥ 0 gl #

[ (AT ([ il

X ¥
Fig. 4.24

The realization of this function using NAND gatedy is shown in figure 4.25
WX Y 7

_%:>7F

L.

Fig. 4.25

4.4 NOR Implementation of Boolean Functions The implementation of

Boolean function with NOR gates requires the sifigaliBoolean function in product of
sums form. But the K —map discussed above givesithplified expression in sum of



products form. So for getting the Boolean expresgioPOS form the encircling may be
done with Os and don't care conditions. The sanfesrwill be followed for encircling
with Os andp. However, the terms for encircled groups areiabthin max-term form.
The variables which get changed in moving from etement to the other adjacent
element in the encircled groups of Os will be efiated with their complements; and the
variables common to all the elements in the ersirgroup will be used in writing the
max-term. For example if 01 is common for AB valéshin an encircle group of Os, then

the max-term corresponding to 01 WiII(er+§) . The final minimal Boolean expression

for the K —map will be obtained by ANDing all therins obtained above.
It can further be illustrated by taking an examgiénd the minimal Boolean
expression using K —map for the following function.

F(AB,C,D)=[] (4678101 (] (012131415)

In this given function Os are entered for the ®&dy6,7,8,10,11angd are entered
for 0,1,2,13,14,15 in the K —map and the minimgbregsion is obtained in POS form.
The K —map is shown in figure 4.26.

F=(B+D){B+C){A+C){A+C+D)

i3 (Bt D)
M I
C.oN 00, D1 T3 (10

00|(7] | H) |1 o |

(A+C+ D) a7 g B
o1 ¢ | 1 &, 1

1|1/ [0 §) | 0] [ &40

(B+C
Fig. 4.26

Example 4.7 Minimize the following function using K — map émealize it with NOR
gates only.

F(AB,C,D)=[] (01458121415 ] (91113)

Solution:  The K —map is drawn for the given function awrtircling of the groups is
done as shown in figure 4.27. The required Booteguession is given by:

F=(A+B)[T
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The realization of this function using NOR gateshswn in figure 4.28.
A 8 C D
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£ >
Fig. 4.28

Example 4.8 Minimize the following function using K — mamé realize it with NOR
gates only.

F(AB,C,D)=> (01581014)+> (271115

Solution: The entries of 0s, 1s and don't care conditionhh@K —map are made as per
the given problem. The encircling of the groupsadweae with 0s ang (shown in figure
4.29), since the minimized function is to be readizwith NOR gates only. The
minimized function in POS form is given by:

F =(A+C)[{A+D){B+C+D)



A B
c.D o0 01 11 10

oof 1 | [0 0) [T Brcen
01 1 1 0 0 (A +D)
— - Y
1[0 ¢ ¢ ¢ J
1

10| ¢ 0 1
R B

.
(A+C)
Fig. 4.29

The realization of this function using NOR gateshswn in figure 4.30.
Ap C D

i

Fig. 4.30

4.5 Five and Six Variable K- map The simplification of the Boolean function up t
four variables have been discussed in the forge@ations of this chapter. Maps for
more than four variables become complicated andsésare not very simple. The
five variable map should have 32 squares as itivaille min-terms and 6 variable
map will have 64 squares as it will have 64 mimar So the 5 variable K —map
will have two blocks (two K —maps four variablesepof 16 squares as shown in
figure 4.31. If the 5 variables are ABCDE then &hble A will represent that the

two K —maps (of four variables BCDE) fok and A.
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Similarly, map of six variables will have four bks (four K —maps of four
variables) of 16 squares each. If six variablesBE€DEF then the four K-maps of four

variables (CDEF) will belong tA[B, A[B, A[B & Al[Bvariables as shown in figure
4.32.

A, = 2
B
“BC B.C
OE 06 01 11 10 DE a0 01 11 10
ool o | 4 12 . 00| 32 | 36 | 44 40
B 45
o1 1 5 13 ] 01} 33 | 37 #
iz | 7 |15 | 11 )35 | 3g | 47 | &
w 2|6 |14 |10 1o} 34 | 38 | 46 42
B.C B.C
DE= 00 a1 1 10 DE™, 00 01 11 10
00|16 | 20 | 28 | z4 00| 48 | 52 g0 | 96
g 01| 17 | 21 i 01| 49 | =3 61 | 57
1119 | 23 3 27 11| 5 | 55 g3 | =8
w1 | 22 30 26 0] 50 | 54 Bz | 58
Fig. 4.32

4.5.1 Simplification of Five and Six Variable Maps It has been discussed
that the K —map of five variables has two blocksl6fsquares and the K —map of six
variables has four blocks of 16 squares. A paio(&gjacent min-terms) in one block and



other pair in the other adjacent block will saidbadjacent if the positions of two pairs
are same in their respective blocks. For examplarss 13 & 9 (forming pair of one
block) are adjacent to the squares of 29 & 25 (phthe adjacent block) in five-variable
K —map and thus reduces two variables using the gaotedure as used in four-variable
map. Similarly, a quad (four adjacent min-termspoé block and other quad of the other
adjacent bock will be adjacent if the positionstloé two quads are the same in their
respective blocks. That is the four squares 19323& 27 (forming quad of one block)
are adjacent to the squares 51, 55, 63 & 59 incadjablock of six-variable map; and
these two quads will eliminate three variables. €ments of the diagonal blocks will
not be adjacent even if their positions are sanhe. Simplification can be illustrated by
using the following two examples.

Example 4.9: Simplify the Boolean function of five variables:
F(AB,C,D,E) = Z o, 234,6,7811121316181920222324272829)
Solution: The K-map for five variables is drawn and 1s an¢ered for the min

terms given in the problem and remaining entriesfdled with Os as shown in figure
4.33.
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e =t — L

The encircling is done as given in figure 4.33.

The min-terms 0, 4, 12 & 8 of block (forming quad) and the min-terms 16, 20,
28 & 24 of other blockA are adjacent, thus giving the term of two varisbléE .

The min-terms 3, 2, 7 & 6 of block (forming quad) and the min-terms 19, 18,
23 & 22 of other blockA are adjacent, thus giving the term of two variaBleD .

The min-terms 12, 13 of blockd (forming a pair) and the min-terms 28, 29 of
other block A are adjacent, thus giving the term of three vieslB[C D.



Similarly, isolated 1 (min-term 11) of blocl and isolated 1 (min-term 27) of
block A are adjacent, thus gives the teBiiC [D [E .

Now ORIing all the terms obtained above, the mingdiBoolean expression is
given by:

F=DE+BD+BICMD+CDIE

Example 4.10: Simplify the Boolean function of six variables:
F(AB,C,D,E) = Z (236,71011, 1415182022242628304150525456586062)

Solution: Figure 4.34 shows the K —map of the given pnoble
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0| (1 [0 TV T e T [ N
| —] (Xl "ﬂh__,i | - |
Fig. 4.34

The encircling is done as given in figure 4.34.

The adjacent groups of 1s are shown by dotted lamel the minimized Boolean
expression is shown as:

F=AMBIE+BE[F +BDF +B[CF + AIBICD[E[F

4.6 Quine — McCluskey Method: The K —map for the simplification of Boolean
function has been discussed in detail. This metvad proved to useful tool for the
simplification of Boolean function up to four vaplas. However, this method can be
used for more than four variables (five or six ahles) but it not very simple to use,
since it is difficult to find if the best selectiaf encircled groups have been made.



A method developed by Quine and improved by McGiyskas found to be good
for the simplification of Boolean functions of anymber of variables. This method is
known as Quine — McCluskey method or Q — M tabutethod or simply tabular
method.

In mapping it has been observed that any adjacerierm can be reduced because
they differ by only one literal. This is also thenlamental principle of the Q — M tabular
method of minimization of Boolean functions.

The following steps are to be used for the minititzaof Boolean functions in this
method:

Step | All minterms are arranged in groups of samenber of 1s in their
binary equivalents.

Step Each term of groups of low number of 1saspared with every term
of groups of higher number of 1s. These terms la#a tombined. Two
terms of adjacent groups are said to be combinkedheir binary
representation differ by single bit in the sameigpms The combined
terms consist of the original fixed representatith a dash (-) sign at
the differing place. A tick marky() is placed on the right hand side of
every term, which has been combined with at leastterm.

Step Il Compare and combine the new terms obtainedep Il with the terms
of groups of higher numbers in the similar fashidhe two terms are
combined which differ by only single 1 and whosesldss are in the
same positions. This procedure is continued tilfurther combinations
are possible.

Step IV All those terms which remained without titlark (/) are known as the
prime implicants, as they can not be reduced furtiiénally the
necessary prime implicants are obtained by rejgditse implicants
which have been covered in one or more prime irapt& The
necessary prime implicants will then give the reegi Boolean
expression.

This method can well be illustrated by considetimg following example.

Example 4.11 Simplify the Boolean function given in exampleé94using Q — M
method.

Solution: The given Boolean function is :
F(A,B,C,D,E) = Z (©, 234,6,781112131618192022232427,2829)

We follow the steps given in Q — M method and fihd prime implicants:



No. of Min- Binary Combination Combination Il
Zeros terms equivalents with Binary Nos. with biney Nos.
0 0V 00000 02 000-0 0,2,4,6/ 00--0
84 00-00 0,2,16,18 -00-0
2+ 00010 0,8 0-000 0,4,8,12/ 0--00
1 4+ 00100 0,16/ -0000 0,4,16,20 -0-00
8+ 01000 0,8,16/24 —--000
16+ 10000 23/ 0001-
26V 00-10 2,3,6,A 00-1-
3+ 00011 2,18 -0010 2,3,18,2¢ -001-
6+ 00110 46/ 001-0 2,6,18,2¢ -0-10
2 12+ 01100 4,13/ 0-100 4,6,20,29 -01-0
18+ 10010 426/ -0100 4,12,2026 --100
20+ 10100 8,12 01-00 8,12,2426 -1-00
24+ 11000 824 -1000 16,18,202¢ 10--0
1614 00-0 16,20,2428 1--00
7+ 00111 16,26 10-00
11 01011 16,24 1-000 3,7,19,23 -0-11
3 13 01101 3,11,19,27 440
19+ 10011 3 00-11 6,7,22,23 -011-
22+ 10110 3,17 0-011 12,13,28,29 -110-
28+ 11100 3,19/ -0011 18,19,222¢ 10-1-
87 0011-—
23+ 10111 622 -0110
4 274 11011 12,13 0110-
29+ 11101 1228 —1100
1819001 -
18,22y 10-10
20,22y 101-0
20,28V 1-100
2428y 11-00
723y —-0111
1127V -1011
1329V —-1101
19,23V 10-11
1927V 1-011
22,23V 1011-
28,29V 1110-
Contd.
Contd.
Combination Il
with binary Nos.
0,2,4,6:16,18,20,22 -0--0
0,4,8,12:16,20,24,28 —-—-00
2,3,6,7:18,19,22,23 -0-1-




The prime implicants from this table are those temhich remained without tick
mark (), as they can not be reduced further. Now thengiség@rime implicants will be
obtained as given below:

N Y L T Y Y R Y
TE 1l 12 13 16 18 19 20 22 2% 24 27 22 29

o0 3,101,189, 27 l
A 12,1328, 209 8-
0,2, 4, 6: 16, 15, 20, 22
w04, 5 12016, 20, 24, 25 I -
A 43,6, 718, 19,22, 23 &

The essential prime implicants (ticked marked)rapresented in the following
form:

3,11,19,27 --011=CIDE
12,13,28,29 -110-=BICD
0,4,8,12:16,20,24,28 ——--0GDIE
2,3,6,7:18,19,22,23 ~0-1=BID

Thus the required minimized Boolean expressionvergby:
F=BD+D[E+B[C[D+CI[DI[E

The result is the sane as obtained in the exam$le 4

PROBLEMS:

1. Discuss K —map for the reduction of Boolean funcid 4 variables.

2. Taking a suitable example, verify that a quad elates two variables and an
octet eliminates three variables in a K - map oif feariables.

3. What are pairs quads and octets? What is theirrtapce in K —maps?

4. What are the rules for getting the minimal Bool@&amction using K — maps?
lllustrate with examples.

5. Discuss the redundant groups in K — map.

6. What do you understand by incompletely specifieacfions how these are

used in eliminating the Boolean functions?

Discuss K —map method of reduction the Booleantfan®f five variables.
Discuss K —map method of reduction the Boolean tfancof six five
variables.

© N



11.

12.

13.

14.

Discuss the Quine — Mccluskey method of reductioBamlean functions.
Simplify the following Boolean functions using K am and verify your
answer using the theorems of Boolean algebra also.

() F.(a,b,c)=> (01,45,7)
(i) F,(a,b,c)=> (0123457)
(i) Fo(W,X,Y)=>" (136,7)
Ans.: ()F, =b+ale
(i) F,=a+b+c
(iii) F, =W X +W [Y
Simplify the following Boolean functions using K -am and realized the
minimized functions with NAND gates only.

@ z = A[BIT + A[B[T + A[BIT + A[B[T
(i) Z = ABIC + A[BIC + A[BIC + AB[C + A[B[T
(i) f=WDXLY+WDIXL+WDXLY+WIXL+W XY
Ans.: (i) Z = A[C + A[B+ A[B[C
(i) Z= AT +AB+ALT
(i) f =WIY + X Y +W Y
Simplify the following Boolean functions using K am and verify your
answer using the theorems of Boolean algebra also.
(i) f,=(A+B+C)[{A+B+C)+(A+B+C)+(A+B+C)
(i) f,=(A+B+C)[{A+B+C)[{A+B+C)
(i) f,=(A+B+C)[{A+B+C)[[A+B+C)[[{A+B+C)
Ans) (if, = (A+C)[{A+B)[{A+B+C)
(iy f,=(A+B){B+C)
(i) f,=(A+C){A+B)
Minimize the following Boolean functions using K am and then realize
them with NOR gates only.

() Z(a,b,c) = |_| ,2,3,4,6,7)
(i) Z(a,b,c) = |_| (0,2,3,4,5,6)
(i) Z(a,b,c) = r| (01,2,35,6)
Ans.: (i) Z=b[a+c){a+c)
(i)Z =ca+b)[{a+h)
(i) Z =alb+c){b+c)
Get the minimal Boolean functions of the followiaging K — map:
0) f,(A,B,C) =3 (0,25)+ (136)

4



(ii) f,(X,Y,Z)=> 14+ (056,7)
(iii) fy(a,b,c) =) (56)+ > (01,23)

Ans.: (i) f, = A+ BITC
(iy f,=X+Y
(i) f,=be+ble
15.  Obtain the minimal SOP expression of the followfagctions and implement
them using NAND gates only.

(i) F.(A,B,C,D)=> (014691314 15)
(ii) F,(A,B,C,D)=>  (0123,4,789]13 14 15)
(i) F;(A,B,C,D)=> (0,2356891112 14 15)
(ivy F,(A,B,C,D)=> (045810]12]15)
(v F¢(A/B,C,D)=> (123577]15)
Ans.: ()F, = A[C D + B[C [D + A(B[D + B[C [D
(i) F, = AIB+C[D + A[B+ A[C + BIC [D
(i) F, = ALB[D + A[BLC + A(B[D + A(B[C + B[C [D + A[B[C + A[BLC [D
(iv) F4:6E5+AEBE5+KEB[E+AEBE3ED
(v) F, = AD+BIC[D + ABICT
16.  Obtain the minimal Boolean functions of the folloj using K — map:
()F,(A,B,C,D)=> (0,2356,7,89)+ > (1011121314 15)

@

(ii) F,(A,B,C,D)=> (01234,789)+ > (1011121314 15)

(i) F;(A,B,C,D)=> (1,23513)+ > (6,7,89]11]15)

4

(iv) F,(A,B,C,D)=> (2910]1213)+ > (1514 15)
(v Fs(A,B,C,D)=> (01581014)+ > (21115)

Ans.: ()F, = A+C+BD+B[D
(i)F, =B+C[D+C[D

(i) F, = A[C+D

(V)F, =C[D+AB+BICD
(v) Fg =BD+AC+AICD

17. Using K — map, obtain the minimal POS expressidnghe following and
implement them with NOR gates only.



i) F.(AB,C,D)=[] (012459101112131415)
(ii) F,(A,B,C,D) =[] (235791112131415)
(iii) F:(A/B,C,D)=[] (012345810 1314)
(iv) F,(AB,C,D)=[] (012467891113)
(v) Fs(A,B,C,D)=[] (15671112 1315)
Ans.: (i)F, = (C+D){A+C){A+B)[{A+C)[{A+B+D)
(i) F, = (A+B)[{B+D) [{A+D) {A+B+C)
(iii) F, = (A+B)[{B+D)[{A+C)[{A+C+D){B+C +D)
(V) F, = (A+D){B+C){A+C + D) [{A+B+D)
(V) F, =(A+B+C)[{A+B+C)[{A+C+D){A+C+D)

18. Using K — map, obtain the minimal POS expressidnghe following and
implement them with NOR gates only.

() F.(AB,C,D)=[] (56121314 (24)

(i) F,(A,B,C,D) =[] (23710 1112 15) (] @512)
(i) Fi(AB,C,D)=[] (2356,78)(]] (O ,1¢112 1314 15)
(v) F,(A,B,C,D) =] (2,4,5,7,912)[|¢‘| (0.1,6)

(v) F5(A,B,C,D) =[] (013456714 IS)EH (2913)

Ans.: (i)F, =(B+D){B+C)[{A+C+D)
(i) F, = (A+C){B+C)[{C + D)
(i) F,=C{B+D)
(V) F, =(A+B)[{A+D){B+C+D)
(v) Fs = A[(B +C)
19.  Minimize the following functions using K — map meth
() F.(A,B,C,D,E) =Y (0123,478914 1516 17 18 19 25 31)
() F,(A,B.C,D,E)=Y  (456,71012131415,20,21,22,23,29) + > (0.,2,24,25,26)
(i) £, (A,B,C,D,E)=Y  (1246,791011161719,20,22,23) + Y (1213,24,28,29,30,31)
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(v) F,(A,B,C,D,E,F) = |_| 0124 5,7,891014151719,20,28,29,34,36,4041,42,43)
(v)

Fs(A,B,C,D,E,F)=> (0,2,4,810131516,  18,20,24,26,32,34,40 42 45 47 48 50 56 57 58 60 61)

(vi) F;(A,B,C,D,E) = Z (45910, 1112131415161819202124252627,293031)



Ans.:(i) F,=BIC+C[D+ABIDIE+ABICD+ABDIE+BCDE+BICDE
(i) F,=AC+BIC+ABIDLE
(iv) F,=(A+B+C+E)(B+C+D+E)[{A+B+C+D)[(B+D+E+F)[
(A+B+C+D+E)[{A+B+D+E+F)[{A+B+C+D+F)0
(A+B+C+D+E)[(B+C+D+E+F)
(v) F,=D[F+B[CIDF +ACEF +ABCE
(Vi) F,=BID+BIE+BICD+ACE+ACD+ABIC
20.  Minimize the functions given in problem 19 using-§ tabular method.

21.  Minimize the functions given in problem 16 using-¥ tabular method.
22.  Minimize the functions given in problem 15 using-¥ tabular method.



Combinational Switching
Circults

In the forgoing chapters of this book, detaileddst of the Boolean algebra and
various methods of simplification of Boolean fuocis have been made. The different
logic gates may be used to implement the simpliBedlean functions. In the present
chapter, however, the design of the special clddegic circuits for digital systems
known as combinational switching circuits will béesaissed. Basically there are two
types of switching circuits namely the combinatioaad sequential switching circuits.
The combinational circuits depend on the verbalestant of the problem. That is the
input and output variables are obtained from theemistatement; which then lead to
provide the minterms for simplification and implemtetion of the logic circuits. The
sequential switching circuits will be discussedilater chapter.

5.1 Combinational Circuits. The combinational circuits are the network of logic
gates having a set of input independent variabled,outputs as the Boolean functions of
inputs. In these circuits the independent inputaides are obtained from the word

statement of the requirement of the digital systerne designed. The output variables in
these circuits depend only on the present valubeoinputs and do not depend upon their
previous values. That is the combinational logicwis need not to have the memory
elements. The other class of the switching circcatted sequential circuits do have the
memory elements in addition to the input and outfautables. Figure 5.1 illustrates the

input — output relationship of the combinationactuits.

g } } — =1
¥ o0 Combhinational|—e¥32
yw— . . —*¥3
v Circuits :
ng - 0 | ——a V1m

Fig. 5.1



The output variables 1YY,,Ys ....Yn are some functions of the input variables
X1,X2,X3 ...Xn such that :

Y, = F(Xy, X, X g X,)
Y, = F, (X, Xy, Xgeroin X,)

Y, = F (X, X,, X5 X))
The procedure for the design of the combinatioogic circuit is given below:

* From the word statement of the problem input indejat variables and
output dependent variables are isolated.

* The logical symbols as well as the logic value(Ql) are assigned to
these variables.

* The truth table is formed between the required wuy@riables and the
given input variables.

* Using K — map or Q — M tabular method, the simetifiBoolean function
for each output variables is obtained.

» The logic circuit is then drawn using the gatesefach output variables.

A few examples for the design of the combinatiosaktuits will now be
discussed.

Example 5.1 A railway station has four platforms marked asH, P; and R as shown

in the figure 5.2. The trains can come only froft kend side and enter these platforms.
The trains are to be routed to these platform&énarder of preference >, P; and in
the last to 2 Each platform has a switch will be turned ONhié fplatform is not empty.
There is an outer signal S which will be eitheregrer red. This signal will be green if it
allows the train to enter the station otherwise fidtkere are three track changer switches
Ti1, T,, T3 which allows changing the tracks. Design a railviick switching circuit
using AND, OR and NOT gates, which can performdperations mentioned above.
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T
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A T3 »j,e Ry e
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e A o \-“\_‘_\_.
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e - -
. N . B ,,—-"//"/



Fig. 5.2
Solution: From the word statement of the problem it eaclthat P1, P2, P3 and P4 are
the four input variables, outer signal S and trabkngers T1, T2 and T3 are the four
output variables. The input as well as output \des are two valued functions, since the
platforms are either empty or occupies, track cban@re either to be changed or not to
be changed, similarly the outer signal S has twimop that it is either green or red. The
switching system having input and output varialdeshown in figure 5.3.

P1 - — =

P2 Combinational T1

ps — circuit T2

P4 13
Fig. 5.3

Now the logic values are assigned to the input@urgut variables. Logic O’s are
assigned to the platforms P1, P2, P3 & P4 if tleweeempty otherwise logic 1. The track
changer T1 is not to be changed if the train isva#id to enter P1 otherwise it is to be
changed. So logic 1 is assigned to T1 if trackoista be changed and logic o if the track
is to be changed. Similarly logic values are as=igto the other track changers. The
Signal S is assigned logic 1 to the green signallagic O to the red signal.

The truth table will be drawn for all the inputdanutput variables as given in
table 5.1. Also the K-maps for the output varialdesdrawn as shown in figure 5.4.

Table 5.1
_ ~ P1P2
Input Variables Cutput Variables P3P4 00 01 11 10
M P2 P3I P45 TI T2 T3 —
0 0 o0 0|1 1 001 1 0 0
P L
o 0 0 1 1 1w
o 0 1 o 1 1 ® v
0D 0 1 | 1 1 » w 0
o 1 o o0|1 1 g 1 1 1
o 1 o 1|1 1 4 1 o "
0o 1 1 o 1 1 P 0
o 1 1 | 1 1w
1 o0 0o o1 0 1 4 111 1 ¥ 0
1 0 0 1 1 0 1 v
1 0 1 0 1 o 1 ¥
1 0 1 1 1 o 1 i
1 1 o o0o|1 0o o0 1 0|1 1 1] 0
1 1 © 1 1 0 0 1 —
1 1 1 o |1 o 0 D
1 1 1 1 i ip i p H -map for T1




« P1P2 » P1P2

PIP4 0o 01 11 10 P3Py 0o 01 11 10
oo| #1 | ¢ 0 T 00 P’ i 1 v W
01| e | ¢ 0 1 01 Lw 1 1 ¢ J
11 ¢ ¢ ¢ 1 11 w ¥ @ @
10] ¢ | ¢ 0 1 10 ¢ 0 0 ¢

W -map for T2 K -map for T 3
Fig. 5.4

The Boolean expressions for S can directly be obthas:
S=P1+P2+P3+P4
= PLIP2[P3[P4
The expressions for T1, T2 and T3 are obtaineah fiteeir respective K —map as:

leﬂ
T2=P2
T3=P3

The switching circuit for the railway track circust given in figure 5.5.

P1 P2 P3 P4
T1

T2

[Sod
[

T3

Fig. 5.5



Example 5.2 Design the combinational logic circuit using NBNyates only for the
following word statement.

The insurance policy will be issued to the appitcé he is:
() amarried female of 22 years or more, or
(i) afemale under 22 years, or

(i) a married male under 22 years and who has not im@ived in a car
accident, or

(iv) a married male who has been involved in a car aatjer

(v) a married male of 22 years old or above and whababeen involved in a
car accident.

Design the circuit which can issue the insuraraep to the applicant.

Solution: From the word statement of the problem thétag four input variables and
one output variables.

The input variables are

() The applicant is married or not —we assign the ymb for it. Logic 1 is
assigned to X if the applicant is married othervassign logic O.

(i) The applicant is male or not — assign the symb@drnt. Logic 1 is assigned to Y
if the applicant is male and logic O to female.

(iif) The applicant is 22 years old or more — assignsimbol Z for it. Logic 1 is
assigned if the applicant is below 22 years ane|0gs assigned if the applicant
is 22 years old or more.

(iv) The applicant is involved in a car accident- assignsymbol W for it. Logic 1 is
assigned to W if the applicant has involved in a aecident otherwise W is
assigned logic O.

Output is the policy issued to the applicant. Peis the symbol for the policy.
Logic 1 is assigned to P if the poly is issuedht® applicant otherwise P is assigned logic
0.

The switching system having input and output vdesis shown in figure 5.6.
Table 5.2 shows the truth table for all the condisi discussed above. The K-map for the
output variable P is shown in figure 5.7.

Combinational

circuit

H oo

Fig. 5.5



Table 5.2

WA T
Imputs Ot W 0o a1 11 10
X Y £ W|FP P
0 1 1
o o o oo 00 0
o o 0 1 Q0
o0 1 0 1
o0 1 1 1 o1 0 0 1 1
o1 o o | o
a1 0 1 Q0 1
o1 1 o | o
o 1 1 11lao 11 1 0 1 1
1 o o o 1
1 o 0 1 1 L
1 0 1 0 1
1 o 1 1 1 10 1 0 1 1
1 1 o 0 1 =
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Fig. 5.7

The Boolean expression for the output variable §lven as:

P=X+YI[Z

From this expression it is clear that the polidil e issued to the applicant who
is married or a female under 22 years. The cinlitbe realized using NAND gates as
shown in figure 5.8.

Koy LW

P
o1

Fig. 5.8

Example 5.3 The entrance to a group of four flats has a ligig. The tube light is to
be switched ON and OFF independently by the tenaintee four flats using switches
located in their flats. Design a switching cirdwiimplement this using:



(i) Exclusive — OR gates.
(i) NAND gates only.

Solution: The input variables to this problem are the fewitches each located in the
flats of four tenants. Let these switches are S, &3, S4, which are two valued
functions. Logic 0 is assigned to OFF positionhs# switch and logic 1 ON position of
the switch. The output variable is the tube lightwhich will either glow or not glow.
Logic 1 is assigned if the tube light glows andido@ is assigned if it does not glow. So
the switching circuit to be designed has four inpatiables (four switches) and one
output variable L (tube light) as shown in figur8.5

= — o
oo Combinational
53— circuit L
=
Fig.5.9

Table 5.4 shows the values of the output variadeéch possible combination of
input variables. The K — map is drawn for this ¢éa@$ given in figure 5.10.

Table 5.4
5152
Input Variables Outpt 354 00 01 11 10
s1 s2 53 54 | L
o 0 o 0o oo O @ 0 @
o 0o o 11
o o 1 0|1
o o 1 1|0
o 1 o o0/|1 01 @ 0 0
o 1 o 1/|@0 @
o 1 1 oo
o 1 1 1|1
1 o o 0|1 1| o | (D 0 ®
1 0o o 1|0
i 0o 1 0| o
1 o0 1 1|1
1 1 0 0o 10 @ 0 @ 0
1 1 o0 1|1
1 1 1 o1
1 1 1 1 0 k. - map for tuk light

Fig. 5.10
The Boolean expression for the tube light L is gibg:
L = SI[B2[B3[B4 + SIL[B2 B3[54 + SL[B2[B3[B4 + S1[B2[B3[B4 +
S1[52[53[54 + S1[B2[83[84 + S1[B2[B3[B4 + S1[52 (8354
= SI1[B2[{S3[B4 + S3[54) + SL[B2[{S3[B4 + S3[B4) +

S152[(S3[54 + S3[84) + SLIB2 [{S3[54 + S3[54)



= (S3[54 + S3[B4) [{SL[52 + SLB2) + (S3[54 + S3[B4) [{SL[B2 + SL52)

= (S301 S4)[{SLO S2) + (S30 S4)[{SLO S2)
= (SLO S2) 0 (S30 S4)

=S810S20S30 4
From this expression it is clear that the tubetlighl be ON when any one of the
four switches is ON or any three switches are ONil&8rly, the tube light will be OFF
when all the switches are OFF or any two are OF&lldhe switches are OFF.

(i) The circuit can be realized using exclusive -@des as shown in figure 5.11.
51 52 53 0S4

DHD HD

L=S1BS2@5E3@5

Fig. 5.11
(i) The circuit realized with NAND gates is shown igure 5.12

31 52 53 54

o
B
S0
1
DD
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Fig. 512



Example 5.4 There are five board of directors (A, B, C, D,dE a company. The board
of director A owns 10% shares, B owns 30% sharesw@s 20% shares, D owns 25%
shares and E 15% shares of the total shares. &adtiption of the particular policy to be
passed in the board’s meeting more than 66% shaatklin favour of the policy. The
weightage to the votes depend upon the percentegesowned by the directors. In the
board’s room each director has a switch which hest®©N if votes in favour of policy.
Design a switching circuit to ring a bell if poliecy accepted in the board’s meeting. Only
the NAND gates should be used to realize the dircui

Solution: From this problem it is clear that there are fimput variables and one
output variable. A, B, C, D and E, five switchestloé board of directors are the input
variables to which logic 1 is assigned if the stiis turned ON otherwise logic O.
Similarly, the output variable R is for bell to whi logic 1 is assigned if it rings
otherwise logic O.

The switching system having input and output vdeslis shown in figure 5.13.
Table 5.5 shows the truth table for all the coodi$i discussed above.

Combinational

circuit R

mo o m e

Fig. 5.13

Table 5.5
D

Since there are five input variables so the five
variable K-map for the output variable R is shown i
figure 5.14.

The expression for the alarm R is given by:
R=BIDIE+BICID+AIBICIE+AICIDIE

This expression indicates that in order to pass a
policy (ring the alarm), the board of directors BDE
BCD or ABCE or ACDE should vote in favour of

policy.
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Fig. 5.14

The realization of this circuit with NAND gatessiown in figure 5.15.
A B C D E

= :

Fig. 5.15

Example 5.5 Design a combinational circuit which multipliesa 3-bit binary numbers
aaa and bbby the bits a and b are the sign bits for the two numbers. The fivie bi
output xXsXoX1Xo should have the right sign indicating by &nd right magnitude

X3X2X1Xp.

Solution: The logic circuit to be designed has the sixuinpariables and five output
variables as shown in figure 5.16. The sign bitba (input bits) and x(output bit) are
assigned logic O if these are positive and logit fiegative. The other input output
variables will have the usual logic values.
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Fig. 5. 1B

It is well known that multiplication of two posi numbers or two negative
numbers is positive and multiplication one positivenber and other negative number is
negative. Truth table 5.6 shows the outcome of tifferent sign bits. The Boolean
expression for sign bit 2n terms of input sign bits is given by:

Tahle 36
a3 by Xy
n

[ e e e |
[ e |

1
1]
1

x, =a, b, +a, b, =a, b,
The table 5.7 shows all possible combinations efitiput and output variables.

The Boolean expressions fof, X1, Xo are obtained from the K-maps drawn for
each variable as shown in figure 5.17. However,akgression for xmay directly be
obtained from the truth table as given below:

Table 5.7
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The Boolean expressions fof, X3, Xo are obtained from the K-maps drawn for
each variable as shown in figure 5.17. However,akgression for xmay directly be
obtained from the truth table as given below:



X, =, La, [b, [b,

~ B8] w E1E

bibe™. 00 01 11 10 biba™_ 00 01 11 10
00| 0 0 0 0 oof 0 0 0 0
o1f © | o 0 0 o1f o | 0 | (1 1)

1o | o | o |mM 110F0J

101 0 0 {1 1 1001 o 1 1 0

~ B0
bibp ™ 00 01 11 10

01| © 1 1 0
110 1 1 1]

101 0 0 0 0

Fig. 5.17

x2=a1@tﬂ>1+a@liﬂ>_o_ B
X =a (&, b, +a, b [, +a, (&, (b +b, (&, (b,
Xo =8, [by

The realization of these expressions with And, Ofd Alot gates is shown in
figure 5.18.
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5.2 Half Adder:

>

Fig. 5.18

A half adder is one which adds two binary digitsultaneously.

It also falls in the category of combinational cits. Let A and B are the two binary
digits which are to be added together and arewvtleevalued input variables. It will give
two outputs as Sum and Carry. It is recalled thamnwa binary digit O is added with 0 the
sum is 0 and it will have no carry. If 0 is addedhwd sum is 1 and no carry. Similarly 1
is added with 1 sum is 0 and it will have a casylaThe table 5.8 shows the truth table

for half adder.

Table 5.8

Inputs Ctpnts

L
0
0
1
1

— o= o m

3
1]
1
1
1

— oo oo

The Boolean expressions for Sum S and Carry C
are given by:
S=A[B+AI[B
=AlUB
C=AIB

The expression for sum S is nothing but the exadu®R function of the two
input digits A and B. Figure 5.19 shows the cirdiggram for half adder using exclusive

— OR and AND gates.
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Figure 5.19
The above circuit may also be realized by using WAgdtes only as given in
figure 5.20.
4 B
o=
u—l_
—5
—1 -

DD

Figure 5.20

This circuit utilizes 7 NAND gates for its realizat. The circuit may further be
modified to realize it using 5 NAND gates only agem in figure 5.21. The modification
of the circuit is not straight forward but can orthg modified by inspection. The
symbolic representation of the half adder is giwvefigure 5.22.

L B A B

||
) = N

Figure 5.22
Figure 5.21



Example 5.2 Design the half adder using NOR gates only.

Solution: Since the half adder is to be designed with Nfaks only, so the expressions
for sum S is obtained in POS form as given belosin@the half adder table 5.8).

S=(A+B){A+B)
and the carry C is: C=AIB
The realization of these expressions for S and<basvn in figure 5.23.

Figure 5.23

5.3 Full Adder: When two binary numbers of two bits are addeghgidand BB),
then first A and B are added, and the sumahd carry @to the next bit are obtained. A
half adder is used for this. For the addition gfBA bits, there may be a third bit known
as carry bit from the previous column. The resdlt e the sum §and the carry to the
next bit G. The addition of three bits is known as full adde

c, G
4 4,
5 5By

r:fl Sl o i

The truth table for Full adder is shown in tabl@ 5.
Table 5.9
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The minimal Boolean expression f8randC; is obtained using K — map. The K
—map forS, and is given in figure 5.24.

&y By
Sy ™, 00 01 11 10

oo @ 0
1 i @ 0

K - Map for Sum 5,

Fig. 5.24

The expression for su§ is given by:
A=A B O+ A B - Co+ 4 B Oy A - B Co
= (A1 Bi+4, B Co+(4 B +4 B Cy
= (M) Gy (4, B8 Co
= 4 @B BC,

It is recalled thatA, J B, is the sum of half add& soS, is further given by:
S, =SI[Co +SIC, =SOC,
The K —map for carry Cis given in figure 5.25

~ A B
(00 o1 11 10
U Ta 0 1 0

Fig. 5.25

The expression for carry;@s given by:
C,=AB +BI[C,+AIC,
This expression may further be expanded in thevotig form:
C,=A B, +(A +A) B, [C, + A [{B, +B,) [T,
=A B +AI[MBII,+ADB I, +AMB:IC,
= A (B, [L+Cy) +(A (B, + A [B,) [T,
=A B +(A0B)C,



The termA [B, is the carry bit (sag) of the half adder (adder of two bif§ &
B,) and A [ B, is the sunS of half adder. So the expression @rmay be rewritten as:

C, =C+SIC,
The full adder may therefore, be realized as shiowigure 5.26.
Ly By Gy

D _SﬁD 51

Fig. 5.26

It is clear that a full adder consists of two hediders and an OR gate as given in
figure 5.27.

B — | Ha H.A.

c
Fig. 5.27

The realization of Full Adder with 9 NAND gatesshown in figure 5.28. The
symbolic representation of the half adder is givefigure 5.29.



;

_ Sl
S,
Fig. 5.28
Bu‘ 4
CD Carry from
F.A. -
Prevdous column
Canyto the ‘
nex t adder
SEI
Fig. 5.29

Example 5.2 Design the Full adder using NOR gates only.

Solution: Since the full adder is the combination of tvadfladders, so realization of full
adder with NOR gates only, is shown in figure 5.30.



A B C,

Fig. 5.30

5.4 Parallel Binary Adder: Four full adders may be connected as shown imrdig
5.31, to add two binary numbers each of 4 bit |drge addition of two four bit numbers
is given by:

[ 5 y Cy
3 e Lua g Ly

B B B Bu

S+ 53 Sj 51 SIJ
B 4 By Ay 5 4 By A
C3 Cz Cl ‘ C.;, Cany from
FL4 F.L. F.i FA& :
Previous colurmm
Sy ‘ S5 ‘Sg ‘ | ‘ o



The addition of more number of bits may be addethé similar fashion. This is
known as parallel binary adder.

Parallel binary adders are available in the forfimiGs. The two-bit binary full
adder IC is 74LS82; its functional block diagrangiigen in figure 5.32.

A4,
CARRY TO 2 - _b'rt | CARRY FROM
NEXT ADDER Parallel Binary Adder PREVIQUS COLUMM
|2, 7452
518, By By
Figure 5.32

The two 7482 IC’s may be connected to use a fouadler. The ‘carry to the
next adder’ pin of one IC may be connected to daery from the previous column’ pin
of the second IC. However, 4-bit parallel adder 48C83 is also available, whose
functional block diagram is shown in figure 5.3%eTtwo such IC’s may be connected to
use as the 8 — bit adder. This can be extendedyta@mber of bits.

Az Aq 4‘11 ‘qn
CARRY TO 4. _h'rt | CARRY FROM
WEXT ADDER Parallel Binary Adder PREICUS SOl Lk
5,5, 5.5, B, By B By
Fig. 5.33

Example 5.4 Design a half subtractor using NAND gates only.

Solution: A half subtractor may be designed by the saméadeas the half adder. The
truth table for the half subtractor is given inl&a5.10.



In this table oXand Y, are the minuend and subtrahend
respectively; @ the difference of the two bits & Y ) and
Bo is the borrow bit from the nexbit. The Boolean
expressions for Differencegland borrow bit Bare given as:

Table 5.10

1] 0 1] 1]

1] 1 1 1

1 ] 1 1] Ve I _

1 1 ] ] Do_xowo"'xowo_XoDYo
B, = X, N

The realization of these expressions using NANeganly may, therefore, be
given in figure 5.34.
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Fig. 5.34

The symbolic representation of half subtractoriveg in figure 5.35.

I

HS.

BD ‘ Dn .
Fig. 5.35

Example 5.4 Design a Full subtractor using NAND gates only.

Solution: The truth table for full subtractor is showntable 5.11, in which X Y, are
the minuend and subtrahend respectively agd Bhe borrow bit from the previous bit.
The output terms Dand B are the difference bit and borrow to the next bit.



Table 5.11 The Boolean expoesfor difference B is given
by:

o
L
e
s

Dlz‘?l'}71'BIZI+‘?1'F1'5TD+X1'}71'§D+X1'}’1'BD
:(ZWT+X1W1)EBO+(ZW1+X1W_1)EB_O
= (X, 0Y) B, +(X, 0Y) By
=X, 0Y, 0B,

e === =] bq
== i = =]
= Il = Rl == R = =
== =N = =]
PP o T o [ ey T S S o |

The Boolean expression for the borrowtB the next bit
is obtained from the K —map shown in figure 5.36.

Bl :Ylwl-'-Yl I:BO-'-Yll:BO

” D =X (X X) Y OBy + X, (Y, + V) (B
=X, 0¥, + X, Y, B, + X, Y, [B, + X, [, (B, + X, [Y, (B,
0 =X, O L+ By) +(X, Y, + X, IY,) (B,
:x_lwl"'(xlwl"'x_lw_l)‘:Bo

=X,Y,+D,[B, where I is the difference of
the half subtractor.

The full subtractor circuit may now be shown toibmplemented using NAND
gates as illustrated in figure 5.37

il 1 D,

Fig. 5.37



The full subtractor is the combination of two hsilibtractors and gates as shown
in figure 5.38.

. D, = X, ®¥,

1

¥ e 4s D =X @®Y,®3

] D, - By
B,
) o—

77, B =X, -Y,+D; B
Fig. 5.38

The symbolic representation of half subtractorive in figure 5.39
i4 X,

Fa

5 |
1 = Fig. 5.39

5.5 BCD or 8421 Adder The BCD numbers are generally processed in digital
systems, so it is necessary to design BCD adddor@eiscussing the design details of
the 8421 adder, it is essential to know how the t®oimal numbers are added in this
code.

Let the two decimal numbers 3 & 4 added in 842deco

4 oraoo
+3 o1l

1 o111

The result 0111 (+ 7) is correct.
Further the addition of two other decimal numbéend 6 in 8421 code gives the
incorrect answer. This is illustrated as given helo

1 o111
+a o110

13 1101

The result 1101 is correct in natural binary numbet it is incorrect in 8421
code. Its answer should have been 00010011 (13yekier, to get the correct answer 6
(0110) is added to the incorrect sum, as it avthidsllegal number 1010 through 1111 of



the 8421 code. So when 0110 is added to the indaareswer 1101, the correct answer is
obtained as follows:

1101
o110

1 0111 =13

It is, therefore, concluded that if the sum of thenbers is more than 9, then 6
(0110) is added to the incorrect sum otherwiseingtls added.
Now general approach of the addition of two nurmabér considered, say
AsAA A andB3B,B;1By are being added in 8421 code as:
Ay Ay Ay Ay
B By By B,y
5y S5 5 55

Now if the sum $5:5,5% is more than 9, then 0110 is added to it otherwise
0000 is added. Manually the addition of decimal ham6 (0110) can easily be carried
out, but for the design of BCD adder, 6 should mattically be got added whenever the
sum is more than 9.

The following approach will help in getting the amntatic addition of decimal
number 6 in the incorrect sum. The suRs:$,$:1S, is more than 9 if Sis 1 and/ or
S$$S5:S is any of the 6 illegal BCD numbers 1010 throughlll So a term
X =§, +S;S, +S,S will indicate if the sum is more than 9. ThatfiXiis 1 than 0110
is added to the incorrect sum otherwise 0000 ieddd it. In general 0XX0 is always
added to the incorrect sum as follows:

Az Ay Ay Ay
+ 3332 B]_Bn
o
+o0x X0
K H,

X4 is the carry bit which is not to be used, as émntX will take care of the carry
bit for the next digit. The circuit for BCD additidfor full one decimal digit (four bits)
can easily be drawn as shown in figure 5.40.
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Fig. 5.40

The BCD adder can also be designed using two péiaithary adders (2 IC's
74L.S83) and a few gates as shown in figure 5.41.

A A Th 4,
4 - hit | Carry from
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5.6 Excess — 3 Adder For the design of the excess —3 adder one showidmber
the addition of decimal numbers in XS —3 code. B3 code first three number 0000
through 0010 and the last three numbers 1101 thr@agl are illegal. So to avoid these
illegal numbers, 0011 is added to the incorrectvansf it is more than 9 else 0011 is to
be subtracted.

Consider the two numbers s@yA,A1A; andB3B,B;1By to be added in XS -3 code
as:

Az Az Ay Ay
H: By By By

Sy S 5 51 5

The sum $5:5,5,S is more than 9, if Ss 1 otherwise sum is less than or equal
to 9. So if is more than 9, then 0011 is to be added to thariact sum else 0011 is to
be subtracted.

For the subtraction of 0011 from the uncorrectea 4's complement method is
used i.e. 1100 (1's complement of 0011) is addethéoincorrect sum and finally end
around carry (EAC) is added to it.

It is concluded that if sum is more than Q €S1), then 0011 is to be added to the
incorrect sum; and if sum is less than or equd {& = 0), then 1100 (1's complement
of 0011) is added. Therefore, one can say thatoth khe casesS,.S,.S,.S, is to be
added as given below:

Ay Ay A1 Ay
+ B}Bg B]_Bu
5.5 5 5 5
+ 3454 S4 .34

AEEHE
+ HEy — Eac

The circuit for XS -3 addition for full one decimdilgit (four bits) can easily be
implemented as shown in figure 5.42.
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5.7 Two's Complement Adder/Subtractor The two’'s complement
adder/subtractor is most commonly used in aritheneircuits because it greatly
simplifies the method of operation. It can be useddd and subtract the binary numbers.

Consider a binary numbd;B,B;:By to be subtracted from or added to another
binary numberAzAA1A.. For addition,BsB,B1By is directly added tdsAA1Aq; and for
subtraction 2's complement &;B,B;By is added to it. The 2's complement is taken by
invertingBsB,B1By and adding 1 to it.

Figure 5.43 shows the circuit diagram of 2's coenpént adder/ subtractor. A
SUB signal provided in the circuit, is used to dilkg load B’s to the full adders for
addition of binary numbers and for subtraction @snplement of the B’s are loaded to
the full adders.

il o] =] el




In this circuit B’s are given to the full addergdbgh exclusive- OR gates. The
SUB signal is given as low (logic 0) when the citdsi to be used as binary adder and it
is given as high (logic 1) for subtractor.

When SUB signal is low, the bits B’s are passedugh the exclusive— OR gates
to the full adders without inversion, sind@ SUB=B (for SUB = 0). The circuit,
therefore, act as simple parallel binary addeonithe other hand SUB signal is high, the

bits B’s gets inverted through exclusive — OR gasésce B[ SUB=B (for SUB = 1).
So 1's complement of the B’s goes to the full adaiedt also SUB signal connected to the
carry terminal of the first full adder, results tB&s complement of the bits B’s. The
circuit, therefore, works as the subtractor. Thealficarry § is as the carry bit for the
binary adder and it is used as the sign bit forsttetractor.

PROBLEMS
1. What are combinational circuits? Give the deggrcedure of combinational
logic circuits.
2. Discuss the design of a railway switching citcliihe word statement of the

problem is the same as that given in the solvedhpla 5.1 (given in the text)
with the difference that the railway station hase¢hplatforms instead of four
also there are only two track changers.

3. Repeat the problem 2, if the trains are allowe@nter from either direction.
(Hint: one more variable may be assumed to ilaistthe direction. If coming
from L.H.S., that variable is 0 otherwise 1. Thielgem will have four input
variables).

4. The entrance to a group of three flats has a tigint. The tube light is to be
switched ON and OFF independently by the tenantthefthree flats using
switches located in their flats. Design a switchoigcuit to implement this
using:

(i) Exclusive — OR gates. (ii) NOR gates only.

5. Design a switching circuit to generate eventpadit for the decimal numbers
transmitted in excess — 3 code. Use

(i) NOR gates to realize the circuit
(i) NAND gates to realize the circuit.
6. Four inputs A, B, C and D control three LEDseThd LED glows when:

Ais1,BisO0 Bisl,CisO

Ais0,Bis1 Bisl,Cis1

Cisl,Dis1 B&Carel

Cis0,Dis1 A&Carel
The green LED will glow, when:

Band Care 1l

CandDare 1

Aand D are 1



10.

11.

12.

13.

14.

15.

16.

17.

18.

AandDarel
The yellow LED will glow when:

AandBare 1
CandDarel
All are 1
Biso,Dis 1

Draw the simplest logic circuit to implement this.

Repeat the solved example 5.5, having only tmard of directors instead of
five. The board of directors has 45%, 20%, 10% 2% shares.

Design a combinational circuit, which can reeebnly valid 4-bit excess- 3 or
4-bit 2421 BCD code. The circuit should have twapots, one to indicate the
valid excess -3 signal and other to indicate tHel 2821 signal. NAND gates
should be used to implement the circuit.

A circuit receives four- bit 2421 code. Desitpe simplest logic circuit which
gives an output 1 whenever the inputs are equivalgth decimal numbers.

A circuit receives four- bit 8421 code. Destge simplest logic circuit which
gives an output 1 whenever the inputs are equivaleen decimal numbers.

Design a simple logic circuit using OR gateby/otihat will output 1 whenever
ay of the following binary numbers appears at tipat.

0000, 0100, 1010, 1110, 1111

What is half adder? Discuss the design ofdwddler circuit using:
(i) 5 NAND gates, (ii) 5 NOR gates.

What is full adder? Discuss the design ofddidler circuit using:

() two exclusive-OR gates, two AND gates and @R gate, (i) 9 NAND
gates, (iii) NOR gates.

Also show that a full adder is a combination obtiaalf adder.
What is half subtractor? Discuss the desigmadffsubtractor circuit using:
(i) 5 NAND gates (ii) 5 NOR gates.

What is full subtractor? Discuss the desigfubbfsubtractor circuit using:
(i) NAND gates, (ii)) NOR gates.

Also show that a full subtractor is a combinatodriwo half subtractors.

Discuss the parallel binary adder. Explain hew 7482 ICs may be connected
to form a four bit adder.

Explain four bit parallel binary adder IC 7488w two 7483 ICs are connected
to form an eight bit adder?

Discuss the details of the design of 8421 adde



19. Explain how the 8421 adder is designed usivg 4-bit parallel binary adder
and a few gates.

20. Give the details of the design of the exce3adder.
21. Discuss 2’s complement adder/ subtractor itir@ive its design details.



More Combinational
Circuits

The construction details, working and applicatieissome more combinational
circuits will be discussed in this chapter. Thesdl wclude the multiplexers, de-
multiplexers, decoders, encoders, code converidrd,s, magnitude comparators and
parity generator cum checkers etc.

6.1 Multiplexers: A multiplexer (MUX) also known as data selectis a logic
circuit which allows the digital information fromutti-inputs to a single output line. The
selection of the input data to be routed to th@uuline is done by the select terminals.
The number of select terminals depends on the numibaput lines to be routed to
output line, given by the general formula as:

2% =N,
whereN is the number of input lines adis the number of select terminals. In other
words, if there are 4 input lines to be routed wpat line, then two select terminals are

needed ag® = 4.
The block diagram for 4:1 multiplexer is shown inigure 6.1.

Xl ]
%
2 41 .
L3 — MU
Xy —
3 —
5 Sp

Fig. 6.1

In which X, X,, X,, X, are the 4 input lines an§l,, S, are the select terminals and X is

the output terminal. Normally a strobe terminakoable terminal (G) is provided in the
MUXs which is normally active-low. The active-lomeans it performs the operation
when it is low; it also helps to cascade the MUXise Boolean function to perform the
multiplexing action is given as:

X = X, (51 [Bo + X, [5:1 [, + X, [§ [Bo + X, [§ [,



The output X will follow the input data depending on the seletninalsS,, S;,
as given in the table 6.1.

Table 6.1
Select terminals Output
S S X
0 0 X=Xo
0 1 X=X
1 0 X=Xz
1 1 X=X3

Note that only one of the inputs,, X,, X,, X,is routed to the outpuX (one at a

time). The realization of the Boolean function XtwiNAND gates only is shown in
figure 6.2.

XDO DO—
=
X, r

ko)
A o
Fig. 6.2

The MUXs are available in the form of the follogifC’s:
74157 quadruple two — input multiplexer/data select
74151A eight - input multiplexer/data selector.

74150 sixteen - input multiplexer/data selector.

74157 Quadruple two — input multiplexer/data seledr: The internal logic diagram of
the IC 74157 is given in figure 6.3. It consistsfaidir two input multiplexers on a single



chip. Each of the four multiplexers has a commota dalect line S and a common chip
enable terminal G. A low signal to the chip endeleninal G allows the selected input
data to rout to the output. Since there are onlg taputs to be selected from each
multiplexer, a single data select terminal is siugint.

%

1% = _D‘ 7. BERRLS

2%, o _E}JT:ID_" 2

Ty 0 —

7%, B]:[)—*ﬁ 3%

4%, —

4% o _‘;)}JEID—** ax
R e

3o j[}_-
Fig. 6.3

74151A Eight - input multiplexer/data selector Figure 6.4 shows the logic block
diagram for a 8 — input multiplexer/ data seledt©or74151A. It has 8 data inputsy X
through X, three data select terminals &, & Spand an enable terminal G. when enable
terminal G is high, the multiplexer is disabled amdput X is zero irrespective of the
select input terminal. However, when the enableniteal G is low the input data is routed
to the output as per data select terminalS;S& Sy as illustrated in table 6.2.

Table &.2
Inputs Chatput

3 R X
H #0044 L
L L L L n
L L L H b4
L L H L X
L L H H iz
L H L L .4
L H L H s
L H H L g
L H H H Zr
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%2

Xz

25

p

D—
-
4 j L %
}
}

Xg

Sy -T—[‘;ai
81 T_[}oi
sg_T_[‘;ﬂ—

Fig. 6.4

74150 Sixteen - input multiplexer/data selector The IC 74150 is 16:1 multiplexer
having 16 input lines and one output line. It hagrfselect terminalssSS, $& Sp and
one enable terminal G which is kept low for mukihg action. The block diagram of
the 16:1 MUX is given in figure 6.5.
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6.1.1 Expansion of Multiplexers For the expansion of number of input termirafls
the multiplexers two MUXs may be cascaded. TwoMtIXs may be cascaded to form
8:1 MUX. Similarly two 8:1 MUXs may be cascadedhave a 16:1 multiplexer and so
on. Figure 6.6 illustrates how two 4:1 MUXs areczaied to form 8:1 MUX. The enable
terminal G of the MUXs in-conjunction with a NOT tgaprovides the third select
terminal. When &is zero the first MUX will be enabled and inputgtdrough > will be
routed to its output; and when B 1, the second MUX will be enabled, ¥rough %
will be routed to the output of the second MUX. Thatputs of the two MUXs are
connected to the inputs of an OR gate which theesgihe final output (ref. fig. 6.6).
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6.1.2 Applications of Multiplexers Primary aim of the MUXs is the multiplexing
operation, that is, the selected input is routedtie output. In addition to this,
Implementation of Boolean function can easily beelovith MUXs, since MUXs are
available in the form of integrated circuits. Thethod of implementing the Boolean
function is that the truth table is first constedttfor the given function to be
implemented. Then logic 1 is connected to each daput of the multiplexer
corresponding to each combination of the inputaldés which has 1 in the output
column of the truth table. The logic 0 is, howewannected to the remaining inputs of
the MUX. The variables are connected to the ddecsmputs of the multiplexer.

The Boolean functions of N — variables can also ito@lemented by the
Multiplexers of (N — 1) select lines. A function éfvariables can be implemented with
8:1 multiplexer having 3 select lines. Let A, B, D, are the input variables of the
function F, which is to be implemented with a nplkixer. The variable A is the most
significant bit and D is the least significant Bariables B, C, D are assumed to be the
select terminals for the multiplexer. The truthléais drawn for the given function. It is
well known that in the truth table variables BCbgresses twice through the sequence
000, 001.... 111; once with A = 0 and other with A =The connections to be made to
the data inputs of the multiplexer, following ruke® observed.

1. A logical 0 is connected to the data input of MUXthe O occurs at the
output in the truth table, both times when MSB ian@ 1 (other variables
having the same value).

2. Alogical 1 is connected to the data input of MUKthe 1 occurs at the



output in the truth table, both times when MSB ian@ 1 (other variables
having the same value).

3. MSB is connected to the data input of MUX, if theput in the truth table
is different both times when MSB is 0 and 1(othariables having the
same value); and also output is the same as the MSB

4. The complement of the MSB is connected to the ohgtat of MUX, if the
output in the truth table is same both times whe®BMs 0 and 1(other
variables having the same value); and also outpuhé same as the
complement of MSB.

Example 6.2 Realize the following function of three variablwith 8:1 MUX.
F(AB,C)=> (0134,7)

Solution: The truth table of the given function is dravenshiown in table 6.3. To realize
the given function using 8:1 MUX, the variable A,® are assumed to be the three select
terminals as shown in figure 6.7. The logic 1 isweected to each data input of the
multiplexer corresponding to each combination @f itput variables which has 1 in the
output column of the truth table. The logic 0 iswgected to the remaining inputs of the
MUX. The inputs X%, Xi, X3, X4, X7 are, therefore, connected to the logic 1 andXX,

Xg are connected to logic 0.

%,
i
%
Table 6.3 %
e
A B C | F %, 21MUX
0 0 0 1 -
000 1 1 1 x|
01 0| 0 = F
001 1 1 s,
1 0 0 1 5,
10 1 0 .
11 0 0
11 1 1 G

4F7

CBA
Fig. 6.7

Example 6.2 Use Multiplexers to implement of Full adder.

Solution: It is well known that a full adder adds threestof information. Let A B C are
three bits to be added. Let augend bit is A, addehd B and C is the carry from the
previous column; SUM and CARRY to the next bit ayen in the table 6.4.
Implementation of SUM and CARRY is shown in fig&:&.
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Example 6.3 Realize the following function of four variablevith 8:1 MUX.
F(A,B,C,D)=)> (013571113 ]15)

Solution: The truth table for the given function is ficdtall drawn (table 6.5) and YZW
are assumed to be the select terminals of the &X.M he inputs to the multiplexer are
obtained from the truth table as given below.

Xo:A X1:A
Xo=0 =1
Xq4=0 %=1
Xe= 0 %=1

Figure 6.9 shows the implementation of the givercfion.



Table 6.5

2 By Input
4 B C D F to MUK
0 0 0 0 1 2 =
000 1 1 i H—J:xl
0001 0 0 0 .
o 01 1 1 1 e
001 0 0 0 0 0 o L
001 0 1 1 1 =
0011 0 0 0 % F1MUX
0 1 1 1 1 1 L

= e

1 00 0 0 A |
1 00 1 0 i G 5 o8 g
1 01 0 0 0 Ly
101 1 1 1 B C D
1 10 0 0 0
11 0 1 1 1 Fig. 6.9
111 0 0 0
11 1 1 1 1

6.2 Demultiplexers A demultiplexer performs the reverse procdssaltiplexer; it
receives the information on a single line and stéeiseveral output lines. Demultiplexer
can also be called theata Distributor as it can transmit the same datthéodifferent
lines. It transmits the data t&' Butput lines, for which the select terminals obits are
required. For example, to transmit the single dafaur output lines (1:4 DMUX), select
terminals of two bits are required; similarly fo8IDMUX select terminals of 3 bits are
required and so on. The functional block diagra4:4 DMUX and 1.8 DMUX are
shown in figure 6.10(a) and 6.10(b) respectively.

#y
X[l_ E Xl 2]
14 wl— 8 1:8 L3
Data | pprs £ Data | pymx Lo
input n— o input T, B
X ol & X %,
¥ O

S|1 S|IJ Sg Sl Su XT

elect terminals Select terminals
Fig. 6.10(z) Fig. 6. 10(k)

In a 1:4 DMUX, let X is the data input which islte steered to 4 output lineg, X
X1, Xz, X3; the select terminals arg, &.



If S1So =00 , the input data X will be go to the outpigt
If S;So =01 , the input data X will be go to the output
If S1So =10 , the input data X will be go to the output
If S1So =11 , the input data X will be go to the outpit
The Boolean expressions fop, X1, X,, X3 are given by:

X, = X 51 [Bo

X, = X [5; [,

X, = X 5, [

X, = X 15 5

The implementation of these functions (or 1:4 DMWén be done as shown in
figure 6.11.

Sl SIJ

—, Ko =X 515
L
— X=X 518

¥ Ty s 1wy
s X=X 5 S
L
s, Xy = X808
L

Fig. 6.11

6.3 Decoder A decoder is a logic circuit which has a skinputs representing a
binary number and gives only one output correspanth the input number. The decoder
activates one output at a time depending uponnpet ibinary number; all other outputs
will be inactive. Figure 6.12 shows the functiobddck diagram of a decoder havihg
inputs and K outputs. The possible combinationi afputs will be 2'= K, so there will
be K outputs.

h—— — Xo
Il - Kl
NInputs I, Decoder o K Outputs

T

igF6.12



Figure 6.13 shows the circuit diagram of 3 — ® line decoder. It will have three
input lines and 2= 8 output lines. When the three bit binary nunibded to the input of
the decoder, as discussed above one output linespmnding to input binary is activated
and all other output lines will be inactive. It adso called binary to octal decoder or
converter because it takes a binary code as inpaitaativates one of the eight (octal)
output lines corresponding to the input binary coldee 3 — to — 8 can also be referred to
as a 1 — of — 8 line decoder, because only onbeoéight outputs is activated at a time.
The truth table for 3 — to — 8 line decoder is shawtable 6.6.

A g E(Enable)

L D,=4-B-C
D=4.F.C
D,=4.B.C
D,=4.8C
./ D,=AB.C
D.=AB.C
D,=A4B.C
Dy=4-8.C Fig. 6.13
Table 6.6
Inputs  Enshle Cutputs
A BT E|DqDg Ds Dy Dy Dz Iy Dy
444 0[00 0 0 0 0 0 O
000 1|00 0 0 0 0 0 1
001 1|00 0 00 0 1 0
010 1|00 0 00 1 00
011 1|00 001 000
100 1|00 0 1 0 0 0 0
101 1|00 1 00 0 0 0
110 1|01 0 00 0 0 0
111 1|10 0 00 0 0 0




It is clear from the figure 6.13 that an Enablpunline is connected to the fourth
input of each gate. When the Enable input is cameto logic 0, all the gates will be
disabled and force all output to be zero irrespectif the input data (ABC). However,
the decoder will give the required data when thald terminal is held at logic 1. The
functional block diagram of 3 to 8 line decodesl®wn in figure 6.14.

Dy
]
A— —Dx
B— 3.8 Decoder L%
Dy
Dy
— D%
D

E (Enable)
Fig. 6.14

The 4:16 line decoder can also be explained onstdme pattern. It may be
mentioned here that if AND are used in designirggdbcoder circuit, then Enable and all
outputs will be active high. If on the other hame tdecoder circuit is designed using
NAND gates then the Enable as well as the outguisihals will be active low.

Further it is interesting to note that the decachkar function as a demultiplexer.
For example a 2:4 line decoder with Enable termoaal be used as a 1:4 DMUX, if the
Enable terminal E is used as the data input lingifie DMUX and the two input A & B
of the decoder as the select terminals for the DMIUJ§ illustrated in figure 6.15.

L Do — i
A—y |, Dy E E (Egablﬂ 14 — D1 8
Decoder = ata —l DMUX | 3
g — D2 2, input B
| D3 = — D3 S
]
| A B
E (Enable) =elect terminals
Fig. 6.15

Decoder/Demultiplexer circuits can be expandedfaion the larger decoder
circuit. For example two 3:8 line decoders with Bleaerminal can be connected to form
a 4:16 line decoder. Figure 6.16 shows the construof a 4:16 line decoder with two
3:8 line decoders. From this figure it is clearttidhen the enable terminal E is O,
decoder (1) is enabled and decoder (2) is disadled.decoder (1), therefore, gives the
outputs as per the value of ABC. When the enabirital E is 1, decoder (1) is disabled



and decoder (2) is enabled. The decoder (2) nowsgikie output as the input values.
Here E terminal works as the most significant Initl &€ as the least significant bit. So
EABC generates the binary input 0000 through 1111.

=

3.8 Decoder —Ls

|
E

3.8 Decoder
(2 D

Fig. 6.16

The Boolean functions given in standard SOP foan be realized using the
decoder circuits. For the realization of Booleapressions, the decoder requires some
gates also. The use of decoder for the implememtasi more economical, as number of
Boolean expressions can be implemented using aceegldeand a few gates. However, in
multiplexers one MUX is used for one Boolean funiati

Example 6.4 Using a 4 —to — 16 line decoder, implementftli®@wing functions given
in standard SOP form.
F,(A,B,C,D) = Z (01,2,4,6,712 14)
F,(A,B,C,D)=) (358]101315)
F;(A,B,C,D)=> (56,71112)

Solution: The realization of the given Boolean functiorssng one decoder and a few
gates is shown in figure 6.17. The decoder usee isesictive high, so enable terminal E
is connected to logic 1. Three OR gates are usetthéamplementation of three function;
one OR gate for one function.
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Fig. 6.17

Example 6.5 Implement a full subtractor circuit with a 3&dine decoder and two OR

gates.
Solution: The Boolean expressions for Difference D ana®werB bits of full subtractor

are given as follows (refer chapter 5):
D => (1247)
B=> (1237)

The realization of these functions with 3 to 8 ladexoder and two OR gates, is shown in
figure 6.18.
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Fig. 6.18



6.3.1 BCD - to — Decimal Decoder The BCD to Decimal decoder converts each BCD
input character (8421 code) into one of ten posgileicimal form. It is also referred to as
4 —to — 10 line decoder. The method of implemémat essentially the same as for 4 —
to — 16 line decoder discussed above, with thesidiffce that it has only ten decimal
digits 0 through 9. The BCD to Decimal decoderls®d available in the form of IC. The
most commonly used BCD to decimal decoder TTL 1G44£S42. It is designed using
NAND gates, which therefore gives the active lovipois. Figures 6.19(a) and 6.19(b)
show the logic and block diagram of BCD to decirdatoder IC 7442 respectively.
Table 6.7 shows the truth table of IC 7442.

g
: Dy - Dy
— 4 D_fjl
- D3 D—Elj
54 | 4 —to—10 D__Ea

line decoder b D,

— e D
}Ds 107442 P s

— D
— o #— Ys
| 5 . 5,

O =
D? D—E'g

()
(a)

Fig.6.19

Given below the list of most commonly used derplétier ICs available in the

ﬁA[}iﬂD
B> L
Pl >
D—{>e >
market:

Description IC No.

Dual 1:4 DMUX 74155
(2:4didecoder)

1:8 DMUX 74138
(3:8didecoder)
1:16 DMU

(4:16 line decoder) 74154



Table 6.7

BCD input
L8 B C D Ctput
0 0 0 0|Di=ARBCD
0 0 0 1|D1=ABC D
0 0 1 0|D2=ABCD
0 0 1 1|D:=A-BC.D
0 1 0 0|Ds=ABC D
0 1 0 1|Ds=483.C.0
0 1 1 0|Ds=dAEB.C.D
0 1 1 1|D;=ABC.D
1 0 0 0|Dez=dAEB.C.D
1 0 0 1|Dy=AB.CD
1 0 1 0 HMone
1 0 1 1 Hone
1 1 0 0 Hone
1 1 0 1 HMone
1 1 1 0 HMone
1 1 1 1 Hone

6.3.2 BCD - to — Seven — Segment DecodeA decoder for BCD to 7 — segment will

now be discussed. A seven segment display corafissven display lights (segments)
arranged in a pattern shown in figure 6.20. Tlghtliemitting gallium arsenide or

phosphide diodes are generally used for the segnmanthese display devices. These
devices, also known as seven — segment LED disjgaiges, are operated at low voltage
and low power and hence directly connected to [TOse segments of the display devices
are marked as a, b, c, d, e, f, g. The numeridagd@ithrough 9 may be displayed if the
corresponding segments glow as shown in figure By2e darken segments.

I
=

s |
g |° 0 3 4

Fig. 6.20



The seven — segment LED display devices are oftiyges, one is known as
common cathode and the other is known as commaeaho the common cathode LED
display device, the cathodes of all its LEDs anrenazted to the common terminal of the
device. When the common terminal is grounded arsitige voltages are applied to the
anodes of the corresponding LEDs of the displayicgevthen the numerals will be
displayed on the devices. However, in the commoodanLED display devices, the
anodes of all its LEDs are connected to the comtaoninal of the device which is to be
connected to the positive supply; and when thevoltages are applied to the anodes of
the devices, the numerals are displayed. BCD tersessegment decoders are available
in the form of ICs. The common cathode LED disptiyices are connected to such
BCD to seven segment decoder ICs which providevadtigh outputs and common
anode LED display devices to such decoder ICs wpiokide active low outputs. Other
display devices are LCD (Liquid Crystal Devices).

The design of a combinational circuit will be dissed. It will decode 4 — bit
BCD codes to decimal digits. The logic circuit wilave 4 inputs and seven outputs
(figure 6.21). Seven outputs will correspond togbegments of the display.

@
— — b
s | £
4 -t BCD Logic Circuit 4 | Seven Segtent
Inputs o . outputs
P— —
g

Fig. 6.21

A truth table indicating the 4 — bit BCD inputsdaseven segment outputs is
shown in table 6.8. Seven segments show the oftfut is to glow. The K — maps for
the seven segments a, b, c, d, e, f, g are shovigure 6.22 (a) to (g). From these K —
maps the minimal Boolean expressions are obtaioe@dch segment. The expressions
are given as:

a=A+C+B[D+BI[T
b=B+C[D+CID
c=B+C+D

d=A+B[D+B[T+B[CD
e=BMD+CD
f=A+CD+BIC+BMD

g=A+BIC+B[C+CD



The expressions for the seven segments a throegh e implemented using

the AND OR and Not gates as shown in figure 6.23.
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A few ICs are available for BCD to seven segmestoder/driver. ICs 7447 &

7446 are generally used BCD to seven segment deédader. These decoder ICs has
four input lines and 7 output lines for each segnuérihe display device. The both ICs
give active low outputs and their pin configuratisrsame. The maximum voltage rating
of IC 7447 is 15 volts where as it is 30 volts Gr7446. The function of lamp test (LT),
Ripple blanking input (RBI), ripple blanking outp(RBO) and Blanking inputs are also
provided in these decoder ICs. The lamp test id tseheck the segments of the display
device. If LT is at logic O then all the segmentdste display device will be ON. For
normal operation of the decoder LT should be cotateto logic 1. For normal operation
of the decoder the ripple blanking input (RBI) slibbbe connected to logic 1. For
blanking out leading zeros in multi — digit displ&Bl is to be connected to logic 0. The
terminal blanking input and ripple blanking out f/BBO) is also used for blanking out Os
in multiplexed display. The set up for single sevesegment LED display using BCD —
to — seven segment decoder/driver IC 7447 is shovigure 6.24.
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6.4 Code converter Code converter is most commonly used in digitatams.
Sometimes binary numbers are provided in one typeir@ary codes and required the
numbers in other types of binary codes. So the cmmteserter converts the binary
numbers provided in one type of codes to other typeodes. The process of code
converter is illustrated by taking an example. Siggpit is desired to convert the digits
given in 8421 to cyclic code. A truth table iswmin which four input variables say
a,b,c,d are taken for the given code and flour wuyariables for output variables say
X,Y,Z,W are taken for the required code. The binagmbers in the given code are
written for the input variables and their corresgiog binary numbers in the required
code are written for the output variables (tab® 6.

Using the K — map, simplified Boolean functions éach variable in the required
code is obtained in terms of the variable of theegicode. In the above example of
conversion of 8421 code to cyclic code, the Boolearction of the variables of cyclic
codes are obtained in terms of the variables ol &2le. These expressions are given as:

X=a+b - d+b.¢
Y=brc
Z=b+e

W=a bcdtbcdtbc dtad

Figure 6.25 shows the K — map for each expres3iom. realization of these
expressions using NAND gates is shown in figuré6.2



Table 6.9

Cyclic Code
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KX=a+b d+b ¢

W=abcdthecdtbcdtad

Fig. 6.26

6.5 Encoders An encoder a combinational circuit which penfisr the reverse

operation of decoder. The decoder accepts N biftigpde and activates one of the
several out lines corresponding to that code. Hawnean encoder has a number of input
lines, only one of which is activated at a timepiovides the N bit code at the output
corresponding to activated input line. The decodardied in the foregoing section were



binary to octal, BCD to decimal decoder etc. Theoelers will therefore, be like octal to
binary and decimal to BCD encoders. Figure 6.2%shitve functional block diagram of
an encoder having K inputs and N outputs. In thapgat lines only one line will be high
at a time.

-
In——— — A
I; — 3
E Inputs = I L
2 : ENCODEER : o N Outputs
1 — 1
e
Fig. 6.27

6.5.1 Octal — to — Binary Encoder An octal — to — binary encoder (also known as 8
line to 3 — line encoder) has 8 input lines androles three bit output lines for producing
output code corresponding to the activated inma.liThe truth table for octal — to —
binary encoder is given in table 6.10. From thisle it may be noted that binary output
Xo gives the logic 1 if any of the input digitg Dr D; or Ds or Dy is at logic 1. Therefore
the Boolean expression fop X given by:

X,=D,+D,+D, +D,
Similarly, the expressions forp)and % may be given as:
X,=D,+D,+D,+D,
X, =D, +Dy+D, +D,

The logic circuit for the octal — to — binary edeo with active high inputs is
shown in figure 6.28.

Dg Dy D3 Dz Dy Ds Dy Dy

Table £.10
Dctal digits Chutputs
_‘DL X X X
- 0 Dg |0 0 0O
1 Dy |0 0 1
— X > Dy |0 1 0
' 3 D |0 1 1
4 Ds |1 0 0
5 Ds |1 0 1
____l:>ji_ 6 D |1 1 0
- 7 D¢ |1 1 1

Fig. 6.28



6.5.2 Decimal — to — BCD Encoder The decimal — to — BCD encoder has 10 inputs —
one for each decimal digit, and 4 output linesB&D codes. The logic symbol of this
encoder is shown in figure 6.29. Table 6.11 shdwesttuth table for decimal to BCD
encoder. The expressions for the output variablés nespect to the truth table are given
by:

X,=D,+D,+D; +D, +D,

X, =D, +D,+Dg +D,

X, =D, +Dg+Dg +D,

X, =Dg + D,

The logic circuit for the decimal — to — BCD eneodvith active high inputs is
shown in figure 6.30.

— 1o
—1
_2 . .
= —|3 Deciral | —— _ B
&3 —|4 TorcD q &
© & |2 Encoder o
o8 |8 I
T
— &
— 9
Fig. 6.29
Do Dy D2 Dz Dy Ds Dg D7 D T, Table &.11
Decimal ECD Cutputs
— Inputs 1303 ¥y 30 X
G;{D 0o Do |0 0 0 0
— 1 Dy |0 0 0 1
T s Dy |0 0 1 0
.Jﬁﬂ 2 Dy |0 0 1 1
_ 4 Dg |0 1 0 0
i X, | s Ds|0o 1 0 1
; e De |0 1 1 0
_
7 D0 1 1 1
"J_}‘}% g Dg |1 0O 0 0O
g Dg | 1 0O 0 1
Fig. 6.30

6.6 Priority Encoder: In the logic circuit for encoders, it has befiscussed that

only one of the inputs is kept high at a time antpat is obtained corresponding to the
high input. But it is worth mentioning that if theo or more inputs are inadvertently
activated at a time then undesirable results wdl dbtained. The priority encoder



performs the same logic function as that of encedtr the additional facility of priority
function, when two or more input lines are actidat&multaneously. The priority
function means that the encoder will provide thépati corresponding to the highest
order activated input line. Decimal to BCD priorigncoder will now be discussed in
detail.

6.6.1 Decimal — to — BCD Priority Encoder Decimal — to — BCD priority encoder
should have ten input linesglhrough B and four output lines ¥to X3 like normal
Decimal to BCD encoder. The additional facility yided in the priority encoder is that
when two more lines says@and [ are activated simultaneously, the BCD output el
available corresponding to the line which has highember i.e. the output will be
available corresponding togine. The additional logic circuitry will provideae priority
function to the encoder. This is accomplished devis:

Referring to the table 6.11, the truth table foe tlecimal to BCD encoderyXs
high when 3 or D; or Ds or D; or Dy is high. But for priority function, B must be
allowed to activate the outputXnly if no higher order digits other than thosatthlso
activate X are high. This can be stated as:

Xo is high if Dy is high and B, D4, Dsand I3 are low, OR
Ds is high and D, D, and @ are low, OR
Ds is high and @and [ are low, OR
D7 is high and @is low, OR
Dy is high.
The above statements can be expressed in theofoerpression for Xas:
X, =D, [D; D4 [DsDs + D, (D4 [Ds [Ds + D, (D6 [Ds + D, [(Ds + D,
The statements for getting the expression for dutpare:
X1 is high when R or D; or Ds or Dy is high. So for priority encoder
X1 is high if Dy is high and I, Ds, Dg and Iy are low, OR
D3 is high and [, Ds, Dg and [ are low, OR
Ds is high and [@and Iy are low, OR
Dy is high and @and Iy are low.
The expression for Xis of the form:
X, =D, D4 [Ds[Dg [Dg + D, (D4 [Ds [Dg [Ds + D, [Dg [Dg + D, [Dg Do
The statements for getting the expression for dutpare:
X2 is high when Q or Ds or Ds or Dy is high. So for priority encoder
Xz is high if Dy is high and and I are low, OR
Ds is high and [@and [y are low, OR
Ds is high and and Dy are low, OR



Dy is high and [@and I are low.
The expression for Xs of the form:

X, =D, [Ds [Ds + D, [Ds Dy + D, [Ds [(Ds + D, [Dg (D
Similarly, the statements for getting the exprass$t output X are:
X3 is high when [@ or Dy is high. So for priority encoder

X3z is high if Dg is high or I3 is high.

The expression for Xis, therefore, given by:

X, =Dy + D,

The logic circuit diagram for the Decimal — to — B@riority encoder is shown in
figure 6.31 with active high outputs.
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Decimal to BCD priority encoder, is available fretform of IC 74147. The input
and output variables in this IC are active low. Theck diagram of this IC is shown in
figure 6.32 and table 6.12 illustrates its truthi¢a
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Fig. 6.32
Table 6.12
Inputs Cutputs
Ty Ty Dy Dy Ds Dy Dy De Del| s 3o 3 g
11 1 1 1 1 1 1 1|1 1 1 1
o 1 1 1 1 1 1 1 1/1 1 1 0
A 0o 1 1 1 1 1 1 1/1 1 0 1
oS 0 1 1 1 1 1 1|1 1 0 0
A oF @ 0 11 1 1 11 0 1 1
g 0#4 B F 0 1 1 1 11 o 1 0
# oo @ ¢ # 0 1 1 1|1 o o 1
#0084 @ @ #F F o0 1 1|1 o 0 0
g0 @ @ F F F 0 1|0 1 1 1
#00F g4 F F F F F 0|0 1 1 0

6.6.2 Octal to Binary Priority Encoder. The block diagram of octal to binary priority
encoder IC 74148 is shown in figure 6.33, and théhttable for the same in given in
table 6.13. The internal logic circuit for this ltas active low inputs and active low

DU —0
I 0 o o .
Dy, —° . — ¥ =
D, a Diecirmal 1 8 B
ToBCD |o— =7 o

— 0 o 2 /M
Prinrity o

Decimal
Inputs
o

D; ° Encoder N X
D; —1a0
Dy —9 .
Enable input —o o ary outputs

(active low)

{active 1ow)

IC 74148
Fig. 6.33



Table 6.13

EI Inputs iCutputs
Dgp Ty Do Ty Dy Ds Dy De [ 3 g G Eo

1 ¢ & g g g # F § |1 1 1 1 1
o0 1 1 1 1 1 1 1 |1 1 1 0 1
O (| 1 1 1 1 1 |1 1 0 0 1
0 # & 0 1 1 1 1 1 |1 o1 0 1
o # ¢ ¢ 0 1 1 1 1|1 0 0 0 1
0o @# & @ # 0 1 1 1 |0 1 1 0 1
0 @ F g @ F 0 1 1 |0 1 0 0 1
0 # #F 4 £ F F 0 1|0 0 1 0 1
0 @ & @ @ F F F 0 |0 0o 0 0 1
o1 1 1 1 1 1 1 1 |1 1 1 1 0

outputs. One enable input is provided in this IGalhs also active low. Two active low
carry outputs are also provided in the IC. The &nafput and carry output help to
cascade circuits to handle more inputs. Very usgfalits such as hexadecimal to binary
encoder are designed by cascading octal to bindoyity encoders. A hexadecimal to
binary priority encoder finds wide use in computansl microprocessors etc.

6.7 Magnitude Comparator  Magnitude comparator also called as the magdai
digital (or binary) comparator. It compares andidgatkes if the binary number P is equal
to or greater than or less than the other binamber Q. Let Pand @ are the two bits to
be compared. The result for the equality of these ltits may be given by XNOR gate.
The XNOR gate gives an output as logic 1 if twes ldite equal otherwise logic 0. This
condition is given by:

= = 1 H=¢,
T:PU'QB"'PD'QDZPE@QDZ

0 5=
The condition Py >Q, is given by:
— 14 5=0
R=PR -Q,=1. . "=
0y R =g
In this expression i, > Q, (Po =1 andQy = 0),R= 1 and if on the other hand
PO SQO (Po: 0 anonz 1 OTP():Q(): 0 OTP():Q(): 1),R: 0.
The condition P, <Q, is given by:
_ 1 i A<,
S—PD-QD—{O f B2 0
It is clear from this expression thathf < Q,(Po =0 andQ, = 1),S=1 and if on
the other hand®, 2 Q,(Po =1 andQy =0 0rPo =Qo=00rPo =Qo=1),S=0.



The logic diagram for one bit comparator is shawhgure 6.34.

[ §=R/0
> (B< Q)

P> r-7eg;
'(R:u :Qn:'
% —_—
R:Eﬁ'ﬁu
(5 =Ch)

Fig. 6.34

Now the comparator which compares two unsigned-doit binary numbers will
be discussed. Ld¥;P,P:Py; and Q:Q.Q1Qo are the two unsigned binary numbers of four
bits. The comparator gives three outputs indicaififts > Qs or Ps = Qs or Ps < Qs. The
two binary numbers will be equal if and onlyFf = Qs, P2 = Qy, P1 = Q; andPp = Qo.
The logic expression for the equality of two binawymbers will be given by the AND
operation of the equality of the individual bit OO of individual bit), as:

(Ps=Qg9) = (P, 1 Q,) (P, I Q,) R U Q) (R, U Q)

The statements for getting the expressiorP®r Qsare:

Pswill be greater tha@s
ifPs=1landP;=0 OR
if P3=QzandifP,=1and®,=0 OR
if P3=Qg3, and ifP, = Q,, and ifP; =1 andQ; = 0 OR
if P3=Q3, and ifP,=Q,, and ifP; = Qi and ifPp=1and Qy=0
These statements can be expressed in the forrpodssion for Ps > Qs as:

(Ps>Q9=P,Q,+(R0IQ)PRQ,+(RIQ){RIQ)RW +(FIQ)IRIQ)IRIQ)M W,

Similarly, the statements for getting the exp@ssor Ps < Qs are:

Pswill be less thar@Qs
if P;=0andP;=1 OR
if P3=QzandifP,=0andQ.=1 OR
if P3=Q3, and ifP, = Q,, and ifP,=0andQ; =1 OR
if P3=Q3, and ifP,=Q,, and ifP; = Q; and ifPp=0andQy =1
These statements give the expressions for PsasQs



(Ps<Q9=Ps @, +(P, 0Q,) P> [@Q, +(R, 0Q,) [P, 0Q,)[P: [@ + (P, 0Q,) (P, Q,) {R, 1 Q) [P (@,

Figure 6.35 shows the implementation of the tlegaressions foPs > Qs, Ps =
Qs andPs < Qsof the four bit magnitude comparator. The outmitdhis comparator are

active high.
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Fig. 6.35

Figure 6.36 shows the logic diagram of 4 — bit carapor IC 7485. This IC has 4
input and 4 output terminals with active high, andaddition it has three cascading
inputs. These inputs allow several comparatoragzade for comparison of any number
of bits. For the expansion of the comparators, Bs>Ps = Qs and Ps < Qs outputs of the
one comparator (to which the least significant dataonnected) to the corresponding
cascading inputs of the second comparator (to wheott significant data is connected).
The cascading inputs of the first comparator (tactwhthe least significant data is
connected) must be connected as follows:

Cascading Input “= “ to logic 1 and cascading iggix’ and “<” to logic 0.

Lﬁ?gﬂ?




Ps=)s
I 7485 P:=(Qs

Ps=0s

Fig. 6.36

Cascading of two comparators (ICs 7485) to comfaemagnitudes of two 8 —
bit binary numbers is shown in figure 6.37.

—P — b
— P —Fs
e —Fs
—P; — b
Pz s Pz < Qs
= =
HIGH _ IC 7485 Ps=Qs |- IC7485 | Pe=0s
= = ——DPs = s
]
o Foz Qs —a
Q —
o — %
% — %
Fig. 6.37

6.8 Parity Generator/ Checker In some digital systems the data or information
the form of the binary bits is sent from one blackhe system to the other block or the
system. In the transmission of the data, error owyr due to change of data bit (0 by 1
or vice versa). This change may be due to companatitinctions or the electrical noise.
This problem is removed by adding one additiontirbthe data to be transmitted. This
extra bit is known as parity bit. The parity bétdcts the single error in the transmission.
Parity is the number of 1's in the given data ordvdf the number of 1's in the given
data is even then parity is called as even pafitn the other hand the number of 1's is
odd then the parity is called as odd parity. Thetpait of the data or the word is
generated by the parity generator. The logic diagpathe parity bit generator of four bit
is shown in figure 6.38. This parity generator giweitput P (parity bit) as logic 1 if the



number of 1’s in the four bit input data is evand P is logic O if the number of 1's in
the four bit input data is odd. That is for evenmityaof the input data, output is 1 and for
odd parity of the input data, output is O.

et
j]}bT
jDJ P { Patitybit )
|

Data

fau]
|||__ =

Fig. 6.38

The parity bit P generated by the parity generest@ent along with the data and
at the receiver end data as well as the paritysbtthecked by the parity checker. The
logic circuit for the parity checker (fig.6.39) ke same as that of the parity generator
with the only difference that in the parity checkee terminal P’ in not grounded, but the
parity bit received at the receiver end is conrettethe point P’. So at the receiver the
received data and the parity bit form the five data which is always having the odd
parity. It is clear from the fact that if the d&&aB, C and D is odd (even) then parity bit
is 0 (1), and therefore the received data and anigybit is always is odd.

iy
) 1
Drata j
P! ([ Patitybit ’ Parity checker

Chatpnat
Fig. 6.39

As illustrated in figure 6.40, a parity bit B generated and transmitted along with
the data. At the receiver, the received data andydat are tested. If the output Bf the
checker is 0, then no error is there in the reckdega. If on the other hand outpuyti®1,
then there is an error in the received data.
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Parity generator/checker is available in the fafnC. Figure 6.41 shows the
block diagram of 8 bit parity generator/checkera€l80 and its truth table is given in
table 6.14. This IC can be used to check for exrerdd parity on a 9 — bit code (8 — bit
data and one parity bit). It can also be used tegge a 9 — bit even or odd parity code.

Table 6.14

% B Parity of Inputs Qutputs
c —] 8bit data Even  Odd 2@ T ad
E — — TEVEN Ewen 1 0 1 0
(1_5, ] I 74130 Odd 1 0 0 i
H | o Evwen 0 1 0 1
Even iDdd 0 1 1 0
Ddd — 7 1 1 0 0
# 0 0 1 1

Fig. 6.41

6.9 Programmable Logic Devices Different gates and other combinational logic
circuits available in the form of ICs are used the logic designs. In many system

designs, the designers use large number of ICsg simch circuits have several input and
output variables. The recent development of progmabie logic devices has presented a
cost effective method of realizing such circuiteeTprogrammable logic devices (PLDs)

are medium scale integrated circuits and thesecds\dan replace a number of standard
ICs. Thus PLDs help in designing larger circuitsomall space with ease.

A PLD is a programmable IC which contains largenber of interconnected
gates, flip — flops and registers etc. Many of theerconnections are fusible. The
connections which are not required by the desigaerdused or broken. Programming of
fuse blowing as per the required circuit patterrdasie by the manufacturer or by the
customer.

PLDs fall into three categories. They are known as
(1) Field Programmable Logic Array (FPLA)
(i) Programmable Array logic



(i)  Programmable Read Only Memory (PROM)

PLDs consist of an array of AND gates followedayarray of OR gates. Both
true and complement form of the input variables fa@ to AND array. Simplified
procedure is adopted to represent the internalitiycof these devices. Figure 6.42
demonstrate the connection to an AND gate. Thdecdircross marks®) to the input
lines shows the fusible connections to the inmedi If there is no circled cross mark, it
indicates that the connection has been brokensedfuFurther, the dot mark:= () on the
input lines show the hard wire connections to theesponding input lines. Figure 6.42

(a) indicates a four input AND gate with fusiblencections toA, A, B, B inputs. If the
connections are fused to A and B inputs, then ndkmdl be shown to these points refer

figure 6.42 (b). The output of this AND gateAisB. Similarly, the dot markss)) to the
input lines (figure 6.42 c) indicate the hardwimnection to the input lines. The output

of this gate iSALB. Similar connections are used for OR array also.

%puts_ Inputs
O A4 A58 EF
% % % % r Cutput -
A B
Fig. 642 (a) Fig 6.42(k)
Inputs
AABRBE
JHdo—as
Fig 6.42(c)

6.9.1 Field Programmable Logic Array (FPLA): Figure 6.43 demonstrates the basic
structure of Field Programmable Logic array (FPLE).this logic device, both AND
array and OR array are programmable. The circlegscmarks to the input lines of AND
and OR gates indicate that these connections aiblduor programmable. It may be
noted from the architecture of the FPLA that whieis not programmed all the true and
complemented variables are connected to the irgfutech AND gate. The AND gates

will give the outputs O, Since, Xo [X, [X: = 0. The outputs of the OR gates will

also be zero since it is the summation of outptitdl)AND gates. So when FPLA is not
programmed all outputs of the device will be z&tow if the circled cross mark of some
inputs of AND gate are burnt (or programmed to reenfuse), then min-term of the
remaining input variables (or their complements]) & obtained. Similarly by burning

the unused circled cross marks of OR array wilegdive required outputs in SOP form.
So the programming of the device allows the impletaon of arbitrary logic functions

in a two level sum — of — product (SOP) form. TheAarray creates the required min-
terms, while the OR array takes the sum of prodtmtform the outputs. It is very

versatile since both AND and OR arrays are prograblex However, it has some
disadvantages; it is more difficult to manufactym@gram or test than other PLDs.
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FPLA has a number of input variables, AND gated &R gates. The actual

FPLA available are specifiday p x q x rwherep is the number of input variablesjs
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the number of AND gates amds the number of OR gates (outputs). One FPLA I8

14 input variables, 32 AND gates and 6 OR gates.
Example 6.6 Consider a FPLA of 4 input variables, 10 AND gatnd 4 OR gates

Fig. 6.44



shown in figure 6.44. How would it be programmedrtgplement the logic circuit for
8421 code to cyclic code converter?

Solution: In section 6.4, logic circuit for 8421 code tgrlic code has been implemented
using AND, OR and NOT gates. The Boolean expresdionfour variables X, Y, Z, and
W of cyclic code given in terms of a, b, ¢ and diatsles of 8421 code are reproduced
below (from section 6.4) as:

A=a+b d+b ¢

Y=bhe

Z=b+c
W=abcdthcdtbocdtad

These expressions are realized using FPLA as shofigure 6.45.
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Fig. 6.45

Example 6.7 Implement a BCD to seven segment decoder cingsiig a FPLA of
proper specification.

Solution: The expressions for the seven segments of BGi2wen segment decoder are
given by after K — map minimization (as discussedeaction 6.3.2) as:

a=A+C+B[D+B[T
b=B+C[D+CID
c=B+C+D



f=A+CD+BIC+BD
g=A+BIC+B[C+CID

There are 15 independent min-terms in these esipres So for their realization
the FPLA should have 4 input variables, 15 AND gated 6 OR gate. The realization of
7 outputs of BCD to seven segment display is shioviigure 6.46.
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6.9.2 Programmable Array Logic (PAL). Another class of Programmable logic
devices is the programmable array logic (PAL) whishwidely used and easily
programmable. The PAL has an AND array followedd#y array similar to FPLA, with
the difference that the inputs to AND array aregoammable while the inputs to OR
gates are hard wired (fixed OR array). Figure 6shdws the architecture of a PAL
device having 16 AND gates and four OR gates. Ex@t) gate can be programmed to
generate any desired product of 6 input variabhestheir complements. Each OR gate is
hard wire to only four AND outputs. This limits éaoutput function to four min-terms.
If the function requires more than four producirtsrthen one has to use such a PAL
which has more OR inputs. If on the other hand meeds less than four product terms,
the unneeded terms to the input of OR gate are fdenot burning (or programming)
the corresponding input lines of AND gates. The Pducture is the most generic one
for the implementation of arbitrary logic functions
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Example 6.8 Using the PAL shown in figure 6.47, implement tfollowing SOP

functions of 4 variables.
Solution: Figure 6.48 shows the implementation of theegifunctions using the PAL.
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6.9.3 Programmable Read Only Memory (PROM) Another class of PLDs is
programmable read only memory (PROM), in which AldbBay is not programmable
while OR array is programmable. So connections froput lines to the AND gates are
hard wired, while the connections to the OR gateshfthe outputs of the AND array are
programmable (each joint is marked with circledssronarl@). If there are N input
variables, then "2 product terms are generated. One AND gate wilubed for each
product term, so there will be"2AND gates or rows. The OR array will be of any
number. Figure 6.49 shows 16 X 4 PROM. Since 16,@ it will have 4 address or
inputs lines and 4 data outputs. For the progrargrafrOR array, circled cross marks are
removed or fused for the unused product terms lhesetmarks are retained for the used
product terms. PROMs find many applications like timplementation of Boolean
functions, code converters and data storage tables.

Example 6.9 Using 16 X 4 PROM, implement the following fdions of 4 variables.
Y,(A,B,C,D)=> (014589710 14 15)
Y,(A,B,C,D) = z (2,3,4,910 11 13 15)
Y,(A4,8,C,D) =73 (4,5,7,8,10 12 ,15)

Y;(A,B,C,D)=> (56,71013)



Solution: By making the suitable programming of OR arrélye given Boolean
functions are realized using 16 X 4 PROM as shaowfigure 6.50.
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Example 6.10 Using 16 X 4 PROM, implement the 4 —bit binatg— gray conversion.

Solution: The conversion table of 4 —bit binary to graysisown in table 6.15. The
implementation of this converter is, thereforeshewn in figure 6.51.

The expressions for the outputs of gray code aengdoy:

Y,(A,B,C,D) =) (891011121314 15)
Y,(A,B,C,D) =) (45,6,7,89]10 11)

Y,(A,B,C,D)=> (23,4510 1112 13)
Y;(A,B,C,D)=> (1,256,9101314)
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Table 6.15

A B T D
Xy ¥y Xy X
4} 470 %} %} Programmahle
Binary Inputs | Oray outputs OF atray
ABC DT,V ¥ Q
0O 0 0 0|0 0 0 0 =
o0 0 1[0 0 0 1 =
001 0l0 0 1 1 =
oo o1 1|0 0 1 0 %
01 0001 10 L
01 0 l1jo 11 1 =
a1 1 0lo 1 0 1 L
o1 1 1|0 1 00 »,
1000111 00 B
100111 01 [
10 10111 11 [
10 11111 10 [
11 00|10 10 5
11 01|10 11 [
11 101 0 01 )
11 1 11 0 0D —_—
Fized AND array
Yo¥1 Y2 Ys
Fig. 6.51
PROBLEMS

Explain the working of a multiplexer. What are utses?

Discuss the method of implementing the Boolean&sgions using Multiplexers.
Implement a full subtractor circuit using MUXs.

How can two 8:1MUXs be cascaded to use it a 16:IXMU

What is a Demultiplexer? Draw the logic circuitlof4 demultiplexer and discuss
it working.

What is a decoder? Discuss 3 to 8 line decodemigaam enable terminal (active
high). Also show that a decoder and Demultiplexersame.

Implement SUM and Carry of a full adder with 3 tdir& decoder and two OR
gates.

What is BCD to decimal decoder? Draw its logic dég and explain its
working.

How can two 3 to 8 line decoder be used as a 4 imé& decoder?



10.Design a decoder that displays 4 bit BCD inputdees segment form. Realize
the circuit using

(i) 4:1MUXs
(i)  NAND gates alone
(iif) NOR gates alone

11.Repeat the problem 10 if the inputs are in 4 bitess — 3 code.

12.What is a code converter? Design an 8421 to 24@8& converter. Draw its logic
diagram using

() NAND gates

(i) NOR gates

(i) MUXs

(iv) 4 X16 PROM
13.What is an encoder? Draw the logic diagram of dathlinary encoder.
14.Draw and explain the logic diagram of Decimal tolBE&ncoder.

15.What is priority encoder? Draw the logic diagramdefcimal to BCD priority
encoder.

16. Discuss octal to Binary priority encoder.

17.What is magnitude comparator? Draw the logic diag 4 — bit magnitude
comparator and explain its working.

18.How two 4 — bit magnitude comparators be used&slat comparator.

19.What are programmable logic devices? Name populartbwn PLDs. Explain
any one of them in detail.

20. Discuss 4 — bit parity bit generator cum checker.
21.Realize the following function of four variablesus 8:1 MUXSs.

() F,(A,B,C,D)=> (0246,713]15)

(i) F,(A,B,C,D)=)> (01345891014 15)

(i) F;(A,B,C,D)=> (046,7891012131415)

(iv) F,(A,B,C,D)=)> (0123589121314 ]15)
22.Repeat the problem 21 using 4 to 16 line decode@daDR gates.

23.What is Field Programmable Logic Array (FPLA)? Eplhow the programming
of AND and OR arrays in FPLA is done.

24.What are Programmable array logic (PAL) devices?atMs the difference
between FPLA and PAL devices?

25.Explain Programmable Read only Memory (PROM). Haveslthe architecture
of a FPLA differ from those of PROM and PAL?

26.Implement a excess — 3 to seven segment decodag WA of proper
specification.



27. Using the PAL shown in figure 6.47, implemérd following SOP functions of 4
variables.

X, =BIC+A[B+A[D+BI[D
28.Using 16 X 4 PROM, implement the 4 —bit binary— Exeess 3 conversion



Logic Families

In the last two chapters, discussions on the desigrombinational circuits have
thoroughly been made. The combinational logic dgiscwere implemented with the use
different logic gates knowing only the charactérstof these gates. However, the
electronic hardware of these gates has not soefan kiscussed. The discussion in this
chapter will, therefore, confine to the hardwareddferent logic families with their
operational characteristics and their relative atkges and disadvantages.

7.1 AND Gate: Consider the circuit for two input positive logid\W® gate as shown
in figure 7.1. The positive logic means that logjits assumed to higher voltage and logic
0 is assumed to lower voltage. Similarly, if lodies assumed for lower voltage and logic
0 is assumed for higher voltage then it is refetoeds negative logic. It consists of two
diodes O and D, the anodes of which are connected to positiveplguphrough a
resistance R. The output is taken across the leadtance R The operation of this
circuit may be explained as given below:
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(i) When both Inputs are at logic 0 When both the two inputs A and B are connected
to logic 0 (grounded), then both the diodes willibdorward bias. Since the anodes of

these diodes are connected to positive supply atitbdes are grounded. The voltage
across the load resistance Will, therefore, be equal to the forward voltagepl of the



diode. If the diodes are silicon diode, then incase this voltage will be more than 0.7
volt, which is assumed to be logic o.

(i) When either of two inputs is at logic 1 In this case, the diode whose cathode is at
logic 1 (+5 Volts) will be in the reverse bias asttier diode (whose cathode is grounded)
will be in forward bias. The voltage across thalloasistance Rwill, therefore, be equal

to the forward voltage drop of the diode. So thigpouis at logic 0.

(iif) When both the inputs are at logic 1 In this case both the diodes will be in reverse
bias. So the output voltage will be equal to lobias no current will flow through the
diode and whole of the current will flow throughetipad resistance. So the voltage
across the load resistance will be approximatelyais (logic 1).

It verifies the operation of AND gate. Similarly® can explain the operation of
more than two variables AND gate.

7.2 OR Gate The operation of positive logic two input OR @ahay be explained by
considering the circuit shown in figure 7.2.

(i) When both Inputs are at logic 0 When both the two inputs A and B of the OR gate
are connected to ground (logic 0), the output Wil zero (logic 0), since positive
terminal of the supply is isolated from rest of theuit.
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(i) When either of two inputs is at logic 1 In this case, the anode of the diode whose
input is at logic 1 gets connected to the positéreninal of the supply. That diode will be
in forward bias, giving the voltage drop of 0.7 tvatross the diode. The total voltage
across the load resistance \Rill, therefore, be approximately 4.3 volts (lodig

(iif) When both the inputs are at logic 1 In this case when both the inputs are at logic
1 i.e. when the anodes of both the diodes are stiy® terminal of the supply, both the
diodes will be in forward bias. The voltage dropass the load resistance RL will be
equal to 4.3 volts (logic 1).

It verifies the operation of OR gate. The operatid more than two variables OR
gate may be explained in the same fashion.



7.3 NOT (Inverter) gate Figure 7.3 shows the circuit diagram of an itme
(NOT) gate. It consists of a transistor in commantter configuration. It is a unary gate
since input to this gate is only one. The princigi@peration may be explained as:

When the input A is at logic 0, the emitter basgction of the transistor will be in
reverse bias and therefore the transistor goescutitaff. The collector (output) voltage
will be nearly equal to +¥¢ (logic 1). If on the other hand the input is@git 1 (+ \eo),
the transistor will go in to saturation. The valoferesistance R is so chosen so that it
ensures the emitter base voltage to be equaktay~ 0.8 volts. The collector (output)
voltage will be equal to ¥ sa= 0.2 volts (logic 0).

So when input is logic 0, output is logicl; if utpis logic 1, output is logic O.
This shows the inverter operation.
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7.4 Logic Families The basic logic gates discussed above were mmbigsing
discrete components like diodes, transistors asdtences etc. In the recent past, it has
been possible to fabricate many hundreds of thalssahactive and passive components
on a small silicon chip. Such fabricated devices lavown as integrated circuits (ICs).
The Integrated circuits are broadly classifiedvito ttategories namely Linear or analog
ICs and digital ICs. The analog ICs mainly contamplifiers, operational amplifiers,
audio and power amplifiers etc. However, the didi@s contain logic gates etc. The
variety of logic gates are fabricated in digitaklGsing various technologies. The digital
ICs may further be classified into following categs depending upon their level of
integration:

(i) Small Scale Integrated Circuits (SSI) Twelve gates per IC are fabricated in SSI and
total number of components per chip is less thdnh 10

(i) Medium Scale Integrated Circuits (MSI): These ICs contain 12 to 100 gates per IC
and total number of components per IC is 100 td100

(iif) Large Scale Integrated Circuits (LSI): The large scale integrated circuits contain
100 to 1000 gates per IC and number of componsri800 to 10000 per IC.

(iv) Very Large Scale Integrated Circuits (LSIy These ICs contain more than 1000
and less than 10000 gates per IC and total nunfbeoroponents per chip is 10000 to
100000.



(v) Ultra Large Scale Integrated Circuits (LSly More than 10000 gates per IC are
fabricated and total components are more than IDPBOchip.

The logic families are classified into two categsr depending upon the
technologies used for fabrication.

1. Bipolar Logic Families
2. Uni-polar Logic Families
The bipolar logic families are mainly of two types.

a. Saturated Logic Circuits: In which the tratmis are driven into
saturation.
b. Non-Saturated Logic: In non-saturated transidtmgic circuits, the

transistors are avoided to go into saturation.

The Saturated logic circuits may further be clasgifinto the following
categories:

Resistor — Transistor Logic (RTL)
Direct Coupled Transistor Logic (DCTL)
Integrated Injection Logic (IIL orL)
Diode — Transistor Logic (DTL)

High Threshold Logic (HTL)

Transistor — Transistor Logic (TTL)

o 0k w NP

The non-saturated logic families are:

1. Schottky Transistor — Transistor Logic (STTL)

2. Emitter Coupled Logic (ECL)

The Uni-polar logic families contains MOS FETs,dbare:
1. NMOS or PMOS Logic

2. CMOS (Complementary MOS) logic

Before discussing the details of logic familiesmn@ened above, it is necessary to
explain the following characteristics related teerth These parameters will help in
comparing the performances of the logic families.

() Fan — in:  The maximum number of inputs that can be appleea logic gate is
known as Fan — in. Thus a three input AND has fanas three.

(i) Fan — out The fan —out of logic gate is the number of gahed can be driven by it.
Thus, if a fan-out of a typical gate is 10, themiplies that this gate can drive 10 such
gates.

(iif) Propagation Delay Time The propagation delay time of a gate is defiasdhe
time interval between the application of the inpiot& gate and appearance of the signal
at the output of the gate. In other words it isirted as the time interval between a



change in input state and the resulting changeuipub state of the gate. This delay is a
very small quantity; it is of the order of few nasecond say 20 nsec (20X16ec) or 50
nsec (50x18 sec). The propagation delay of the gate alsoifigethe speed of the logic
gate. The delay time is measured between 50% \ltagels of input and output
waveforms. Figure 7.4 shows the input and outpwefaams of an inverter. Ity is the
delay time when the output goes from low statei¢l@) to high state (logic 1) angt; is
the delay time when the output goes from high dflaigic 1) to low state (logic 0), the
propagation delay time of the gatgéxpressed as the average of the two delays as:
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(iv) Power Dissipation It is defined as the amount of power that cadlibsipated in an
IC. It is calculated as the product of the d.c.tag¢ applied to an IC and the current
drawn from the d.c. source. It is always desirableave low power dissipation per gate.
The normal working power per gate is required fifemn micro-watts to few milli-watts.
The product of speed and power dissipation per igakeaown as the figure of merit of
the logic family. A low value of this product isslmble.

(v) Operating Temperature: The temperature range in which an IC functipreperly

is known as the operating temperature of the dfatespecified by the manufacturer. The
acceptable temperature range of the ICs is from-670°C for commercial applications
and this range is from — 88 to 125°C for military purposes.

(vi) Noise Margin: Spurious signals called noise are sometimes geeterin the
connecting leads of the logic circuits due to tlrayselectric and magnetic fields in the
surroundings. This results the unpredictable opmradf the logic circuit. The noise
margin is sometimes called Noise- immunity. It efided as the difference between the
maximum permitted low input and the maximum guagadt low output, and that



between the minimum permitted high input and theimim guaranteed high output.
The idea of noise margin is illustrated in figutg.7
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Fig. 7.5
Figure 7.5 shows that g¢(min) is the minimum high voltage for logic 1 and
Vor(max) is the maximum low voltage for logic 0. Thetmut should not occur in the
disallowed range. Similarly, M(min) is the minimum high input voltage ang {fmax) is
the maximum low input voltage and the voltage ldv&iveen V;(min) and \{ (max) is
the indeterminate range and this voltage rangeldhwt be applied to the inputs of the
logic gate.

As per definition of the noise margin, the noisargin for high state (M) and
the noise margin for low state (M) are given by:

VNH = VoH(min) - V|H(m|n)
VL = Vor(max) — ML (max)
The large noise margin is always desirable.

7.5 Resistor — Transistor Logic (RTL) The resistor-transistor logic is the most
common family of logic circuits. It consists of ig®rs and transistors hence known as
resistor transistor logic. Figure 7.6 shows thedaiscuit for two - input RTL NOR gate.
The operation of this circuit may be explaineda@®ivs:

When both the inputs A and B are at logic O, the transistors Tand T, will be
in cutoff and no current flows through collector itar circuit of the transistors. The
output will, therefore, be high (logic 1). Whenhait of the two inputs is at logic 1, the
corresponding transistor will go into saturatiom @utput will be \&e sa:0f the transistor
(= 02 V). The output is said to be at logic 0. The otityill also be low, if both the
inputs are at logic 0, as both the transistors saturate. It is concluded that it performs
the operation of the NOR gate.



Though this is a simplest logic circuit yet it Hascome obsolete. RTL has the
advantage that its power dissipation per gatevis Tthe disadvantages of this family are
that it has low noise margin and its propagatidayles relatively larger.
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7.6 Direct Coupled Transistor Logic (DCTL): The direct coupled transistor
logic circuit is similar to RTL, which obtained mpmitting the base resistances in RTL.
The DCTL circuit for two-input NOR gate is shownfigure 7.7. When one or both the
inputs are high (logicl), the corresponding traesier transistors will be conducting and
the current flows through the resistance R givesdhtput low (logic 0). It, however,

corresponds to high output voltage when both tipaitsr are at low. This logic is very
simple and requires a few components but it haslidalvantage of low noise margin.
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7.7 Integrated Injection Logic (IIL or | 2L): This family of bipolar
transistors is the simplest logic family and it hagh packing density due to which a
large number of digital functions can be formed asingle chip. The?L family is
available in LS| package for complex digital fulocts such as microprocessor etc and
thus individual gates in SSI package are not abksla

Figure 7.8 shows the logic diagram of three - inputNOR gate. The basic unit
of this circuit is an inverter which is shown iretshaded box. The PNP transistar T
serves as a constant current source that injeetsufrent into the base of the transistor



T, If the input is at logic O (grounded), the ingttcurrent becomes grounded thus
diverting the current from the base of transistgr This transistor, therefore, goes into
cutoff and the output is high. If on the other haviten the input A of the inverter is high,
the injected current from the current source flomts the base of the transistos thus
turning it ON. The output is low. The circuit fohree - input NOR gate is the
combination of three inverters and its operatiory tna explained in the similar fashion.
It has a low power requirement and reasonably geotthing speeds.

a +"iuT|:|:
b O
T
[ 1 Ts
B o '
[ Tj Tj
—0
Catput
0o
T Ts

Fig. 7.8

7.8 Diode — Transistor Logic (DTL): The next family after RTL was diode
transistor logic (DTL), which has high noise marghough slow speed. In DTL diodes
and transistor are used hence the name diode dransogic. Figure 7.9 shows the
positive logic two input DTL NAND gate. Its operati may be explained as given
below:

When both the inputs are at logic 0, the diodesud D will be in forward bias and the
voltage at the point P will be equal to the forwaadtage drop of the diode 0.7 V).
This voltage is being applied to the base of thadistor T through the diode ) due to
which the transistor ;Tgoes in to cutoff. The output voltage will, thered, be high
(logicl). The diode Bensures that the transistor T1 is in cutoff. la #bsence of this
diode the transistor could be in active region aabut would not be high enough. When
either of the two inputs is at logic 1, the cor@sging diode will be in reverse bias and
the other diode will be in forward bias due to whthe voltage at point P will be equal to
the forward voltage of the diode. This takes tla@gsistor T into cutoff, giving the output
voltage to be high (logic 1). Now when both theutgpare connected to logic 1, both the
diodes O and D will be in reverse bias and the voltage at thenp&i is high due to
which the transistor ;Tgoes into saturation. The output will begé,:of the transistor
(= 02 V). The output is said to be at logic 0. The fumrctof resistance Rconnected
between the base of the transistqrahd ground is to remove the stored base charge
when the transistor has to be turned off from #uweirstted state. The lesser the value of



this resistance lesser will be the propagationydgfae of the gate, but the value of this
resistance can not be decreased beyond certaie, vatlnerwise the transistor Will
never be in saturation.

The propagation delay of this logic is high appnoaiely 50 nsec.
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7.9 High — Threshold Logic (HTLY A high threshold logic gate is a
modification of a DTL gate. It is designed for irstiial applications by providing large
noise margin. Figure 7.10 shows the logic diagramwvo — input HTL NAND gate. This
logic circuit has been designed for higher supmifage (15 V). It utilizes a zener diode
of breakdown voltage of 6.9 V.
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The transistor Fwill conduct when the emitter of transistoy i§ at 7.5 V, as the
sum of 6.9 V zener voltage angg/of T, (0.6 V). The low output level of the HTL gate
will be 0.2 V and high level will be about 15 When one of the inputs or both the inputs
are at low transistor;lis off. When both the inputs are high transistpsdturates.

The advantage of this gate is that its noise maigghigh however it is slow in
speed.

7.10 Transistor — Transistor Logic (TTL): The TTL is the most popular
amongst all logic families and is widely used I€heology.. It is the modified form of
DTL. The propagation delay time is reduced in THLUSIing multi-emitter transistor in
place of diodes. Figure 7.11 (a) shows the schenaidigram of a basic TTL positive
logic NAND gate. It consists of a multi-emitter tsastor . A two emitter transistor is
equivalent to two transistors with common base @mmon collector as shown in figure
7.11 (b).

The operation of TTL NAND gate may be explaineddiews:

When either of two inputs A or both the inputs atréogic 0, emitter base
junction of the multi-emitter transistor will be farward bias and base current is supplied
by the resistor R The transistor Tsaturates and the voltage at the point will beaétyu

V ce satOf the transistor£ 0.2 V). The transistor Fwill be in cutoff and output voltage
will be high (logic 1).
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When both the inputs are at logic 1 (+5 V), thateEmbase junctions of transistor
T1 will be reverse biased and current will flow, thgh R and through the forward
biased base collector junction of transisterinto the base of transistoe.Tin this mode
the transistor is said to be operated in the ime¢emode, as the collector of transister T
operates as emitter and the emitter as collectbe Voltage at the point P will be
sufficient to drive the transistor,Tinto saturation, the output voltage will therefobe
equal to \ée sa = 0.2V) or logic 0.

The propagation delay time of this gate is smadhan that of DTL NAND gate,
since when the transistor §oes into cutoff region from saturation regiore thansistor



T, saturates and provides a low impedance path tangrolhus the stored base charge of
the transistor Fis quickly removed thereby reducing the propagatielay time.

The output resistance of the basic TTL circuig.(fr.11 a) is low when the
transistor } saturates or output is low (logic 0). However, theput resistance of this
circuit is almost equal to the resistance R, winenttansistor is in cutoff or output is high
(logic 1). This will restrict the fan out of theatg. The reduction in resistor R would
increase the power dissipation in R and in the.gal the reduction in the value of R
would difficult to saturate the transistog. TTo overcome this difficulty, TTL gate with
totem pole arrangement is used.

7.10.1 TTL NAND Gate with Totem-pole Output Figure 7.12 shows the standard
form of a TTL circuit with input NAND gate. The cuit works as follows:

When either the inputs or both the inputs are (lmgic 0), the transistor ;Tgoes
into cutoff. The transistor 4Iwill also be in cutoff, as the voltage drop acrtes resistor
Rs is nearly zero. Now the transistog €onducts and works as emitter follower. The
output voltage available at the emitter of thimsiator will be equal to the collector
voltage of the transistor ;Twhich is high (logicl). The emitter follower, howery
provides a low output resistance to the input efdhiven gate.
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When both the inputs are high (or at logic 1)psiator  conducts and acts as an
emitter follower. The potential across Rill be sufficient to drive the transistor, Thto
saturation. Because the transistqrs@iturates, the output voltage will, thereforeghaal
to Vcesai(= 0.2V) or logic 0. Since this output is taken at thdlestior of the transistor
T4, which is in saturation, so it provides the lowtput impedance. The diode D prevents
the transistor 3 from being conducting when the transistor T4 sdts. The potential



across the emitter base junction of the transisias approximately 0.8 V (M sa) and
collector emitter voltage ofzlis 0.2 V (Mce,sa)- This means a total of 1.0 V is applied to
the base of transistorsTIn the absence of the diode D, this voltage wdaddsufficient

for the conduction of the transistog. TThe diode D, however, reduces the base emitter
voltage of transistor sTbelow 0.7 V, required voltage for the conductidradransistor.
Thus the diode D drives the transistgrifito cutoff when F, saturates.

Diodes O and D protect the transistor; from being damaged when the negative
spikes of the voltage appears at the inputs. Whemeégative spikes appear at the input
terminals the diodes conducts and the spikes axended. The transistorg @nd T, and
the diode D form the totem pole output, which pdad the low output impedance in
every case. The TTL gates are faster having theggation delay of about 15 nsec.

7.10.2 TTL Inverter: Figure 7.13 shows a TTL circuit for an invert€he operation
principle of this is same as discussed for TTL NAN&e, with the difference that it has
only one input. So when input A is at logic 0, autpill be high (logic 1) and if input is
high (logic 1), output will be low (logic 0). Thi@rcuit also has the totem-pole output.
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7.10.3 TTL NOR Gate Figure 7.14 shows a TTL circuit for two inpuOR gate. It
consists of two input transistorg @nd T, and two other transistorg &nd T, connected
in parallel which acts as a phase splitter. In @aliithe output is obtained using the
totem pole circuit comprising transistorg T, and diode D. The operation of this circuit
may be explained as follows:

When both the inputs are low, the emitter basetjans of the input transistors
will be in forward bias, no current will flow thrgh the base of transistorsdnd T;. So



these transistors will be in cutoff. The transiskgwill, therefore, conduct andsWwill be
in cutoff, producing a high (logic 1) output.

When input A is low and input B is high, the trestsr T; is in cutoff and
transistor T, saturates. The transistog Will, therefore, conduct andsWwill be in cutoff,
producing a low (logic 0) output.

Similarly, when input A is high and input B is lpthe transistor Jsaturates and
transistor § goes in cutoff. The transistor Will, therefore, conduct andsTwill be in
cutoff, producing a low (logic 0) output.

When both the inputs are high, the emitter basetijoms of the input transistors
will be in reverse bias, the current will flow tlugh the base of transistorgdnd T,. So
these transistors will saturate. The transistowill, therefore, conduct andsWwill be in
cutoff, producing a high (logic 0) output.
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7.10.4 TTL AND Gate: Figure 7.15 shows a TTL two input AND gateeTAND
operation is obtained by inserting an extra inersiircuit before the totem output of the
TTL NAND gate. This converts the NAND gate to an BNjate. The extra inversion
circuit comprises the transistors dnd .
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7.10.5 TTL OR Gate: The TTL OR gate is obtained by inserting a own emitter
circuit before the totem pole output of the TTL N@Rte as shown in figure 7.16. The
common emitter circuit provides an inversion, whadnverts the NOR gate to an OR
gate. The transistors Wwith associated components forms the common ancitieuit.
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7.10.6 Open Collector TTL Gates It has been discussed in the previous sectiuais t

in all TTL gates totem pole output circuit is contesl. The integrated circuits for TTL

gates are also available with open collector outpigure 7.17 (a) shows a two input
TTL NAND gate with open collector. The other gate® also available with open

collector outputs. In the open collector outputegahe lower transistor of the totem pole
circuit is used with its collector open or floating order to get the proper output, one
has to connect an external pull-up resistor betwkercollector and the positive supply
as shown in figure 7.17 (b).
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The advantage of the open collector gates is that butputs can be wired
together and connected to a common pull-up resithois eliminating the need of an
AND gate. This can be illustrated by connectingdpen collectors of three NAND gates
together with a pull-up resistor R as shown in figgi7.18 (a). Its equivalent circuit is
given in figure 7.18 (b), in which output of thr&AND gates (open collector) are
connected together to a pull-up resistor R.
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When any or all transistors are in saturation,dhput voltage is pulled down to
a low value. On the other hand, if all the tramssstare in cutoff, the pull up resistor R
pulls the output voltage to a high value. It therefproduces the ANDing of the outputs
of three gates. To get the ANDing operation by ngrithe outputs of open collector
devices to a common pull-up resistor is known ag wAND. Any number of gates may
be ANDed together with this method. The output ioéwit shown in figure 7.18 (b) is
given by:

Output= (AB) [[C D) {E [F)

The wire — AND is not possible with the TTL devidesving totem pole outputs.
If the outputs of two or more such devices are ected together and one output is low
and the other high, the final output gets shoduwted, resulting thereby too much power
dissipation. So for ANDing the outputs of TTL deasc a separate AND gate is needed.

The main disadvantage of open-collector gateseis fhow speed.

7.10.7 Tri-state TTL Gates It has been observed from the above discussianthe
open collector gate has the facility for wire — ANft they are slow in speed. However,
the gates with totem pole outputs are faster irdgmit the connections for wire —AND
are not possible. This led to the development o¥ device called tri-state TTL gates.
The tri-state devices allow three possible outgates namely, High, Low and High
impedance. The high impedance state offers higledapce between the output terminal
and ground or positive supply. Output in this ceséoating. A simple tri-state TTL
circuit for inverter is shown in figure 7.19 (b)daits logical symbol is given in figure
7.19 (b). In this circuit input A is the normal lognput while the ENABLE E terminal is
an enable input that can produce high impedanqautut

T+5v
R R, Ry
ENABLE 6— 1 A % Surpu
F utpu
+—id Ts FNABLE
E
A o—j/*?' . D
Chtput
Fig. 7.19 (a) Fig. 7.19 (b)

When ENABLE E terminal is high (logic 1), the dioBe remains in reverse bias
so it has no effect on the working of transistogaid T, and therefore circuit operates as
normal inverter. When ENABLE E terminal is low (lod)), the diode B will be in



forward bias and it takes away the base curretrtaokistor . So this transistor will be
turned off. The forward bias diode RIso forward biases the emitter base junctiorhef t
transistor T, transistor 7 will therefore be turned off, which in turn turredf the
transistor T. So by applying logic 0 to the ENABLE E terminaitb the transistorssT
and T, of totem pole output go in cutoff state.

The tri-state configuration is possible with othgates also with the similar
circuits. The advantage of this configuration iatttvire —~ANDing of the outputs of tri-
state ICs is possible and its speed is also fast.

7.10.8 More TTL Circuits: There are three families of TTL circuits, namely
High Speed TTL circuits
Medium Speed TTL Circuits
Slow Speed TTL Circuits

The circuit of TTL NAND gate has been reproducedigure 7.20 with three
values of each resistor; RR;, R; and R for the three families. The low values of these
resistances are for high speed but the power digsipwill be larger because low values
of resistances will draw large current from the@ypThe 54H/74H series for TTL gates
are available and designed for high speed. TheabkthH represent for high speed. The
typical propagation delay for high speed gatens@&c and power consumption is 22 mW.
The medium values of these resistances are forumedipeed. The 54/74 series is
available for medium speed TTL gates. This is ttendard series and the typical
propagation delay for this series is 10 nsec avdep@onsumption is 10 mW. For slow
speed TTL gates the values of resistances usedtigireand the series available for slow
speed is 54L/74L. The typical propagation delay stow speed gate is 33 nsec and
power consumption is 1 mW. The 54 series the copateof 74 series and both are
equivalent. The 54 series is used generally fortamyl purposes, as this series can be
operated for wider temperature range and voltamyegsa
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7.11 Schottky Transistor — Transistor Logic (STTL) In Schottky TTL
circuits, the operation speed is much more largan the high speed TTL circuits. The
transistors used in TTL circuits take certain tinvben the transistors switch form
saturation to cutoff. This limits the propagatiorlay of the gates. This delay can
however, be reduced by replacing the transistorsI i circuits by the Schottky
transistors. The Schottky transistor is formed lopnecting Schottky barrier diode
between base and collector of a transistor as showfiigure 7.21 (a). The Schottky
barrier diode (SBD) has a forward drop of only 0\25t therefore prevent the transistor
from saturating fully. Figure 7.21 (b) shows thecuait diagram of two-input Schottky
TTL NAND gate. Notice the transistoy s the ordinary transistor.
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The 54S/74S series is available for Schottky Tishmis— Transistor Logic (STTL)
gates. This series of logic family has less powsrsamption as compared to 54H/74H
series and the speed is double to that of 54/1dsse3till low power 54LS/74LS series of
Schottky TTL is available. This series is obtairfmdincreasing the resistances used in
54S/74S series. This family of logic gates therefoas the same switching speed as that
of standard TTL family (54/74), and the power gssion is 1/5 of the 54/74 series.

7.12 Emitter Coupled Logic (ECL) Emitter Coupled Logic (ECL) circuits fall
in the category of non-saturated digital logic fgnie. the transistors in this family do
not saturate. This eliminates the storage timeydeda the speed of operation of this
family is increased. This logic family has the é&sitspeed and propagation delay time
per gate is approximately 1 nsec.

Figure 7.22 (a) shows the basic circuit of foystin ECL OR/NOR gate. The
outputs provide both OR and NOR functions. Thedisiors | through & form the
differential amplifier circuit, transistor gTforms the internal temperature and voltage



compensation bias network and the transistorsafid T gives the emitter follower
outputs for OR and NOR functions. Logic levels flois family are negative, — 0.9 V is
assumed for logic 1 and — 1.75 V for logic 0. Theemtion of this circuit may be
explained as follows:

When all the inputs are at low (- 1.75 V), thensiators T through T, are off, as
emitter base junctions are reverse biased. Thsistan Ts is conducting not saturated.
Due to the proper biasing of the transistgr the base of transistos Temains at — 1.29
V. Therefore its emitter is at — 2.09 V which i80/ below the base voltage. The
transistor T5 therefore conducts. The different@tage between base and emitter of the
transistors T through T, is about —0.34 V, so they are in cutoff. The esnifollower
transistors Fand Tg give the outputs — 1.75 V (logic 0) and — 0.9 &b{t1) respectively.

When any one or all the inputs are at — 0.9 Vi¢lbg in that condition the
corresponding transistor or transistors will cortdldte voltage at the emitters of T
through T therefore rises to — 2.09 V. Since the base oftstor F is held constant at —
1.29 V due to the bias network, it goes into cutdffe emitter follower transistors &nd
Tg give the outputs — 0.9 V (logicl) and — 1.75 Vg{o 0) respectively. Symbolic
representation of OR/NOR ECL gate is shown in ggt22 (b).
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The wired logic can be formed by connecting togethe outputs of two or more
ECL gates as shown in figure 7.23. The externalesvconnection of two NOR outputs
produces a wired —OR function. The internal —wicetinection of two OR outputs in
some ECL ICs is used to produce a wired —AND logic.
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7.13 MOS Logic The logic families discussed so far were baeadbipolar
transistor. Their comparisons were made with resfgecertain parameters of the logic
family. One more logic family based on the unipotlvices such as Metal Oxide
Semiconductor field effect transistor (MOS FET)Iwibw be discussed. The MOS logic
family is the simplest to fabricate and occupiessIspace. It requires N channel MOS or
P channel MOS field effect transistors and no ottmenponents such as resistors, diodes
etc. This logic family has the high packing densibyv power dissipation and high fan-
out.

The logic circuits may be designed using NMOS émaement type N channel
MOS FET’s) or PMOS (enhancement type P channel \f@F's). From the operations
of MOS FET’s one can note following characteristms MOS FET’'s. The NMOS
conducts when gate is at a positive potential vadpect to source and PMOS, however,
conducts when gate is at a negative potential vesipect to source. If the gate is at zero
potential neither of the two MOS FET’s will conduct

7.13.1 MOS inverter. Figure 7.24 (a) shows the circuit diagram for NSidverter and
figure 7.24(b) shows for PMOS inverter. The workmgeration of the circuits is same.
The MOS FET T in both the circuits work as resistor sincgi§ conducting as gate is
connected to drain.
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In figure 7.24(a) when input A is at logic 0 (gnabipotential), the MOS FET,T
will be OFF giving the high voltage at the outpb. the output is at logic 1. If on the
other hand input A is at logic 1 (W potential), the MOS FET ;will be ON and output
will be at logic 0. This verifies the operationio¥erter. The operation of PMOS will be
discussed in the similar fashion with the only eliénce that it works for negative logic.

7.13.2 MOS NOR gate Figure 7.25(a) shows the circuit diagram of NMP&sitive
logic three-input NOR gate and 7.25(b) for PMOSateg logic three-input NOR gate.
In NMOS NOR gate (ref. fig. 7.25 a), when all theee inputs are at logic 0 (ground
potential), MOS FET’s Tthrough T will be off giving the high output (logic 1). Hilahe
three inputs or any (one or two) of the three is@re at logic 1, the corresponding MOS
FET or MOS FETs will conduct giving low output (ledd). This verifies the operation
of positive logic NOR gate. The working operatioh BPMOS NOR gate may be
explained in the similar which works for negativagic. The MOS FET Tacts as a
resistor in both the circuits.
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7.13.3 MOS NAND gate Three input NAND gate with NMOS and PMOS tratwmis
are shown in figure 7.26(a) and 7.26(b) respectivEhe NMOS NAND gate works with
positive logic and PMOS NAND gate work with negatiogic. The working of NMOS
NAND gate is explained as follows (ref. 7.26 A).

The NMOS FET’s 7 through T, will conduct when all the three inputs are at
logic 1 (+ \bp), giving the output low (logic 0). When either thie three inputs or any
(one or two) of the inputs is at logic O (groundepial), the corresponding MOS FET or
MOS FET’s will be off giving the high output (lodix. This verifies the operation of
positive logic NAND gate,

Similarly, one can explain the operation of PMOSND gate which work with
negative logic.
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7.14 Complementary MOS (CMOS) LogicThe complementary metal oxide
semiconductor (CMOS) logic family contains both an¢éement type P-channel and N-
channel MOS FET's arranged in a complementary aiore The power consumption

of CMOS logic family is very less as neither of lRaonel or N-channel MOS FET's

conducts simultaneously when no signal is appleedhe input terminals of the logic.

Thus only the leakage current flows between thaiteals of the supply. The CMOS gate
can be operated on wide range of supply voltagedsst 3 V to 15 V. It has good noise
margin better than TTL devices. Fan-out of thisnisch larger. The speed of the CMOS
logic is comparable with that of TTL circuits bar¢jer than Schottky TTL circuits.

7.14.1 CMOS Inverter. Figure 7.27 shows the circuit diagram of CM@&erter which
consist of a PMOS transistor; Bnd an NMOS transistor, Twhich are connected in
complementary mode. The drains of both the tramsisire connected together, through
which the output is taken. The source terminal MO transistor Tis connected to the
positive supply, where as the source of the NM@S8distor } is grounded.

When the input A is grounded (logic 0), the gatéMOS transistor Tis at the
negative potential with respect to its source,t$® ON. The gate of NMOS transistos T
is at ground potential, so it is off. The outpyttigerefore, high (+¥p), logic 1.

If on the other hand input A is high (logic 1), thate of PMOS transistor; Ts at
zero potential with respect to its source, so @ffsThe gate of NMOS transistor s at
the positive potential with respect to ground, s iON. The output is, therefore, low
logic O.
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7.14.2 CMOS NAND Gate The circuit diagram of CMOS NAND gate is shown i
figure 7.28. The two PMOS transistorgs @nd T, are connected in parallel with the
sources connected together and two NMOS transistarad T, are connected in series.

When both the inputs are at logic 0 (grounded®, gates of Tand T, are at
negative potentials with respect to their sourdbs; gates of Fand T, are at zero
potential. So both PMOS transistorg @nd T) are ON and NMOS transistorg and T,
are off. The output will, therefore, be high (lodic

When input A is at logic 0 (grounded) and inpusBt logic 1, the gate of;Ts at
negative potential with respect to its source duedgate of T will be zero; the gates of, T
and T; are at zero potential andy potential respectively. So;Band T are ON and 7
and T, are off. The output will, therefore, be high (lodji).
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When input A is at logic 1 and input B is at lo§i¢grounded), Tand & will be
off and T, and T, will be ON. The output will, therefore, be high (logjc 1



When both the inputs are at logic 1 @Y, the gates of fand T, are at zero
potential; the gates ofsTand T, are at negative potentials with respect to thamirees. So
both PMOS transistors (Tand T) are off and NMOS transistorg @&nd T, are ON. The
output will, therefore, be grounded (logic0).

7.14.3 CMOS NOR Gate : The circuit diagram of CMOS NOR gate is giveriigure
7.29. The two PMOS transistors @nd T, are connected in series and two NMOS
transistors Tand T, are connected in parallel.

When both the inputs are at logic O (groundedd, glate of T and T are at
negative potentials; the gates afand T, are at zero potential. So both PMOS transistors
(T, and ) are ON and NMOS transistorg &nd T, are off. The output will, therefore,
be high (logic 1).

When input A is at logic 0 (grounded) and inpusBt logic 1, the gate of;Ts at
negative potential with respect to its source duadgate of 7 will be zero; the gates ofsT
and T, are at zero potential andby potential respectively. So, Band & are ON and T
and T, are off. The output will, therefore, be low (lo@

When input A is at logic 1 and input B is at lo§i¢grounded), Tand & will be
off and T, and T, will be ON. The output will be low (logic 0).

When both the inputs are at logic 1 oY, the gates of fand T, are at zero
potential; the gates ofsTand T, are at \bp potential. So both PMOS transistors @nd
T,) are off and NMOS transistors; Bnd T, are ON. The output will, therefore, be
grounded (logic0).
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7.15 Comparison of Logic Families The comparison of important logic families
are given in table 7.1 in respect of logic paramsete



Table 7.1

Logic

RTL DTL TTL ECL MOS CMOS
Parameters

Basic gates with| - o | NAND | NAND | OR/NOR| NAND | NAND/NOR

+ve logic
Maximum fan-in 5 10 8 5 8 8
Fan-out 5 8 10 25 20 >50
Power
dissipation / gate 0.01 static at
(in mw) 12 10 10 50 1 1 MHz
Propagation
delay per gate | 5, 30 | 12 4 400 70
(nsec)
o . , Very .
Noise immunity | Nominal| Good Good Good Nominal| Very good
Number of ,
; , Fairly | Very , .
functions High high high High Fair Good
Clock rate,
MHZ 5 12 15 300 2 5
Followdang is the list of general TTL gates
availahle in the form of 54/74 senes 351
5417400 | Quad two-anput MAND gate
5417402 | CQuad tWD-@nput MOR gate
5477403 | Quad two-input MAND gate Following is the list of general CMOS zates
with open collectar avalahle in the form of CD 40 series 551

547404 | Hex inverter

547405 | Hex inverter wath open collector
54/7406 | Hex inverter buffer

547407 | Hex bhuffer

5407410 | Triple three-input NAND gate
5417411 | Trple three-input AND gate
5477420 | Dual fouranput NAND gate
5417430 | Single eight4nput MAND gate
5417440 | Dua eight4nput MAND buffer

4000 | Dual threednput MOR gates
plus one inverter

4001 | Quad two4nput MOE gate
4002 | Dual fourdnput MOR. gate
4011 | Quad four-tnput MAND gate
4012 | Dual fourinput MAND gate
4023 | Triple three-input NAND gate




Problems

10.

11.

12.

13.

14.

15.
16.

17.

What are positive and negative logics? Explaim lbgic diagram of two-input
AND gate.

What do you understand by the term logic? Dis¢heee-input diode OR gate.
How an inverter circuit works, explain with nelldgram using a transistor.

What is logic family? Give the classification t¥gic family. Mention the
classification of digital ICs.

Define the following parameters related to loggtes:
Fan-in, Fan-out, Propagation delay time, Powesipation and Noise margin.

Draw the logic circuit diagram of RTL NOR gaEeplain its operation. Mention
its advantages and disadvantages of RTL family

Draw the DCTL circuit of three input-NOR gatedaexplain its operation.

Discuss the operation of three-inpflt NOR gate. Mention its advantages and
disadvantages of this logic family.

Draw the circuit diagram of DTL NAND gate forrée-inputs. Explain its
working. What is the function of resistance conedcbetween the base and
emitter of the transistor used in the circuit? Whet the disadvantages of this
logic family?

Draw the logic diagram of two-input HTL NANDatg. Explain its operation.
Mention its advantages also.

Draw the basic circuit diagram of positive dwo-input TTL NAND gate.
Explain its operation and mention its disadvantadgsny the disadvantages of
this basic circuit are removed?

Draw and explain the circuit diagram of pogtiggic two-input TTL NAND gate
with totem-pole output. What are the advantagesdisadvantages of this logic
family?

Draw and explain the following TTL circuits WiT otem-pole outputs:
(i) TTL inverter

(i) Positive logic two-input TTL NOR gate

(i) Positive logic two-input TTL AND gate

(iv) Positive logic two-input TTL OR gate

Draw and explain the circuit of open colledtwo input TTL NAND gate. What
is the main advantage of this open collector gate?

Show open collector TTL NAND gate can be usediae-AND.

Prove that two open collector TTL inverters witennected together produce the
NOR operation.

Write short note on Tri-state inverter.



18.

19.

20.

21.
22.
23.

Draw and explain the working of two-input SakptTTL NAND gate. What is
the use of Schottky transistors in this logic?

What are the advantages of emitter couplecPoBiscuss the working of four-
input NOR/OR ECL gate. Show that external wire earions for two ECL NOR
outputs (or OR outputs) produce a wired-OR (wiredBA function.

Draw and discuss the following NMOS gates:
(i) inverter

(i) Positive logic two-input NOR gate

(iif) Positive logic two-input NAND gate

Discuss CMOS NAND and NOR gates. What are dadgas of CMOS logic.
Write short note on CMOS inverter.

State the various logic families available he tnarket. Give the comparison of
the logic families with respect to following paratees:

Fan-in, Fan-out, power dissipation, propagatiolayjeNoise immunity and clock
rate.



Flip-flops

Basically, two types of switching circuits are ds@ digital systems, namely
combinational and sequential switching circuitse Tombinational circuits which are the
combinations of logic circuits have been discussef" and &' chapters of this book.
The other class of switching circuits is known egugential circuits. In sequential circuits
the outputs not only depend on the instant (présemties of the input variables but also
on the past outputs. The past outputs are, in tiaetfunctions of the previous inputs. So
the sequential circuits have the direct inputs Wrace externally controlled and known
as primary inputs. An arrangement is also madeddijack the past outputs to the input
terminals. These feedback terminals are known @s#tondary inputs. The secondary
inputs are the delayed outputs and act as the nyeat@ments. A basic memory element
which is capable of storing one bit of informatisrthe flip-flop. The detailed discussion
on the various flip-flops will be made in this cheap

8.1 R S Flip-flop Flip-flop is a basic memory element used inusedial circuits.
The flip-flop has two stable states — logic 0 agitol. The flip-flop will either be in one
of the two stable states after application of thgui signals; it will remain to be in that
state even if the inputs are removed. Flip-flopsaso known as the latch or toggle. The
RS flip-flop is the simplest flip-flop which can beonstructed using NOR gates or
NAND gates. Figure 8.1 shows the basic circuit & fRp-flop constructed using NOR

R 1 X

Fig. 8.1

gates. In this circuit R & S are the two inputs ah& Y are the outputs which are being
applied back to the input terminals of the NOR galféhe behaviour of this circuit may



be analysed by replacing each NOR gate by an iN€#R gate and a delay factor
represented by a rectangular as shown in figureThe delay factor is the propagation

1 I
R J D

Fig. 8.2

delay time of each gate which is supposed to Herdifit for each gate. Let delay of one
gate is D and that of other gate is d. Furthier dssumed that x and y are outputs of ideal
NOR gates, which is transferred to the final outgiteer the delay of each gate. So at any

instant of time t the outp was the same as x was before (t — D) sec. Signidae can
explain forY output.

So X{t)=x(t-D) and Y(t)=yt-d)
The outputx andy are given by:
x=(R+Y)=RLY y=(S+X) =SIX

The K-maps for x, y and xy (values of both x aratg placed together) are
shown in figure 8.3(a), (b) and (c) respectively.

R RS B3
w00 01 11 10 XYN00 01 11 10 xyN_p0 0l 11 10
oo 1 | 1o o | o010 |0 |1 00| 11| 10 | OD)] 01
o o | o |0 |0 ol 1| o |o |1 mﬂ@ oo | o0
E
1 0|0 |0 |0 i 0|0 |0 |0 1 00| oo | 00| oo
1ol 1 1 a a 1ol 0 a 0 a IDBC oo | oo
Fig. 8.3(a) Fig. 8.3(b) Fig. 8.3(c)

For particular values of input variables R & Sthe values oK andY are not
equal tox andy, then the circuit is unstable and further changjé take place. This
change will go on till the values ofand Y are not equal to x and y. So when the values
of XY are equal to xy, then the circuit is saidhitave attained the stable state. In that
condition no further change will take place. In tkemap (fig.8.3 c), encircled values

show the stable states, since the encircled vélygsre the same as XY in the same row
of the map.

Now we analyse the behaviour of this RS latch.usetonsider a situation that RS
= 00 and XY = 11 corresponding to which xy = 08 (8w and 4' column of K-map of
figure 8.3 ¢). This is unstable state as the vatiies/ are not equal to the values of XY,



so further change will take place. Thus XY mustuaethe values of xy. This means
that both X and Y must change from 1 to 0, but tihiange will not simultaneously occur
as the delays of the two NOR gates are not same.cases will occur.

(1) It is assumed that D < d, X will therefore changstér than Y. So X will have
the value as 0 and Y is yet to be changed. Inghisess XY will have the
intermediate value as 01. This intermediate valdeXy¥ as 01 will
immediately produce the value of xy as 01. So f8r-R10 and xy = XY =01,
the circuit will be in the stable state E'{2ow and 4 column of K-map of
fig. 8.3c).

(i) If on the other hand d < D, Y would have changeddeiathan X. So XY will
have the intermediate value as 10, due to whiclwidyimmediately get the
value as 00 @ row and 4 column in the K — map of fig. 8.3c). This is not a
stable state and further change will, thereforke falace. Now XY will attain
the value as 00 after some delay; this new valuwéYotvill produce the new
value of xy as 01, which is still not a stable st&8o XY will change to as 01.
This will lead the value of xy as 01 (shifts t8° 2ow), i.e. the circuit will
reach to stable state E.

From the above discussion, it is clear that thehlavill reach to the stable state E
either directly through one transition stage ootigh several stages (shown by arrows in
the K-map). This is called the race condition. His ttype of race the destination is the
same stable state E, however, one would never kvtwsh path will be followed for the
transitions as the delay in the gates is an intepeantity. So this type of race is a valid
race as it gives the predictable output.

Similarly one can find that if RS = 11, the circuiill reach to the stable state D
and if RS = 01, circuit will be in the stable state

If RS = 00, the circuit may either be in the stabtate A or B, as there are two
stable state in the first column (fig. 8.3c). Thetual state attained by the circuit will
depend upon the previous values of inputs RS. Hhgesg of RS could be changed to 00
either from 01 or from 10.

(1) The values of RS are changed to 00 from 10. Indbmlition the circuit was
in the stable state E when RS were 10 (xy = XY ¥ Blbw RS are changed
to 00. So RS = 00 and XY = 01, xy will be 01. Thecwit will reach to the
stable state A.

(i) The second case is now considered that the valuBS are changed to 00
from 01. When the circuit was having the valuefk6&fas 01, the circuit was
in the stable state C where xy = XY =10. Now thkiga RS are changed to
00. In this condition of RS = 00 and XY = 10, xyflave the values 10, the
circuit attains the stable state B.

It is interesting to note from the above discusglmt when RS are changed to 00
either from 01 or 10, the values of the outputsthed previous stable values (before the
change).

There is one more possibility that the values &f &e changed to 00 from 11.
The circuit was therefore in the stable state D XXy = 00) before the change. Now RS



are changed to 00. So RS = 00 and XY = 00, itheite xy = 11 (% row and ' column),
which is not a stable state so further change takeé place. Thus XY must acquire the
values of xy. This means that both X and Y mushgearom 0 to 1, but this change will
not simultaneously occur as the delays of the tv@RNgates are not same. Two cases
will further occur.

€) It is assumed that D < d, X will, thereforbange faster than Y. So X will
have the value as 1 and Y is yet to be changethisnprocess XY will have
the intermediate value as 10. This intermediateievadf XY as 10 will
immediately produce the value of xy as 10. So f8r=R00 and xy = XY = 10,
the circuit will be in the stable state B.

(b) If on the other hand d < D, Y would have changetdeiathan X. So XY will
have the intermediate value as 01, due to whiclwidyimmediately get the
value as 01 the circuit will reach to stable state

From the above discussion, it is clear that thehlavill reach either to the stable
state B or to the stable state A. There is agaiaca condition. In this type of race the
destination is not the same. One would never krienvoutcome as it will depend on the
inherent delay of the gates. So this type of rknewn as critical race, is not a valid race
as output is not predictable. This type of racavisided in such circuits.

Following are the inferences of the above analgtR S flip-flop:

1. If the values of RS are changed to 01 both fronoi0@0 or 11, the flip-flop will
reach to the stable state and output will be XYy=x10. It may be noted that X
and Y are complement of each other.

2. If the values of RS are changed to 10 both fron@i001 or 11, the flip-flop will
reach to the stable state and output will be XYy=x01. Further X and Y are
complement of each other.

3. If the values of RS are changed to 00 either frdno010, the flip-flop will have
the previous stable state. The output will eitherdY = xy = 10 or 01. X and Y
are complement of each other.

4. If the values of RS are changed to 11 both frono010 or 00, the flip-flop will
reach to the stable state and output will be XYy=x00. It may be noted that X
and Y are not complement of each other.

5. If the values of RS are changed to 00 from 11,itécal race will occur in the
latch and the output will be unpredictable. It nieyXY = xy = 01 or 10.

Thus if the condition RS = 11 is disallowed, trehéviour of the latch will be
predictable and XY will always be complement ofteather. The outputs X and Y are
therefore, renamed &3 and Q respectively. So the behaviour of the latch is mamized
in table 8.1. The symbolic representation of thiS Rp-flop is shown in figure 8.4. As it
is this flip-flop is known as asynchronous, sintsebiehaviour depends upon the sequence
in which the input signals change. The outputs Wwél affected whenever the inputs
changes.



Table 8.1

Inputs  Cutput Mode Femarks ob—
Ez =0 —E

10 0 Eeset Eesets the output to 0.

01 1 set =ets the output to 1. I E |
00 0orl Store Store the previous value.

11 Disallowed Critical race

Fig. 84

8.1.1 R S Flip-flop with NAND Gates The R S latch constructed using NOR gates,
has been reproduced in figure 8.5(a). The equivatenuit of this latch is shown in
figure 8.5(b), in which inputs and outputs are mwe. The gates 1 and 2 of figure 8.5(b)
are the Demorgan’s form of NAND gates. So the lascfurther redrawn with alternate
symbols of NAND gates as shown in figure 8.5(c)isTdircuit is, therefore, the R S latch
with NAND gates. Basically all the three circuite aame so their behaviour will also be
same as summarized in table 8.1.

E=IE—)

R_Dﬂi}—rﬁ

5o ° ¢
©

Fig. 8.5

8.1.2 Active Low R S Flip-flop with NAND Gates Consider the circuit shown in
figure 8.6, in which R and S inputs are directlplégd to the cross coupled NAND gates
and not through the two NOT gates. This circuiki®wn as the active low R S latch
with NAND gates and its characteristic table iswhaon table 8.2. It may be noted from
this table that when both the inputs are 11, thehlatores the previous value. It sets and
resets the latch when the inputs are 10 and OZkctgply. This NAND latch gives the
ambiguous output (disallowed output) when inpues@0. The direct approach is used to
explain its behaviour though it may be explainethm similar fashion as for NOR latch.



Table 8.2

E —_1 9] Inputs Cutput Iode Eemarks
RS =0

01 0 Eeset  Eesets the output to 0.

10 1 =et =ets the output to 1.

11 Dorl Store Store the previous walue
o oo Dizallowed Critical race

Fig. 8.6

Referring to figure 8.6, let initially, the outp@=0 andQ =1. If 01 are applied
to the inputs (R = 0 and S = 1), then output okdawill remain as 1 and the output of
gate 2 as 0. If on the contra@y=1and Q =0, and inputs are 01 (R =0 and S = 1), the

output of gate 1 will be 1@ =1) and that of gate 2 will be @=0). SoifR=0and S
=1, the outpu will always be 0 i.e. it resets the latch.

If the outputQ =0 and6 =1, and 10 are applied to the inputs (R=1and $=0
then output of gate 1 will be 0 and the output atieg?2 asl. If on the contrafy =1and

Q=0, and inputs are 10 (R = 1 and S = 0), the outpglate 1 will be 0 Q =0) and
that of gate 2 willbe 1@ =1). Soif R =1 and S = 0, the outp@t will always be 1 i.e.
it sets the latch.

If the outputQ =0 and 6 =1, and inputs are 11 (R = 1 and S = 1), then output
of gate 1 will be 1 and the output of gate 2 adf@n the contraryQ =1and Q =0, and

inputs are 11 (R = 1 and S = 1), the output of datell be 0 (Q =0) and that of gate 2
willbe 1 (Q=1). Soif R=1and S = 1, the output will alwaysitseprevious value i.e. it
is in store mode.

If the outputQ =0 andc_g =1, and inputs are 0 0 (R = 0 and S = 0), then ostput

of gate 1 and gate 2 will be 0. If on the contr@y 1andQ =0, and inputs are 0 0 (R =
0 and S = 0), the output of gate 1 and that of gatéll be 1. Soif R =1 and S = 1, then
outputs Q = Q =1 irrespective of previous state. This is a disaidwondition.

The table 8.2 is verified from the above discussion

8.2 Clocked R S Flip-flop The R S flip-flop or latch discussed in theous
sections was known as asynchronous flip-flop, sit€ebehaviour depends upon the
sequence in which the input signals change. Thputsitwere affected whenever the
inputs changes. Now another type of flip-flop cale clocked R S flip-flop will be
discussed which fall in the category of the synobtes flip-flop. In synchronous flip-flop
the behaviour of the circuit can be defined from Kmowledge of its signals at discrete
instants of time. The synchronization is achievgdhe timing device known as system
clock. The system clock generates the periodia todiclock pulses and the outputs are
affected to the application of clock pulse. Syncimas flip-flops are extensively used in



the sequential circuits because of their high bditg and ease of the design. The
periodic train of clock pulses is shown in figur&.8The clock pulse remains high for
short time is known as pulse width or pulse duratienoted by d. The front edge of the
pulse is called as the leading edge of the puldefaback edge of the pulse is known as
trailing edge of the pulse. The time duration & domplete wave denoted by T is known

as the time period.
Trailing edge

_'|TP|‘:/ T —»

/

Leading edge +'— o interval _'*| +"_ ':n+1:'m_"| +"

4 interval 4
n® pulse Iin‘i"l:lﬂ1 pulse
Fig. 8.7

The clocked R S flip-flop is illustrated in figuBe8(a), in which the inputs R and
S are applied along with the clock pulse to the N&tBh through two AND gates (called
loading gates). During the pulse width, Doth the AND gates will be enabled and R S
inputs gets connected to the inputs of the latabwéVer, when the clock pulse is low
both the AND gates will be disabled and inputstef tatch will be low. Therefore the
latch will be in the store mode. The behaviourhid tircuit may be explained below.

E
8
71 T
Clock pudse _
(CLK) . B 5 ol—
2
o —
CLKQ
Fig. 8.8(a) Fig 8.8(b)

During the arrival of the"hclock pulse, let the inputs to AND gates ageaRd §
which are applied to the inputs of the latch. Naattge internal of (n+1)pulse start, the
output Q.1 will depend upon R S, and Q as:

Qn+l = Rn +6n and an = Sn +Qn

So Qn+1=Rn+Sn+Qn :ﬁn l]Sn+Qn)

It can further be verified that when, R §, = 0 then output Q1) will be same as
Qn. So if Q,= 0 then Q.1 will be 0; if @, = 1 then Q.1 will also be 1. The flip-flop is
said to in the store mode.




If Rh = 0 and § = 1, then the flop-flop will be in the set modedagives the
output as 1 irrespective of,@ 0 or 1.

The flip-flop will be in the set mode (Q = 1), if the inputs Rn =1 and Sn = 0;
the previous output could be either O or 1.

The flip-flop disallows the condition forR S, = 1.

The behaviour of this clocked R S flip-flop is cheterized in table 8.3. The
Boolean expression for{Q can also be verified from K-map of table 8.3. Byebolic
representation of the clocked R S flip-flop is sihaw figure 8.8(b).

Table 8.3

R-'! Sn Qn Q?H'l Qn+1 = E ' (Sn + Qn)
0 0 0 0 Stares ] Q=0

3] 3] 1 1 otares

o 1 o 1 sets _

|:| _I _I _I Sats ] Q:!+1 1

1 0 0 0 Resets) o _

1 0 1 0 Resets ] w

1 1 0 Dizallowed

1 1 1 Dizallowed

8.2.1 Clocked R S Flip-flop with NAND Latch The asynchronous R S flip-flop (active
high) is designed by the circuit shown by shadedigroin figure 8.9(a). Now two AND
gates are used for loading the inputs R S andltiol pulse. Instead of using AND gates,

Jid — E — _
= 0 G
Clock pulse Clock pise L
(CLE) _ (CLE) 0
5 ‘Dﬂ—} © 5
Fig.8.9(a) Fig. 8.9(b)

NAND gates may be used as shown in figure 8.9{lmaly be noted that AND and NOT
gates form NAND gates. When the clock pulse is, ldve outputs of loading NAND

gates are high putting the NAND latch in store m@&@=Q andé will have its previous
value. Now when the clock pulse is high, the cireull behave as the clocked R S flip-
flop discussed above. It also verifies the tabBe 8.

Example 8.1 Draw the waveform of the output Q of clocked R S flipg] if R and S
inputs applied to it, are as represented in fi@ui®(a). The latch is initially reset.



Solution:  The waveform of the output Q of clocked R $-flop is shown in fig.
8.10(b), in which mode of operation of the flipglas indicated. The changes at the
output take place at the leading edge of the ghdge (CLK).

T R | H | i | H |
i e s
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g | | | | : L
0 5 ; E | l
() ’ ' I : ! !
CLE j * + * * 4
0 : | : i |
S D T
2 i | |
2 | | !
® | | |
o tezet set store reset zet store

Fig. .10

Example 8.2: Modify an asynchronous R S flip-flop so that whmth the inputs R and
S are 1, the flip-flop is set.

Solution: The flip-flop is modified as shown in figure 8,1in which two new inputs
named as R’ and S’ are used. The table 8.4 vetlieswhen R’ and S’ are 11, the inputs
R S are 01 and flip-flop is set.

Table 5.4

Inputs Inputs Mode of \ —
B R o operaton E R ¢/
0 0 0 0 atore
0 1 0 1 met ' _
1D I 0 Reset 5—3 2 o
1 1 0 1 aet

Fig. 8.11

8.3 Triggering of Flip-flops: It has been discussed in clocked flip-fldhat the

flip-flops work after the application of clock pelsi.e. when the clock pulse goes low to
high, the flip-flop triggers (or flip-flop enablespuch type of triggering, known as level
triggering is generally used. But in some digitgbtems changes in the output occur
either at leading edge (positive edge or risinge¢ay at the trailing edge (negative edge
or falling edge) of the clock pulse. Such typergigering is known as edge triggering.



So the flip-flops should either be positive edgggered flip-flops or negative edge
triggered flip-flops. A small triangle shown at tbleck terminal of the flip-flop indicates

the positive edge triggered flip-flop. Figure 8 4RE&hows the symbol of positive edge
triggered R S flip-flop. However, small trianglettvia bubble at the clock terminal of the
flip-flop indicates the negative edge triggereg-fliop. The symbol for negative edge
triggered R S flip-flop is shown in figure 8.12(b).

R e R I
CLE: [ CLE—™>

g o 5 01—

Fig 8.12(a) Fig 8.12(k)

8.3.1 Edge Detector Circuit The narrow spikes at the leading edge or atréuéng
edge of the clock pulse is obtained by the edgectimt circuit. Figure 8.13(a) shows the
edge detector circuit for the generation of nargpikes at the leading edge of the clock

CLE CLE

CLE
CLE @ Chatpat m Output

(a) (c)

CLK ——— S CLK ———

Chatpat ’7 Chatpat
(b) (d)
Fig. 8.13

pulse. In this circuit the clock pulse is appliedan inverter and an AND gate. The

inverter produces an outpuC(K ) after some time delay of a few nanoseconds becaus
of the propagation delay of NOT gate. The AND gaik produce high output for few

nanosecond (equal to the propagation delay of iegemwhen both CLK ancCLK are
high. The AND gate, therefore, produces a narroikesat the leading edge of the clock
pulse (CLK) as shown in figure 8.13(b).



Similarly, the edge detector circuit may be drafenthe generation of narrow
spikes at the trailing edge of the clock pulseuF&g8.13(c) shows such circuit in which
an inverter and an active low AND gate are usee dttive low AND gate will produce
high output for few nanosecond (equal to the prapiag delay of inverter), when both

CLK and CLK are low. This circuit, therefore, produces a nargpike at the trailing
edge of the clock pulse (CLK) as shown in figur&3gd).

8.4 The D Flip-flop The modified form of clocked R S flip-flop is@ flip-flop

which is illustrated in figure 8.14(a). The D flifop has only one input in addition to the
clock pulse. The R and S inputs of R S flip-flop @ot used in some applications when
both the inputs are 00 or 11. This condition alsmiaates the condition of RS = 11. So
in D flip-flop R S inputs are always kept complerheheach other and D input is applied
to the S input and complement of S is applied togut as shown in figure 8.14 (a) and

(b).

D=1
Q {
N E E |
Clock pul se o
(CLED E LK g
R
(a) (b)
Fig. 8.14

When the input D is high and positive clock pulsepplied the latch will set,
irrespective of previous value of the output Q. i&irty, if D input is low and clock pulse
is applied, the latch will be reset; again the attwill not depend upon its previous
value. The behaviour of this flip-flop is showntable 8.5. It may be noted that the value
of D (data) will reach the output after the apgiima of clock pulse i.eQ,,, = D,. When

no pulse is applied to the flip-flop or CLK is Betvalue of D will not reach to the output
and the output will have its previous value. Inestivords the output Q will follow the
input D when the clock is high. The D flip-flop @&so called as the delay flip-flop. The
symbolic representation of this flip-flop is showrfigure 8.15.

Table &5
Dn Qn Qn+1 —HD 2
0 0 0
1] 1 0 _
1 0 1 — CLK Q |
1 1 1

Fig. 8.15

Example 8.3 Draw the waveform of the output Q of D flip-flop, if Dput and clock
pulse are represented in figure 8.16 (a). The lstahtially reset.



Solution: The required wave Q output of d flip-flop is shown figure 8.16 (b). The
output follows the input D when the clock is high.

JL

()
CLE j *

0

Q
0
Fig 8.16

8.5 The J K Flip-flop: In R S flip-flop when both the inputs are 11e thutputs Q

and Q) were not complement to each other and this cimmditas disallowed. The R S

flip-flop can be modified so that even when R andnfuts are 11, the outputs are
complements of each other. The J K flip-flop shawrfigure 8.17(a) is the modified
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Fig. 8.17(a) Fig. 8.17(b)
form of R S flip-flop. This flip-flop has two inpstd and K, the J input correspond to S
(set) input and K input correspond to R (Resetyinfi may be noted that the outputs of
the latch are connecting to its own loading gateictvforms the complementing outputs
when both J and K inputs are 11. If the flip-flgpsiet before being JK = 11, the R and S
inputs will become 01 when JK = 11 and the flipgflwill be set giving the output Q as 1.
If on the other hand flip-flop is set before beiitg = 11, the flip-flop will be reset after
becoming J K to be 11.

To analyse the behaviour of this flip-flop, thenkap for xy is drawn as shown in
figure 8.17 (b), by getting the following functians

When CLK = 1 R=XI[K and S=JIY



X=R+Y =KX +Y and y=S+X=JIY+X

In the K-map all the stable states are encircledi @ne can observe from these
stable states that x and y are complements to @hen. When the inputs J K are 00, the
outputs will be either 01 or 10 storing their p@s values. When JK = 01 the flip flop
will be in the reset mode and when JK = 10 it Wwélin the set mode.

When JK = 11, the outputs will be complement toheather, but this will not
give a stable state. This condition will now becdssed in detail. The inputs J K will be
changed to 11 either from 00 or from 01 or from l1€X the inputs J K change from 10 to
11. When the inputs J K were 10, the flip-flop wiashe set mode and Q was equal tol.
After changing J K to 11, the inputs R S becomevh@h will reset the latch. Thus the

content of the latch is complemented i.e. the astPuQ change 01 to 10. But this is not

a stable state. As the outpu@Q are 10, these outputs will be applied back to tipait
terminals. The latch will, therefore, be resethié ttlock pulse still high and output will
again be the complementation of the previous oatpliis way the complementation
will go endlessly till the clock pulse is high. 8t complementation to occur only once,
it becomes necessary that the clock pulse shou@] before the output data (after delay)
is applied back to the input terminals. This isgible if the width of the clock pulse is
less than the delay in latch i.ep ¥ d or D. This condition is known as race around
condition.

8.5.1 Edge Triggered J K Flip-flop It has been observed that the width of thekcloc
pulse in J K flip-flop should be less than the gela latch. However, the delay is an
inherent quantity which can not be known by ther @isethe particular IC. This problem
of pulse width can be eliminated if narrow spikégewv nanoseconds at the leading or
trailing edge of the clock pulse is used. The narspikes can be generated by the edge
detector circuit discussed in section 8.3.1. Fiduid shows the symbolic representation
of positive edge triggered J K flip-flop and itsepgtion is given in table 8.6.

The upward arrows in the characteristic table df flip-flop shows that the
transition at outputs of flip-flop will occur ateHeading edge of the clock pulse.

When J and K inputs are 00, no change in the owplues will take place at the
positive edge of the clock pulse i.e,Q= Qn, the circuit is in store mode.

When J K = 01, the flip-flop resets at the positadge of the clock pulse i.e.

=0.
Tahle 2.6
In Kﬂ Qn Clocl: Qﬂ+1
| 0 0 0 4 0
HoCh
—7 L 0 0 1 4 1 o hEnes
0 1 0 4 0
CLE— Feset
- _ 0 1 1 4 0
— O 1 0 a 4 1 St
1 i 1 4 1
1 1 0 4 1 Com
plement
Fig 8.18 1 14 0



When J K = 11, the flip-flop toggles at the positedge of the clock pulse i.e. it
gives the complements of the previous out@is = Q..

Figure 8.19 shows the symbolic representation gatiee edge triggered J K flip-
flop and its operation is given in table 8.7.

Tahle 8.7
Tn En @y Cleck | Qy +1
— 2l 0 0 0 ¥ 0
I Mo Ch
i 0 ) ¥ i o Chatge
. ::’ . : X H 0 Reaet
_ - 0 1 1 ¥ 0
i © ) ° ; M ! Set
10 1 + 1
1 1 0 ¥ 1
Fig. 8.19 1 1 1 + . Complement

For simplicity the circuit diagram of edge triggdrJd K flip-flops using NOR and
NAND latch are shown in figures 8.20 and 8.21 retipely.
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Example 8.4 Draw the waveform of the output Q of a negative edgggéred J K flip-
flop (figure 8.22 a), if J K inputs and clock pulaee represented in figure 8.22 (b). The
flip-flop is initially reset.

Solution: The wave form of the output Q of the negativeesttggered J K flip-flop is
shown in figure 8.22(C), the mode of operationthattrailing edge of the clock pulse
(CLK) are also indicated in the figure.
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Fig 822

8.5.2 Edge Triggered T (Toggle) Flip-flop When J K inputs of an edge triggered
Flip-flop are connected together to form a singleut marked as T is known as Toggle

T e —T el

T —s CLE—q> —
K eI CLEK—d e

Fig. 8.23

(T) flip-flop. Figure 8.23 shows a negative eddggered T flip-flop. This flip-flop will
have only two options, i.e. when T = 0, the flipglwill be in the store mode and gives



no change in the output. When input T = 1, thefligp will be in the complement mode
i.e. it toggles or gives the complemented outpuhefprevious value at the trailing edge
of the clock pulse. The behaviour of T flip-flopgsen in table 8.8.

Table 8.5
Inpat Prewious 1 et Crugtgpat Mode of
T outpat O 0 Operation
1] 1]
0 EI 1 Store
1 0 1 Complement
1 1 0

Example 8.5 Draw the waveform of the output Q of a negative edgggered T flip-
flop (figure 8.24 a), if T input is connected t¢+5 V).The clock pulse are represented in

figure 8.24 (b). The flip-flop is initially reset.

Solution: The T input of the flip-flop is connected to lod., so this flip-flop will toggle
at the trailing edge of the clock pulse as showtigare 8.24(c). It is clear from this
figure that the frequency of the output wave i lodithe input frequency. The T flip
may, therefore, be used for the frequency divisibtihe input clock.

For T=1
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Fig. 8.24

8.5.3 Asynchronous Inputs In synchronous flip-flops discussed above, tla¢ads
transferred synchronously to the outputs of flige8, only at the triggering edge of the
clock pulse. These inputs connected to the flipslare known as synchronous inputs. In
these flip-flops when power is switched ON, theest flip-flop will be uncertain i.e. the
output may either be in the set mode or in thetresede. In many applications it is
desired that the flip-flop is initially set or rés@his can be done by providing the extra

inputs known as presetPRE) and Clear (:T?) inputs. Figure 8.25(a) shows edge

triggered J K flip-flop with presetRRE ) and clear CLR) inputs. These inputs are called
as asynchronous inputs as these inputs operatpendently and do not depend on the

clock pulse.



If both PRE and CLR asynchronous inputs are 1, the circuit behaves @grmal J K
flip-flop and gives the outputs as per its chanastie table.

If PRE = 0 andCLR = 1, the output of gate 3 will be 1 (Q = 1). Camsently,
all the three inputs of the gate 4 will be 1 givihg outputQ = 0. HencePRE = 0 sets
the flip-flop.

If PRE =1 andCLR =0, the output of gate 4 will be )(= 1). Consequently,

all the three inputs of the gate 3 will be 1 givihg output Q = 0. HencELR = O resets
the flip-flop.

PTE TE
I (1 R . @
_ 4.
Edge I
— Detector CLE—o
Clock pul se circuit :} _
(CLK) _ —K ¢
oo
CLR CLR
(a) (b)

Fig. 8.25

If both PRE and CLR asynchronous inputs are 0, the circuit gives uagestate
and this condition must not be used.

One this thing should be remembered that oncesthtge of the flip-flop is

established asynchronously (set or reset), thegeclasonous inputsPRE and CLR
must be connected to 1, before the applicationeat nlock pulse. Figure 8.24(b) shows
the logic symbol of this flip-flop, in which asyn@mnous inputs are indicated separately.
These inputs are active-low. The table 8.9 sumreatize operation of this flip-flop.



Table 5.9

Inputs Output Mlode of
CLE TEE CIR 0 opeatiton
4 1 1 Qo Notmal FF
0 1} 1 1] Preset
0 1 0 1 Clear

8.6 Master Slave J K flip-flop Before the development of edge triggered flip-
flops, the race around condition in J K flip-flo@svremoved using master slave flip-flop.
A master slave J K fillip-flop is constructed usitvgp J K flip-flops as shown in figure
8.26; one flip-flop is known as master flip-flopcanther as slave flip-flop. The master
flip-flop works on leading edge of the clock pulsed that of slave flip-flop works on the
trailing edge of the clock pulse. So the mastg-filbp responds to the inputs before the
slave flip-flop. The master-slave flip-flop is iadt the pulse triggered flip-flop.

CLE T

CLE
Fig. 8.26

The complete circuit diagram of a master-slave fligflop using NOR latch is
given in figure 8.27. Note that the outputs of steave flip-flop are feedback to the master
flip-flop. This will make the output of the flipdlp complement when JK = 11. At the
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Master FF Slawve FF
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Fig. 8.28

start of the leading of the clock pulse, the mafii@iflop works with the previous values
of the outputs and the present values of the JoKt8) and whatever change to occur will



occur in the output of the master flip-flop tillelelock pulse is high. So the final output is
obtained at the trailing edge of the clock pulsabl& 8.7 may be verified with this
circuit. The master — slave J K flip-flop with NANatch is shown in figure 8.29.
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8.7 Excitation Table of Flip-flops The operational characteristics of various-flip
flops have been discussed in earlier sectionsisfctipter. The truth table also referred
to as characteristic table gives the operationijpffiop. The characteristic table specifies
the next state of the flip-flop when the inputs apresent state is known. The
characteristic tables for R S, J K, D and T type-fllops are reproduced in tables 8.10(a)
to (d) respectively. The suffix n indicated in thputs and the outputs denote the present

Table 8.10(z)

Table 8.10(b)
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state of inputs and outputs; and the suffix (n nlthe outputs denotes the next state. It
is generally required the input conditions of flipps for different transition from present
state to next state. The table which illustratesehtransitions is known as the excitation



table. The excitation table may be obtained from ¢haracteristic table of the flip-flop.
The excitation tables for R S, J K, D and T typp-flops are given in tables 8.11(a) to
(d) respectively. It may be noted from table 8.)1{@at when there is transition from 0
to 1 (present state to next state,tQ Qn.1), the inputs RS, should be either 00 or 10.
That is input S should definitely be 0, where gauirR can be 0 or 1 (may be denoted by
¢, don’t care condition). So for 0 to O transitiomguts R S should be 0. Similarly, one
can draw and verify the excitation table for otfigrflops.

Table 2.11(a) Table 8.11(c)

Transitons Inputs Inputs Transitons gt
Qn—." IQn+]_ Rn Sﬂ Rn Sn Qn_." Qn+]_ Dn
0 — 0 'i' g e oo PR ]
0 - 1 51 0 1 0 - 1 1
1] — 0 1 0 1 0 1 == 0O 0

] — 1 1
01 ) ?
Table 8. 11{k)

Transitons Inputs Inputs Table 8.11(d)
Qn - Qﬂ"']. In Kﬂ In Kﬂ Transitons Iﬂput,
0= 0 a 0 ] o Qp = Unt Th

o1 g = 0 0
1 1 1]
o 1 1} ¥ 0 - | )
— 1 1 ] —
1 — 1 ]
n n
I = 1 R B

8.8 Conversion of Flip-flops A combinational circuit is designed for the
conversion of one type of given flip-flop to othsmpe. The general model for such
conversion is illustrated in figure 8.30. The irpuif the required flip-flop are fed as
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Fig. 8.30



inputs to the combinational circuit which are cocted to the inputs of the given flip-
flop. The outputs of the given flip-flop will bée outputs of the required flip-flop. The
combinational logic circuit is obtained from thecgation tables of both the flip-flops
(given and required). The Boolean expressionsheriniputs of the required flip-flop are
obtained from the K-map drawn for the inputs antpots of the given flip-flop. The

combinational logic circuit may be drawn as usuBhe conversion may be illustrated in
the following examples.

Example 8.6 Convert a J K flip-flop to R S flip-flop.

Solution: From the excitation tables (8.11b and 8.11a) of &kl R S flip-flops
respectively, truth table is drawn as given ineahll2.

Table 8.12
Inputs of the Chutput Inputs of the
required FF orven FF
En Sn Q f Qn+ 1 I fn Kn
0 0 0 0 0 P
0 0 1 1 P 0
0 1 0 1 1 P
0 1 1 1 P 0
1 0 0 0 0 P
| I 1 a ip |

Now from this truth table, the Boolean expressifurs) and K are obtained from
the K —maps drawn in figure 8.31(a & b) as:

J=S and K=R

The logic diagram showing the conversion fromfligcflop to R S flip-flop is
given in figure 8.31(c).
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Fig. 8.31(a) Fig 8.31(b) Fig. 8.31(c)

Example 8.7 Convert a D flip-flop to J K flip-flop.

Solution: From the excitation tables of D and J K flip-flopsith table is drawn as given
in table 8.13.



Now from this truth table, the Boolean expressitorsD input is obtained from
the K —maps drawn in figure 8.32 (a) as:

D=JM+K D
Table 8.13
Inputs of the Cutput  nput of the
required FF aiven FF
Iﬂ Kn Qn Qn+ 1 D

a

e e B e R e e
el = I == B o B
A e A == B
[ S Y o B
[ Y . W e TS

The logic diagram showing the conversion fromip-flop to J K flip-flop is
given in figure 8.32 (b).
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Fig. 8.32(a) Fig. 8.32(b)

8.9 Flip-flop Parameters Several parameters for the application of flgpfwill be
discussed which are important to specify the peréoce, operating requirements and
limitations of the circuit. These parameters arailable in the data sheets for flip-flop
ICs, and are applicable to all types of flip-flops.

Propagation Delay Time As the flip-flops are the combination of logiatgs, the flip-
flop will also not respond immediately after thephgation of the clock pulse or
asynchronous inputs. The flip-flops will also hathee propagation delay time. The
propagation time delay for the flip-flops may bdided as the time interval between the
application of triggering edge or asynchronous ta@und the resulting output of the flip-



flop. The propagation delays that occur for theitpes transition of the clock pulse
applied to a flip-flop are illustrated in figure33. They are defined as:

1. Propagation Delayt,, ,, measured from the triggering edge of the clockeuls
to the low to high transition of the output (refigure 8.33a).

2. Propagation Delayt,, measured from the triggering edge of the clockeuls
to the high to low transition of the output (refigure 8.33b).

I/ﬁlil% poitt on
50% point on U trigoerine edoe
0 CLE / ZEEIINE B0
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i _ 2 i \ 50% point on
5 _/ owingnere e
—hi Errmr b _"': LS
Fig. 8.33(a) Fig. 8.33(b)

The propagation delays that occur for the asymabus inputs applied to a flip-
flop are defined as:

1. Propagation Delay t, ,, measured from théPRE input to the low to high
transition of the output (refer figure 8.34a).

2. Propagation Delay t,,, measured from th€LR input to the high to low
transition of the output (refer figure 8.34b).

FRE —\ LR
50% point on .
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Fig. 8.34(a) Fig. 8.34(b)

Set-up Time It is minimum time required for the inputs tatke before the triggering
edge of the clock. It is generally denoted QQyand figure 8.35(a) illustrates the set-up

time for a D flip-flop.



Hold Time: It is the time for which the data must be staddter the triggering edge of
the clock. It is denoted by, and hold time for a D flip-flop is illustrated iiigure
8.35(b).
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Fig. 8.35(a) Fig. 8.35(b)
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Maximum Clock Frequency. It is the maximum frequency at which a flip-flopn be
reliably triggered. If the clock frequency is mahan this frequency, the flip-flop will not
function properly.

Pulse Widths The minimum pulse widths for the clock and tegrechronous inputs are
specified by the manufacturer of the flip-flop 1ICEhe minimum high time ;) and
minimum low time (§.) of the clock pulse are shown in figure 8.36(amirly, the
minimum low time for asynchronous inputs is givarfigure 8.36(b).

FRE
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Fig. 8.36(a) Fig. 8.36(b)
Problems
1. Draw the circuit of R S flip-flop with NOR gatesadiscuss the behaviour of this
circuit.

Discuss various types of races in asynchronousltjgs.

What is the difference between asynchronous andhsgnous flip-flops? Draw
and explain clocked R S flip-flop with NOR latch.

Explain the behaviour of R S flip-flop with NANDttzh.

5. Modify an asynchronous R S flip-flop so that wherhbthe inputs R and S are 1,
the flip-flop is reset.

6. Discuss the edge detector circuits for triggerimg ftip-flops.
Draw and explain D flip-flop with NAND latch.



10.

11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

How does a J K flip-flop differ from S R flip-flom its basic operation? What are
its advantages over S R flip-flop?

Discuss standard J K flip-flop with NOR latch arobw that for inputs J K = 11,
the complementation in the output will be obtaimdten width of the clock pulse
is less than the delay in latch.

What do you mean by level trigger flip-flop? Howedboit differ from an edge
trigger flip-flop?

Discuss the edge trigger J K flip-flop.
What is purpose of asynchronous inputs in flip-Hdow these inputs work?
What is master slave flip-flop? Discuss its working

Describe the working of edge trigger T flip-flopoW a T flip-flop be used as
divide-by-two device?

What is excitation table? How the excitation tabi@sR S, J K, D and T type
flip-flops are formed?

Define the following terms related to flip-flops.

(i) Propagation delay time (i) Setup time
(i) Hold time (iv) Maximum clock frequency
(v) Pulse width

Discuss the method of converting one type of flggpfto another type. Convert J-
K flip flop to D flip-flop.

Carry out the following conversions:

() DtoJKFF (i) DtoRSFF
(i) TtoRSFF (iv) RStoDFF
Carry out the following conversions:

() TtoDFF (i) JKto D FF
(i) JKto T FF (iv) RStoTFF

A J K flip-flop can be used as R S flip-flop, butXlip-flop can not be used as J
K flip-flop — Comment on this statement.

If 6 output of D flip-flop is connected to its D inpwerify that this circuit
behaves as a T flip-flop.

Verify that the circuit shown in figure 8.37 behaas J K flip-flop.

L— 3
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23.  Prepare the truth table for the circuit shown gufe 8.38 and show that it works
as R S flip-flop.

24.  Verify that the circuit shown in figure 8.39, wor&s T — type flip-flop.

>
el

Fig. 8.39

25.  Aclockis connected to an S R flip-flop as showtigure 8.40; draw the output
waveform in relation to clock. Also mention the étion it performs.
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Shift Registers

A register is another form of a sequential cir¢bét can be set to a specific state
and retains until externally changed. A register used to manipulate data for
computational purposes by shifting the data in gister in either the left or right
directions, and therefore, is called a shift regisThis chapter will explain how to design
a shift register and implement the operations Stefit, Shift Right and bi-directional
rotation of the data. A number of applications luftyegister will also be discussed.

9.1 Registers In computers or digital system a string of lzite normally stored and
processed. A register is, in fact, a unit which store a string of bits. Since a flip-flop
can store a bit so for constructing a registerstoring n number of bits, n flip-flops can
be used. A single bit register is designed usisingle D flip-flop. Consider a negative
edge triggered D flip-flop as shown in figure 9ltLis recalled from the characteristic
table of D flip-flop that the flip-flop transfer ¢hdata applied to the D input to its output
at the trailing edge of the clock pulse. So whegiddl is applied to the D input of the
flip-flop, then after the application of the clopkilse input 1 is transferred to its output at
the trailing edge of the clock pulse. Now if theum 1 is removed, the flip-flop will
continue be in the set state, retaining therebyltigec 1. Similarly logic 0 may be
retained or stored in the D flip-flop.

¥
1 D Qr— CLE i
CLE—d > _ D l
ol— L
Q
Fig.9.1

An n-bit Register is a set of n flip-flops withcammon clock. This n-bit register
can store n-bit word. All the flip-flops of a giveegister should respond to the clock
pulse simultaneously. Figure 9.2 shows four biisteg having a common clock. All the

flip-flops can be cleared by applying 0 ®LR terminal. Data inputs are given at D
inputs of the flip-flops. The four bit data is tederred to the outputs at the trailing edge
of the clock pulse and the data is retained uthiopulse.
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Figure 9.2

9.2 Classifications of Registers The process of information in a register idech
loading the register. Shifting the data in a regish either the left or right directions is
called a shift register. Transferring informatiartoi all the flip-flops of a register can be
done in two ways. One way is that all the data &iesloaded simultaneously, other data
bits are loaded bit by bit (i.e. one bit at a tim&hift registers may, therefore, be
classified into:

Serial Load Shift Register
Parallel Load Shift Register

The stored information in these shift registerns loa transferred out of the register
in parallel or in series. Based on these configomat four combinations of loading and
reading the data are possible. They are given as:

1. Serial In Parallel Out (SIPO) Shift Register In this type of register,
the data is loaded serially, one bit at a time; amen the output is
required, the data stored in the register can &e ireparallel form.

2. Serial In Serial Out (SISO) Shift Register In this type of register,
data can be moved serially in and out of the registe bit at a time.

3. Parallel In Parallel Out (PIPO) Shift Register. In this type of register
the data is loaded simultaneously to all the flgp$§, and when the
output is required, the data stored is read serfedim the register one
bit at a time under clock control.

4. Parallel In Serial Out (PISO) Shift Register In this type of register
the data is loaded simultaneously to all the flgp$é, and when the
output is required, the data stored in the regiséer be read in parallel
form.

9.3 Serial In Parallel Out (SIPO) Shift Register Consider the schematic
diagram of SISO shift register shown in Figure %8t simplification purposes, the flip-
flops chosen are D type, but they can also be pkstyThe flip-flops are negative edge

triggered. Firstlym? signal is applied as 0, which clears all the flgps giving the Q’s
outputs 0. The clock pulse (CLK) is applied andhat trailing edge of the clock pulse,
the input on the INPUT DATA line is transferred ttee output of the first flip-flop.



Whatever the output of the first flip-flop at th@he is transferred to the output of the
second flip-flop and, similarly, the operation exds to the remaining flip-flops to the
right until the last flip-flop. Since the data aded to the flip-flop serially with each
clock pulse, so it is called serial loading of stgis (Serial In). If the output is sensed at
each one of the flip-flop outputs (each Q), thewiris termed a parallel-out register. So
such register in which data is fed serially to thput and output is taken in parallel
fashion, are called serial in parallel out (SIP@ijtsegister.

Qg 2y Q2 JQD
INFUT Q L Q7 ‘L Q L @
DATA Dy 3 Dy D; ! Dy
> . > .
[m] [m] [m]
CLE—e : . T
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Fig. 9.3
To understand the operation of this shift regjstensider the data 1111 is to be
loaded serially and one wants to obtain the datdetoutput in parallel fashion. The

CLR signal first resets all the flip-flops givings@. Q1 Qo as 0 0 0 0. Now the data is
applied as 1 to input data terminal and at théiigaedge of the first clock pulse data as 1
will be shifted to the right side giving the outp®; Q> Q; Qy as 1 0 0 0. Similarly at the
trailing edge of the second clock pulse the outgt€), Q1 Qo will be 1 1 0 0. During
the trailing edge of the third and fourth pulse theputs willbe 11 10and 1111
respectively. This way the data 1111 is loadedhto register serially and outputs are
obtained simultaneously at @, Q1 Qo.

[ [ [ [ . |
Table 9.1 DATA ! : :
N | L
glput Clock pulse Chatgnats | | | | |
Q. L | | |
- Zeto 0 a o0 3 | | | |
1 First 1 oo o I I I
1 Becond i1 1 g 0 Qs | | |
. | | | |
1 Third 1 1 1 0 | | |
1 Foutth 1 1 1 1 Qg | | I
| | | |
| | | | _
QIII | l l l
I I I I



The systematic shifting of data is given in taBlé and its timing diagram is
shown in figure 9.4. The logic block diagram of SIBhift register is shown in figure
9.5.
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Fig. 9.5

9.4 Serial In Serial Out (SISO) Shift Register A basic four-bit serial in serial
out shift register can be constructed using foutiflops, as shown in figure 9.6. The

operation of the circuit is as follows. The regigs first cleared by applyinGLR signal

as 0, forcing all four outputs to zero. The indata is then applied sequentially to the
input data terminal of the first flip-flop. Duringach clock pulse, one bit is transmitted
from left to right. The data is entered into thgiseer serially during first four clock
pulses in the similar manner as has been discussekdPO shift register. To get the data
out of the register serially, entered data must bevshifted serially and taken off at the
Qo output. For this purpose four more clock pulsesapplied and four bit required data
will be available serially at the J@utput. Assume a data word 1101 is to be entered
serially and taken at the outpug Rit by bit.

INFUT o U3 Q Qo Serial Data
DaTa—P3  ° D3 Dy g Out
. > [ > =
Qir 2y @ U
[m] [m] [m]
CLK— : i T
CLR
Fig. 9.6

Consider a data word 1101 is to be loaded ser&ily one wants to obtain this

data at the output dbit by bit. Firstly all the flip-flops are cleardaly applying CLR
signal. Now the LSB 1 of the data is applied to itigut data terminal and then during
the negative edge of the clock pulse data 1 igezhtb Q3 and giving the outputs Q.

Q1 Qas 1000. The second LSB 0 of the data is appdiehe input terminal and at the
trailing edge of the clock pulse outputs @ Q1 Qo will be available as 0 1 0 0. Similarly
at the trailing edge of the third and fourth clagith input bits as 1 1, the outputs Q.

Q; Qwillbe 101 0and 110 1 respectively. So at4h clock pulse LSB 1 is available
at @ output. During 8, 6" and " pulse with input data as 0 0 0, the serial output



terminal @ will deliver second LSB, third LSB and MSB of thata. All the flip-flops
may also be cleared by applying one more clockepwigh O as the input data. The
systematic shifting of data is illustrated in taBl@2. The logic block diagram of SISO
shift register is shown in figure 9.7.

Table 2.2
Input | Clock Outputs
data | pulse Mo Qs Qa 1 Qp
- ZEI’O |:| |:| |:| |:| IMPUT __| D
1 Cine 1 0 0 0 DATS STSG
0 Two a1 0 0
1 Three 1 0 1 0 CLE—>>
1 Four 1 1 0 Q. Qy Q) Q
0 Five 0 1 1 [a T 1 1
0 eybA 0 0o 1 [
] SEVED ] ] 0 [ CLR. Serial output
0 Eight a0 0 0 data
Fig. 9.7

9.5 Parallel In Parallel Out (PIPO) Shift Register For parallel in - parallel

out shift registers, all data bits appear on thalf outputs immediately following the
simultaneous entry of the data bits. The fourgaitallel in - parallel out shift register
constructed by D flip-flops is shown in figure 9.8.
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The D's are the parallel inputs and the Q's aeepédrallel outputs. Once the
parallel transfer signal is high all the AND gatedi be enabled and the data bits gets
connected to their respective flip-flop. Now aftee application of clock pulse all the
data at the D inputs appear at the correspondir@utQuts simultaneously. The logic
block diagram of PIPO shift register is shown gufie 9.9.
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Fig. 9.9

9.6 Parallel In Serial Out (PISO) Shift Register A four-bit parallel in - serial
out shift register is shown in figure 9.10. Thecait uses D flip-flops and NAND gates
for entering data (i.e. writing) to the registei3,2, D1 and DO are the parallel inputs,
where D3 is the most significant bit and DO is st significant bit. To write data in,

the mode control lineWRITE/ SHIFT) is applied low and the data is clocked in. The
data can be shifted when the mode control lineigh las SHIFT is active high. The
register performs right shift operation on the agatlon of a clock pulses.

Parallel Data In

SHIFT

Serial Ot
Fig. 9.10



It can be understood in more detail, the dateeteriiered to the register is applied

to the parallel data input terminal and mode cdrtne (WRITE/ SHIFT) is made low,

it allows all the four bits of the data word to éstered in parallel into the register. In this
condition NAND gates 1 through 5 will be enablediahhallow each data bit to be

entered into D inputs of their respective flip-floffter the application of clock pulse the
data applied to the inputs of flip-flops will apped the output of the respective flip-flop.

The data is said to be stored in the register.

After the data is stored into the register, modetl line WRITE/ SHIFT) is
made high, NAND gates 6 through 8 will be enablddciv will force the data to be
shifted from their present state to next stater dfte application of clock pulse. Further
shifting is possible with next consecutive pulsesble 9.3 illustrates the entering of the
data (say 1001) into the register and it's shiftimigh clock pulses. The logic block
diagram of PISO shift register is shown in figur&19

Parallel Diata In

Table 9. 3 —
el Clock Outputs Serial out ||:| | | |
SHIFT | pulseMo | O3 Qo @1 Qp | Qp wrmE/_| M2 P D Dy
Low e 1 0 0 1 [1] “HIFT
High Two o 1 0 0 0 PISO
High Three 0 0 1 0 M CLK—D:}
High | Four 0 o0 o 1 | 0O Uy

CLRE Serial Out
Fig. 9.11

9.7 Bidirectional Shift Registet The registers discussed so far involved only
right shift operations. Each right shift operatioas the effect of successively dividing
the binary number by two. If the operation is rsed (left shift), this has the effect of
multiplying the number by two. With suitable gafiarrangement a serial shift register
can perform both operations. A bidirectional, oremsible, shift register is one in which
the data can be shift either left or right. A fduitr bidirectional shift register using D
flip-flops is shown in figure 9.12.

Here a set of NAND gates are configured as OR datsglect data inputs from

the right or left adjacent bi-stables, as selebyethe SHR/ SHL control line. When this
control line is high data is moved or shifted te tight side, and if it is low data will be
moved to the left side. Hence this shift registeralso called as Left Right or
Bidirectional shift register.

The operation of this circuit may be explained @tows. In the beginningﬁ

signal is made low which clear all the flip-flopAlhen SHR/ SHL control line is high,
one can understand from the logic of the gatesacted in this circuit that the output Q
of all the flip-flops gets connected to the D inpdithe following flip-flop. The data bit
gets connected to D input of first flip-flop. Novitexr the application clock pulse to the
CLK terminal, data bits are shifted one place ® tiight. Further occurrence of the nest



pulses will shift data in right. However, when ti8HR/ SHL control line is low, the
configuration of logic gates makes the data bitdonect to D input of 4th flip-flop also
the output of each flip-flop is passed throughtte D input of the preceding flip-flop.
After the application clock pulse to the CLK termlindata bits are shifted one place to
the left. In this mode this circuit works as th& hift register.
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9.8 Universal Shift Register Consider the schematic diagram shown in Figure
9.13. It has facilities for serial loading (sena) and serial output and parallel loading
(parallel in) and parallel output, and, additiopait has shift-left and shift-right facilities.
Therefore, this kind of shift register, which capecate in all the four different modes
discussed in preceding sections and also has thgyfaf bi-directional shifting of data,

is called a universal shift register. Figure 9.h8wgs the logic diagram of 4-bit universal
shift register.

It has four D flip-flops and the associated NANDOaga which makes it possible
to shift the data to the right or left directiohefmode control inputss&nd S enable the
required operating mode of the register. The defiemodes are shown in table 9.4. From
this table it is clear that when both these modeatrob inputs are 00 or 11, no shifting
occurs. When both are 00, the content of the regusill have its previous value (i.e. no
change) and when both are 11, the input dat®lD; Dy are loaded in parallel fashion
in the register. When control inputs & are 01 or 10, the data is shifted right or left

respectively after the application of clock pulsae asynchronous inp@LF is used to
clear or reset the register. This is an activeilgwut.

Table 9.4

S | Operating Modse
0| No change
1
0
1

Shift right
Shift left
Parallel load
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9.9 Cyclic Shift Registers In a regular shift register, a given number casttiéted

to the left or right when a shift pulse is appli@&its shifted out one end of the register
may be lost. However, in a cyclic shift registetsIshifted out one end are shifted back
in the other end. The cyclic shift registers alsmwn as shift register counters are
constructed by modifying serial in serial out (S)S€hift registers. There are two

following types of cyclic shift registers:

1. Ring Counter
2. Johnson Counter or Twisted Ring Counter
These cyclic shift registers will be discussedhia tollowing sections.

9.9.1 Ring Counter The ring counter can be obtained from a semiadrial out (SISO)
shift register by connecting the QO output of tast Iflip-flop to the D input of the first
flip-flop. The ring counter, constructed using dlip-flops is shown in figure 9.14.

SPR] G 2] Dy U Dy “
> > > E
ta[tdtatd
CLE— + :
Q3 Q, Q Q
Figure 9.14

In this counter a single 1 is stored in the regisind it is made to circulate in the
register after the application of clock pulsed.tistly, the output @ is made 1 by
presetting this flip-flop and other flip-flops areset so that the outputs Q. Q; Qy are
1000. Since the output Q of each flip-flop is carted to the D input of the next stage, so
the contents of each register are shifted to thket by one bit after the application of
clock pulses. After the first pulse, the contentref shift register is 0100. After a second
pulse, the state of the register is 0010, then 08@ad the register returns to the initial
state of 1000 at the fourth pulse. In this shiffiseer at a time one flip-flop gives the
output 1. The 1 can be used to switch on a sequehoeachines, one after another,
whose operating time is controlled by the lengthhef clock pulses. A ring counter will
have as many different codes as there are flipsfleipce the only difference between
outputs of the ring code is the place where the The cyclic Shift registers are used in
calculators. On the display of some pocket caloutatit can be seen that the numbers
shift over as each new number is keyed in. Thikiesto the shift register.

The systematic shifting of data is given in tablé @nd its timing diagram is
shown in figure 9.15.



Table 9. 5

Clock Cutputs
pulse Mo O O3 O Qo
LETD 1 0 0 0
One 0 1 0 0
Two 0 0 1 0
Three 0 ] ] 1
Four 1 0 0 0
2 3 4 5 &

]
i
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J R
R
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Fig. 9.15

9.9.2 Johnson Counter or Twisted Ring Counter The basic difference between the
Johnson counter and ring counter is that in thensla counter the complement of the
output of the last flip flop is connected backtie D input of the first flip flop rather than
the output itself. This feedback arrangement predue uniqgue sequence of states. The
four bit Johnson counter has a total of 8 stategeheral, an n stage Johnson counter will
produce a modulus of 2n, (n will also be the nuntdfestages of the counter).

The schematic diagram of 4 bit Johnson counter kisawn as twisted ring
counter is shown in figure 9.16. The working ofthircuit may be explained as follows:



Initially, it is considered that the counter is 820 (@ Q. Q1 Qoare 0000) as the
first pulse occurs. At the occurrence of the secdodk pulse first flip flop changes its
output state from 0 to 1 ¢becomes 1). Now as;& 1 so the second flip flop will also
changes the state from 0 to 1 at the next pulse. flip flops 1, 3 and 4 remain
unchanged. The similar changes occur at the ndgsepwas given in the table 9.5. The
wave form of this counter is shown in figure 9.17.

The twisted ring counters are very useful esplgcighen a sequence of events
takes place one after the other without revertoingitial value.
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Fig. 9.15
Table 9. &
Clock Cutputs
pulsze Mo Qs O3 O Qo
Cine 0 0 0 0
Twro 1 0 1] 0
Three 1 1 0 0
Four 1 1 1 0
Frve 1 1 1 1
S 0 0 0 0
SEvVen 1 0 0 0
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9.10 Shift Register ICDetails. Shift register IC’s currently available are given i
the table 9.7:

Table 9.7
IC No. Description No. of bits
7491, 7491A Serial-in Serial out 8 - bit
7494 Parallel-in Serial-out 4 - bit
7495 Serial/Parallel-in Parallel out (left shifght 4 - bit
shift)
7496 Parallel-in/Parallel-out Serial-in /Serial-out 5 - bit
7499 Bi — directional (Universal) 4 - bit
74164 Serial-in Parallel-out 8 - bit
74165 Serial/Parallel-in Serial-out 8 - bit
74166 Serial/Parallel-in Serail-out 8 - bit
74178, 74179 Bi — directional (Universal) 4 - bit
74194 Bi — directional (Universal) 4 - bit
74195 Serial/Parallel-in Parallel-out 4 - bit
74198 Bi — directional (Universal) 8 - bit
74199 Serial/Parallel-in Parallel-out 8 - bit
T4295A Tri-state Serial/Parallel-in Parallel-out bi 4 - bit
directional
74395 Tri-state cascaded Serial/Parallel-in 4 - bit
Serial/Parallel-out

Brief details of a few IC’s mentioned above areegi below:
IC 7491 Itis an 8-bit serial in serial out shift regist&he logic diagram of this IC
has 8 S — R flip flops used as D flip flops as uisliaere are two gated data input lines, A
and B, for serial data entry. When the bit is esdethrough the input A, input B must be
high and vice versa. The serial data output is QHl i&s complement i®H . The pin
diagram of IC7491 is shown in figure 9.18.
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Fig. 9.18

IC 74164 . The 74164 is an eight bit serial- in parallel-shift register. The pin
diagram of this IC is shown in figure9.19. This @evhas two gated serial inputs, A and

B, and a cleaCLR input with active low. The parallel outputs (8hitare QA through
QH. When the bit is entered through the input AuinB must be high and vice versa.

A —]1 14 — woo
E —|z 7 13 —cH
Q4 —13 4 12— QG
QB —4 1 1 f—4F
Qc —s 6 10— <E
QD —{6 9[— CLE
GHD—1 7 4 5 — CLK

Fig. 9.19

IC 74194 The 74194 is a bidirectional shift register inft€m. The pin diagram of
this IC is given in figure9.20. Parallel loadinghieh is synchronous with a positive
transition of the clock, is accomplished by appdythe four bits of data to the parallel
inputs and a high top&nd S inputs.

When 3 is high and $is low, shift right operation is performed withetpositive
edge of the clock pulse. Serial data in this mageeatered at the shift right serial input
(SR) terminal.

g —! 16 b— woo
ap —|2 7 15— Q4
R 4 14— QB
B —]4 1 13— oQc
- —5 0 12— Qb
o —6 11— CLk
sL —|7 4 ip— 81
OND —] & L

Fig. 9.20
When 3 is low and $is high, data bits shift left and the data is srdeat the
shift left (SL) terminal.



IC 74195: The IC 74195 is a 4 bit Serial/Parallel-in Patadiet shift register. Pin

diagram of this IC is shown in figure 3.17. Wher 8H/LD input is low, the data on the
parallel inputs are entered synchronously on tretige edge of the clock pulse. When
this input is high, stored data will shift right Q#rough QD synchronously with the

clock pulse. Since J and are connected together, it can be used as tred data inputs
to the first stage of the register QA; QD can bedu®r serial output data.

T —! 16 b— voo
PR 7 15— Qa
T —]3 4 14— QE
A —]4 1 13— QcC
B —5 0 12— QD
cC —6 11— QD
D —7 S f— CK
OHD — 3 _':,I—SH.I"LD

Fig.9.21

9.11 Applications of Shift Registers Shift registers are primarily used for
temporary storage of data and bit manipulations these find numerous applications in
digital systems. A few important applications bifsregisters will be discussed here.

9.11.1 Serial Adder The most important application of shift registes the serial adder.

Figure 9.22 shows the block diagram of the serialea in which the augend bits and
addend bits are loaded in parallel fashion to #ggster A and register B respectively.
These bits (augend and addend) are shifted inighe direction so that they get added
(bit by bit) in full adder circuit. Initially carrybit is set to zero using a flip-flop. The
output CARRY of the full adder is transferred t®@dlip-flop, which gets added to the
next bit. The SUM bit of the full adder is transtt to the register A (augend register).

L Shift Register & for Augend bits E
e
> ,if’f FULL
.| ADDER

"

Shift Register B for &ddend bits | o

<

[

CLE—9> pla

— 2 oLk

Fig. 9.22

The complete schematic diagram as well as theraosignals necessary to
implement the serial addition is shown in figur@®.The shift register along with the
full adder and modulo 5 counter/ decoder makeessible to add two data words each of



4 bits. The full adder adds the augend and addasddrially and the result is placed in
the position occupied by the augend.
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Fig. 9.23

The circuit diagram contains four D - flip flops $tore the augend bits in parallel
fashion and other 4 D - flip flops for addend bi@se more D — flip flop is connected to
the carry bit of the full adder to store and shifo the augend positions (augend bit
register). Modulo 5 counter / decoder deliversdbetrol signal to the circuit as shown

in figure 9.24.

1 2 3 4 5 3 7
ce _[ L] LT LT LT LT LT WL
Cy
ADD

Fig.9.24



The working of this serial adder may be explaiasdollows:

During the first clock pulse, carry flip flop ideared and the augend and addend
bits ( AsA2A1A and BB,B1Bg) are entered in their respective flip flops. Ae thecond
clock pulse, add signal is set and it remains dlethe completion of the addition
operation (i.e. for four clock pulses).

When the add signal is 1, the contents of the radigend addend registers are
shifted right and are added bit by bit in the fadider circuit. The carry, if any, sets the
carry flip flop at the trailing edge of the clocklpe. The content of the carry flip flop
gets added during the next pulse by the full adBach bit of the sum re-enters the
augend register. Overflow, if any, will be availalh the carry flip flop.

After addition is complete the sumSS; S, are stored in augend flip flop and
carry bit generated is stored in carry flip flop.

9.11.2 Parity Generator cum Checker:Another application to generate and check the
parity bit of 4 bit number will be discussed. Tlvhematic diagram for the same is shown
in figure 9.25.

70— To— 70— o +— DATA
L = = = =]
IR N Y EE ) EPS S| B
’_G 1 2 3 4 —| 3 —0
o In] D In] In] &=
l m
.

7 | b Q Lo
T IRD —CL?{
48 - _D:T} 6Q [ ERROR

COUTPUT

Fig. 9.25

This circuit contains five flip flops, four to stthe 4 bit number and to store the
parity bit. The control signal for the parity geatar cum checker is shown in figure9.26.
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Parity Checker: To use the circuit as parity checker, the gayénerator signal
(PG) is set to 0. The working of this circuit igpained as follows:

Load the data signal (LD) is set to 1 during tinst tlock pulse. Parity bit P and
the data bits (XYZW) are loaded in the parity amiftsegister flip flops through the
preset (PRE) terminal of the flip flops. The erfigp flop (6) is also set to parity bit P.
The route data signal (RD) is kept high for founa#l pulses. During this time contents
(XYZW) are shifted 4 times. As parity generatorngiis zero, the parity flip flop is
unaffected.

If parity bit P is 0, then error flip flop (6) t®ggled by the output of the excusive-
OR gate for each data bit having a value 1 i.ardlip flop(6) toggles as many times as
equal to the number of 1's in data XYZW. So aftee & clock pulses, if the output of
error flip flop 1 then parity check fails, furth#rO is there at the output of error flip flop
(6) then parity check is correct.

If parity bit P is 1, then error flip flop (6) t®ggled by the output of the excusive-
OR gate for each data bit having a value 0 i.eordtip flop toggles as many times as
equal to the number of 0’s in data XYZW. So aftez & clock pulses, if the output of
error flip flop 1 then parity check fails, furthé@rO is there at the output of error flip
flop(6) then parity check is correct.

Parity Generator: For parity generator, parity generator sigi¥b) is set to 1
and P is reset to 0. Now when route data signal) (R, data bits (XYZW) are entered
into the shift register flip flops. The output diet exclusive OR gate is feedback to the P
flip flop. If the odd number of 1's is there in thata (XYZW) then output Q of flip-flop
1 is set to 1 at the end of fifth clock pulse. if the other hand even number of 1's is
there in the data then output Q of flip-flop 1 st 40 0. Thus correct parity bit is
generated and stored in the flip flop 1.

9.11.3 Time Delay Serial In Serial Out (SISO) shift register canused to introduce

time delayA T in digital signals from input to output given by:
AT =NT,, =N. !

CLK



Where N is the number of flip-flops or number aiggts,
Tk Is the time periodf the clock,
fcuk is the frequency of the clock.

From this equation it is clear that the delay bancontrolled by changing the
value of N. Consider a serial in serial out (SISDIft register of N stages as shown in
figure 9.27(a), to which a clock of 500 KHz frequgr{2u S time period) is applied. The
data input connected to the serial input of thét sagister, will be obtained at the serial
out terminal after as delay of L8S. The timing diagram for the delay is shown irufeg
9.27(b).
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Fig. 9.27

9.11.4 Data ConversionThe data conversion means data available inlderia is to
convert in parallel form or vice-versa. The conw@sfrom serial to parallel form is
possible with Serial in parallel out (SIPO) sh#gister and the conversion of data from
parallel form to serial form is possible with pdealn serial out (PISO) shift register.

9.11.5 Sequence GeneratoAn important use of shift register is a sequegererator,

-+ Decoder
x + &
e
Chatpnat
QN-I' L0 q
Serialln

CLE - Shift Register

Fig. 9.28



which generates a prescribed sequence of binasyirbgynchronization with the clock.
This system is also referred to as a word geneaatoode generator. The basic structure
of sequence generator is shown in figure 9.28. drallel outputs of the shift register
are connected to the inputs of some combinatiofauit whose output may be
connected to the serial input of the shift register

As an example, consider the sequence generatbrcéimagenerate the binary
sequence 101011.. In the required sequence there are 6 bits fochvthiree state shift
register is needed singe< 2", where N is the number flip-flops in the shift istgr and

p is the number of bits in the required sequena®lel9.8 illustrates the six combinations
of three bits which are required to generate thergsequence. The outpus Qf the shift
register should be the required sequence of thergtar and the outputs;@nd @ are
the same sequence delayed by one and two cloc&gprdspectively.

Table 9.8

Clock
pulses Q2

oA WNBR
PR OROPR
RroORrORrRO
ororrprO

The states in the table are not distinct as rwarsd %' are same. Now consider N
=4 and a table is prepared in the similar mansesh@wn in table 9.9. The last column in
the table shows the output (W) which gives the regusequence (§pshifted after clock
pulses. The expression for W is obtained from therdap (figure 9.29) of table 9.8 as:

W =Q, @, +Q, @,

Q505
Table 3.9 Q@p~_ ] 01 11 i
Clock Chutput IIIIZI_:J*J FERAIT:
pulses | O Q2 Q1 | Qo W ] T
1 1 1 1 0 0 0| & | (T |1
pi 0 1 1 1 1 (_j ;
3 1 0 1| 1 0 R N AN
4 0 1 0 1 1 wl 21 e | o |t
5 1 0 1 0 1 i | ’ |(_
6 1 1 0 1 1

W:QQ'QD-'_EE'EU
Fig. 9.29

The circuit for the sequence generator may be nli@sshown in figure 9.30.
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Problems

10.

What is register? How can a flip-flop be used twesta bit.

Mention the classifications of registers. Descitlbbe working of serial in
serial out shift register.

Describe the working of parallel in parallel outfshegister. Explain how
number can be shifted in or out from this register.

What is the difference between a parallel in patailt shift register and
parallel in serial out shift register? Discusswuaking of parallel in serial
out shift register.

Explain the operation of serial in parallel outfshegister.

Draw the circuit of four bit bi-directional shiftegister, explain its
working.

A 4-bit serial in parallel out right shift registamitially contains 0101. The
data 1011 is to be entered. After three clock mjlséhat is the data at
outputs of the register?

What do you understand by the cyclic shift regiatexplain the operation
of ring counter using timing diagram .

What is the difference between a ring counter avidtéd ring counter?
Discuss the operation of four bit Johnson countgngitiming diagram
and the sequence.

If the initial state of a 6-bit ring counter is 1@, what is the state of the
counter after the third clock pulse? Explain wiimtning diagram.



11.

12.

13.

14.
15.
16.
17.

What is the main advantage of a universal shifisteg? Draw and explain
the circuit of four bit universal shift register.

Name any two applications of shift register. Explane application in
detail.

Explain how can a shift registers be used in sedaler circuit. Draw and
explain the circuit of four bit serial adder circui

Discuss the use of shift registers for generatimgy@ecking the parity bit.
Discuss the use of shift register in sequence gémer

Design a sequence generator to generate a sequeh0&10 ...

Design a sequence generator to generate a sequeht6011 ...



10
Counters

Counters are the important building block of digisystems. These are used to
count the pulses. The clock pulses occur at reguidrknown intervals, so a counter can
be used to measure time and consequently frequamgytime period. So counters are
sequential logic circuits that proceed through dl-defined sequence of states after
application of clock pulses. The counters are cangtd using flip-flops and logic gates.
Counters are classified into two following broadecgries.

1. Asynchronous or ripple counter
2. Synchronous counter

In asynchronous counters, external clock is agplethe first flip-flop and other
successive flip-flops are triggered by the outmitthe preceding flip-flops. However, in
synchronous counters all the flip-flops are triggesimultaneously by the external clock
pulses. In this chapter the design of these cosimtéh up and down counting sequences
will be discussed.

10.1 ASYNCHRONOUS COUNTERS

It is well known that if a clock of frequendyis applied to the clock input of a
negative triggered T flip-flop, whose T input isnc@cted to high (logic 1), it toggles at
the trailing edge of each pulse (figure 10.1). Thdrequency

L o o 1 2 3 4 5 &
— |
T CLK\_|_|I |_| |_| u L
CLE— | | I I | | |
b Q _of 0 Lo tL
ﬁJ Q = D 1 D 1 |:| 1 ...
Fig. 10.1(a) Fig. 10.1(b)

of the output will bef / 2. If two flip-flops are connected in seriessiwn in figure
10.2, the output frequency obtained will be thesion of input frequency by a factor of
4. This will have the four unique states 00, 01, 1D (shown in timing diagram of figure
10.2a). The frequency division is basically a ceunfhis circuit is called as two bit
asynchronous or ripple counter.
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In this wary any number of flip-flops may be cootegl in series. A counter with
n number of flip-flops will hav®" unique states which will count in natural sequence

and the counter is called a modulus (short n2ddpunter. The modulus of a counter
represents the total number of states through wthiehcounter can move. The binary
counter with one flip-flop will have two states atite counter is called as Mod-2 or

divide-by-2 counter (ref. fig. 10.1). The countetha2 flip-flops will have 4 (a" = 4)
states (including zero) and the counter is calledMad-4 or divide-by-4 counter (ref.
fig.10.2). It will have 00, 01, 10 and 11.....stat8smilarly, Mod-8, Mod-16...counters
may be discussed.

In these asynchronous or ripple counters alfflipelops are not synchronously
controlled by the same clock pulse. As discusseav@bin asynchronous counters
external clock is applied to the first flip-flop dwther successive flip-flops are triggered
by the outputs of the preceding flip-flops. Furthiéris well known that when an input
pulse is applied to a flip-flop, it gives an outpafter some time delay (propagation
delay). Consider a counter with two flip-flops cewcted in series and if propagation
delay of each flip-flop is 20 nsec., then the otipithe second flip-flop will be obtained
after a time delay of 40 nsec. Since each flip-i®poggled by the changing state of the
preceding flip-flop, the delay accumulates with thember of flip-flops. That is this
delay ripples through the flip-flops and becomegeqappreciable when the number of
flip-flops is increased. This delay may become caraple to the period of the clock (or
more than the clock period). In this condition thes a possibility that the first flip-flop
responds to the new clock pulse before the previulse has effected transition of the
last flip-flop, this may lead the skipping of centacount which is undesirable. So the
asynchronous counter becomes too slow for carrging the counting, if the clock
frequency is large enough or the number of flippfi@re increased.

10.2 ASYNCHRONOUS BINARY (MOD-16) COUNTER

Asynchronous binary counter or Mod-16 counter Wwdlve 16 unique states and

needs 4 flip-flops to design this circuit25=16. A series combination of four T flip-
flops is shown in figure 10.3, in which the outmitfirst flip-flop is connected to the
clock input of the second; the output of the seasntbnnected to the clock input of the
third, and so on. The clock is applied to the cloghut of first T flip-flop and T inputs of



all the flip-flops are connected to high (logic The clear terminal of all the flip-flops
are connected together@oR, which resets the counter when logic O is appieClLR.

1 1 1 1
oy 2k 0. - 0.
LTI:I o L Tl 1 L T2 2 LTE 3
CLK-—D:} @I_ u—cv::s @I_ n—n:} ®_ o @_
0 < Q; Qs
] [ I [
Qg Q Q. Oy
Fig. 10.3

It is well known that a T flip-flop toggles at thwiling edge of the clock pulse, so
first flip-flop changes it state each time the &ldoput goes from high to low. The
subsequent flip-flops change state when their mgbainge from 1 to 0. The waveforms
at the input and outputs of all the flip-flops atgown in figure 10.4, while the states of
flip-flops corresponding to input clock pulses gireen in table 10.1.
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In the asynchronous counters one can use J Kldigs- in place of T flip-flops.
The J and K inputs of J K flip-flops may be tidgyether which works as T input. The
ripple mod -16 counter designed using J K flip-8ap shown in figure 10.5. The figure
10.6 shows this counter designed using D flip-flapswhich Q outputs of all the flip-

flops are connected to their D inputs. The D fligss connected like this work as T flip-
flops.



Table 10.1

After clock Catputs or Counts
pulses Mo,
Q3 QE Q]_ Q|:|
0 0 0 0 ”
1 0 0 0 !
2 0 0 1 ”
3 0 0 1 L
4 0 ! 0 0
5 0 ! 0 .
6 0 ! ! 0
7 0 ! 1 L
2 1 0 0 0
9 ! 0 0 !
10 1 0 L .
1 1 0 1 1
12 ! ! 0 y
13 1 1 v 1
14 1 ! ! 0
15 1 1 1 1
16 o 0 0 .
1 1 1
(. o] B oy = 23
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Example 10.1 Design a mod-8 asynchronous counter using Fiips.

Solution: A mod-8 counter also called divide-by-8 courtan be designed using 3 T

flip-flops as 2° = 8. This counter will have 8 possible states starfingn 000 to 111. At
the eighth clock pulse the counter is reset anditogl is started from the beginning with
the next pulse. The three T flip-flops are conngt¢tebe connected in series as shown in
figure 10.7. The waveforms at the input and outpitall the flip-flops are shown in
figure 10.8, while the states of flip-flops corresging to input clock pulses are given in
table 10.2.
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Fig.10.8

10.3 ASYNCHRONOUS DOWN COUNTERS

So far the counters which count in the forward ctioe are considered. Some
times it is also desirable to have the digital detsrwhich count in the backward or
reverse direction like ..... 32103... (or11100011....). In the up counter or forward
counters, the external clock is applied to thd fiip-flop and other successive flip-flops
are triggered by the outputs of the precedingfflyps. In the down counter the external
clock is applied to the clock terminal of the fifgp-flop as in the case of the up counter,

the other successive flip-flops are, however, &igd by theQoutputs of the preceding

flip-flop. The outputs are taken at Q’s outputs.eTigure 10.9(a) shows the logic
diagram of asynchronous Mod-4 down counter. Thewuvaveforms of this counter are
shown in figure 10.9(b), which are in the down sae.
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10.4 ASYNCHRONOUS MOD-16 DOWN COUNTER
The asynchronous mod-16 down counter will courthendown sequence having

16 distinct states. It needs 4 T flip-flops 28=16. The down sequence will be 15, 14,
13, 12 ...... 1, 0, 15 ...... It may be designed in the @imflashion as mod-4 down
counter. Figure 10.10 shows the down counter, iithvexternal clock pulse is applied to

To input of first flip-flop. The 60 output of £ flip-flop is connected to Tinput of 2
flip-flop, similarly Q, output to T andQ, output to E.
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Fig. 10.10
This circuit may also be designed with J K flipgh, as shown in figure 10.11.
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Fig. 10.11
The output waveforms are shown in figure 10.12ictvltorrespond to down or
reverse counting. Theg@utput will toggle at the trailing edge of the digpulse, and @

through Q will change their outputs at the trailing edgeQes$ outputs of the preceding
flip-flops.



CLE J

_.|I
|

[

|
1
|

[

|
1
|

[

I—I
:
1
I—I
|
|
I—I
G C—

—_ |,:,
| lo

Q 010 | oo | 0o I 010 [

P .. Voo

Q, Tr1i111 o Tyt Lo
Coon logagrgarol o0 0 oD

Lo 1111111 [ I 1|1|1.|1

DQIoi0In I gioinrn . :

. - L~ —

Trlr1r1rl10111 L N
0 I Qoo iorgigan

AE [ |' | [ |I I 1|1i1|1||1|1|1|1
3 QroitQiorQioig g (. 0
Fig. 10.12

The states of the flip-flop outputs in the revessguence are given in table 10.3.

e
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Table 10.3
After clack Catputs or Counts
pulses Ho.

Q;  Q; Q9
0 1] n 0 1]
1 1 1 1 1
2 1 1 1 1]
3 1 1 0 1
4 1 1 0 1]
5 1 n 1 1
6 1 n 1 1]
7 1 0 0 |
g 1 0 0 1]
9 1] 1 1 1
10 1] 1 1 1]
11 1] 1 0 1
12 N 1 n 0
13 1] 1] 1 1
14 1] 1] 1 ]
15 N n n 1
16 1] 0 0 0




10.5 ASYNCHRONOUS MOD-16 UP / DOWN COUNTER
A counter can work both as Up counter and dowmtauup / down counter) if
AND- OR control gates are used for connecting thea@d Q’s outputs of the preceding

stage to the input of the next stage. Figure 18H@ws the circuit for a mod-16 up /
down asynchronous counter. Here the T flip-flops @sed along with AND-OR control
gates.

UP;‘DDWN. Il>‘° igﬁ)ﬁ
|
| =1, .
B Y L L 4 L B ¥ 1 L [y
LTEI - T, O T, ° Ty
D 3
CLE—d> ™ @'_ s —n}@_
il g 9T [T Qs
] [ I |
Qg Q, Q, 43
Fig.10.13
Fig. 10.13

In this circuit when control inputP/DOWN is high, the counter works as up or
forward counter as the outputs,@, Q@ gets connected to the T inputs of the next

stages. Again whetP/DOWNinput is low, the counter works as down countethas
complemented outputs gets connected to the T imgule next stages.
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Figures 10.14 (a) and (b) show the waveforms take®’s outputs for Up and

down counter respectively. The counting sequeneestaown in Table 10.4 for working
the circuit as UP or down counter.



Table 10. 4

JP COUNTER DioWH COUNTER
When UF f DOWH = High When UP F DOWH = Low
Chatputs or Counts after clock Catputs or Counts
pulses No.
Q3  Q QY Q3  Qq Q9
1] 1] 0 1] 1] 1 1 1 1
1] 1] 0 1 1 1 1 1 n
1] 1] 1 1] 2 1 1 1] 1
1] 1] 1 1 3 1 1 1] n
1] 1 0 1] 4 1 1 1 1
1] 1 0 1 3 1 1] 1 1]
1] 1 1 1 é 1 n n 1
1] 1 1 1 7 1 1] 1] 1
1 1] 0 1 2 n 1 1 1
1 1] 0 1 a 1 1 1 1]
1 1] 1 1] 10 n 1 1] 1
1 1] 1 1 11 n 1 1] n
1 1 1] 0 12 0 n 1 1
1 1 ] 1 13 0 ] 1 I
1 1 1 n 14 n 1] 1] 1
1 1 1 1 15 1] 1] 1] 1]
1] 1] 0 1 16 1 1 1 1

10.6 OTHER ASYNCHRONOUS COUNTERS

It is quite often desired to have counters which caunt through modulo other
than 2, 4, 8, 16 etc., that is not a power of Refcample Mod-3, Mod-5, Mod-6, Mod-10
etc. These are obtained from the binary counterdigiier modulo by providing a

feedback t€LR which resets all the flip-flops after the desiremlint. Combinational
logic circuits are used for the reset pulse.

10.6.1 Asynchronous Decade Counter

The decade counter also called as divide-by-1hteoucan have 10 distinct
states. It can count from 0 to 9 and then resebtmt again in the same sequence. Four T
flip-flops are needed to design this counter. Tdlflés shows the counting sequence for
this counter. It is clear from this table that twunter should reset wherns @, Q1 Qo
becomes 1 0 1 0 i.e. a low pulse should be gerkraten Q Q; = 11. So Q and Q
outputs should be applied to a NAND gate, whosewuwill be low when QQ; = 11.

This low pulse should be applied @R terminals of all the flip-flops.



Table 10. 5

after clock Catputs or Counts
pulses Ho.
Q; 9, 9  Q
1] 1] 1] 0 1]
1 1] 1] 0 1
2 1] 1] 1 1]
3 1] 1] 1 1
4 1] 1 0 1]
5 1] 1 0 1
f 1] 1 1 1]
7 1] 1 1 1
3 1 1] 0 1]
a 1 1] 0 1
10 1 1] 1 1]
i 1] 1] 0 1]

Figure 10.15 shows the logic diagram of the ripfgeade counter. At the trailing
edge of the 10 pulse, the counter temporarily goes to 1010 statejmmediately resets
to 0000, because of the feedback provided by tiygubof the NAND gate.
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Fig. 10.15

The waveforms taken at Q’s outputs are shownguré 10.16.
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10.7 SYNCHRONOUS COUNTERS

In the forgoing sections of this chapter, the akyooous or ripple counters
were discussed in which the flip-flops were conedcin series. These counters are
simple to design but have delay which is the surdetdys of individual stages. The total
accumulated delay in the counters cause a limitaiiothe speed of the asynchronous or
ripples counters. In order to overcome this adwgatsynchronous counters are used. In
these counters all the flip-flops are triggeredudtaneously by the same clock pulse. The
transition of all the flip-flops from present stdtethe next state will, therefore, occur at
the same time, which reduces the delay of the epuynchronous counters can be
designed by using JK, D or T type flip-flops.

10.7.1 Synchronous Binary Counter

The manner in which the counts progress in a picaunter is shown in table
10.6. Four T flip-flops are needed to design thmaty counter. It may be noted from the
table 10.6 that the outputy@hanges its state for every clock pulse. So tahlgetoggled
output @ for every pulse, the T input of first flip-flop shld be connected to high (logic
1). The output @changes its state, wheneveyiQ1 and stores wheny® 0. The T input
of second flip-flop should therefore be connecte@4 output of first flip-flop. Similarly,
output Q toggles when @and Q are both 1. The outputs@oggles when @ @ and Q
are 1. From the above discussion the Boolean esipresfor inputs of all the flip-flops
are given by:

For the design of this counter it needs four flgpE. A table is drawn in which
inputs are outputs of the four flip-flops say @ Q; Qo used as the inputs in the table.
The outputs @through @ should be in binary sequence and resets a#€p,@; Qo =
1001. The J K inputs for each flip-flop for thersition from present state to next state



are obtained from the excitation table (8.11) &f ¢brresponding flip-flop. This is shown
in table 10.8.

Table 10. &
Chatputs or Counts
Qs Qg Q4 Qp
1] 1] 1] 1]
1] 1] 1] 1
1] 1] 1 1]
1] 1] 1 1
1] 1 1] 1]
1] 1 1] 1
1] 1 1 1]
1] 1 1 1
1 1] 1] 1]
1 1] 1] 1
1 1] 1 1]
1 1] 1 1
1 1 1] 1]
1 1 1] 1
1 1 1 1]
1 1 1 1
1] 1] 1] 1]

To =11 T]_ =Q0! T2 =Q0 mgl and T3 :QO mgl ljg2

The logic circuit diagram of synchronous binaryeter is shown in figure 10.17.
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Fig. 10.17

It is clear from this figure that the clock inpwkall the flip-flops are connected
together. This counter can also be designed byusih K flip-flops (J and K inputs tied
together) as shown in figure 10.18.
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Figures 10.19 show the waveforms taken at Q’s wstpf all the flip-flops of
synchronous binary counter. Note from the wavefotimas output toggles at the trailing
edge of the pulse and output ©@ggle when Qis 1, Q toggles when both £and Q are
1 and Q toggles when €Q; Q. are all 1.
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10.7.2 Design of Synchronous Mod — N Counter

The design process of synchronous Mod — N counilénaw be discussed. The
value of N need not necessarily be a power of 2ek@ample Mod-5, Mod-6, Mod-8,
Mod-10, Mod-11 etc. It is also desired to have ¢ermin which the counting sequence is
not always being the natural binary sequence. Tumting sequence may be in cyclic
code, 5421 code, 2421 code etc. The following mioce should be adopted for the
design of synchronous counters for any countingieece and modulus:

» First find the number of flip-flopa required to design a counter of Mod —
N. It is obtained from the equation < 2" .



* A table is formed whose inputs are the requirechtinog sequence of the
counter.

* Flip-flop inputs are obtained from the excitatitable of the flip-flops
(discussed in the preceding chapter) for each aoyirgequence of the
table (obtained in step second). The flip-flop itgpuhat are capable of
producing next state of the counter from the presate, are entered in
the table.

» Karnaugh map is formed for each flip-flop input terms of flip-flop
outputs as the input variables.

« Simplify the K-map and get the minimal Boolean egsion for each flip-
flop input.

» Finally the required counter circuit is obtaineddmnnecting the flip-flops
and other gates as per the expressions obtainee.abo

The excitation table for R S, D, J K and T typp-flops are reproduced in table
10.7 for the ready reference to the readers.

Table 10.7
Transitons Inputs Inpats Input | Input
Qn=* Y1 | Bn Sp | Tn Ep | Dy Tn
g— 0 P 0 oy 0 0
0 —» 1 0 1 19 1 1
1 == 10 10 P 1 I 1
I e 1 0 i Pooq 1 0

Using the procedure discussed above for the desfgaynchronous Mod-N
counter, a few counters will be discussed in thiefong section.

10.7.3 Synchronous Decade counter

A decade counter also known as Mod-10 or dividednycounter, can count from
0 to 9 and then it resets and count again. Letctheiter counts in the natural binary
sequence and it is designed using J K flip-flops.

For the design of this counter it needs four flgpE. A table is drawn in which
inputs are outputs of the four flip-flops say @ Q: Qo used as the inputs in the table.
The outputs @through @ should be in binary sequence and resets a€p.@; Qo =
1001. The J K inputs for each flip-flop for thersition from present state to next state
are obtained from the excitation table (10.7) &f ¢brresponding flip-flop. This is shown
in table 10.8.



Table 10.8

Chatputs or Counts

Q3 Q; @, Q|Ts K3 | Iz Ky | T} K| Ty Ky
o o0 o of 0 % o9 o rr
oo o 1|0 W o9 1P o1
oo 1 o| o0 ¥ (TR oo 1P
oo 1 1| 0o 1 ¢ L p o1
0 | o of o0 ¥ o0 o % 1P
o1 0o 1|0 ¥ p o0 1 P
(I 1 o o0 @ L o0 1P
o1 1 1|1 ¥ P11 Pl g1
1 o o of| % a0 a % nop 1P
1 o0 0o 1] % 1 a9 oy o1
o o 0o 0

The K-maps fors] Ks, b, Ky, J and K are drawn as shown in figures 10.20(a)
through (f) and the expressions for these inputbées of J K flip-flops are given as:
J; =Q, IQ, [Q, Ks =Qp
J2:Q1|:<DO KZ:legO
J, =Q; D, K;=Q,
The expression for Kmay be taken as:
Kl = 63 EGQO
Since it become equal tg J
ie. J, =K, =Q, [,

The expressions fop dnd K may directly be written from the table 10.8, as

J, =K, =1
3Qy Q3Q;

QQN\00__01 11 10 QQN\ 00 01 11 10
oo| o 1 PP ool ¢ | 9 | ¢ | O
ol o ol e |® 01 (EP P 9 11
1 o [t P 11 LLP P P WJ
10 0O a P P 1 ¥ o P

'IEZQ:;'Ql'Qu K3:Qu

Fig.10.20(a) Fig. 10.20(b)
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The logic circuit diagram of synchronous decadenter whose outputs will be in
the straight binary number is given in figure 10.21
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Fig. 10.21

Figure 10.21 shows the waveforms at the outputslbfthe flip-flops. The
sequence of the counter can be verified from theefeams. At the trailing edge of the



clock pulse @ output toggles. The various modes of operatiootioér outputs are shown
in figure 10.21. These are obtained from the exgioes of inputs of flip-flops by putting
the previous values of outputs just before thditigaedge of the clock pulse.
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Fig. 10.21

Example 10.2 Design a synchronous Mod-12 up counter. The thognvas made in
natural binary sequence. Use T flip-flops to designcounter.

Solution: For the design of this counter it needs foun-flops. This counter will count
from 0000 to 1011 and resets to 0000 after thisagain count. Table 10.9 shows the
counting sequence of this counter. The outputb@fdur flip-flops say @Q, Q1 Qo used
as the inputs in the table and the T inputs fohdhg-flop for the transition from present
state to next state are obtained from the excitaable (11.7) of the corresponding flip-
flop.

Table 10. %

Chatpats or Counts

1] 1] 1] 0 0 0 0 1
1] 1] 1] 1 0 0 1 1
1] 1] 1 0 0 0 0 1
1] 1] 1 1 0 1 1 1
1] 1 1] 0 0 0 I 1
1] 1 1] 1 0 0 1 1
1] 1 1 0 0 0 0 1
1] 1 1 1 1 1 1 1
1 1] 1] 0 0 1] n 1
1 1] 1] 1 0 1] 1 1
1 i 1 ] 0 i a 1
1 i 1 1 1 i 1 1
1] 1] 1] 0
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The K-maps for 3, T, and T are drawn as shown in figures 10.22 (a) through (c
and the expressions for these input variablesfop¥lops are given as:

T3 :QZ mgl I:<DO +Q3 [qgl EQO
T, =Q; Q, [Q,
T, =Q,
The expressions forpTnay be obtained directly from the table 10.9,lbsrdries
in TO column of this table are 1.
T,=1
The logic circuit diagram of synchronous Mod.-Ticter, whose outputs will be
in the straight binary number from 0000 to 1011gii&en in figure 10.23.
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Figure 10.24 shows the waveforms at the outputslbfthe flip-flops. The
sequence of the counter can be verified from theeteams.
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10.8 SYNCHRONOUS COUNTERS WITH ARBITRARY
COUNTING SEQUENCE

There are applications where it is required tagieBl-bit counters counting in
some arbitrary counting sequence. For the desigeuoh counters, the state diagram
showing all the required states is drawn, thernb&etes formed in which present and the
next states of the counters are written. The vatdielse inputs of the required number of
flip-flops are entered as per the excitation tadflehe flip-flops. Finally, by getting the
simplified Boolean expressions for the flip-flopgputs, the logic circuit for the counter is

designed. The design of such counters may be uonddrdy considering a following
example.



Example 10.3 Design a synchronous Mod-10 counter to courthensequence 0, 2, 4,
5,6,8,9,3,1,7,0. Use J K flip-flops to destge counter.

Solution:  For the design of this decade counter, four fligkflops are required. The
state diagram showing the required states in thuteo in sequence wise is given in
figure 10.25.

Fig. 10.25
Table 10.10 shows present states of the coungggesice and next states after
the clock pulse and input values of the flip-flops.

Table 10.10

Fresnt States Mext States

Q3 Q3 Qp Q|23 93 9, Q| Ks|T2 KT KT Ky
0 0 0 o|o 0 1 olo v (0 ¢ 1 ¢|0 ¢
o o 0 1 |O 1 1 1o (1 ¢ [0 %% 0
0 0 1 o (0 1 0 ofog ¢ |t ¢ (% |0 @
0 0 1 1 |0 0 0 Vlog oo 9 [P I 0
ot o o|® 1 0 1Tig g |e ofo ¢l @
a1 o 1|0 1 1 oflo 9|9 oft 9|9 1
1] 1 1 o |1 1] 1] nif1 PP 1 g 1 oo
] 1 1 i1lo o o olo @ |9 1|9 |% 1
1 0 n 0|l 0 1] 1% I} 1] [0 o 1 g
1 0 0 1 |0 ] 1 1l t |0 ¢ (1 ®|% 0

The K-maps for all inputs of the flip-flops are diraas shown in figures 10.26 (a)
through (g) and the expressions for these inp@g&en as:

J,=Q, Q@ Ks=Qp
‘]2:Q1EQO+Q3EQ1|]?O’ KZ:Q].
J,=Q, 0, +Q,, K, = 1(directly from the table)

JO:Q2ml+Q3’ KO:QZEGQO
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The logic circuit diagram of this synchronous daunwhose outputs will be in
the given sequence, is shown in figure 10.27.
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Figure 10.28 shows the waveforms at the outputsalbfthe flip-flops. The
sequence of the counter is verified from the wanefo
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10.9 SYNCHRONOUS CONTROLLED COUNTERS

Another class of synchronous counters called ctetrccounters will now be
discussed, in which a control input is applied. Tdwntrol input will decide which
sequence is to be followed by the counter. The ayrdcounters fall in the category of
controlled counters. The control input will deciddether the counter is used for up
counter or down counter. The procedure for thegiesf such counter is the same as the
other synchronous counters discussed above. Argydi/flip-flops may be used for the
design of such counters.

Consider the design of a counter that can coumod-8 or mod-4 counter with
an additional control input S. If the control inp8tis O, the counter works as mod-4
counter and if Sis 1, it works as mod-8 counter.

For the design of this counter, three J K flipeBicare required as 2 8. The state
diagram showing the required states in the countsequence wise is given in figure
10.29. The transition from 000 to 001 will take gdavhen the control input S is 0 or 1

S=0aorl S=0narl

— S=0narl

s=forl Fig. 10.29
and the transition from 011 to 000 will take pladeen S = 0, and transition from 011 to
100 will take place when S = 1. Table 10.11 showssgnt states of the counting



sequence and next states after the clock pulsenpod values of the flip-flops. In the
present state the control signal is also takemasobthe inputs. The table is according to
the required sequence.

Table 10.11
Presnt States Wext States
Q @ % 8 e 9 9 | KNy KT Ky
o0 0 o |0 o 1 oo¢ (o0 ® 1 P
o 0 I 1 0 0 1 o ¢ (o0 w1 ¢
o 0 1 ] o1 ] oo |1 o® [Pl
o 0o 1t 1 |on 1 o |0 g |l ® Q¥ 1
0 1 I 0 o1 1 o g (¢ o1 ¥
o1 I a1 1 o @ (¢ o |1 ®
0 1 1 0 0 0 |:| (I L O
0 1 1 1 1 0 i A I O L |
1 0 0 0 1 0 1 R VR I U I
1 0 ] 1 1 0 1 @ o |0 ¥ 1
1 1] 1 0 1 1 0 O T L
1 1] 1 1 1 1 0 p 0|1 p P 1
1 1 0 ] 11 1 o of|le ofl ¥
1 1 0 1 1 1 1 p oo ly 0 R
1 1 1 0 o0 ] L S O A R T
1 1 1 1 o a0 ] L T L R T

The expressions fal, and K, are obtained directly from the table. The K-maps

for other inputs of the flip-flops are drawn aswhan figures 10.30 (a) through (d) and
the expressions for these inputs are given as:

Jo =Ko =1 1=K, =Q,
J,=Q 0[5 K, =Q, Q,
Q.9 Q4%
Qg8 o0 01 1110 Qs ] 1 S N 1
an| 0 0| 9 | o ¢ | ¢ | 0 a
01 0 0 ] P o1 e p 1 1]

ul o [(1 [ 9] @ 11LPLPI|Ij
w0 o e | ow ID“P[‘PIJ“

Jo=Q &S £,=0 &
Fig. 10.30 (a) Fig. 10.30 (b)
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The logic circuit diagram of this synchronous daums shown in figure 10.31.
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Fig. 10.31

Figure 10.32 shows the waveforms at the outputsalbfthe flip-flops. The
sequence of the counter is verified from the wawafo If the counter is reset and the
control inputSis zero then it will follow the sequence of mod +e. it will count 000,
001, 010, 011 and repeats. However, if the cousteeset and the control inp8tis 1,
then the counter will count the sequence 000, 00, 011, 100, 101, 110, 111 and
repeats.
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Example 10.4 Design a synchronous Mod-8 up down counter. Atrod input may be
used that allows the counter to count in the upeege or down sequence. Use T flip-
flops to design this counter.

Solution: For the design of this counter, three T flipgioare required as’ 2 8. The
state diagram showing the required states in thuteo in sequence wise is given in
figure 10.33. A control signal S is used in theirder. If the control signal is 1, the
counter works as up counter and if S = 0, the aaumbrks as down counter.

Fig. 10.33

Table 10.11 shows present states of the countiggesee and next states after
the clock pulse and input values of the flip-flopsthe present state the control signal is
also taken as one of the inputs. Use of transtabte of T flip-flops is made for getting T
inputs of the flip-flops. The table is accordinghe required sequence.



Table 10,12

Presnt States Mext States
Q; 9 Q9 5 |Q; @ 95 |T2|Ti| Ty
1] 1] 1] n 1 1 1 11 1
0 ] 1 1 0 0 1 oo 1
0 ] 1 1] 0 0 ] oo 1
1] 1] 1 1 n 1 1] o1 1
0 1 1 1] 0 0 1 o1 1
1] 1 1] 1 n 1 1 oo 1
S L I T oo |1
a1 1 1 1 o0 0 11 |1
1 0 0 1] 0 1 1 111 1
10 0 1|t o0 1 |glolt
1 0 1 1] 1 0 1] 0l o 1
1 1] 1 1 1 1 0 ol 1 1
1 1 0 i} 1 n 1 ol 1 1
1t 0 11 1 olo |1
;1 ot oo |t o1t o0 |glalt
1 1 1 1 1] 1] ] 111 1

The expressions fof, is obtained directly from the table. The K-maps dther

inputs of the flip-flops are drawn as shown in figgi 10.34 (a) and (b) and the
expressions for these inputs are given as:

T2:Q1m0[8+61|]50[§ -I-l:QO[S-'-QO[E T0:1

QEQI QEQI
QDS oa o1 11 10 QDS 1] o1 11 10

o] 0o fo AL oo| (1 [0 |1 1)
131 U U o o |0 [0 |0
oo |1 D o (]t 1)
of 0 0 0 0 | 0 0 0 0
T=Q Qo 5+Q1° Qo' 8 T, = Qo 5+ 0p 5

Fig. 10.34(a) Fig. 10.34(b)

The logic circuit diagram of this synchronous cauris shown in figure 10.35.
Figure 10.36 shows the waveforms at the outpuésl e flip-flops. The sequence of the
counter is verified from the waveforms. If the ctems reset and the control inpgbits 1
then it works as mod -8 up counter i.e. it will 0ob@00, 001, 010, 011, 100, 101, 110,
111 and repeats. However, if the counter is resdtthe control inpuS is 0, then it



works as mod -8 down counter i.e. it will count @1, 110, 101, 100, 011, 010, 001
and repeats.
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10.10 GENERATION OF CONTROL SIGNALS

In many digital applications control signals aeguired to start, execute as well
as step various operations in a specified time esezp1 For the design of such control



signals, a counter circuit is designed whose ost@ue connected to a decoder. The
decoder gives the required control signal. The t@uaircuit may be synchronous or
asynchronous. The procedure for designing the eousithe same as discussed above in
this chapter. The block diagram for generatingdbtrol signal is shown in figure 10.37.
The design of control signal may well be understdiyd considering the following
example.

CLE —] Counter

TimingSignad g 10.37

Example 10.5 Generate a control signal which can deliverftil®wing pulse train.
The pulse train repeats after 7 pulses. The coumdgrbe designed using T flip-flops.

TR NE
N N
Fig. 10.38

Solution:  From the given problem it is clear that a cdnsignal (say S) is to be
generated which gives the periodic pulse train Bf1d01 and then repeats. The pulse
train repeats after 7 seven pulses. So the ougbi®d-7 counter are to be connected to
a decoder circuit. For this a mod —7 counter ibaalesigned. Three T flips are required
for the design of mod -7 counter. Table 10.13 shthescounting sequence and required
inputs of T flip-flops. The expressions for inpukT flip-flops obtained from the K —
maps shown in figure 10.39 are given as:

TZ:Q2ml+Q1|]gO TI:Q2|]Q1+QO

T,=Q,+Q,
Table 10.13

Qy &y S| T2 T Ty Q49

0 0 0 0 0 1 Qn\nn 0L 11 10
0 0 1 0 1 1 oo o {1y o
0 1 0 0 0 1

0 1 1 1 1 1

1 0 0 0 0 1 i o ) 0
1 0 1 0 1 1

é é g 1 1 a TQZQQ'Ql"'Ql'QD

Fig. 1039(a)
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The truth table for the decoder is obtained bgdiobservation of the given
timing sequence (ref. fig. 10.38). It is shownable 10.14. The Boolean expression for
the output S of decoder is obtained using the K-ofdgure 10.40, the unused counts
are treated as don’t care conditions. The expressigiven by:

S=Q +Q,Q,+Q,Q,

Table 10.14

Q; 9y Y| s 2,9

0 00 0 Qn\nn o1 11 10

0 o1 1 oo (T 1y !

0 10 1

0 1 1 1

1 0 1] 1 1 elon

1 o1 0 _ _

1 1 1] 1 S=O UGy 8 U
Fig. 10.40

The complete logic diagram of the counter with dlecas shown in figure 10.41
and timing diagram for such control signal may dealrawn as shown in figure 10.42.
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10.11 COUNTER ICs

Counters are available in the form of ICs, a fewsmeommonly used
asynchronous counter ICs are given in table 10.15.



Table 10.15

I Ma. Desorifition

7490, 74290 BCD counter

7492 Divide-byw12 counter
7493, 74293 d-hit hinaty counter
T4176, T4196 BCD courter with preset
74593 Dual decade counter

743931 Dial 4-bit binary counter

Details of few of the above mentioned ICs are gibelow:

IC 7490 Decade Counter (divide-by-two and divide-byive): This IC consists of four
master slave flip-flops internally connected tovide divide by two and divide by five
counter. The logic diagram of this IC is given iguire 10.43(a) with its pin diagram and
logic symbol in 10.43(b) and 10.43(c) respectivdlie output from flip-flop (0) is not
internally connected to the succeeding stagesethier the count may be separated into
two independent count modes.

(i)

(ii)

(iii)

It is used as a binary coded decimal decade cquhteCLK1 clock input
must be externally connected to the, Qutput. The clock input

CLK receives the incoming count, and a count sequen@btained in
accordance with the BCD count for 9's complemereirdal application.

If a symmetrical divide-by-ten count is desired fiigguency synthesizers
or other applications requiring division of a biyparount by a power of

ten, Q output must be externally connected @K input. The input

count is then applied at tHeLK1 input and a divide by ten square wave is
obtained at output §

For operation as divide-by-two counter and a divigefive counter, no
external interconnections are required. Flip-fl@) is used as a binary

element for the divide-by-two function. TH&L K1 input is used to obtain
binary divide-by-five operation at the; @, and Q outputs. In this mode
two counters operate independently; however, ali fop-flops are reset
simultaneously.

Tables 10.16 and 10.17 indicate BCD counting secpieand reset conditions

respectively.
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Table 10.16

OUTPUTS

COUNTS
Q 3 Q 2

]
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Table 10.17

RESET INPUTS OUTPUTS
ROl | Roi | RO | Re | Q. Q, Q2
H H L Z L L L L
H H =z L L L L L
x x H H H L L H
x L x L COUNT
L = L = COUNT
L x x L COUNT
I L L i COUNT

Z Indicates that either a HIGH or a LOW level is present.

IC 7492 Divide-by-twelve Counter (divide-by-two anddivide-by-six):

This IC is a 4-bit binary counter consisting of fouaster slave flip-flops which
are internally connected to provide a divide-by-weoninter and divide-by-six counter. A
gated direct reset line is provided which inhiliit® count inputs and simultaneously
returns the four flip-flop outputs to a low lev@he logic diagram of this IC is given in
figure 10.44(a) with its pin diagram and logic syhkn 10.44(b) and 10.44(c)
respectively. The output from flip-flop (0) is nimiternally connected to the succeeding
stages; therefore the counter may be operatedvimtandependent count modes.

0] To use it as a divide-by-two counter, outpuy Qust be externally

connected to clock inpu€CLK1. The input count pulses are applied to

input CLK . This IC when used as divide-by-twelve countercatunts
from 0 to 11, but counts from 0 to 13 with skippiogunts 6 and 7 as
shown in truth table 10.18.
(i) When it is used as divide-by-six counter, the inpount pulses are
applied to inpu€CLK1. Simultaneous frequency division of 3 and 6 are

available at the Q2 and Q3 outputs. The truth tabld9 shows the reset
conditions of this IC.
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Table 10.18 Table 10.19
COUTPUTA
COUNTS
QE QE Q1 QEI
7 T L L L RESET INFUTS CUTPRUTS
1 L L 1 H RO | RO Q3 Qz Ql QD
4 L L H L H H| L L L L
i TI: Iﬁ IE E L pe COUNT
*x COUNT
3 L H L H L
] H L L L H Indicates that either a HIGH
7 H L L H or a LOW level is present.
2 H L H L
a H L H H
10 H H L L
11 H H L H

IC 7493 Divide-by-sixteen Counter (divide-by-two ad divide-by-eight):

This IC is a 4-bit binary counter consisting otifanaster slave flip-flops which
are internally connected to provide a divide-by-teounter and a divide-by-six counter.
A gated direct reset line is provided which inrshibe count inputs and simultaneously
returns the four flip-flop outputs to a low levé@he logic diagram of this IC is given in
figure 10.45(a) with its pin diagram and logic syhkn 10.45(b) and 10.45(c)
respectively. The output from flip-flop (0) is nimiternally connected to the succeeding
stages; therefore the counter may be operatedvimtandependent count modes.

0] When this is used as a 4-bit ripple counter, theubuQ, must be

externally connected to inp@LRL. The input count pulses are applied to

input CLR. Division of 2, 4, 8 and 16 are simultaneouslyfpened as
shown in truth table 10.20.

(i) It can be used as a 3-bit ripple counter, the imouint pulses are applied
to input CLRL. Simultaneous frequency divisions of 2, 4 andaualable

at Q, Q and Q outputs. Table 10.21 shows the reset conditionthief
IC.
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Table 10.20 Table 10.21
OUTPUTS
COUNTS
QE QE Q1 Q|:|
0 L L . L BEESET INFUTS OUTPUTS
1 L L L H EO(L) | ROG2) QE QE Ql QIZI
2 L L H L H H L L L L
3 L L H H L e COUNT
4 L H L L b4 L COUNT
] L H L H
f L H H L Z Indicates that either a HIGH
! L H H H ot a LOWA lewel is present.
2 H L L. L
9 H L L H
10 H L H L
11 H L H H
12 H H L L
13 H H L H
14 H H H L
13 H H H H

The list of synchronous counter ICs is given ingd.22. The detailed
description of few of these ICs will be discussetbiw:



Table 10.22
I Ha. D escrintion

760 | Bynchronous Decade Counter with clear
T4lal Synchronous 4-bit Binary Counter with clear
74162 | Bynchronous Decade Counter

TNES | Bynchronous 4-bit Binary Counter

74190 Synchronous TpDown Decade Counter
74191 dynchronous UpDown Binary Counter
74192 Synchronous TpDown Decade Counter
Daal clock with clear

TG | Synchronous 4bit Binary TpDown Counter
Dal clock with clear

IC 74160 Synchronous Decade Counter with Cleaithe logic pin diagram of this IC is
shown in figure 10.46. It works on the positive edq the clock pulse, which is applied
to T input (pin -2) terminal. The truth table ofgHC is shown in table 10.23. It may be
preset to any BCD count data applied to the A B @uts, and set terminal S as low
and reset terminal R is high. A low on R will refe# counter. The carry out terminal CO
will be high on the terminal count 1001, which Ilp cascading several such counter
ICs. The counter enable terminals FE1 and FE2 bmukigh to count the input pulses
Table 10.23

Input Chatpat

R 3 FEl FE2 T |Q& QB QO QD CO

L | L L L L L
HL ¥ X 4| Datais loaded
H g t

Vee c0Q, g 0 QpFEz 3
13 4] =] 11 [ _[5]

ja sy
ja sy

Counts progresses

H L L H]|H

K IC 74160
ZIndicates that either a HIGH
50 1 3 [ Y i 1 i K1 Qi R ot a LOWY lewel is present.
E T A& B C D FEl GHND
Fig. 10.46

IC 74163 Synchronous Four-bit Binary CounterThe logic pin diagram of this IC is
shown in figure 10.47. It works on the positive edyd the clock pulse, which is applied
to T input (pin -2) terminal. The truth table ofgHC is shown in table 10.24. It may be
preset to any BCD count data applied to the A B @uts, and set terminal S as low
and reset terminal R is high. A low on R will rele® counter. The carry out terminal U
will be high on the terminal count 1111, which reelp cascading several such counter
ICs. The counter enable terminals FE1 and FE2 brusigh to count the input pulses



Table 10.24

Inpat Chatput

RE 3 FEl FE2 T |QA QB QC QD U

L¥X ¥ X t/L L L L|L
Voo U Q,95% QpFEz 3 HL X ¥ t| Dataisloaded
13 ] 3] 3 i1 ] (o]

HHH g t Counts progresses
K IC 7416 3 HHH H|H
LIIQJ ] R R P 1 R 3 ) ) ZIndicates that either a HIGH
T & B © D FEl GND ot a LOWY lewel is present.
Fig. 10.47

IC 74190 Synchronous UP/Down Decade CounterFigure 10.48 shows the logic pin
diagram of the IC 74190 which can work in eitherdigection or down ward direction.
The clock pulse is applied to T input (pin -14) meral. The truth table of this IC is
shown in table 10.28NMhen BA terminal is high the counter counts dowd #ren it is
low, the counter counts up. It may be preset toB@i{p count data applied to the D C B
A inputs, and set terminal S as low and reset t@hR is high. A low on R will reset the
counter. The pin U produces a high pulse when teahdount 9 (1001) is reached in the
up counting or when the terminal count O (000G¥&ched in the down counting.

vccﬁTFE!USC D
6] 18 [ [3] 13 (17 [0 [5]

K IC 74190

Ll L2 [z L [a] [l L2 L2
E QBQHFE EA QC (U GND

Fig. 10.48
Table 10.25
Input Chatpat
FE3DCEBE ABAT |QD QO QB QA U FQ
HHXZXXZEX Z No Chatige L H
Z L X X| D C B & L H
LH XXEZXL COUNT UP L H
LH XXZXZH COUNT DOV L H

10.12 Counter Applications

There are numerous applications of counters inaigircuits. A few important
applications of counters, such as event countgitatliclock and digital frequency meter,
are being discussed below:



10.12.1 Event Counter

Event counter is one which can count and display physical counts. For
example, the number of persons entering to a raohalbis to be counted and displayed
in the digital form. This system will have a beafight to fall on the Light Dependent
Resistor (LDR), the output of which is connectedhe clock input of the counter and
display circuit. Whenever someone crosses or mpésrthe light to fall on the LDR, a
pulse will be produced. These pulses will be cotirsied simultaneously displayed on the
display device. The complete circuit diagram witldigit display device is shown in
figure 10.49, which is capable of storing the nuralfeom 0000 to 9999. It consists of
four decade counter ICs 7490, which gives the datpuBCD form. The BCD outputs
are converted to seven segment outputs using B&awen segment decoder/driver ICs
7447. The seven segment outputs, when connecteNDs, give the decimal display of
the counted pulses. The counter may be reset ifethet switch is momentarily switched
off. The IC9 (7413) produces a positive going pwsgeenever a beam of light is
interrupted by the entrants in the hall.
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Fig. 10.49



10.12.2 Digital Frequency Meter

The digital frequency meter is an electronic mstent used to measure the
frequency of a periodic waveform. The basic priteifor the precise determination of
frequency of an unknown signal is illustrated igufie 10.50. The unknown signal is
applied to amplifier/attenuator, where the sigsabmplified if it is a weak signal and
attenuated if the signal of high amplitude. The Hfed signal is then connected to a
Schmitt trigger circuit where the signal is conedrtto a square wave. The square is
differentiated to get the narrow pulse train. Thamber of pulses in the pulse train is
equal to the frequency of the input unknown sign@his narrow pulse train is then
applied to one input of a two input AND gate. Tleeand input of this AND gate is
connected another standard sample pulse of constdiit The sample pulse controls for
how long the pulse train is allowed to pass throtlghAND gate to the digital counter. If
the width of this sample pulse is kept as 1 secthreh) the AND gate will allow the pulse
train to go to the input of the counter for 1 setobhe counter will display the counts on
the display devices (in digital form) counted byoit 1 second. The number displayed on
the display devices will show the frequency of timeut signal directly in Hz, since the
number of pulses in the pulse train is equal toftbguency of the input unknown signal.
The digital counter basically contains BCD countecoder and display unit (seven
segment display).

Further for the continuous counting of the pukkescounter should be reset at the
beginning of the sample pulse, which is done vhthltelp of resetting and latching pulse
generator. A positive going pulse is applied toetethe counter. Counter latching
operation is performed if the reset terminal of tbanter is grounded.

Decoders
/\/ Drisplay
/\'\/ ru Fulse Train +
Input ) ) Lt Counter
f Amplierf - Schrmitt -

Differentiatar
Signal Attenuatar Trinoer
F !

Sample Pulse
Resetp'lﬂse“
L L
T | |
Cuartz . o 1 ser
Crystal [* — 10 = CLK :
Dscillator _ RESETTING AND
o] HLATCHING PULSE
GENERATOR
T-Flip flop
Fig. 10.50

The accuracy of the counter will depend on theussmy of the width of the
sample pulse. The sample pulse of standard timedés, therefore, obtained from a



high frequency quartz crystal oscillator, say, 1 MHhe frequency of this crystal
oscillator is divided by a factor of 1Dusing frequency divider circuit, which gives a
square wave of 1 Hz frequency. Finally the 1 Hzjfiency is divided a factor of 2, to
obtain a square whose pulse width is 1 secondhelfatidth of the sample pulse is taken
as 1 msec, then the counter will display the fregyedirectly in KHz, if it is taken as 1
psec, the counter will display the frequency in MHz

A very simple digital frequency meter is showrfigure 10.51, which is capable
of measuring the frequency of the signal direatlyHz. The frequency to be measured is
applied to one input of Schmitt trigger NAND gateTBie gate period is controlled by a
square wave (Y2 Hz sample pulse), which is conndatetde second input of this gate.
The % Hz pulse is generated from some externalceodrihis pulse keeps the counter
latching for 1 sec and counting is stopped for rieséc. During the low period of this
pulse, the display unit will show the updated csudirectly in Hz. For getting the
resetting pulse, the sample pulse is differentiagte® and C network of proper value, the
negative peaks of the differentiated is clipped wdfng the switching diode ;.DThe
positive spike at the leading edge of the samplsepis therefore obtained which is used
to reset the counter. The counter and display itirsiasically the same as discussed in
the object counter.
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10.12.3 Digital Clock

Digital clock makes use of the counter and decodinguits. In digital clock the
real time is displayed in the digital form. It digps Hours, minutes and seconds. The
block diagram shown in figure 10.52 illustrates tiesign principle of digital clock. For
the design of clock a 1 Hz continuous is obtaineninf some standard oscillator. The
accuracy of the clock will depend on this standasdillator. This 1 Hz pulse is counted
by divide-by-sixty counter (a decade counter andivade-by-six counter) which will
count from 00 to 59 and reset to 00 at 60. Thewupthis counter will give a pulse for
every 60 seconds (or 1 minute). The 1 cycle/mimukses will again be counted by
another divide-by-sixty counter which will be re$et00 after the count 59 and thus a
pulse for every one hour. The 1 cycle/hour pulsds mow be counted by divide by
twelve or divide-by-twenty four counter. The decodad display devices (FNDs) are
connected to the every counter circuit which githesdigital read out of the real time.

HOUES LINUTES SECOMDIS

I o g
il fl

BCD TO 7 ECD TO 7 BCD TO 7
SEGMENT SEGMENT SEGMENT
DECODERS DECODERS DECODERS
DRIVEE DRIVER DRIVEE
- 24 . = &0 . — &0 . 1 Hz
COUNTER COUHTER COUNTEE CLOCK
Fig. 10.52

The complete circuit diagram of digital clock (e hours) is shown in figure
10.53. It makes use of the counter circuits, dexigimsing decade counter ICs 7490, BCD
to seven segment decoder ICs 7447 and FNDs (conamuaufe). The decade counter IC1
is wired in divide-by-ten mode, so that it resaiszero as soon as the tenth pulse is
reached to counter. Similarly, the IC2 (decade teulC 7490) is wired in divide-by-six
mode so that when the sixth pulse occurs at thet iapthis IC, it resets to zero. At the
6" pulse BCD output of the IC2 becomes 0110, so @fits (pins 8 and 9 of IC2) are
connected to the pins 2 and 3 respectively to tlestcounter at this pulse. The most
significant bit is not be used as the countinghis tase is limited to 5, so pin 11 of this
IC is not used. The carry out signal for the n&@& is therefore taken from pin 8 of IC2.
The ICs & and 4" are wired exactly in the similar way as the I€satd 2° respectively.
The IC 5 and IC 6 are wired in divide-by-twenty fmounter. The IC5 and IC6 are wired
in divide by ten mode but these ICs are reset whencounting is 24 (0010 0100) i.e.
when pin 8 of IC5 and pin 9 of IC6 are simultandpw@se 1. These pins (pin 8 of IC5
and pin 9 of IC6) are connected to the reset pin€% and IC6 as shown in figure 5.53.
Now to each counter IC (7490) is connected to B&€0dcimal decoder IC (7447) whose
outputs are connected to different FNDs.



Two switches S1 and S2 are used for current tieteng. These switches are
push to ON switches. When switch S1 is pressed puise directly goes to the minutes
counter, the switch may be released when the mamneiset. Similarly, switch S2 is used

to set the Hours.
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10.12.4 Parallel to Serial Data Conversion

The counter circuits can also be used to conwerparallel data into serial form.
The parallel data is applied to a multiplexer irgpahd the serial data is taken at the
output of the multiplexer. The data select ternsnafl the multiplexer is connected to a
counter circuits, whose output drives the MUX aradadat the output terminal of the
multiplexer will be in serial form.

Figure 10.54 illustrates how eight bit paralletades converted to serial data. For
this 8:1 multiplexer is taken. The three data gefexninals ($to $) are connected to
the output of mod-8 counter, which gives the datdinary from 000 to 111 on every
clock pulse. So when counter's output is 000, tie data will be available at the
multiplexer output. Similarly at the arrival of tB@1 at the counter output second data D
will be transmitted to the MUX output and so on.

Divide hy-eight 0 %0 | DaTa
CLE —of (Mod. 8) Q 5, pSELECT
counter Q, 3, TERMINALLE
8:1 MUX

D SERIAL
0

D DATA

ok QUT
PARALLEL Di
DATA IN Dy
Ds
Dy
Do
Fig. 10.54
PROBLEMS

1. What do you understand by counters? What is théerdiice between the
asynchronous and synchronous counters?

2. Explain the meaning of counter. Draw the circuitao#-stage ripple counter and
show the waveform at the various output stages.

3. Draw and explain the circuit of asynchronous binaounter (Mod-16). Also
draw the wave shapes at different output stages.

4. Design a Mod-12 ripple counter and show the ougpates and wave forms of
each flip-flop.

5. Design a Mod-14 ripple counter and show the ougtates and wave forms of
each flip-flop.

6. Design an asynchronous decade counter and showutipait states and wave
forms of each flip-flop.

7. Design a Mod-16 ripple down counter and show thputustates and wave forms
of each flip-flop.

8. Discuss the design of a Mod-16 ripple up/down ceurnd show the output
states and wave forms of each flip-flop.



9. Design a Mod-11 ripple counter and show the ougtates and wave forms of
each flip-flop.

10.Discuss the design of a synchronous decade cousiteg T flip-flops and show
the output states and wave forms of each flip-flop.

11.Repeat the problem 10 with J K flip-flops.

12.Design a Mod.-8 synchronous counter using J Kffops and show the output
states and wave forms of each flip-flop.

13.Repeat the problem 12 with T flip-flops.

14.Design a synchronous binary counter (Mod-16) usikgflip-flops, and show the
output states and wave forms of each flip-flop.

15.Repeat the problem 14 with T flip-flops.

16. Discuss the design of a synchronous decade cousiteg R S flip-flops and show
the output states and wave forms of each flip-flop.

17.Discuss the design of synchronous decade couniag us K flip-flops; the
counting is made in 2421 code. Show the outpuestahd wave forms of each
flip-flop.

18.Repeat the problem 17 using T flip-flops.

19. Design a synchronous decimal counter to count aeex3 code. Use T flip-flops
to design the counter. Show the output states awe Worms of each flip-flop.

20.Repeat the problem 19 using R S flip-flops.

21.Repeat the problem 19 using J K flip-flops.

22.Design a Mod-13 synchronous counter to count inma&binary sequence. Use T
flip-flops to realize the circuit. Show the outpathtes and wave forms of each
flip-flop.

23.Repeat the problem 22 using R S flip-flops.

24.Repeat the problem 22 using J K flip-flops.

25.Design a controlled counter that can count Mod-thé control input is O and
count Mod-8 if the control input is 1. Use J K flipps to realize the circuit. Also
show the output states and wave forms of eacHl&jp-

26.Repeat the problem 25 using T flip-flops.

27.Design a synchronous counter that can count ifiolleeving sequence 1, 3, 4, 5,
8,9,0, 2, 6, 7 and repeats. Use J K flip-flopsetalize the circuit. Also show the
output states and wave forms of each flip-flop.

28.Repeat the problem 27 using T flip-flops.

29.Design a synchronous Mod-8 up/down counter useflipKklops to realize the
circuit. Also show the output states and wave foofnsach flip-flop.

30.Repeat the problem 29 using T flip-flops.

31.Design a synchronous Mod-7 up/down counter useflipKklops to realize the
circuit. Also show the output states and wave foofnsach flip-flop.

32.Design a synchronous Mod-6 up/down counter useflipKklops to realize the
circuit. Also show the output states and wave foofnsach flip-flop.

33.Design a circuit using a counter to generate thleviing pulse train 110100 and
repeats.

34.Design a circuit using a counter to generate tlleviing pulse train 011001 and
repeats.

35.Discuss how a counter is used to convert the ghuddita to serial data.



36.Discuss the design principle of digital frequenosten.
37.Discuss the design principle of digital clock.
38.How a four digit event counter is designed usirggdbunters.
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DIGITAL TO ANALOG AN D ANALOG
TO DIGITAL CONVERTER S

Sometimes the information available for processsgn digital form while in
most of the cases it is available in analog formr Example, the outputs of digital
voltmeter, digital frequency meter, digital clockdacalculators etc. are available in
digital form but most physical quantities suche®perature, pressure, light, voltage and
current etc. gives information in analog form.sltoften necessary to convert information
in one form to another form. For example, to cohtlee temperature (reading of mercury
thermometer which is in analog form) in digital deat or in digital form, a transducer
such as thermocouple or thermister is first usedcdovert the physical quantity to
electrical quantity; an analog to digital converteen converts this quantity to digital
form. Similarly, for plotting the output of a digit system on a curve plotter or X-Y
recorder, the digital output is first convertedatmalog output with the help of digital to
analog converter, the output of which drives a eemwtor. So analog to digital (A/D)
converters or digital to analog (D/A) converters Hre interfacing devices which couple
the digital system to analog or vice-versa. In tthapter various types of A/D and D/A
converters will be discussed.

11.1 DIGITAL TO ANALOG CONVERTER

Digital to Analog (D/A) converter converts the g information into analog
form. The input may be of n-bit long having diffatevoltage levels. So in the D/A
converters some method is to be used which caneebthis voltage level of n-bits to its
equivalent analog form. This can be accomplished$gg different resistive networks.
Following two types of resistive networks are balycused for this purpose:

1. Resistive Divider Network or weighted resistor nethy

2. Binary Ladder Network or R-2R network

The converter which comprises the resistive @wichetwork is known as
Resistive divider D/A converter and the D/A coneervhich comprises the binary ladder
network is known as binary ladder D/A converter.e3& converters will now be
discussed separately.

11.1.1 Resistive Divider D/A converter

As discussed above the resistive divider D/A comreconsists of a resistive
divider network, so before discussing the comptateuit diagram of a resistive divider
D/A converter it is better to understand the wogkiof resistive divider network. The



resistive divider network changes each of the rdigital level into its equivalent analog
output. The discussion is now made for the metHamboverting the n-bit digital input to
its equivalent analog signal. A weight is assigteedach bit of n-bit digital input in such
a way that the sum of weight must be equal to felmeral, the binary weight assigned to

LSB in an n-bit digital input iszni1 . The weights assigned t3°4.SB, 3¢ LSB, 4"

LSB and so on are obtained by multiplying the weighLSB to 2(=2), Z (=4), Z
(8).... respectively. For instance, weights assigteedifferent bits of 4-bit binary input
b3 bz b1 bo are:

Weight assigned to LSB {lbit) is 2° _ 1
2" -1 15
1
Weight assigned ta"2LSB (b, bit) is 42_1 = 1%
Weight assigned toBLSB (b, bit) is 28 _ 4
24 -1 15
Weight assigned to MSB {Ibit) is 2t _ 8
2 -1 15
The sum of weights assigned to each bit of 4-ljttaliinputis 1 asl 2 .4, 8 _1.
15 15 15 15

In a four bit binary system there will be 16 difat possible input combinations,
corresponding to which the analog signal will béaated if it is assumed that a certain
reference voltage (ép) is applied whenever there is a 1 in binary bital4 bit digital
system if \keg =15 volts, the analog voltage available for eachlmoation of binary
input should be as given in table 11.1.

Table 11.1

o
o
=
=

Weight Analog voltage

0i15 (015 Vopp =0 Vol
1/15 (5 Veer=1Volt
15 (215 Vppr =2 Vaolts
L5 (31N VRpEF =3 Volts
A5 (M5 VpEr = 4 Volts
55 (35 VpER =3 Valts
615 (&5 VpEr = 6 Volts
T3 (PS5 Vpgr =7 Volts
215 (BN VpEp =& Volts
015 (15 VpEr = ? Volts
10715 (10415 Vpgp = 10 Valts
11715 (11713 Vg = 11 Volts
12415 (12115 Vpgp = 12 Volts
13715 (13/13) Vppp = 13 Valts
14115 (1415 Vpgp = 14 Volts
15015 (1315 Vpgp = 15 Volts

L
b2
—_
[}

— = = = = = = = OO OO O O OO

[ o e s T e B e B e B e e Y e R s Y e |
[ S e R e T e R e B e T e B S e N e |
= O O O O OO OO

So the analog voltage for binary word = (weightrad binary word) X Mer

It may be noted from this table 11.1 that the agaloltage corresponding to
binary equivalent is discrete step value as givefigure 11.1. The discrete step is of 1
volt if Vreris assumed to be 15 volts in a four bit digitgut The step voltage (analog)



will be dependent on the reference voltage. Theile lhowever, be 2 steps in n-bit
digital system.

-15WValts (11113
—==-14 Wolts (11100
13 Volts (11010
12%alts (11000
11 Volts (10113
10 Valts 101
O Wolts (10010
2 Volts 1000y
TWalts  (DILDY
& Volts (o1
3Valts (D101
4 Volts (01000
3Wolts (0011
2Volts (0010
1 ¥Wolt  (DOOLY
0Walt  ¢DOODY

Fig. 11.1

Resistive divider network is used for convertingi@il inputs to analog outputs.
The network for 6 bit binary system shown in figure.2 is known as the weighted
network, as the resistors are weighted inversel wheir current values. The input
binary bits are b, bz by, by by where b0 is the LSB and b5 is MSB. These binaty bi
may be logic 0 or 1. Logic 0 may further be assumed volt and logic 1 asg¢r SO
Vo, V1, Vo, V3, V4 and s are the input voltage levels which may be 0 voltv&REF
depending on the binary bits. The resistogsfR, R,, Rs, Ry and R are connected to bits
bo b1 b, bz, by bs respectively. It may be noted from this networkttlthe resistor
connected to the binary bit is half the value d@is®r connected to the previous (lower
bit). Hence this network also called as the resstivider network. Let Ris the load
resistance which is supposed to very high i.e. waugh higher than the resistog.R

Input Binaty hits

by by b3 by P1 Ty
v, v, Y3 ¥y ¥ W

s

moge SR

Lal = o
W WA

Fig. 11.2



Now the voltage V across the load resistance Ban be obtained by using
Millman’s theorem. This theorem states that thetagd appearing at any node in a
resistive network is equal to the sum of all therents that would enter to the node
divided by the sum of conductances connected tonibide.

Vs Vo Vs, Vo M Vo
RR RR R R R R
1 1 1 1 1 1
S e Nl
RR RR R R R R
£+£+£+£+L+ VO
R

1

+ 4

Thus V, =

2R 4R 8R 16R 32R
1,1 1 1

—+ —+—+7+i
R 2R 4R 8R 16R 32R
[32v, +16V, +8V, + 4V, + 2V, +V,]
- 32
[32+16+8+4+2+1]
32
_V,+ 2V, +4V, +8V, +16V, + 32V,
63
= —(261_ D (2°V, +2'V, + 27V, + 2%V, + 2°V, + 2°V,) ...(11.1)

In this equation (11.1) the load resistangadRnot considered as it is assumed to
be large enough offering low (almost zero) conduwta From this equation it is clear
that if the input binary bits are all 1 (in a sit ystem) and reference voltageg¢ = 6.4
volts (say), the Vis given by:

1
V, = EXGC%VREF = 6.4volts

In general, the equation (11.1) for output voltage-bit binary digits is given as:
Vv, = 1 (2°V, +2'V, + 22V, + 2°V, + 2*V,

......... +2"V
(2n _1) n l)

..(11.2)

The output of this network is as per our requirethand is proportional to the
input binary data.

Using the network discussed above, a D/A convécated binary weighted D/A
converter or Resistive divider D/A converter) cam tesigned as given below. The
schematic diagram of 6-bit D/A converter is shownfigure 11.3. It consists of the
following major parts.

0] n switches, one for each bit applied to the input,

(i) A binary weighted resistive network which changesheof the digital

level into equivalent binary weighted voltage orrent.

(i)  Areference voltage sourcexM-



(iv) A summing amplifier that adds the currents flowinghe resistors of the
network to develop a signal that is proportionah® digital input.

bs Thy Tby Tby Tb; T
Is 1l I 71 le IE:

Lt Bogm B <5 od .

s I I I "N I ||D —_—
A A e N 2 E;
f >L
.
= vu:.ut
Fig. 11.3

In this circuit, one switch is connected to eaataby bit. Infact these switches are
such that when the binary bit is 0, the correspugdiesistor of the network gets
connected to the ground potential and when therpibidis 1, the corresponding resistor
of the network gets connected to theeMvolt. The current flowing through any branch

of the network will be the logical voltage (Ovoltr &/grer voIts) divided by the
corresponding resistor.

So the total current | will be given by (ref. fityl.3):
1=Ys Vo Vs Vo VL Vo
RR R R R R
_V5+V4 +V V, Vl . v,
R 2R 4R 8R 16R 32R
Since the voltages\through \4 are either O volt or Ner volts depending upon
the bit value, so it customary to take common \gatarer and bits are kept in place of
voltages. So Yis replaced by Nerbs, V4 by VrRerbs and so on; the bits b5, b4, b3 etc
will be 0 or 1. The current | may, therefore, bpresented as follows:

— Vrer

- [32b, +160, +8b, +4b, + 20, + b

:%[zob0 +2'b, +2%b, +2°b, +2°b, +2°h,]

This is the equation of currehtor 6 input bits. The general equation of curdent
for n input bits is given by:

E ZREF |2, +2'b, +22b, +2°b, +2°b,....+ 2" |

...(11.3)
The voltage at the output of operational amplifidi be given by:

V=R

The resistoR; is the feed back resistance in the operational ifieplThe output
voltage of the operational amplifier is proportibt@input binary data.



The switches connected in figure 11.3 can be cepldy the electronic switches
(transistorized) as shown in figure 11.4. When ltlteis at logic 1, the corresponding
transistor conducts and the current flows through dollector resistor as required; and
when the bit is at logic 0 the transistor goes mitoff and no collector current flows.

EFREF i | | | "
e & e & g9¢ §
1 i 1 I
: e o N o o
I
—_—
I
Ry By Fge Ry Ry Ry .
N
Vout
by by b3 by by by L
Input Binatry bits
Fig. 11.4

This D/A converter is economical and simple methodlesign but suffers the

following serious drawbacks:

1. The network in this D/A converter is constructedngsthe precession
resistors and resistor has a different value. $® difficult in practice to
choose the resistors with accuracy and stability.

2. When the number of bits in the network is largpentthe current from the
source will be large enough. The current in the IfB&hch (resistor) will
be much larger than MSB branch. In a 10 bit D/Aweater, the current in
LSB branch will be 512 times larger than the MSBrah.

Example 11.1 A 6 bit resistive divider network has 10 voltglfscale output, find
output voltage for an input of 110110.

Solution: Vree= 10 volts
The output voltage for 6 bit resistive dividetwierk is given by:
Vv, = (26—11) (2°V, +2'V, + 22V, + 2%V, + 2°V, + 2°V)

:%(Zobo+21b1+22bz+23b3+24b4+25b5)
bh=0,h=1,b=1,k=0,yb=1andb=1
So V= 2—2 (P0+ 20+ 21+ 20+ 21+ 2.)

:2—2(o+ 2+4+0+16+32)

540
63

= 8.57 volts



Example 11.2 A 5-bit resistive divider D/A converter has aistsr of 10 KQ in MSB
branch. The reference voltage is 10 volts. Thestasce in the feedback path of the
operational amplifier is 5 ®. What will be the output for 11010 input?

Solution: Vrer = 10 volts R=10KR and R=5KQ

| = Vaee [2°b +2'b, +2%b, +2°b, + 2°b,....+ 2" b
2

0 [P0+21+ 20+ 21+ 21

16X10KQ
_ _10x26 _ 1625 mA
16 x10 K Q
V,, = -R,.l =-1625mAx5KQ = - 8125volts

11.1.2 Binary Ladder D/A Converter

A more commonly used D/A converter is a binary EdB/A converter, which removes
the drawbacks discussed in resistive divider D/Avester. This type of D/A converter
contains an R-2R ladder network. The R-2R resistadgder network will now be
discussed, which gives the output a weighted sudigital inputs. Such a ladder network
for 4-bit input is shown in figure 11.5. This netkas constructed having only two
resistor values i.e. R and 2R. In this netwaskdp, b, and B are the input binary bits and
by is the LSB and MSB issb Any of these bits will be at the ground potentidden the
corresponding bit is at logic O or at the referepotential (\kep) When the input bit is at
logic 1.

Inpat E'mf.t}.r hitz
13E00 b1 b3 3 s
IR *
ROX R Z Vo
i Fig. 11.5

To examine the behaviour of this network, it isusssed that the bitdas at logic 1

(or Vgrer potential) as shown in figure 11.6(a). The outpltage corresponding to MSB
may be calculated as follows. The equivalent rasist at the point X is the parallel
combination of two resistances each having theevafllR. So the equivalent resistance
looking at point X and ground is R as shown in fegtt1.6(b). At the point Y again there
is a parallel combination of two 2R resistances; équivalent resistance looking at the
point Y and ground is R as shown in figure 11.68snilarly, one can find the equivalent
resistance looking at the point Z and ground isRFRown in figure 11.6(d).



IR 2R 2R IR
Y
l R X R Y R Z R W
Fig. 11.6(a)
IR 2R ZR
- 'Iilil'l:|
TR T% v Rz W
- (b)
i
by by | Vopr by Vegr REF/ 2
IR iR R |::> 2]
8 v 2z & w ¥ Vo Vs
— = E 2 R W A
(c) (d)

From figure 11.6(d) it is clear that the resistatmeking at the point W and
ground is 2R, and the resistance looking towareéshih k is also 2R. Thus the output
voltage at the point W due to big (MSB) assumed atpér potential is given by:

— VeerX2R =VREF
° (R+2R) 2

The output voltage y/due to the binary input 1000 (only MSB is highhaf of
the reference voltage having Thevenis’s resist&oe series with it. Similarly one can
calculate the output voltage due to the binary irfdD0 (i.e. second MSB); the network
for this case is shown in figure 11.7(a). The tesise looking at the point Y and ground
is R as shown in figure 11.7(b). The resistance/éen the point Z and ground is 2R. The
voltage at point Z and ground isgM/ 2) have a Thevenin’s resistance R, as shown in

figure 11.7(c).
b3
ERF
or v

vR_EF

bnl bl:l__ };.2 by 1

ki
EEF
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iR 2R iR 2R
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) (b)

VREF/ 2 YrEF
by b3
R IR > R
z ETw o W o
(©) Fig. 11.7

From this figure the output voltage ¥t the point W is given by:
V. = (Veer /2)X2R — Vrer
° (2R+2R) 4

So the output voltage due to second MSB (or foaty input 0100) is\% with

Thevenin’s resistance R in series with it.
It can further be shown that the output due tadtMiSB (for binary input 0010)

is%. And for LSB (0001 binary input) the output\—/ii%gi. Each voltage source will

have Thevenin’s resistance R in series with thecgou he total output voltage in analog
form, due to all the inputs as 1 (for 1111) canilgdse found by adding the outputs
obtained for each bit as given below:
V :VREF +VREF +VREF +VREF
° 2 4 8 16

It may be noted thaszi is the voltage due to MSB\,/Zi due to second MSB,

VR—8EF for third MSB and% for LSB. So to distinguish these voltages it isfukto

write the bit positions along with p¢r as given below. So if the bit is O the voltage
corresponding to that bit will be zero otherwise tloltage as discussed above.

V =VREFXb3 +VREFXbZ +VREFXbl +VREFXb0
0 2 4 8 16

= %[zaxb3 +4xb, + 2xby +1xby |

=%[20xb0+21xb1+22xb2 +2°xb,] .(11.4)

The equation (11.4) is the equation for voltagthatoutput of 4 bit binary ladder
network. A general equation for the output of ndirtary data can be given as follows:

Vy =S[00t + 2ty + 27X, + 2°XD, 4t 2708, (A1)

The output of this network is proportional to tiput binary data. So using this
R-2R ladder network, a D/A converter (called bindagder D/A converter) can be



designed as given below. The schematic diagram-lmt /A converter is shown in
figure 11.8. It consists of the following major fsar
0] n switches, one for each bit applied to the input,
(i) A binary ladder network which changes each of tigtal level into
equivalent binary weighted voltage or current.
(i) A reference voltage sourcexM-
(iv) A summing amplifier that adds the currentsafiog in the resistors of the
network to develop a signal that is proportionah® digital input.

dREXE R Y R Z R WIR 1
= v

Fig. 11.8
The output voltage ) of this D/A converter due to MSB (1000 binary itpu
will be calculated as given below:
The voltage at the point W due to MSB ige¥/ 2 having a Thevenin’s resistance
R in series with it as discussed above and is showigure 11.9

Vepp!2

Vepp! 2

R Rp=3R R .=3R

WooaR 1 ip 1
' [ v

out

Fig. 11.9
From this figure, the current | is given by:
Y, 1
| = —REF (_—
2 (3R)
and the output voltageo is given by:
Vout=- LR,
= —h(i)?,R = —h
2 3R 2



The output voltage is the same as calculated uratgmn 11.5, with the difference
that it has a negative value because the operatemaplifier is used in inverting
configuration.

Note that the resistors in the ladder networketieer R or 2R. It is the ratio of
resistances matters rather than the absolute wéltesistances. Further the resistors do
not cover a wide range of magnitude; it is themfpractically possible to get the
precision in the ratio of their magnitudes. The penature coefficients of these
resistances can easily match. Because of thesetages, the ladder network is widely
used in D/A converters.

Example 11.3 For a five-bit binary ladder D/A converter the inpevels are 0 = 0 volt
and 1 =+ 10 volts, find

0] the output voltages caused by each bit

(i) the output voltage corresponding to an input oflID1

(i) the full scale output voltage of the ladder.

Solution:

) Veee _ 10 _

0] The output voltage caused by MSB - , o7 -5volts
The output voltage caused by #I1SB = —VZEF = —%) = -25volts
The output voltage caused B BISB = —VZEF = —%0 =-125volts
The output voltage caused b KISB = —VleF = —i—g = -0625v0lt

VREF — 10 —

The output voltage caused by LSB "33 - 33 -0.312%0lt

(i) The output voltage corresponding to an input 0110 is

V, = —VSEF [2°x, +2'xig, + 2% X, +2°xb, + 2° x|

= —£[2°xo+ 2'x1+ 22 X1+ 2°x0+ 2° Xl

= —£[2°xo+ 2'x1+ 22 X1+ 2°x0+ 2° Xl

- _1_0[2+ 4+16] = —@): —6875/0lts
32 32

(i) The full scale output voltage is givey:
= —£[2°x1+ 21+ 22 X0+ 2° X1+ 2° X

= -1—0[1+ 2+4+8+16|= 310, _g687500lts
32 32
11.2 PERFORMANCE CRITERIA FOR D/A CONVERTER
The D/A converters are available in the form of @th different specifications for their
performances. So before discussing D/A convertsrit@ill be better to discuss first the



characteristics of the converters specified by tienufacturers. These specifications
include:

1. Resolution

2. Accuracy

3. Monotonicity

4. Settling time
1. Resolution: As discussed above, the analog output of D/A cdewés proportional
to the digital input (binary data), so a perfe@irsiase is obtained if there is an LSB
increment. The resolution is, therefore, a meastiguality of D/A converter, which is
defined as the ratio of the LSB increment to theximam output. For an n-bit D/A
converter the resolution is given by:

The change in output due to LSB increment for rdigital input (Step size)
= Full scale output / No. of steps

_ Full scale cutput
2" -1
where (2" - 1)Js the number of steps for n-bit D/A converter.

Full scale output £ (2" 1)

Percentage FEesolution = x 100%%
Full scale output
- L 100%
2t -1
The step size for a 10 bit D/A converter, havinlj $gale output voltage as 10
. 10 10
volts, is given b == =9.8mV
J y 2'°-1 102

And % Resolution = 0.0978%

2. Accuracy. Accuracy of a D/A converter is the closeness e butput analog
voltage to the expected theoretical output. Innedr variation of analog output with
digital input, the relative accuracy is the maximdaviation of the D/A output compared
with the linear behaviour. It is expressed as a&gu@rof a full-scale or maximum output
voltage. For example, if a converter has a fullesscautput of 10 V and the accuracy is
+ 0.1%, then the maximum error for any output voltage(i®V)(0.001) = 10 mV.
Ideally, the accuracy should be at mast2 of an LSB.

For an 8 bit D/A converter, one LSBJ&%—E =0.0039= 03%% of full scale. The

accuracy should be approximatel9.2%.

3. Monotonicity: A D/A converter is said to be monotonic if it g&v an analog

output voltage which increases regularly and lityearth increase in input digital signal.
Such a quality of the converter is called as momotty. In order to demonstrate
monotonicity of a D/A converter, a counter outpsitgiven as digital input to a D/A
converter and the analog output is displayed orCiR®. Monotonicity then requires that
the output waveform should be a perfect staircageeform with steps equally spaced
and of same amplitude. If the steps are missinfpawe varying amplitude, the D/A
converter is defective.



4. Settling Time  After the application of digital input to a D/Pounverter, it takes
about few nanoseconds to microseconds to prodweedirect output. So the settling
time is defined as the time the converter takegve an output to settle withitt %2 LSB

of its final value. For example, if a D/A converteas a resolution of 10mV, the settling
time is the measure of the time the converter ta@esettle with in+5mV of its final
value. Figure 11.10 illustrates the settling timeai D/A converter. The settling time is
important because it places a limit on how fast oae change the digital input. The
settling time depends on the stray capacitancetegain delay time, and other factors.

Vaut

"
Inital walue

timet — o
Fig. 11.10
Example 11.4 What is the step size (or resolution in voltsadf2 bit D/A converter, if
the full scale output is +10 volts? Find the petaga resolution also.
Solution: Here n=12
So step size is given by
Full scale output

Step size —
2¥ =1
—1]2'—0: 10 = 244mV
2°-1 409t
Percentage Eesolution = Full scale output / (2 —1) x 100%
Full scale output
=1 100=2% - 0.0244%

2°-1 409¢

Example 11.5 How many bits are required at the input of a D/Awerter to achieve a
resolution of 10mV, if the full scale output is 6Its?
Solution:

Full scale cutput
2" =1
10
2" -1
2" -1= 10 - =1000
10x10
2" =100102"
n=10
So the number of bits required = 10

Eezolution =

10mV =




11.3 D/A CONVERTER IC 0808

There are many commercially available D/A convel@s. The IC 0808 is the
most popular, inexpensive and widely used 8 bit Ddaverter. It contains a reference
current source, an R-2R binary ladder network anmlaBsistor switches to steer the

binary currents to the network. Figure 11.11 shoknes pin configuration of this D/A
converter IC 0808.

HC E] = 5] COME
GHD[ef L Vggr )
el o B Vper

LouT B E ] v CC

by [ E L

bg B =L

bs [ E[H

"4 [ =

Fig. 11.11

In this IC pin 5 through 12 are the 8 bit inputadso should be connected to input
data bits. Pin 15 is to be connected to groundutjitoa resistance. Pin 13 is to be
connected to +5 volt supply. Pin 3 (VCC) is to lommected to — 15 volts. Pin 4 is the
output current of the ladder network should be eoted to the operational amplifier. Pin
2 is the ground pin. The pin 16 is the frequencsgensation pin, a capacitor between
pin 16 and 3 is to be connected for this purpose.

A circuit diagram to get the analog output voltageresponding to 8 bit digital
input is shown in figure 11.12. A +5V supply setsaureference current of 2mA for the
ladder. The output curreng,{ drives the operational amplifier to give final put
between 0 and 2 volts (approximately) for the &lmgital input.

+5V
| 25K 01
. I p=2mb
by 12 13 14 ; ref sy
by —11
bsy 10 25K 02
g-bit |y ] S tael
)
T
I:'S_? 4 _-I:I'Ilt Rf:lKQ
by —6 *
by — 15 1a
7 :|>
2 3
J__ vu:uut
= T e
15V
Fig. 11.12

11.4 ANALOG TO DIGITAL CONVERTER
Generally the information to be processed by tlyitalisystems is in the analog
form. So before applying such signals to the digiyatems it is necessary to convert the



signal into its equivalent digital form. The methaith the help of which the analog
signal may be converted to digital form is knowndégital to analog (D/A) converter.
The A/D converter is more complex and difficult thidne D/A converter. Followings are
the different methods for A/D converter, which wil discussed in the next sections.

() Simultaneous A/D converter

(i) Successive approximation D/A converter

(iif) Counter or Digital Ramp type A/ D converter

(iv) Single slope D/A converter

(v) Dual slope D/A converter

11.5 SIMULTANEOUS A/D CONVERTER

This is the fastest and simplest method of conwgréin analog signal to digital
signal. It utilizes the parallel differential comp#ors; the input analog voltage is
compared by these comparators with known voltagdledc as reference voltages. The
comparators gives the low output (logic 0) when imgut is less than the reference
voltage and gives the high output (logic 1) whee ithput analog voltage exceeds the
reference voltage. This method of conversion ie aldled as Flash or parallel type A/D
converter.

For the conversion of analog voltage ranging betw@ to V volts into two bit
digital output, three comparators (in genefat-2 comparators where n in the number of
bits) are required. The input analog voltage isveoted to the 4 (in general)2equal
regions as shown in figure 11.13. If the analogag® is lying in the first region, then the

W wolta
IV Begion byby = 11

3Wid ~volts
[IIRegion bk = 10

W2 Volta
II Region biby = 01

Wid wolts
I Begion by = 00

0ol

Fig. 11.13
binary bits (h, by) are 00, similarly to second, third and forth oes the binary bits are
01, 10 and 11 respectively. The reference voltagabe three comparators,GC,, G
should be V/4, VI2, 3V/4 respectively as shownigufe 11.14. The output of the three
comparators should be connected to the logic datpsoduce the desired binary output.
The read gates and output registers are usedddhealigital output.
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Referring to figures 11.13 and 11.14, if the inpamalog voltage exceeds the
reference voltage to any comparator, the compagates high output (logic 1); if on the
other hand if the input analog voltage is less tha&reference voltage of the comparator,
it gives low output (logic 0). In this way if alhé¢ comparators give low output, the
analog input voltage must be between 0 and V/4\bltegion) and digital binary output
should be 00. If the Gs high and @and G are low, the input must be between V/4 and
V/2 volts (Il region) and digital binary output siid be 01. If G and G are high and £
is low, the input must be between V/2 and 3V/4 sydll region) and digital binary
output should be 10. Finally if all the comparatgige high outputs, the input must lies
3V/4 and V volts (IV region) and digital binary ut should be 11. Table 11.2
summarizes outputs of the comparators.

Table 11.2
Binary
Corparator output | outpt
Inprat woltage Cg Cl CD b1 by
0to Wid 0 0 o (0 D
Vid to V12 0 0 1 |0 1
V2 to 3Vi4 0 1 1 |1 0
Wi to ¥ 1 1 1|11
By drawing the K —maps (figure 11.15), the expissfor Iy and i are obtained
as:
b =C, and b, =C, [Co
Caty C25
of 0 |7 [ 7|7 ol 0|2 |[F] A
il o fla [ 1]]# al oo [l g
(a) (b)

Fig. 11.15



These expressions may be realized using the gatekown in figure 11.16. The
output may be reset by applying high signal toréset line and to read the data a high
signal is applied to the read line.

Read Line Feset Line

‘~—“\
5 Qb | B
A 1
p— Ca &
EEF +—Ek )
=3Wi4 — =
ANALOG INPUT o | &
(0 TO ¥ VOLTS) _>— / 5 o| &
VeEF € —E.
=iz Read Grates Ctput Register

YREF
=V
Fig. 11.16
For the conversion of analog input voltage (O tovdlts) into three bit binary
output we proceed in the similar method as fortthe bits output. For the three bits
outputs the input voltages are divided into 8 (s 8) equal regions and 7 (a52= 7)
comparators are to be used. So the logic circuitetalesigned should have seven inputs
(output of the seven comparators) and three outfins output of comparators and the
corresponding binary output are shown in table .11.3

Table 11.3
B

Comparator ouatpot output
Inputvoltage | Cg | Cs | “a | ©3 | Co | Cp | Cp [P2 by by
0to W3 0 0 o 0 0 0 o (o0 o0
ViEtoVig 0 0 o 0 0 0 1 oo 1
Widto 3V/E 0 0 o 0 0 1 1 o1 0
3VEto V2 0 0 o 0 1 1 1 o1 1
Wi to SV/E 0 0 o 1 1 1 1 1 0 0
SVEte3VM | D 0 1 1 1 1 1 1 01
3V to TV 0 1 1 1 1 1 1 1 1 0
TVEto V 1 1 1 1 1 1 1 1 11

The expressions of the output bits can easily lheimdd by examining the table
11.3.

The bit b gives the high output whenever the output of thhgarator @is high.
Sob, =C,.

The bit b is high whenever the output of comparatri<Chigh and output of £
is low, or whenever the output of comparatgrigchigh. Sob, =C, [Cs +C,.

Similarly, the expression for biplzan be obtained as:

bo :Co [C, +C2 [Cs +C4 [Cs +C6
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These expressions may be realized using the gatglsown in figure 11.17. The
output may be reset by applying high signal toréset line and to read the data a high
signal is applied to the read line.

The design of a simultaneous A/D converter is quteaight forward and
relatively easy to understand. However, the debggomes complicated as the number
of bits is increased, since the number of compesdtobe used increases drastically. This
method has highest speed of conversion.

11.6 SUCCESSIVE APPROXIMATION A/D CONVERTER

Simultaneous A/D converter has the very fast cmsiga time but becomes
unwieldy when the required digital bits are morbe Buccessive approximation method
is most useful and commonly used method. The bldieigram four bit successive
approximation A/D converter is shown in figure 18..1t consists of a D/A converter,



successive approximation register (SAR) and a coamtga The basic principle of this
A/D converter is as follows:

Yot
DUL Correerter
Ir.lput Lnalog Diselaw Dot
Signal Comparator PRy LS
D bgbgby by
AR
CLE—T=
Fig. 11.18

In this type of converter, the bits of D/A conwgrtare enabled one by one,
starting with the most significant bit (MSB). Thaadog output of the D/A converter
corresponding to the enabled bit is compared witd input analog voltage. The
comparator gives the output low if the input analoffage is less than the output of the
D/A converter and it gives the high out if the ibpnalog voltage is more than the output
of the D/A converter. The low output of the comparaesets the corresponding bit of
SAR, on the other hand if the comparator’s outputigh then that bit is retained in SAR.
In this way the output of D/A converter are complavath the input voltage for all the
bits starting with the most significant bit.

Thus the successive approximation method is theegssoof approximating the
analog voltage bit by bit starting with MSB. Thipess is shown in figure 11.19.
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In order to understand the operation of this typ&/® converter, we will take a
specific example of a four-bit conversion. Figue2D (a through d) shows the step —by-

step conversion of a given analog input voltagg @a&olts). It is further assumed that
D/A converter has the following output charactéesst

Vout = 8 volts for bit 3 (MSB or §)
Voue= 4 volts for bit 2 (2 MSB or by)
Vou= 2 volts for bit 1 (3 MSB or h)
Vou=1 volt for bit O (LSB or b)

Vot = & vaolts DLy cormrerter

by by by By
1| of o o
- Lowr
+6 v
! D oo | 6
J_LCLK 13 20711 0
Feset



Vot =4 volts D& correrter

bz by Iy by
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It is clear from these figures that after complgtithe conversion cycle. The
binary code 0110 is retained in SAR, which is bynalue of the input voltage (6Volts).
It is finally displayed on the display devices.

11.7 COUNTER OR DIGITAL RAMP TYPE A/D CONVERTER

Another method of converting the analog signal igital one is the counter or
digital ramp type A/D converter which utilizes an@iy counter to count a continuous
pulse of standard width and height from a clocke Btandard clock pulses are passed
through a gate which is open for some time to altbese pulses to go to the input of
counter. Normally the gate is closed and as sodheastart signal is applied a stair case
voltage is initiated. This voltage is increasededirly with the increase of the binary
counts in the counter. The gate remains open #®@rtithe the linear stair case voltage
becomes equal to the input analog voltage. The teouecords the number of clock
pulses which is proportional to the input analofjage.

Figure 11.21 shows the schematic diagram of thpe tgf A/D converter. The
analog signal, to be converted to its equivalegitali output, is applied to one input of an



operational amplifier being used as a comparatéthen a start of conversion pulse is
applied to the control unit it resets the binarymer and opens the gate. The counter

Caontral Reset
Uit

Start of corrrersion

' Binary Counter
Input analng

voltage mnnn
Clack Pulse .
Diigital
Comparator Display
Stair case Whj_rl_,—l_r‘ Dif Cowverter  —— VoER
Fig. 11.21

starts counting the clock pulses which are of steshavidth and height. The output of the
counter is fed to a D/A converter which producesaalog output (stair case voltage) in
response to the digital signal (output of the cegnas its input. This analog output

voltage is fed to the reference input of the corafmr So long as the input analog signal
is greater than the stair case voltage the congrapadvides the high output to the gate,
the gate remains open and the clock pulses arevealldo reach to the input of the

counter. These pulses are counted by the countsrabntinuously increasing the digital

output. The moment the analog output of D/A corerefstair case voltage) exceeds the
input analog voltage, the comparator provides a ¢mput disabling the gate and the
counter stops counting. The binary number storethéncounter represents the digital
output voltage corresponding to the input analoggge. The digital output is displayed

on the display devices.

Input analog woltage

Digital
Counter pulses counts Fig. 11.22



For a steady input the digital output is as shawifigure 11.22. The output is
represented by the number of clock pulses countethé counter till the stair case
voltage becomes equal to the input voltage. Thithateof conversion is slow; as for
maximum input, the counter has to count from zerméximum number of states for the
comparison. For each conversion cycle the coustty be reset and counting starts from
beginning. The time of conversion is not importend.c. or slow varying signals as the
output waveform gives a good representation froniclwithe input waveform can be
constructed as shown in figure 11.23. But if thevawsion time and the signal transient
time are comparable the reconstructed digital dutpll not be correct. In this case it is
necessary to reduce the conversion time by usstgrf®/A converter.

i
Diigital connts

Lpalog inpot

.,

Corversion tirne
Fig. 11.23
A modification to this converter is possible ifethresetting of the counter is
avoided each time. For this purpose an up/down teoumay be used in place of up
counter. The circuit shown in figure 11.24 illusés this modification in which an
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Fig. 11.24



up/down binary counter is used and the convertecqeds without resetting. The circuit
is almost the same as the counter or digital rappe tA/D converter. The up/Down
counter is operated by up or down signals fromdbetrol unit. The digital to analog
converter output controls the output of the comfmararill the D/A converter output is
less than the analog input voltage, the up signanabled and the counter counts in
forward direction. When the analog input falls, tdewn signal is enabled and the
counter starts reverse counting giving an outputesponding to new analog input as
shown in figure 11.25.

m

Linalog inpat woltage

—" Time
Fig. 11.25
11.8 SINGLE SLOPE A/D CONVERTER

This type of method is similar to counter or dibitamp type A/D converter. In
this type of A/D converter also, a gate whose mkersoproportional to the amplitude of
the analog sample is generated. For the generafigate, the input analog voltage is
compared with the output of an integrator. The outyg integrator is a ramp voltage of
constant slope. The standard clock pulses are goéissmigh the gate and are counted by
the counter. The gate remains open for the timpgtmnal to the input analog signal.
The recorded number of pulses is, therefore, tlgeimed digital output of the analog
signal.

The schematic block diagram of such an analogditati converter is shown in
figure 11.26. Initially a reset pulse is appliediethclears the counter and resets the
integrator. The integrator produces a linearlyngsiramp voltage, whose slope will
depend on the values of the resistance R and ¢ap&i The input analog voltage is
compared by a comparator with the ramp voltagelokg as the integrator output is
smaller than the input analog voltage, the comparatitput is high. This high output
enables the AND gate. The standard clock pulsedfaeefore, allowed to pass through
the gate which will be counted by the counter. Wtremnramp voltage becomes greater
than the input analog voltage, the comparator obsrige state thereby disabling the
AND gate. The counter stops counting. It can easdyseen that the gate duration is
linearly related to the magnitude of the input agadignal. Hence the count accumulated
in the counter is a digital representation of tiuit analog voltage.

It may be mentioned here that the precision inghaportionality between the
gate duration and the magnitude of the input ansiggal depends upon the linearity of
the ramp voltage obtained at the output of the atpmral amplifier. So the overall
accuracy will depend upon the stability of refeeesource, the off-set of the operational
amplifier, the frequency stability of the clock aell as the values of resistance R and
capacitance C.
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11.9 DUAL SLOPE A/D CONVERTER

In single slope A/D converter, the accuracy of ttwmverter depends on the
linearity of the ramp voltage generated by thegrda®r. The linearity of ramp voltage,
however, depends on the accuracy of the valueesisRnce R and capacitance C of the
integrator, whose values may vary with time andperature. The dual slope analog to
digital converter utilizes two different ramps, dioe fixed time and other for fixed slope.
It is very popular and widely used D/A convertecdnagse it has the slowest conversion
time and relatively low cost. This method offereodaccuracy, good linearity, and very
good noise rejection characteristics.
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The logic diagram of the dual slope A/D conveitegiven in figure 11.27. This
converter is similar to that of the single slopeDA¢onverter. In this converter, the
integrator forms two different ramps, one for fixéhe and other for fixed slope. The
capacitor of the integrator is first charged withnstant current obtained from input
analog voltage for fixed time then the capacitodischarged for fixed slope through
other constant current obtained from a referendag®e source. The basic operation of
this converter can be understood as follows:

This converter consists of standard clock pulsaslied to the gate. The gate
allows the pulses to the input of the counter whiohints these pulses. Initially all the
counters are reset to 0's and ramp too is reseeto. Now the control logic allows
switch S to connect the input analog voltage %@ the integrator circuit. A constant

V . : N
current equal toﬁ flows through the capacitor C as the invertinguinpf the

operational amplifier of the integrator is at vatuground. The capacitor C will charge
linearly with this constant current. This resultsemative going ramp at the output of the
integrator. The comparator’s output will be pogtivhich allows the clock pulse to pass
through the AND gate to the input of the countdrisTramp is allowed for fixed time say
t;. The actual time;tis determined by the count detector. The voltagat\the output of
the integrator is given by:

1%
Ve = === [V, dt
RCY

1
= _ﬁ-\/m 'tl (116)
The counter when reaches the fixed count,ahe control logic generate a pulse
to clear the counter to zero and the switch S coisnibe integrator input to a negative
reference voltage ( —p¢p). The capacitor C of the integrator starts disgimay linearly

due to the constant current from wrg¢. The integrator thus produces a positive going



ramp beginning at - and increases steadily till it reaches to O velshown in figure
11.28. At this time the counter is counting. Thewarsion cycle ends whenc\# 0 volt;
the comparator produces the low state, which désalthe gate and counter stops
counting.

1 fl —h—i-ﬂ—fz —=
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Fig. 11.28

Let t; is the time when the output of integrator becomes, so the output of the
integrator is given by:

Vrer
1 .. (11.7
RC 2 (11.7)

Since the integrator’s output beginning at O aoitl integrates down to <\and
then integrate back to 0 volt, so the equations6jland (11.7) may be equated as:

Ve =

Voo Ve
RC" RC™
t
or Vv, =VREF.t—2 ... (11.8)

1
In this equation ¥grand time { are constants, so
vV, Ot, ... (11.9)
This equation is independent of the values ofstasce R and capacitance C.
Further at the end of conversion cycle, the coumtsasured by the counter are
proportional to the input analog signal are latcteedisplay on the display devices.

11.10 A/ D CONVERTER IC 0801

There are many commercially available A/D conveltes. The IC 0801 is the most
popular, inexpensive and widely used 8 bit A/D aamter. This IC uses successive
approximation method to convert an analog inpuyinarbetween 0 to 5 volts to an 8-bit
digital equivalent. It has an on-chip clock genardor which external pins are provided
to connect a resistance and capacitance. It is@2lC and operates on +5 volts supply.
It has an optimum conversion time of approximated® us. Figure 11.29 shows the pin
configuration of this A/D converter IC 0801.
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The 20 pins of this IC are defined as:
Pinl CS - Chip select terminal which is actioe.
2 RD - Output enable terminal which is active low.
3 WR - Start of conversion which is also active low.
4 CLKIN - Capacitor is to be conmetbetween this point and ground
for internal clock.
5 INTR — End of conversion which is active low.
6 Vine - Analog input pin (positive terminal)
7 Vino — Analog input pin (negative terminal)
8 AGND - Analog ground
9 Vgker - Reference voltage
10 D GND — Digital ground
11-18 - Output bits;lio by respectively.
19 CLKR - A resistance is to be connected betwbkenpin and CLK
IN for internal clock.
20 Vcce - + 5 volts supply.
The frequency of the internal clock is given bg #xpression:
1
" 11RC

The clock frequency of this converter IC shoulditbeghe range of 100 to 800
KHz. The outputs (bits b0 to b7) are tri-state atgp If CS or RD is high the output
pins float. The digital output appears on the outimes whenCS and RD are both low.

PROBLEMS
1. Discuss the resistive divider D/A converter.d~the general expression for the
output voltage of a resistive divider network.



10.

11.

12.

13.

14.

15.

16.

Using the resistive divider network draw thecgit of a 6 bit D/A converter and
explain its operation. What are the drawbacks isfEHA converter?

Show that the outputs of a binary weighted tesisietwork are directly
proportional to the binary inputs.

Draw the schematic diagram of a resistive dividéA converter. Explain its
operation. Mention the drawbacks of this converter.

A 5 bit resistive divider network has 0 voltdl facale output, find the output
voltage for a binary input 10101. (Ans. 6.774 V
A 6 bit resistive divider D/A converter has stance of 100 R in MSB branch.
The reference voltage is 15 V. The resistance & fded back path of the
operational amplifier is 39 ®. What is the output voltage for the binary input

1011012 (Ans. — 8.22V)
For a 6 bit resistive divider network, the reface voltage is 10 V, find the
following:

0] Full Scale output voltage.
(i)  The analog output voltage for a digital inmit010011.
(i)  The output voltage change due to least digant bit.
(Ans.:10V, 3.02 V, 0.16 V)
Draw the schematic diagram of a binary laddeA Bbnverter. Explain its
operation. Mention its merits and demerits.
Find the expressions for the output due to MB8& second MSB of a 4-bit binary
ladder network.
Discuss the binary ladder D/A converter. Fihd general expression for the
output voltage of a binary ladder network.
What are the performance criteria for the D/Anwerter? Discuss their
importance while selecting a D/A converter.
For a 6-bit binary ladder D/A converter theuhfevelsare 0 =0V and 1 =10V,
find
0] The output voltages caused by each bit.
(i) The output voltage corresponding to an input of1d1
(iif)  The full scale output voltage of the ladder.
(Ans. (i) -5V, -2.5V, -1.25 V, -0.625 V, -0.3125 \0.15625 V
(i) — 7.03125 V (iii)) — 9.84 V)
For a 5-bit binary ladder D/A converter the inpandls are 0 =0V and 1 =10V,
find the output voltage corresponding to binaryungf (i) 10111 (ii) 01101.
(Ans. —7.1875V, — 4.0625 V)
What is the step size (or resolution in voitsa 10 bit D/A converter, if the full
scale output is +10 volts? Find the percentagdutsno also.
(Ans. 9.78 mV, 0.0978%)
How many bits are required at the input of A Bdnverter to achieve a resolution
of 15mV, if the full scale output is 15 volts?
(Ans. 10 bits)
Give the details of D/A converter IC 0808. Ugthis IC draw a circuit diagram to
get the analog output voltage corresponding td 8igital input.



17.

18.

19.
20.

21.

22.
23.

24.
25.

Discuss the simultaneous A/D converter to cdryéo V volts analog voltage to
3 bit digital output. Draw the logic diagram als&hat are the disadvantages of
this type of A/D converter?

Draw a logic diagram to convert 0 to V volt lgavoltage to its equivalent 2 bit
digital output using simultaneous A/D converter.

Describe the successive approximation method/Ad conversion.

Draw a schematic diagram of counter or digaabp type A/D converter. Explain
its operation.

Describe the modified counter or digital ranypet A/D converter with neat
diagram.

Draw a schematic diagram of a D/A convertepl&x its operation.

Describe single slope A/D converter with ititodiagram. Mention its merits and
demerits.

Describe Dual slope A/D converter with it logiagram.

Give the details of A/D converter IC 0801.
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Digital Memories

In digital systems memories are used for the seoaddpinary information or data.
It is well known that a flip-flop can be used torg the binary bit (O or 1). So the flip-
flops can be organized to form storage registele 3torage registers also called as
memory registers are normally used for temporaoyage of a few bits of information.
These registers are combined to form a memorywhith is capable of storing large
data. So the information to be stored in the digiyatem is transferred to these registers,
where this information is retained and can be ee&dl whenever required for processing
in the digital systems. In this chapter both semdator and magnetic memories and
their applications will be discussed.

12.1 MEMORY PARAMETERS

The memory unit is the important part of the dig#gstems or digital computers
as the binary information necessary for process#inthe system can be stored in or
retrieved form this unit. The devices used in thenmmry unit can either be
semiconductor devices or magnetic devices. A demicglectronic circuit used to store a
single bit is known as binary memory cell whichlude a flip-flop, a charged capacitor,
a single spot on magnetic tape or disc. The chenatts of the device used as a binary
memory cell should be as:

1. The device must have two stable states to repréisertinary information 0 or 1.
When the binary memory cell is one of the two stabtates, it should not
consume any power, if it does consume some poweudt be small enough so
that the total power dissipation must not be vargé.

2. The cost and size of each cell should be very sswlthat the physical size
occupied by the memory unit and its total costrentetoo large.

3. The time taken to read the information from a grotipinary memory cells or for
storing the information in them should be very dmal

The memory unit can be used to store a large nuwiblginary words. A binary
word is a combination of binary bits. The word l#ng different for different digital
system or computers; typically it ranges from 828 bits. A binary memory cell is used
to store a binary bit. If the length of the wordarsystem is of 8 bits then eight binary
memory cells are combined to store a word. Eacldvwstored in the memory unit will
have different memory locations. The word will ajae treated as an entity and can be



stored in and retrieved form the memory as a umitrolled by the control signals. The
location of the memory unit where a word is to bwed or written is called the address
of the word. So the address of the location is éospecified where the word is to be
stored or retrieved from the memory unit. The wtwrde stored in the memory unit is
first entered in the memory buffer register (MBRgcacalled as memory data register
(MDR). The address where the word is to be stosediven in the Memory Address
Register (MAR) and a WRITE signal is initiated byetcontrol unit and the particular
word will be written or stored in the specified mamylocation or the address. The length
of the MBR is equal to the word length of the sgstd@he length of MAR will, however,
depend on the capacity of the memory locationsa mfiemory unit has the capacity to
storem words (each ok bits), the length of MAR will be ofi bits such thag" = mi.e.
the length of MAR will be of 12 bits if the memowmnit has the capacity to store 4096
words as # = 4096. In order to read or retrieved the storeddwthe address of the
location from where the word is to be read is giverMAR and then read signal is
initiated by the control unit. Thus the stored ewmtwill be available in MBR. Figure
12.1 shows the block diagram of a memory system.
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There are some important terms related to memaity which will now be
discussed.

(i) Destructive and Non-destructive Read Out As discussed above to read the
stored content in some memory location the addsest#he location is given in
MAR and when the read signal is initiated the starentent is copied into MBR.
In this process if the copying process leaves th@ent in the corresponding



location undisturbed, then the read out proceésmdsvn as non-destructive read
out. If on the other hand, the stored contentss ¢turing the reading process then
the read out process is known as destructive raadThe read out process in the
flip-flop binary cells are non-destructive whileatkout process in the binary cells
made with magnetic cores is destructive.

(i) Access Time of Memory The time interval between the initiation of the
READ signal and the availability of the stored @mitfrom the required memory
location is known as the access time of memory.

(i) Write Time of Memory and Memory Cycle Time: The time interval

between the initiation of the WRITE signal and #tering of the content in the
specified memory location is known as the write eimf memory. In the

destructive memory, during the read out process ahe stored content is
available in the MBR, the stored content is lostrfrthe memory location. So in
the destructive memory once the content is reawh fitee memory location it is
rewritten back in the same memory location. Theetitaken for reading the
content and rewriting back in the same memory lonats known as memory
cycle time.

(iv) Volatile and Non-volatile Memories The memory unit in which the stored
content is lost when the power is turned off iswnaas volatile memory. The
memory units consisting of flip-flop binary memorgells are the volatile
memories as data is lost when the power is turniéd Tthhe memory unit
consisting of binary cells made with magnetic caseknown as non-volatile as
the stored data is not lost when the power is tiofe

(v) Memory Capacity.: The number of bits that can be stored in a pa#ic
memory device or unit is known as the memory cdapaSiuppose a memory unit
can store 2048 twenty-bit words so it has a capatit0960 bits as 2048 x 20 =
40960. Further, 8 bit is known as byte so the dapaé 40960 bits memory is
5120 bytes or 5 K bytes as 102422 1 Kilo.

The larger memory may be represented by mega kihfLthega) = & = 1024 x
1024 = 1048576.

Example 12.1 What are the sizes of MAR and MBR for a 16K xt#2memory?

Solution: The memory has the capacity to store 16 K wartkeach word is of 32 bits.
So the size of MBR is 32 bits as it equal to sizéhe word.
The size of MBR is 14 bits ag*2= 16 x 1024 = 16 K.

Example 12.2 How many words can be stored in 8K x 20 memoryuHibw many bits
can be stored with this memory unit? What are inessof MAR and MBR?

Solution: It can store 8K = 8 X 1024 = 8192 word and eaohd is of 20 bits.
It can store 8K x 20 = 8 x 1024 x 20 = 163840.bits
Size of MBR = 20 bits
Size of MAR = 13 as’? = 8192.



12.2 SEMICONDUCTOR MEMORIES:

The Read Only Memory (ROM) and the Random Accessbty (RAM) are
the two basic types of semiconductor memories. R@Mgshose in which information or
the data is permanently stored. The informationlmamead but fresh information cannot
be written into it. These are nonvolatiie memori€ee other semiconductor memory
RAM has both read write facilities. So the RAMs ateo called as read write (R/W)
memories. These are volatile memories.

12.3 READ ONLY MEMORIES:

As discussed above the read only memory is usede#m the stored
information or data but the fresh information car be written into it. A block diagram
of a read only memory is shown in figure 12.2, ihicth 8 words are stored and each
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word is of five bit long. This memory is organized a two dimensional grid of 8x5

wires. It has eight horizontal wires and 5 vertisd@les. At each intersection point in the
grid, diode is either present or absent. If a disdpresent at the intersecting point then
that bit of the word is a 1 else it is a 0. Thisdgconnected with diodes at some
intersecting points is known as diode matrix ROMe® words stored in 8 locations of
this diode matrix ROM is given in table 12.1. Ttable indicates that at the zero location
word 10101 is stored. To read the stored contentitidress of the location is given into
MAR, the decoder circuit will activate the correadong address line and diodes
connected to that horizontal line conduct. The caotidg diodes give rise the current



flow in the corresponding vertical wires and a higbltage is developed across the
resistance connected to the vertical line (logidflo diode connected to that horizontal
line no current will flow to the corresponding veda line and no voltage (zero voltage)
is developed across the resistance connected twettieal line (logic 0). Thus bits;b
through 3 will be available in the MBR as per the data alag or stored in the
addressed location.

Table 12.1
Words Diata hits
h4 h3 hg by by
1] 1 o1 (o1
1 1 1|1o] 1)1
2 1] o]1 1|1
3 1 0n]1 1|0
4 o1 ]0of1l]0
3 1|aojofd
f [ O T A 1 I I
7 t [tjt]ofo

The diodes connected at the intersecting poirdsfiged by the manufacturer at
the time of manufacturing according to the datapsag by the users. The data once
fixed by the manufacturer in the ROM can not berald.

Most ROMs available in the market are made witholar transistors or MOS
transistors instead of diodes. At the intersectpmints bipolar transistors or MOS
transistors are connected. A bipolar cell foriagpa 1 is shown in figure 12.3(a) in
which the base of the transistor is connected ® rbw wire while the emitter is
connected to the column line. When base is hightridmesistor conducts and a current
flows through the column wire. A bipolar cell faoang a 0 is shown in figure 12.3(b) in
which base connection is left open which resulcmwent to flow through column wire.

Bipolar cell for staringa 1 Bipolar cell for storing a 0 ;
+ 7 | 1
cC | + Vo |
- L
I 1
I I
(a) (b)

Fig. 12.3
A block diagram of 8x5 bipolar ROM matrix is showfigure 12.4 and the data
stored in different locations are shown in table212
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Table 12.2
Words Diata hits
by | bg] By by by
0 oft(of1]a0
1 1 Dlo| 0|1
2 0o lo | 0101
3 1 1{1n0]1
4 1 Dlo|1]1
5 0 T O O A I
@ 1|0 11011
7 1 ool 00

A MOS cell for storing a 1 is shown in figure 1@&p in which the gate of
MOSFET is connected to the row wire while the seus€the MOS is connected to the
column line. A MOS cell for storing a 0 is shown figure 12.5(b) in which gate



connection is left open. A block diagram of 8x5 M@®M matrix is shown in figure
12.6 and the data stored in different locationssa@vn in table 12.3.
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Table 12.3

Words Diata hits
h4 h 3 h 5 bilb i
1] L0 |1 n|1

1 |0 j1r |1 1|0
< J A A I U T |

3 |t (ot |t]o
4 oL |1] 1]
5 tlofof1]o
g 1o ool
7 ol 1] 1]o]1

12.3.1 PROGRAMMABLE READ ONLY MEMORY (PROM):

In ROM’s the data is fixed at the time of manufaetand the user can simply
read the stored content. PROM’s are also basitialysame but the users can store the
data as per their requirement. It is programmedhayuser only once. It can not be
reprogrammed. PROM'’s are available both in bipated MOS technologies. In PROM’s
bipolar or MOS transistors are connected to eattt gnd fusible links are provided to
these transistors. Figure 12.7 illustrates a bip@ROM array with fusible links provided
at the emitter of each transistor connected ajdinés. The fusible links may be burnt to
store a bit 0; and a bit 1 is stored to keep thle iintact. The user can burn the necessary
links to store the desired data. For this a speigsice called PROM programmer is used
for its programming.

+V

-
Fusible Raws

Links

h
K

Al A A
Al A A A
A Al A A
Al Al A A
P

[ P e

Columns

Fig. 12.7



12.3.2 Erasable Programmable Read Only Memory (EPRR):

The information or data once stored in ROM or ROM can not be altered but in
EPROM'’s the data can be erased and reprogrammade @ogrammed, the EPROM is
non-volatile and the stored data will be retainedkfinitely. Each binary cell in EPROM
is formed with MOS transistor having a floatingeathe floating gate is surrounded by
silicon dioxide which works as an insulator. If affciently high voltage programming
pulse is applied to the transistor, the high enedlggtrons are injected into the floating
gate. Even after the termination of the programnpuatge the electrons are trapped into
the gate. Because the gate is completely isolaeaharges can not leak very rapidly. It
loses nearly 30% of its charge in a decade. Omeeharges are stored on the gate the
transistor becomes permanently on and the bindrgtocees a 0. The cells which are not
programmed store 1. So by proper programming ofrtamory the required data may be
stored in desired memory locations.

The data can be erased if EPROM chip is exposéuktaltraviolet (UV) light. A
quartz window on the chip is provided for the expesof ultraviolet light. The
ultraviolet light removes the stored charges onflibating gates of the MOS transistors.
This in turn brings the EPROM chip back to the wgpammed state. The erasing
process usually takes 25 to 30 minutes. Erased roip further be programmed with
fresh data. The programmed chip may be protectad Btray radiations by placing an
opague label on the quartz window of the chip.

The various EPROM chips are available with différetoring capacities. The
current popular series of these chips are 27XX,revkéX indicates the capacity of the
memory in kilo — bits. For example 2716 has theacdp (2 K x 8) to store 2 K words
and each word is of 8 bit. It will have |1 addrdises. Similarly, 2732 has (4 K x 8)
capacity (4 K words, each of 8 hits).

12.3.3 Electrically Erasable Programmable Read Onl{vlemory (EEPROM ):

Electrically erasable Programmable Read Only Méso(EEPROMS) are also
available as an improvement over EPROM. In EEPRQiids known as #PROMs,
individual word in the memory can be electricalipged and reprogrammed. This facility
is not available in EPROMSs. In EPROM’s complete rogyncontents are to be erased
and reprogramming of the complete memory chip ibdéarequired even if one or two
words of the memory are to be altered. Another athge of EPROMSs is that the
programming of this chip can be done when conneictele circuit without the use of
ultra violet source and special PROM programmet. (fie memory cells of PROMs
utilize MOS transistors with floating gate stru@wimilar to EPROMSs, with the addition
of very thin oxide region above the drain. This nfiodtion allows the cell to be
electrically erased. By applying a high voltage Y{9lbetween the gate and drain of MOS
transistors, where it will remain even when the pows removed. The application of
reversed voltage removes the trapped charges tienfidating gate and thus erases the
cell. EPROM s can be erased in negligibly small time ofridec.

12.4 APPLICATIONS OF ROMs:

Read Only Memories are used in variety of taskbendigital systems. Following
are the common applications of ROMs:



Implementation of Logic Functions ROMSs can be used as the direct substitute
of any logic function. For this consider the follomg example.

Example 12.3 Use a 32 x 8 bipolar PROM to form the followifignctions of five
variables:
f,=> (126891316 ,21,29)

f, => (03810141516 ,22,25 30)
fy=> (589111920 21,25,29 31)

f, = Z (15,6,913 16,28 ,29)
Solution: The PROM has the capacity to store 32 words lif long, so for getting four
output functions; throughf,the output bits are assigned as:
f,=b, f,=b fy=b, f,=b,

The remaining output data bits are left open. bistll locations of PROM is
prepared as shown in table 12.4. Each minterm efgitien functions will represent its
own address. The output bits will have logic 1tfoe locations in the table for which the
minterms is present in the function. For examiigt,b, in the PROM will have logic 1

Table 12.4
Locations Contants Lacations Contenis
| oooo 0010 16 aooo o 1011
01 oooo 1001 17 aooo 0000
0z oooo 0001 18 aooo 0000
03 oooo 0010 15 aooo o 0100
0 Qooo 0000 20 aooo o 0100
05 oooo - 1100 21 aooo o 0101
06 oooo 1001 22 aooo o 0010
o7 Qooo 0000 23 aooo 0000
W oo 0111 24 aooo 0000
09 oooo - 1101 25 aooo o 0110
10 oooo 0010 26 aooo 0000
11 oooo 0100 27 aooo 0000
12 Qooo 0000 28 aooo 1000
13 oooo 1001 29 aooo o 1101
14 oooo 0010 30 aooo o 0010
15 oooo 0010 31 aooo o 0100

for the locations corresponding to minterms giverf, ii.e. bit b, will have logic 1 for
the locations 1,2,6,8,913 16 ,21,29 as illustrated in table 12.4. The logic diagram fo
the same is shown in figure 12.8.
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Look-up tables It is a usual practice to use ROMs as look-ugeafor routine
calculations in a computer. Trigonometric functiolegarithms, exponentials and square
root etc are programmed as look-up tables in ROMisused in lengthy calculations. It is
economical to use look-up tables, rather than ®subroutine or a software program to
perform the calculations for these functions. Eareple the look-up table foy = sinx

can be formed with 128 x 8 ROM. This ROM will ha&@ddress lines and 8 output data
lines. The address input should represent the angierement of desired accuracy and
the output data lines will represent the approxevsate of the angle.

Code Converters The ROMs can be used as code converter cirCLiits.data
expressed in one type of code can be producedher ¢ype of code. For this address
lines of the appropriate ROM can be used as theseptation of the given code and the
output lines gives the equivalent data in the neglicode.

Example 12.4 Draw a diode matrix ROM that converts the fourdinary numbers to
gray code.

Solution: Diode matrix ROM for the conversion of binarymioer to gray code is shown
in figure 12.9, in which the address lines are usa@present the four bit binary numbers

Table 12.5

Binay Input Gray Code
A BCD| ¥ ¥V EW
0o 0o o o 0o 0
0o 0 1|00 0 1
0o 1 o o o 1 1
o0 1 1 oo 1 10
| v | S
o1 0 9 o1 1 1
01 1 1 o1 o 1
01 1 100 1t 00
Lo 0o 1 1 00
Lo 0 1 1 0 1
Lo 1 p 11 1 1
Lo 11 1 1 1 10
11 0 p 1 0o 1 0
11 01 1o 1 1
O | I
11 11 1 0 0 0




and the output gives the gray codes. The databmaserified from the table 12.5.
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Example 12.4 Draw a diode matrix ROM that implements the squaf decimal
numbers ranging from O to 15.

Solution: Table 12.6 shows the square data of the deammadber from O to 15. The
binary equivalent of the decimal numbers represtr@sddress of the location. This will
need the 4 bit address line. It requires eight da&s as the square of 15 is 225 whose
binary equivalent is 11100001. Figure 12.10 shows tiode matrix ROM that
implements the square of decimal number rangingn féoto 15. One can verify the data
given in table 12.6 and ROM matrix.
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Character Generators ROMs can also be used to generate alphanumeric
characters (dot patterns) on the video screen aipater monitor. There are many
character formats that can be designed into ROMacker generators. The 5 x 7 dot-
matrix format (fig. 12.11) is generally used forsplay systems. The letter E is
represented by this dot matrix. The solid dothletter E are lamps which are ON, and
open dots are off light sources. A character ggoeROM stores the dot pattern codes
for each character at an address correspondinfietd$ClII code for that character. For
example, the dot pattern for the letter E wouldsb&red at address 1000101, where
1000101 is the ASCII for E.

. 9 P
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* O D 8 00

TR R
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Fig. 12.11

Function Generator. The function generator produces sine, saw footh
triangular and square waveforms. ROM can be usgdauce such waves. Figure 12.12
illustrates how ROM look-up table is used to praelwine wave. The output lines of
ROM are connected to a digital to analog conveitee ROM stores 256 different 8 bit
values. The values stored at the different locatiohROM are the values of different
voltage points of the sine wave. The eight addiess of ROM are connected to an 8-bit
counter. The 8 bit counter sequentially excites #delress lines of ROM with the
application of clock pulse to the counter. The @&xverter gives analog output voltage
corresponding to the data points of the requiredefam. A low pass filter may be used
at the output of the D/A converter to produce tm@sth sine wave.
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12.5 RANDOM ACCESS MEMORIES:

Random Access Memory (RAM) is also known as Reat¥wnemory. The Data
can be written in to the memory location and carrdasd /retrieved from the memory
locations. In this memory every memory cell canabddressed directly without the need



of any other previous cell being addressed finstother words one may say that the
contents of any memory location can be accesseatbnaly. RAM is volatile memory
that is all the stored contents are lost if povgeswitched off. Basically RAMs are of
three types Bipolar RAM and Static MOS RAM and DynaMOS RAM.

Before discussing the details of the differenetyjpf RAM, it becomes necessary
to discuss first the different methods of memorly addressing. There are two methods
of memory cell addressing namely Linear Selectinod €oincident Selection (or X-Y
Selection).

Linear Selection: One method of addressing a RAM is known Linear Gigle.

In linear selection a memory cell can be approachgdexciting the address lines
appropriately. Suppose a random access memorytaanls words of 4 bit each. In this
method of selection it will have 64 cells which aganged into 16 rows and four
columns. One row will be for each word and one owiudor each bit in a word. Figure
12.13 illustrates linear addressing of 16 x 4 RGMsc By four select inputs and 4 to 16
line decoder desired row from 16 rows can appraiche
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[31 | [ 32| [ 33 | [ 34 |3
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o— 2 [61 | [s.2] L[e3] [62]
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Ay 1§ (51 ] [2z2] [&83] [5+]°
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Coincident Selection or X-Y SelectionThe other addressing system known as
coincident selection or X — Y selection shown ig.ER.14. In this figure 64 memory
elements are arranged in an 8 x 8 matrix for eamtd Wwit. A 64 word 256 bit RAM will
need four 8 x 8 matrix arrays, one for each of4ludts in every word.
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Fig. 12.14
12.5.1 Bipolar RAM: The cells of RAM make use of flip-flops whicheadesigned
using bipolar transistors. There are two types AMRcells are designed using bipolar
transistors shown in figure 12.15. The first tyfig.(12.15 a) is made using two dual
emitter transistors. These types of RAM cells aedufor linear selection. Triple emitter
transistors are used in second type of RAM ceits f2.15 b). These types of cells are
used for coincident selection or X — Y selection
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Fig. 12.15
In the first type (fig. 12.15 a) one emitter ofckeof transistors Qand Q are
connected together to signal S. The second enaftéransistor @ serves to sense or
write a logic 0 (Q ON). Similarly the second emitter of transistor $€@rves to sense or



write a logic 1 (Q conducting). The sense and select terminals previtie low
resistance path between the emitter and the rdurgldell works as a flip-flop. Normally
the select terminal S is kept low and the curreninfthe conducting transistor flows out
of this select terminal. For read operation, selew S is kept high. The conducting
transistor will not conduct through select line kil conduct through sense ‘0’ or sense
‘1’ line depending upon whether logic ‘0’ or lodit’is stored in the cell. For writing or
storing operation, the select line S is kept higbr. storing logic ‘0’ in the cell, the sense
line ‘0" is kept low and sense line ‘1’ is kept higThe transistor Qnow conducts to
store logic 0. For storing logic ‘1’ in the cedense line ‘0’ is kept high and sense line ‘1’
is kept low thus making the transistos @ conduct. Thus the cell stores logic 1.

In the second type bipolar RAM cell (fig. 12.15th)o select terminals X and Y
are obtained for connecting them to X and Y linésancident selection. The working
of this triple emitter RAM cell is similar to duammitter RAM cell. Normally both X and
Y select terminals are kept low and the currentnfitbe conducting transistors flow out
of these select lines. For read operation, sedentibals X and Y are kept high; and thus
no current flow through these select lines. Thedaating transistor will conduct through
sense ‘0’ or sense ‘1’ line depending upon whetbgic ‘0’ or logic ‘1’is stored in the
cell. For writing or storing operation, the selkoes X and Yare kept high. Similarly one
can explain that for storing logic ‘0’ in the c#ile transistor Qconducts and §becomes
off; and for storing logic ‘1’ in the cell, the maistor Q conducts and (hecomes off.

12.5.2 Static MOS RAMCell: A static MOS RAM cell also known as SRAM cell is
shown in figure 12.16. It consists of a flip-floprined by n-channel MOS transistors.
Here the MOS transistorss@nd Q work as active load and MOS transistorsaRd Q
work as two NOT gates. The cross coupled NOT gattsactive loads work as a flip-
flop. It stays in the given state and retains th&dndefinitely as long as power is applied
to the flip-flop. The MOS transistorss@nd @ provide the ‘1’ sense line and ‘0’ sense
line respectively. The gates of these two transstoe connected together to form a
select terminal for linear selection.
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Normally the select terminal S is kept low and rfead operation, select line S is
kept high. The transistors Q5 and Q6 will condaacotigh select line. In order to read or
sense the state of the flip-flop suppose Q1 in @M @2 is OFF. Then the current flows
through ‘1’ sense line while no current flows thgbu'0’ sense line as Q2 is OFF.
Similarly through the select line, the flip-floprcae set to logic ‘1’ or logic ‘0’ by using
sense line as data input.

12.5.3 Dynamic MOS RAM Cell Figure 12.17 illustrates a dynamic MOS RAM cell
also called DRAM cell. It consists of a MOS tratsisand a capacitor. The charging of
the capacitor is controlled by the MOS transisiidre capacitor can hold a very small
charge when it is charged. The MOS transistor isneoted to an address line and a
bit/sense line. This transistor works as pass istors To write a bit ‘1’ on the cell the
address line is kept high, a high voltage is appleethe bit/sense line. The transistor is
switched ON and the capacitor is charged. The Idgics stored in the cell. However to
write a bit ‘0’, 0 volt is applied to the sensediand the capacitor is discharged and 0 is
stored. Though the capacitor has a very large tgakasistance yet it is not an ideal
capacitor. Thus the charge stored on the capaitben logic 1 is stored) discharges
very slowly and the will be lost. It is thereforeaessary to rewrite or refresh the data

periodically.
Address line
Fowr

L

T

Bit / 3ense
Caolami

Fig. 12.17

To read the stored data in the cell high voltagegain applied to the address line.
This switches ON the transistor and the capacibitage appears on the bit/sense line. If
a ‘1’ is stored in the cell, the voltage of the/s®inse line will tend to go up to the high
voltage; and if a ‘0’ is stored in the cell, thdtage of the bit bit/sense line will go down
to 0 volt. The reading operation of this type ofi ¢& destructive so a write operation
should immediately be followed.

The dynamic RAMs are much cheaper than SRAMs ag diow high packing
density (bits/chip) due to the simple structur®®&AM cells. The power consumption of
DRAMs is very small as compared to the SRAMs. Thaathic RAMs are however
slower in speed than Static RAM. Dynamic RAMs aisqguire refreshing operation after
regular intervals whereas SRAMs do not require dpisration of refreshing.

12.6 RAM ICs. Figure 12.18 illustrates RAM IC 7489 of 16 xneémory. It is capable
of storing 16 words of 4 bits. Data can be storgd memory by applying the address to
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the Select input and by providing low voltage torvey enable ME) and write signal.
However to read the stored content the addreswes ¢go the Select input and memory
enable and read signal are applied low voltages.d&ta in complemented will appear at
the Data out terminals. The functional block diagat this IC is shown in figure 12.19.
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RAM ICs can be connected in parallel to incredseword size. Two ICs 7489
(16 x4) are connected in parallel which is used@&x 8 memory. This is illustrated in
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figure 12.20.
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Figure 12.21 shows an IC 2147 which is a StaticSVRAM of capacity 4K x 1.
It contains separate terminals for DATA ini{p and DATA out (Ru ). The chip select

terminal (C_S) should be low to activate the chip. The bit mawitten or stored in the

RAM if write signal (\FE) is made low, of course the chip select termihalutd also be
activated. Data out () terminal remains isolated with the rest of thewt during the

write operation.
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Fig. 12.21



Figure 12.22 shows Dynamic MOS RAM chip 4164 qgfamty 64K x 1. It has 8
bit address line. However for 64K memory it sholldve 16 bit address line, as

2'° = 64K =64x1024=65536. For this the memory is arranged into 256 rows 256
columns as 256 x 256 = 65536. It contains ROW ADBRESTROBE RAS) and

COLUMN ADDRESS STROBE CAS) pins for selecting row and column of address.
The memory arrangement for 256 x 256 is shownguaré 12.23.

43 4184
64Kx1

g MOS  p_.

-
=

LI

WE RAS CAS
Fig. 12.22
R4S
2 hit I, Row ! A
.| Register - Lo 286 x 256
A ddress a.t%id ' Conor Memory
bus ! . Mairix
Ao Decoder

- Column Register and
CAS - Decoder

11

Fig. 12.23



The combination of 8 PROMs (1K x 8) to producetaltcapacity of 4 K X 8 is
illustrated in figure 12.24. This arrangement cann\be understood.
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Figure 12.25 illustrates the construction of 4B mnemory using 4 PROMs (1K x
8). The PROM 1K x 8 has 10 address lines. Howeleer4K memory, it requires 12
address lines. Two extra address lines in comlainatith 2 to 4 line decoder are used to
select the particular chip. This is clearly spexdfin the figure 12.25.
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12.7 MAGNETIC MEMORIES : In the forgoing sections of this chapter semicarnadr
memories have been discussed which utilizes theaneaells based on electrical charge
or voltage. Magnetic memories are based on theiptenthat a ferromagnetic material
can be magnetized by passing a current througifhié direction of magnetization
depends on the direction of current. The magnetiterals were found to be inexpensive
and everlasting materials; therefore, it becamedaal choice as the storage devices.
Magnetic core, magnetic tape and disk, floppy ditk. are some commonly used
memory devices.

12.7.1 Magnetic Core Memory In the magnetic core memory a core of a ferroreign
material is used as a storage element. The careually toroidal is shape as shown in
figure 12.26. When a currenis passed in the direction indicated in the figli2e26(a)
through the winding on the magnetic core, magnftic ¢ is set up in the clockwise

direction. The variation of the magnetic flgxwith current is shown in figure 12.26(b).
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Fig. 12.26

This curve is known as hysterisis curve. This hysite curve is almost rectangular in
shape; in fact for the magnetic core memory suchagnetic material is used whose
hyterisis curve is rectangular in shape. From tlis/e it is clear that when the core is
magnetized with the positive direction of curreérfcurve a b c), the magnetic flux gets
the saturated valug ., at point ¢ and further increase in the magnetizingent will not

increase the magnetic flux induced in the core. Ndven the current is decreased the
flux changes according to the curve ¢ b d and stayse point d where the magnetizing
current becomes zero. This state is called posigwenant flux. The core remains in that
state for indefinite period even without supplyiagy energy. Now if the direction of
magnetizing current is reversed curve follows tlaghpd e f g and gets the negative
saturated value of fluxg,. Now if the magnitude of the current is increasieen the



core attains the negative remnant flux at the poinlt is therefore clear that the core can
be magnetized and it attains either the positimenant flux or negative remnant flux. In

other words the core remains in either of the ttabes without any external energy. The
energy is required only to change the state. Qaie snay be represented by logic ‘1’
and other state by logic ‘0.

A similar situation arises when a current is pdsseough a wire which passes
through the axis of the core. The currefdllowing upwards (fig. 12.27) in the wire will
lead a magnetic flux in the counter clockwise dimtand the state attained by the core
may be represented by a logic ‘1’. Similarly thereat + flowing in the wire (in the
down ward direction) gives the state representetbgic ‘O’ by setting the flux in the
clockwise direction.

Eit 1 B0

Fig. 12.27
In order to read or sense the bit present in the, ¢bis necessary to have a sense
coil or sense winding as shown in figure 12.28. féading the bit present in the core a
current (-i) is passed through its one winding (read /writeding) and the voltage
induced across the output or sense winding is teete®ow if a ‘O’ bit is stored in the
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winding winding
Fig. 12.28

core, then for reading this bit the voltage indugethe sense coil will be very small , as
the read current () will not cause significant change in its statenifrly if a ‘1’ bit is
stored in the core, read current)(will induce a significant change un the sensé ddie
change in the voltage induced across the sensefabié core memory will indicate a ‘0’
or ‘1’ bit is stored in the core memory cell. Thadllustrated in figure 12.29.

Magnetic core memories are non-volatile read fenmemories and were used in
main frame computers.
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12.7.2 Magnetic Disk Memory:

Magnetic disk storage devices include floppy diskHard disk and are used as
auxiliary memory in the computers. These devicesless expensive compared with the
semiconductor memories. The access time for theseas is very fast. These devices
make use of magnetic surfaces. A conducting cailathas Read / write Head is used for
writing the data on the magnetic surface and nétrgethe data from it. The head remains
stationary while the disk rotates below it for rigador writing operation. Figure 12.30
shows the read /write operation on the magnetitaser To write a data bit on the
magnetic surface a current pulse is applied thrabghcoil of the write head (fig. 12.30
a). By the application of this current pulse a s$nsalgment of the moving magnetic
surface gets magnetized. The direction of the magflax is controlled by the current
pulse as per the bit to be stored. Binary ‘1’ isresented by one magnetized polarity of
the spot of magnetic surface. Similarly, the otpelarity of the magnetized spot of the
magnetic surface represents the binary bit ‘0’. ®©acspot of the magnetic surface is
magnetized by the write head, it will not be chahgeatil changed again by the write
head. The magnetized spot on the magnetic surfiecmipes an induced voltage in the
windings of the read head when the surface is gdassehe read head. The direction of
the output induced voltage pulse will be accordmghe polarity of the magnetized spot
of the magnetic surface. This is the procedurestm the stored content. (fig. 12.30 b).
The read and write head are usually combined intngle unit as shown in figure
12.20(c).
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There are several ways to represent the digita @fa@hary bits 0 or 1) on the
magnetic surface. They include: Return to zero (R)n-return to zero (NRZ), Bi-
phase, Manchester and Kansas city standards.
Figure 12.31 illustrates a Return to Zero (RZ) viak@. From this figure it is
clear that pulse always return to zero after aodcurs. For a ‘0’ no pulse occurs during
the entire bit time.
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Fig. 12.31

Non return to zero (NRZ) waveform is shown in figd2.32. It is clear from this
figure that pulse remains high or low during théirerbit level for representing a ‘1’ or
‘0’ respectively. In this case, waveform does retirn to the O level until a O occurs.
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Biphase waveform is illustrated in figure 12.38r B ‘1’, high level is for the first
half of the bit time and low level for second halfthe bit time. Similarly, for a ‘0’, low
level is for the first half of the bit time and ldevel for the second half of the bit time.
So low to high or high to low transition occurstlire middle of the bit time.
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Fig. 12.33

In the Manchester’'s wave form, at the start oftaiime transition from high to
low represents a ‘0. If there is no transitiomdpresents a ‘1’. Manchester’s waveform is
shown in figure 12.34.
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Fig. 12.34

Two different frequencies are used to representrO4s in the Kansas City
method illustrated in figure 12.35. The standaghercycles of 2.4 KHz frequency are
used to represent a ‘1’, and four cycles of 1.ZzKigquency are used to represent a ‘0.

Fig. 12.35

Bit time

12.7.3 Floppy Disk

The floppy disk is smaller, simpler and cheapek disit. It is a flexible Mylar
plastic diskette coated with thin film of magnetmaterial (figure 12.36). This is housed
in a square plastic jacket which provides handngtection. A small hole called the
index hole in the floppy is used for referencinigtla¢ tracks. Through the access window
Read / Write head makes contact with the rotatisg. drhe write protect notch is also
provided that can prevent new data to be writterthenfloppy, for which write protect
notch can be covered with a piece of tape. Ifloich is not covered with a piece of tape
then the fresh data can be written on the floppyisd times.
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The floppies of different sizes are available55rich floppy is very popular
(figure 12.37). It is organized into 77 tracks &adth track is divided into 26 sectors of
equal sizes. Each of these sectors can store 128 blydata. Total capacity of the disk
will therefore be:

77(tracks) x26(sectors/ track) x128(bytes lsector) = 25625a0ytes 256Kbytes

Tracl: [

Tracl: 1

Fig. 12.37

The format writing the data on each sector is digidnto different fields as
shown in figure 12.38. As per the sequence of imtads the address mark passes the
read/write head, it identifies the up coming arefthe sector as ID field. The ID field
identifies the data field by sector and track numB&e data mark indicates if contains
the good record. The 128 bytes of data can bedstorihe data mark which is the part of
the sector. The average accessing time of a siscatrout 500 ms which slower than the
semiconductor memories. The floppy disks are lepem@sive and portable. The capacity
of the floppy disk is very small. However, doublendity floppy disks are also available
which can store 256 bytes per sector with a taphcity of 512512 bytes.



Fig. 12.38

12.7.4 Hard Disk System:

In hard disk system, magnetic disks of smooth hpmtdes coated on both sides
with a thin film of magnetic material are fixeddaotating shaft. These plates are stacked
as illustrated in figure 12.39. The disk pack isumed on a disk drive. The disk drive
consists of a motor to rotate the disk pack absuaxis at a speed of about 3600 to 5400
revolutions per minute. The disk pack and a sehafinetic heads mounted on arms are
sealed in an enclosure. The access arm assembapable of moving in and out in a
radial direction. The hard disk data transfer raies1M to 10M bits /sec. The hard disk
are physically large and bulky so it is quite opstl
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12.8 MAGNETIC BUBBLE MEMORIES :

In some magnetic materials such as garnets oryiagpinagnetic field certain
cylindrically shaped domains called magnetic bubbdee created. The direction of
magnetization is opposite to that of magnetic fi@lle diameters of these bubbles are
found to be in the range of few micrometers. THa#ebles can be moved at high speed
by applying parallel magnetic field to the surfad¢emagnetic materials. Thus the rotating
field can be generated by an electromagnetic Aeldl no mechanical motion is required.
Soft magnetic material is also deposited on thigocgewhich forms a pre-determined
path called tracks. Magnetic bubbles are forceshdoe continuously in a fixed direction
of these tracks. The presence of a bubble is ceredich ‘1’ state, whereas the absence of
the bubble is considered a ‘0’ state. For writirgadinto a cell bubble generator is used
to introduce bubbles and a bubble annihilator rezsothe bubbles. Read operation is
performed by a bubble detector.

Magnetic bubble memories having capacities of briMnore bits per chip have
been manufactured. The cost and performance ofethaemories fall between
semiconductor RAMs and magnetic disks. These ma&s@ie non-volatile in contrast
semiconductor RAMSs. In addition these memoriesnaoee reliable than magnetic disks
as there are mo moving parts. These memories fitlito interface with conventional
processors. These memories are used in specia@gtations where extremely high
reliability is required.

12.9 CHARGE COUPLED DEVICES (CCDS):

The charge coupled devices (CCDs) are used te #her data. In these devices
the data are stored in the form of charges on @@pscThey have arrays of cells which
can hold charge packets of electron. The storafie de not include transistors like
dynamic RAMs. A word is represented by a set offghgackets, the presence of each
charge packet represent the bit value ‘1’. Theghaackets do not remain stationary and
the cells pass the charge to the neighbouring wéfls next clock pulse. As the dynamic
RAMs are to be refreshed periodically, the charge£CDs must also be refreshed
periodically. The access time to these devicesivery high. At present this technology
is used only in specific applications and commeéqmiaducts are not available.

12.10 COMPACT DISK READ ONLY MEMORY (CDROM) :

The compact disk read only memory falls in the gatg of optical memories. It
is a direct extension of audio CD. This opticalhtemlogy is the mass storage device
capable of storing large data. It can store ardas@ Mbytes of data, which is equivalent
to 2,50,000 pages of printed text. The CD-ROM dsskormally formed from a resin
named polycarbonate which is coated with aluminarfotm a highly reflective surface.
The data on CD ROM is stored as a series of miops@its on this reflective surface.
A high intensity laser beam is focused to credt® g the master disk. The circular pit of
around 5 x 1Omm sizes is created whenever a 1 is to be writtehno pit (also called a
land) if a zero is to be written. The master copyhe information is first prepared and
from the master disk many copies can be reprodbgedprocess called stamping a disk.
A top coat of clear lacquer is applied on the CDM&surface to protect from dust and
scratches. The data stored on CD ROMs can bewettiby a CD ROM reader which
uses low powered laser beam. The CD ROM disk &edtby a motor at a speed of 360



r.p.m. The laser head moves in and out to speqitesition. As the disk rotates the head
senses pits and land. This is converted to 1'S0and

PROBLEMS:

1. Define the following terms relating to memoryitun
Memory address register, memory buffer registecess time of memory, write
time of memory, memory cycle time, destructive amh-destructive memory,
and volatile memory.

2. What is a memory unit? Explain with block diagrthe concept of memory using
registers connected to memory unit.

3. What are the sizes of MAR and MBR for a 64K Bit8memory?

How many words can be stored in 16K x 10 menumiy? How many bits can be
stored with this memory unit? What are the sizelslAR and MBR?

5. A computer memory is to have 8192 words wittbit§ per word. Find how many
bits are required for MAR and MBR.

6 Define Read-only-memory. Explain the organizatd a diode matrix. ROM.
7 Explain bipolar ROM cell. Draw the block diagraf8 x 3 ROM.

8. Discuss MOS ROM cell, Draw the block of 8 x 5 BAOM matrix.

9 Describe Programmable Read only memory (PROMpuUsipolar ROM cells.
10. Describe Programmable Read only memory (PRGHmMguMOS ROM cells.
11. Describe EPROM and EEPROM. What is the diffeedmetween the two.

12. List the application of various types of ROM.

13. Describe the applications of ROM as code cdaver

14. Use a 32 x 8 bipolar PROM to form the followingctions of five variables:
X => (1,216 1819 ,23 26 27 29)

Y =) (0381018,20,23 24 25 31)
Z =Y (389101519 2125,27 28)
W =) (456,711,222 2629)

15. Draw the diode matrix ROM for the conversiorbofary number to gray codes.

16. Draw the diode matrix ROM that can implemerd tubes of decimal numbers
ranging from O to 8.

17. How ROM can be used as function generator?

18. Explain how MOS RAM is programmed.

19. Explain the linear selection in a random acoessiory.

20. Explain the coincident selection in a randoceas memory.



21.

22.
23.
24.

25.
26.
27.
28.
29.
30.
31.
32.

33.
34.
35.

Discuss static bipolar RAM cell for linear s#len as well as for coincident
selection.

Discuss a static MOS RAM cell.
Discuss a dynamic MOS RAM cell.

What are Random Access Memories? Explain tfiereince between the bipolar
RAMs and MOS RAMs.

Discuss the relative merits and demerits ofreachic RAM cell over static RAM.
Draw the block schematic diagram of RAM IC 74896 x 4 memory.

Explain how two 16 x 4 Rams can be connectetsél6 x 8 RAMS.

Give the details of dynamic MOS RAM chip 4164apacity 64K x 1.

Give the combination of 8 PROMs (1K x 8) togwoe a total capacity of $K x 8.
Give the combination of 4 PROMs (1K x 8) togwoe a total capacity of 4K x 8.
Discuss the principle and working of magneticecanemory.

Discuss the principle and working of magneigkdnemory. Mention different
ways to represent digital data on the magnetiaserf

Discuss the principle and working of floppyldis
Discuss the principle and working of Hard disk.

Write short note on the following:
(i) Charge coupled Devices (CCPS
(if) Compact Disk Read Only Memory (CDROM):




Appendix — |

COMMONLY USED TTL ICs

Number Description

7400 Quad two-input NAND gates

7401 Quad two-input NAND gates with open collector

7402 Quad two-input NOR gates

7403 Quad two-input NOR gates with open collector

7404 Hex Inverter

7405 Hex Inverter with open collector

7406 Hex inverter Buffer/driver

7407 Hex buffer drivers open collector

7408 Quad two-input AND gates

7409 Quad two-input NAND gates with collector

7410 Triple three-input NAND gates

7411 Triple three-input AND gates

7412 Triple three-input NAND gates with open collector

7413 Dual four-input Schmitt trigger NAND gates

7414 Hex Schmitt trigger inverters

7416 Hexenter buffer /driver with open collector high

tage output
7417 Hex buffer /driver with operleotor high
tage output

7420 Dual four-input NAND gates

7421 Dual four-input AND gates

7427 Tripkeee-input NOR gates

7430 Single eight-input NAND gate

7431 Quad two-input OR gates

7440 Dual four-input NAND buffer

7441 1-0f-10 line decoder/driver

7442 1-0f-10 line decoder/driver

7446 BCD to seven segment decoder/drivers (active low
outputs

7447 BCD to seven segment decoder/drivers (active low
outputs)

7448 BCD to seven segment decoder/drivers (active high
outputs)

7470 Edge triggered J K flip-flop

7472 Master slave J K flip-flop with AND infsu



7473 Dual master slave J K flip-flops with separate dea

and clocks
7474 Dual edge triggered D-type flip-flops
7475 Four bit latch
7476 Dual master slave J K flip-flops with separate
presets, clears and clocks
7483 Four bit full adder
7485 Fourbiagnitude comparator
7486 Quad Ex-OR gate
7489 16 x 4 bit RAM
7490 Decade counter
7491 Eight bit serial shift register
7492 Divide by twelve counter
7493 Four bit binary counter
7494 Four bit shift register
7495 Four bit Right - Left shift register
74107 Dual J K master slave flip-flops
74121 Monostable multivibrator
74141 BCD to decimal decoder/driver
74145 1- of -10 line decoder/driver
74150 16 - input multiplexer
74151 8 — input multiplexer
74152 8 — input multiplexer
74153 Dual 4 - input multiplexer
74154 4 —to — 16 line decoder/demultiplexer
74164 8 — bit serial to parallel converter
74165 8 — bit parallel to serial converter
74176 BCD decade counter
74177 Binary counter
74180 8 - bit parity generator/checker
74181 4 — bit ALU
74190 Synchronous Up/Down decade counter
74191 Synchronous Up/Down binary counter
74192 Synchronous Up/Down BCD counter
74195 4 — bit parallel shift register
74196 Decade counter (presettable)
74198 8-bit shift register
74246 BCD —to- seven segment decoder/driver
74290 Decade counter
74293 4 — bit binary counter

74393 Dual 4 — bit binary counter



Appendix — Il

COMMONLY USED CMOS ICs

Number Description

4000 Dual 3 — input NOR gare + inverter

4001 Quad 2 — input NOR gate

4002 Dual 4 — input NOR gate

4006 16 bit Static shift register

4008 4 — bit Full Adder

4009 Hex inverter/buffer

4010 Hex buffer

4011 Quad 2 — input NAND gate

4012 Dual 4 — input NAND gate

4013 Dual D-type flip-flop

4014 8 —bit static shift register, synchronous

4015 Dual 4 —bit static shift register

4016 Quad analog switch/analog multiplexer

4017 Decade counter

4018 Presettable divide — by — n counter

4019 Quad AND/OR gate

4020 14-bit binary counter

4021 8 —bit static shift register, Asynchronous

4022 Octal counter/divider

4023 Triple 3-input NAND gate

4024 7 — stage ripple counter

4025 Triple 3 — input NOR gate

4026 Decade counter/7 segment decoder

4027 Dual J K flip-flop

4028 BCD - to — decimal decoder

4029 4 bit presettable Up/down counter

4030 Quad Ex — OR gate

4031 64 — bit static shift register

4032 Triple serial adder

4033 Decade counter/7 segment decoder with ripple
blanking

4034 8 — bit universal bus register

4035 4 bit shift register

4036 4 x 8 bit static RAM

4037 Triple AND/OR gate

4038 Triple serial adder

4040 12 — bit binary counter

4041 Quad true/complement buffer

4042 Quad latch

4043 Quad NOR R S latch



4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055

4056
4059
4060
4066
4068
4069
4070
4071
4072
4073
4075
4076
4077
4078
4081
4082
4085
4086
4089
4095
4096
4097
4098
4099
4510
4511
4512
4513

4514
4515
4516
4518

Quad NAND R S latch

21 — stage counter

Phase locked loop

Monostable /Astable multivibrator

8 — input multi function gate

Hex inverter / buffer

Hex buffer

8 — channel analog multiplexer

Dual 4 — channel analog multiplexer
Triple 2 — channel analog multiplexer
4 — segment liquid crystal display driver
BCD - to — 7 segment decoder for multiplexed
display

BCD - to — 7 segment decoder / latch
Programmable divide — by - counter
14 stage counter/divider/oscillator
Quad analog switch

8 — input NAND gate

Hex inverter

Quad Ex — OR gate

Quad 2 —input OR gate

Dual 4 —input OR gate

Triple 3 — input AND gate

Triple 3 — input OR gate

Quad D-type register

Quad Ex — NOR gate

8 — input NOR gate

Quad 2 — input AND gate

Dual 4 — input AND gate

Dual AND/OR inverter gate

Dual AND/OR inverter gate

Binary multiplexer

J K master slave flip-flop

J K master slave flip-flop

8 - channel multiplexer/demultiplexer
Dual Monostable multivibrator

8 — bit addressable latch

BCD up/down counter

BCD - to — 7 segment latch/decoder/driver
8-channel data selector

BCD - to — 7 segment latch/decoder/driver with
ripple blanking

4 —to — 16 line decoder with latch

4 —to — 16 line decoder with latch
Binary up/down counter

Dual BCD counter



4520
4521
4532
4537
4543
4544

4547
4552
4556
4559
4560
4581
4585
4720
40160
40161
40162
40192
40193
40194
40195
40373
40374

Dual binary counter

24-stage frequency divider

8 — bit priority encoder

256 x 1 bit RAM

BCD - to — 7 segment latch/decoder/driver
BCD - to — 7 segment latch/decoder/driver with
ripple blanking

BCD - to — 7 segment latch/decoder/driver
64 x 4 bit static RAM

Dual 2 — to — 4 demultiplexer

Successive approximation register

NBCD adder

4 - bit ALU

4 — bit magnitude comparator

256 x 1 bit RAM

Synchronous programmable decade counter
Synchronous programmable binary counter
Synchronous programmable decade counter
Programmable up/down decade counter
Programmable up/down binary counter

4 — bit bidirectional universal shift registe

4 — bit universal shift register

Octal transparent latch

Octal D-type flip-flop
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