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PREFACE 
 
 The book Digital Electronics contains twelve chapters with comprehensive 
material, discussed in a very systematic, elaborative and lucid manner. The stress is given 
on the design of digital circuits. It will prove to be good text book for B.E./B.Tech. 
students of all the engineering colleges in India. It will also cater to the needs of the 
students of B.Sc. (Electronics), B.Sc. (Computer Science), M.Sc. (IT) and MCA.  
 The book has been systematically organized and present form help the students to 
understand the fundamentals of digital electronics.  

 I am deeply indebted to Prof. P. J. George, Chairman, Depatment of Electronic 
Science, Kurukshetra University, Kururkshetra for giving me inspiration and enormous 
encouragement in completion of this book. 

 The author wishes to thank to Prof. Sandeep Arya, Chairman, Department of 
Electronics, G. J. University, Hisar, for the healthy discussions on the subject.  

 The author gratefully acknowledges the motivation from all colleagues and 
friends with special reference to Shri. Rajesh Kad, lecturer in electronics, Dayanand 
College, Hisar.  

 I am grateful to Prof. Subhash Sharma, Principal of the college, for his constant 
encouragement, guidance and blessings. 

 I also express my deep gratitude to my wife Pratibha Kaushik and son Amit 
Kaushik, for their patience, understanding and cooperation during the preparation of the 
manuscript.  

 Finally, the author wishes to thank Mr. K.K.Kapoor, Mr. Tarun Kapoor and Mr. 
Sumit Kapoor, Publishers, Dhanpat Rai Publishing Company, New Delhi for their keen 
interest in bringing out the first edition of this book.  
 Any constructive comments, suggestions and criticism from the faculty members 
and the students for further improvement of the subsequent edition will be highly 
appreciated and thankfully acknowledged. 
 
 
HISAR                                                                                                        D. K. KAUSHIK 

 
 
  
 
 
 
 
 
 
 
 
 



SALIENT FEATURES:  

• The material contained in the book is as per class room lectures. The material is 
neither too large nor too short. 

• Written in the simple language but strong pedagogical approach. 

• A large number of simple as well complicated solved problems have been 
introduced. Some unsolved problems with their answers have also been 
introduced at the end of each chapter. 

• The contents are symmetrically arranged. 

• It will prove to be good text book for all those who study digital Electronics. It 
will help the students preparing for NET/SET competitive examination. 
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1  
Number System 
 
 
1.1 Number System:  Every one is familiar with one number system known as 
decimal number system. The ‘deci’ means ten so this system has 10 distinct digits or 
symbols:   
   
    0 1 2 3 4 5 6 7 8 9 
 
 The decimal numbers falls in the category of positional number system, since the 
position of a digit indicates the significance to be attached to that digit. For example 
consider a number 7639. This number has 7 thousands, 6 hundreds, 3 tens and 9 units, 
which may be written as: 
  
 7639 = 7 x 1000 + 6 x 100 + 3 x 10 + 9 x 1 
    = 7 x 103 + 6 x 102  + 3 x 101 + 9 x 100 
 
 If a fractional decimal number is considered say 5367.42, then it may be written 
in the positional form as: 

 
5367.42= 5 x 103 + 3 x 102  + 6 x 101 + 7 x 100 + 4 x 10-1  + 2 x 10-2  
   

In general any number in decimal number system can be written as: 
 

m
m

n
n xaxaxaxaxaxaxaxaN −

−
−

−
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where the coefficients na  to ma− are the elements or digits in the decimal 

numbers. Further these weighted coefficients are multiplied by the some power raised to 
10. The power raised to 10 depends on the position of coefficients. In other words one 
may say in decimal system coefficients na  to ma−  may be any number between 0 to 9 

{i.e. between 0 to (10 – 1)} and the positional power is raised to 10, which is known as 
the radix or the base of this decimal number system. 
  



 On the basis of decimal number system discussed above one may define very 
easily some more number systems. The general form of any number system may be given 
as: 
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where r is called as radix or base of the number system. The weighted coefficients 

na  to ma− , may be any number (or digit) between  0 to (r – 1). The coefficient ma−  is 

called as the least significant digit (LSD) and na  is known as the most significant digit 

(MSD). 
 
1.2 Binary Number System:   On the analogy of decimal number system one may 
define another number system whose radix or base is two (r = 2) and its elements or 
digits will be 0 & 1 only. This system is known as binary number system as its radix is 
two (binary means 2). The digits 0 & 1 of this system are known as bits. This number 
system finds extensive use in digital electronics. The table 1.1 illustrates the counting in 
binary system with their decimal equivalents. 

 
Table 1.1 

 
Binary Numbers Decimal equivalent Binary Numbers Decimal equivalent 

0 
1 
10 
11 
100 
101 
110 
111 
1000 
1001 
1010 
1011 
1100 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1101 
1110 
1111 
10000 
10001 
10010 
10011 
10100 
10101 
10110 
10111 
11000 

and so on 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
 

  
The binary numbers are pronounced in the following manner: 

    0     is pronounced as zero  
    1    is pronounced as one 
   10    is pronounced as one zero not ten  
    11    is pronounced as one one not eleven 
 and so on. 
  
 The decimal equivalent of a binary number (say 10110) is 22, which can be 
verified as follows applying the same pattern as discussed in decimal number system. 



        
       (10110)2 = 1 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20 
                                              = 16 + 0 + 4 + 2 + 0 
                                              = (22)10 

  
 It is very essential to show the suffix to the numbers which indicates the base of 
the number system. 
 
Example 1.1:  Find the decimal equivalent of the binary number 11011001.0101. 
Solution: 
(11011001.0101)2 = 1 x 27 + 1 x 26  + 0 x 25 + 1 x 24 + 1 x 23  + 0 x 22  + 0 x 21 + 1 x 20  + 0 
x 2-1 + 1 x 2-2 + 0 x 2-3+ 1 x 2-4  
                            = 128 + 64 + 0 + 16 + 8 + 0 + 0 + 1 + 0 + 0.25 + 0 + 0.125 
                            = (217.375)10 
 
1.3 Octal Number System:  The radix or base of the octal number system is 8 (octal 
means 8) and its digits will be 0 to 7 i.e. 0, 1, 2, 3, 4, 5, 6, 7. The table 1.2 illustrates the 
counting in octal system with their decimal equivalents. 

 
Table 1.2 

Octal Numbers Decimal equivalent Octal Numbers Decimal equivalent 
0 
1 
2 
3 
4 
5 
6 
7 
10 
11 
12 
13 
14 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
28 

so on 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
 

 
 The decimal equivalent of octal number 24 is: 
     (24)8 = 2 x 81 + 4 x 80 
              = 16 + 4 
                                                         = (20)10 

 
Example 1.2:  Find the decimal equivalent of the octal number 7126.45. 
Solution:  
(7126.45)8 = 7 x 83  + 1 x 82  + 2 x 81 + 6 x 80  + 4 x 8-1 + 5 x 8-2 
                  = 512 + 64 + 16 + 6 + 0.125 + 0.5 + 0.078125 
                  = (598.703125)10 



1.4 Hexadecimal Number System : In hexadecimal number system the radix or 
base is 16 and its digits will be 16 distinct elements which are given as: 0, 1, 2, 3, 4, 5, 6, 
7, 8, 9, A, B, C, D, E, F. The table 1.3 illustrates the counting in Hexadecimal number 
system with their decimal equivalents.  

Table 1.3 
Hexadecimal 
Numbers 

Decimal equivalent Hexadecimal 
Numbers 

Decimal equivalent 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

D 
E 
F 
10 
11 
12 
13 
14 
15 
16 
17 
18 

and so on 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
 

 
 It can be verified that the decimal equivalent of the hexadecimal number (17)16 is 
(23)10. 
 (17)16 = 1 x (16)1 + 7 x (16)0 
            =16 + 7 
                                 = (23)10 

 
Example 1.3:  Find the decimal equivalent of the Hexadecimal number 3BC7.46 
Solution:  
(3BC7.46)16  

                  = 3x (16)3  + 11 x (16)2  + 12 x (16)1 +7 x (16)0  + 4 x (16)-1 + 6 x (16)-2 
            = 12288 +2816 + 192 + 7 + 0.25 + 0.234375  
            = (15303.484375)10 

 
1.5 Conversion of Integer Decimal Number to Binary Number:  It is 
necessary to know the techniques with which the conversion of integer decimal number is 
possible directly to binary number. Consider an integer decimal number d which can be 
represented as: 
  

 
0

0
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1
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1 2.2....2.2. aaaad n
n

n
n ++++= −

−  
  
 If we divide d by a factor of 2 (radix of the binary number system), we obtain the 
quotient q as: 
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n
n

n +++== −
−

−
 

  
 and the coefficient a0 becomes the remainder. Thus the least significant bit a0 is 
determined. Again on dividing the quotient q by 2, the second least significant bit a1 is 
obtained. If this procedure of division is continued till the quotient becomes zero, all the 
coefficients an to a0 will be obtained.  

In general one can convert the integer decimal numbers to their equivalent 
numbers in other number system by dividing the decimal number by the radix of the 
required number system. The remainders will give the required result.  
 
Example 1.4:  Convert the following decimal numbers into binary.  
 (i)  35      (ii)  127 
Solution:   (i)     
 2 35 
 
 2 17 1 
 
 2   8 1 
 
 2  4 0 
 
 2  2 0 
 
 2         1 0 
 
 0  1  
 
 So   (35)10 = (10011)2 
  
(ii) 2 127 
 
 2 63                1 
 
 2   31 1 
 
 2  15 1 
 
 2  7 1 
 
 2         3 1 
 
    2 1  1 
 
 0  1 



                      
 So (127)10 = (1111111)2 

 
Example 1.5:  Convert the following decimal numbers into octal.  
 (i)  567     (ii)  1276 
 
Solution:   (i)  8 567  
 
 8 70                   7 
 
 8   8 6 
 
 8  1 0 
 
  0 1 
 
  
  So  (567)10 = (1067)8 
 
(ii) 8 1276  
 
 8 159              4 
 
 8  19 7 
 
 8 2 3 
 
  0 2 
 
 
 So  (1276)10 = (2374)8 
 
Example 1.6:  Convert the following decimal numbers into hexadecimal.  
 (i)  8537    (ii)  98765 
 
Solution:   (i)  16 8537  
 
 16 533                 9 
 
 16  33 5 
 
 16 2 1 
 
  0 2 
  
 So  (8537)10 = (2159)16 



(ii) 16 98765  
 
 16 6172               D 
 
 16  385 C 
 
 16 24 1 

           
 16 1         8 

  
 0  1   
  
  So   (98765)10 = (181CD)16 

 
1.6 Conversion of Fractional Decimal Number to Binary Number:
 Consider a fractional decimal number f represented in its equivalent binary form 
given by: 
   

  
n

naaaf −
−

−
−

−
− +++= 2.....2.2. 2

2
1

1  

 In order to find the coefficients a – 1, a – 2  …. a – n  the fraction number f is 
multiplied by a factor of 2 (radix of the binary number) as: 
  

 11
21 2.....2.2 +−

−
−

−− +++= n
naaaxf  

 
                                         MSD                          fractional part say f1 
                                    (0 or 1) 
  
 In this way the coefficient a – 1 is obtained which is an integer 0 or 1. The 
fractional part f1 of the product is further multiplied by the factor 2 to have the 
coefficient a – 2 . The procedure of multiplication is continued till the fractional part of the 
product becomes zero. Sometimes the fractional part does not become zero, in that case 
the multiplication process is stopped after getting the four five coefficients or till the 
recurring occurs. 
 A similar procedure may be used to convert the decimal fraction into its 
equivalent other number system by successive multiplication by the radix of the number 
system into which the number is required.  
Example 1.7:  Convert the following decimal numbers into binary.  
 (i)  0.625    (ii) 0.6 
Solution:   (i) Decimal        Product      Integer part 
 .625 x 2 1.25 1 
  .250 x 2                        0.5 0 
 .500 x 2                        1.0 1 
 0  
 Stop 



  (0.625)10  =   (0.101)2 

  
(ii) Decimal                       Product     Integer part 
 0.600 x 2 1.200 1 
 0.200 x 2 0.400 0 
 0.400 x 2 0.800 0 
 0.800 x 2 1.600 1 
 
In this example non - terminating binary fraction is obtained as 0.6 recur beyond this 
point. 
 So  (0.6)10   =   (0.1001(1001) … )2 

 
Example 1.8:  Do the following conversions: 

(i) (965.125)10  to  octal 
(ii)  (8765.025)10  to hexadecimal 
(iii)  (6754.05)8   to decimal. 

 
Solution:   (i)  Integer part 
 8 965  
 
 8 120                 5 
 
 8  15 0 
 
 8 1 7 
 
  0 1 
 
 Fractional part 
 Decimal                       Product     Integer part 
 0.125 x 8 1. 00 1 
 
 So  (965.125)10  = (1705.1)8 

 
(ii) Integer part  
  
 16 8765 
 
 16 547                 D 
 
 16  34 3 
 
 16 2 2 
 
  0 2 
 



  
 
 Fractional part 
 Decimal                       Product     Integer part 
 0.025 x 16 0. 4 0 
 0.4 x 16 6.4 6 
 0.4 x 16 6.4 6 
       repeated value 
 
 So (8765.025)10 = (223D.0666…)16 

 
(iii)      (6754.05)8   to decimal   
 
 6754.05  = 6x83 + 7x82 + 5x81 + 4x80 + 0x8-1 + 5x8-2 

 = 3072 + 448 + 40 +4 +0 +.071285 
 = 3564.078125 
                  So  (6754.05)8 = (3564.078125)10 

 
1.7  Conversion of Octal to Binary and Vice – Versa :  The eight symbols of octal 
numbers 0, 1, 2, ….7 can be represented in to three bit binary numbers as 23 = 8. So 
starting with the least significant bit of the binary number, the successive three bits are 
arranged together in the form of groups. These groups of three bits are replaced by their 
octal equivalents as shown in table 1.4. 

Table 1.4 
 

Octal Numbers Binary Numbers 
0 
1 
2 
3 
4 
5 
6 
7 

000 
001 
010 
011 
100 
101 
110 
110 

  
 The binary numbers are converted to the octal numbers by making the groups of 
three bits from right to left in the integer part of the binary number and from left to right 
on the binary fractional part.. If the need arises for making the groups of three bits one or 
two zeros may be added to the left of most significant bit; and / or to the right of the least 
significant bit of the fractional part of the binary number. The octal equivalent of the 
groups may be written using the table 1.4. Similarly to convert the octal number to binary 
number, the binary equivalent of each octal number is written using the table 1.4. 
 
Example 1.9:  Do the following conversions: 

(i) (1100110111110.1011)2  to  octal 



(ii)  (2467.534)8  to binary 
 
Solution:   (i) Binary number : 001 100 110 111 110 . 101 100 
 Octal Equivalent:  1      4     6     7     6      3     4 
 
   So   (1100110111110.1011)2  = (14676.34)8 

                  
   (ii) Octal number :              2     4      6    7 .     5     3    4 
 Binary Equivalent:  010 100 110 111 . 101 011 100 
  
 So (2467.534)8  = (10100110111.1010111)2 

 

1.8 Conversion of Hexadecimal to Binary and Vice – Versa:  As is well 
known that the hexadecimal system has a base 16 (24 = 16) so every hexadecimal digit 
can be represented as a group of 4 bits as shown in table 1.5. For conversion of octal to 
binary and vice versa one can proceed in the similar fashion as in the case of octal to 
binary and vice versa. 

 
Table 1.5 

 
Hexadecimal umbers Binary Numbers 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

 
Example 1.10:  Do the following conversions: 

(i) (110011010110111110.101)2  to  hexadecimal 
(ii)  (2AB6E7.5D4)16  to binary 

Solution:         
   (i)  Binary number :       0011  0011  0101  1011  1110 .  1010 
        Hexadecimal  Equivalent:     3        3         5        B       E         A 
 
   So  (110011010110111110.101)2  = (335BE.A)16 



                  
(ii) Hexadecimal:     2    A   B   6   E    7  .     5   D   4 
 Binary     0010   1010 1011 0110 1110 0111 . 0101 1101 0100 
        

So (2AB6E7.5D4)16 = (1010101011011011100111.0101110101)2 

 
 
Example 1.11   Convert the hexadecimal number 4AC7.4B in to its equivalent octal 
number.   
Solution:    The given hexadecimal number is first converted to binary number and then 
converted to octal number. 
Hexadecimal:     4        A C           7    .     4   B    
Binary:            0100    1010   1100   0111  . 0100   1011  
        
Now (100101011000111.01001011)2  to octal 
100101011000111.01001011  =  100  101  011  000  111 . 010  010  110 
Octal :                                             4      5      3      0      7       2      2      6  
Thus  (4AC7.4B)16 = (45307.226)8 

 
1.9 Binary Addition:  The counting of numbers in any system is a form of addition since 
successive numbers, while counting, are obtained by adding 1. In decimal number 
system, the successive addition is obtained as follows: 
 0 + 1 = 1 
 1 + 1 = 2 
 2 + 1 = 3 
 3 + 1 = 4 
 … 
 …. 
 8 + 1 = 9 

            9 + 1 = 1 0 i.e. the sum is zero but have a carry to the 
next position. 

 From the above discussion it is clear that when 1 is added to the last digit of a 
number system, sum becomes zero and has one carry to the next position. 
 In the similar fashion if this rule is applied to the binary system the binary 
addition may be illustrated as follows: 
  
 0 + 1 = 1 
 1 + 1 = 1 0  i.e. sum is zero and carry is 1. 
 Table 1.6 shows the addition of two bits a and b, having the sum and carry to the 
next position. There are four possible combinations 

  
 
 
 
 



Table 1.6 
 

a b sum carry 
0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
0 

0 
0 
0 
1 

 
 This table is known as Half adder table, as it gives the simple addition of two bits 
a and b. Table 1.7 known as full adder table shows the addition of maximum of three bits. 
These bits are the carry bits, if any, from the previous stage of addition, and the augend 
and addend bits. 
 

Table 1.7 
 

Augend 
bit 

Addend 
bit 

Carry from 
previous stage 

Sum Carry to 
next stage 

0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

0 
1 
1 
0 
1 
0 
0 
1 

0 
0 
0 
1 
0 
1 
1 
1 

 
Example 1.12 : Perform the following binary additions. 
 (i)    110111 + 11010        (ii)   101101.101 + 101011.011 
 (iii)    1101101.101 + 110110.01 
Solution:     
(i)      Carry               1  1  1  1  1  0                              
              1  1  0  1  1  1 
             0  1  1  0  1  0 
                 1  0  1  0  0   0  1 
 
(ii)      Carry              1  0  1  1  1  1  1   1  1 
              1  0  1  1  0  1 . 1  0  1 
             1  0  1  0  1  1 . 0  1  1 
                  1  0  1  1  0  0  1 . 0  0  0 
 
(iii)     Carry              1  1  1  1  1  0  0  0   0  0 
              1  1  0  1  1  0  1 . 1  0  1 
             0  1  1  0  1  1  0 . 0  1  0 
                  1  0  1  0  0  0  1  1 . 1  1  1 
 



1.10  Binary Subtraction:  Half – subtractor table is used for subtraction similar to 
one used for addition. It is clear from the table 1.8 that when 1 is subtracted from 0, a 1 is 
to be borrowed from the next adjacent higher position. 

Table 1.8 
 

a b difference borrow 
0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
0 

0 
1 
0 
0 

 
 A full – subtractor table having the minuend, subtrahend and the borrow bit of the 
previous stage as the inputs and which gives the difference as well as the borrow bit to be 
taken from the next stage, is shown in table 1.9. 

 
Table 1.9 

 
Minuend Subtrahend Borrow bit 

from previous 
stage 

Difference Borrow 
from the  

next stage 
0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

0 
1 
1 
0 
1 
0 
0 
1 

0 
1 
1 
1 
0 
0 
0 
1 

 
Example 1.12 : Perform the following binary operations. 
  (i)    1101101 –  1100111     (ii)  11011.01 – 10101.11 
  (iii)    1101.101 – 1001.011 
Solution: 
 (i)   Borrow               0  0  0  0  1  1 0   
              1  1  0  1  1  0  1 
             1  1  0  0  1  1  1 
                      0  0  0  0  1  1  0    
 
(ii)  Borrow                   0  1  0  1  1   0      
              1  1  0  1  1 . 0  1   
             1  0  1  0  1 . 1  1   
                      0  0  1  0  1 . 1  0    
 
 
 



(iii)  Borrow                  0  0  0  0    1  0    
              1  1  0  1  . 1  0  1 
             1  0  0  1  . 0  1  1 
                      0  1  0  0  . 0  1  0 

 
1.11 Signed Numbers:   The positive numbers were discussed so far in the preceding 
sections of this chapter. But most of the digital systems handle not only the positive 
numbers but also the negative numbers. Some means are, therefore, required to represent 
the sign of the binary numbers. In general, an extra bit is provided at the extreme left of 
the number. This extra bit is known as the sign bit. The extra bit is isolated from the 
magnitude of the binary number by a comma. The sign bit is 0 or 1. By convention, a 0 
bit is used for the positive numbers and a 1 bit is used for negative numbers.  
For example: + 9 is represented by  0, 1001 
and  – 9 is represented by  1, 1001  
 Though this method of representing the signed numbers is straight forward, yet it 
is not normally used in the digital system since the realization of this method by digital 
circuit is very complex. The most commonly used method for representing the signed 
binary numbers is 2’s complement method. Before discussing signed binary arithmetic 
operations using the 2’s complement method, it is necessary to show the 1’s complement 
and 2’s complement representation of binary numbers.  
 
1.11.1   1’s Complement Representation:  The 1’s complement of a binary number is 
obtained by converting each 0 bit of the binary number to a 1, and each 1 bit by a 0. The 
1’s complement value represents the negative number of the binary number. 
For example:   The 1’s complement of the binary number 1011101 is obtained as: 

1 0   1   1   1   0   1 
 
0   1   0   0   0   1   0 

 Thus 1’s complement of binary number 1011101 is 0100010. 
 
1.11.2   2’s Complement Representation:    The 2’s complement of a binary number is 
obtained by taking the 1’s complement of the number and adding 1 to the least significant 
bit position. The process for obtaining the 2’s complement of (25)10 = (11001)2  is given 
below: 
  1  1  0  0  1 binary equivalent of 25 
  0  0  1  1  0 1’s complement of 25 
                  +                 1 add 1 to get 2’s complement 
                    0  0  1  1  1 
 The 2’s complement of  11001  is 00111. 
  
 The another method of obtaining the 2’s complement of a binary number is to 
scan the number from right to left and complement all bits appearing after the first scan 
of a ‘1’. 



 For example 2’s complement of (42)10 = (101010)2  is 010110. Since first ‘1’ 
appears in the second place from the right hand side, so all the bits after occurring first 
‘1’ at the second place are complemented. This can be verified by using the first method 
discussed above. 

 
1.12 Signed Numbers using 2’s Complement:    Computer systems always 
process the words (digital) in a uniform fashion having a maximum limit of N bits. An N 
– bit machine can handle the unsigned decimal numbers from 0 to 2N – 1. Thus a 4 bit 
machine can handle 0 to 15 decimal numbers (unsigned) represented by binary numbers 
ranging from 0000 to 1111. Similarly an 8 – bit machine can handle 0 to 255 decimal 
numbers having binary numbers ranging from 00000000 to 11111111. However, for 
signed binary numbers, 4 bit machine will have the range from – 8 to +7 and 8 bit 
machine will have the range from – 128 to +127. Table 1.10 illustrates how the 4 bit 
machine represents the signed binary numbers. 

Table  1.10 
 

Decimal value Signed binary numbers 
-8 
-7 
-6 
-5 
-4 
-3 
-2 
-1 
0 

+1 
+2 
+3 
+4 
+5 
+6 
+7 

1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 

  
 Similarly, 8 bit machine will have the signed numbers ranging from   – 128 
(100000002) to +127 (011111112). 
  
 The following inferences are obtained from this table:  

1. The largest negative number in an N – bit machine is  – 2(N – 1) and the largest 
positive number is +(2(N – 1) – 1). 

2. All the positive numbers have most significant bit as 0 and the negative 
numbers as 1.  

3. All the negative numbers are the 2’s complement of positive numbers. For 
example 2’s complement of 0110 (+6) is 1010 (– 6) and the 2’s complement 
of  011111112  (+127) is 10000001 which equal to  –127 in 8 bit machine. 



 If the 2’s complement method is used to represent the negative numbers as 
discussed above then the subtraction of signed numbers can easily be performed only by 
the addition method. This will lead a simplification in the hardware circuits. 
 
Example 1.13: What is the range of unsigned and signed decimal numbers as well as 
binary numbers that can be represented in a 10 bit system?  
 
Solution:  The range of unsigned decimal numbers will be: 
   0 to 1023 (210 – 1)  in the 10 bit system 
  i.e.  00000000002 to 11111111112. 
 
The range of signed decimal number will be  – 512 ( –29) to +511 (29 –  1)  
 i.e.   10000000002 to  01111111112. 
 
Example 1.14:  Represent the following decimal numbers as 8 bit signed numbers in the 
2’s complement form. 
  (i) +25      (ii)  – 68     (iii) –128     
 
Solution:  (i)  +25   = 000110012 
      (ii)  – 68  = 2’s complement of + 68 (010001002) 
                                 = 101111002 
               (iii) – 128  = 100000002 

 
1.13 Addition/Subtraction of Signed Numbers in 2’s Complement 
Representation:    In the signed numbers the addition and subtraction of binary 
numbers are the same. The subtraction of two positive numbers means the addition of a 
negative number to the positive number. The negative number infect is the 2’s 
complement of the positive number. During the addition of two signed numbers, if there 
is an end around carry, it should be ignored. The result is interpreted using the convention 
discussed above i.e. if MSB of the result is 0, then the answer is positive and on the 
contrary if MSB is 1, then the answer is negative (in 2’s complement form). This can be 
illustrated by taking the following examples: 
 
(i) Addition of positive number with smaller negative number: Consider the addition 
of +15 and – 9. The numbers +15 and –9 are represented in 5 bits signed binary form. 
These numbers can not be represented in 4 bit signed number as 4 bit machine will have 
the range from – 8 to +7. 
 +15 01111 
 –  9 10111         (10111 is the 2’s complement of +9) 
 + 6      1   00110 
 There is an end around carry which is ignored. So the answer is correct as 00110 
represents + 6. 
 



(ii)  Addition of positive number with larger negative number: Consider the addition 
of +9 and –15. 
 +  9 01001 
 –15         10001        (10001 is the 2's complement of +15) 
 –  6         11010 
 There is no end around carry so the answer is negative which is verified by the 
MSB of the answer. The answer is correct as 11010 represents – 6. 
 
(iii) Addition of two positive numbers: consider the addition of positive numbers +15 
and +9 : 
  +15 01111 
 +  9 01001 
 +24         11000 
 The result 11000 is correct in unsigned binary numbers but incorrect in signed 
binary numbers as 11000 represents – 8 in 5 bit signed binary numbers. The correct 
answer could be obtained if 6 bit signed binary system was considered. 
 +15 001111 
 +  9 001001 
 +24         011000 
 Now the answer is correct. 
 
(iv)  Addition of two negative numbers:  Consider the addition of –15 and – 9. 
 –15 10001       (10001 is the 2's complement of +15) 
 –  9 10111       (10111 is the 2’s complement of +9) 
 –24 1 01000    
 After ignoring the end around carry the answer 01000 is incorrect, as the 
maximum limit of 5 bit signed binary numbers is –16 to +15. To get the correct answer 
each number should have been represented in 6 bits signed binary form as follows: 
 –15 110001   (110001 is the 2's complement of +15) 
 –  9 110111   (110111 is the 2’s complement of +9) 
 –24 1 101000    
  

 Now the answer is correct as after ignoring the end around carry 101000 
represents –24 in signed binary form. 

 The overflow is said to have occurred in the above two examples as initially 
insufficient number of bits were used for representing the signed binary numbers.  While 
working with 2’s complement addition, one should ensure that the positive and negative 
number are expressed in 2’s complement representation and the sum also lie within the 
specified range, otherwise wrong result will occur. However, in computers a special 
circuit is provided to detect any overflow condition and indicate the erroneous result. 

 



Example 1.15:  Perform the following operations in 8-bit system using 2’s complement 
method.  (i) – 49 – 26   (ii)  67 – 39 (iii) – 87 + 112 . 
 
Solution:   
(i)  –49  11001111       (2's complement of +49) 
   – 26 11100110       (2’s complement of +26) 
       –75  1 10110101   
The end around carry is ignored. So the answer is 10110101 (–75). 
 
(ii)   +67     01000011 
  –39     11011001  (2’s complement of +39) 
 +28 1  00011100 
 
The end around carry is ignored. So the answer is 00011100 (+28). 
 
(iii)  –87     10101001  (2’s complement of +87) 
  +112     01110000  
 +25 1  00011001 
 
The end around carry is ignored. So the answer is 00011001 (+25). 

 
1.14  Nine’s and Ten’s Complement of Decimal Numbers :       In the preceding 
section, 1’s and 2’s complement of binary numbers were discussed, to represent the 
signed numbers. In the similar fashion 9’s and 10’s complement representation of 
decimal numbers may be used to represent the negative numbers. The 9’s complement of 
a decimal number is obtained by subtracting each digit from 9. For example, 9’s 
complement of 2457 is (9999 – 2457) = 7542 and 9’s complement of 89031 is (99999 – 
89031) = 10968. It is analogous to 1’s complement of binary numbers. The 1’s 
complement of binary number is obtained by subtracting each bit by 1, the largest or 
highest bit or digit of the number system (or by interchanging each bit by 0 to 1 and vice-
versa). 
 Similarly, 10’s complement of a decimal number is obtained by adding 1 to the 
9’s complement of that decimal number. For example 10’s complement of 3697 is 6303 
(9’s complement of 3697 + 1). The other method of getting 10’s complement of a 
decimal number of n digits is to subtract that number fromn10 .  
i.e.    10’s complement of 19874 is 80126)198741000001987410( 5 =−=−  . 
 The 10’s complement can be used for the addition of signed decimal numbers as 
given in the following example. 
 
Example 1.16 : Add the following signed decimal numbers using 10’s complement. 
(i) Add  (+6230) and (– 2394)  (ii) Add (– 5260) and (+2987)   
 
 



Solution: 
(i)    6230 
    7606  (10’s complement of 2394) 
 1 3836 

 The end around carry is ignored. So the answer is +3836. 
 

(ii)     4740 (10’s complement of 5260) 
    2987 

    7727      
 There is no end around carry so answer is negative and is in 10’s complement 
form i.e. – 2273 (10’s complement of 7727). 
 
1.14.1  r’s and (r – 1)’s complement:  In general one can define two types of 
complements in a number system of base r. 

 (i)  (r – 1)’s complement: The (r – 1)’s complement in any number system of radix r 
is obtained by subtracting each digit of the number from (r– 1). For example 7’s 
complement of 347 in octal number system is (777 –347) = (430)8 and 5’s complement of 
23450 in a number system whose radix value is 6, is (55555 – 23450) = (32105)6. 

 (ii)  r’s complement or true complement: The r ’s complement of nonzero number in 
a number system of radix r is obtained by getting the (r –1)’s complement of that number 
and adding 1 to it. If a number is zero its r’s complement or true complement is also zero. 
For example 8’s complement of 37401 in octal number system is (77777–37401) + 1 = 
(40377)8 and 5’s complement of 23410 in a number system whose radix value is 5, is 
(44444 – 23410) + 1 = 21035 = (21040)5. 

 
1.15 Binary Multiplication : The process of multiplication of binary numbers is 
similar to that of decimal multiplication. The product of two binary numbers whose 
magnitude is n bits each, can be 2n bits long. Followings are the steps used in the 
multiplication of two binary numbers: 

Step 1: Multiplier is scanned from the right hand side. If LSB is 1 the 
multiplicand is copied as the first partial product. If LSB is zero, then 
zeros are entered as the first partial product. 

Step 2: Next bit (left to the previous bit) of the multiplier is examined, if it is 1 
the multiplicand is copied as the next partial product after shifting left 
this partial product by one bit. If it is zero then enter zeros as the next 
partial product after shifting it left by one bit. 

Step 3: Repeat step 2 till all bits in the multiplier have been considered. 

Step 4: The final product is obtained by adding all the partial products. 

This method of multiplication is known as long hand multiplication which is generally 
done by using paper and pencil. However, in digital machines, the multiplication of two 
binary numbers is considered in slightly different manner. Instead of providing digital 
circuits to store all the shifted partial products and finally adding these products, the 



partial products corresponding to each bit of the multiplier are simultaneously added into 
the previous product which is shifted right by one bit rather than shifting to the left.   

 
Example1.17:  Multiply 10101 by 10011. 

Solution:  

  Multiplicand  1 0 1 0 1 
  Multiplier   1 0 0 1 1 
        
  Partial products   1 0 1 0 1 
             1 0 1 0 1 
          0 0 0 0 0  
       0 0 0 0 0 
             1 0 1 0 1  
                                            
                  Product                  1 1 0 0 0 1 1 1 1 
  
1.16 Binary Division:   The process of division of binary numbers is similar to that of 
decimal division. The long hand division method is used for this purpose. In decimal 
division it is seen how many times the divisor goes into the dividend, but in binary 
division there are only two possibilities o and 1 i.e. if the divisor goes into the dividend, 
the quotient becomes 1, if it does not the quotient becomes zero. The divisor is then 
subtracted from dividend. The next bit of the dividend is copied in the remainder of the 
subtraction and again seen if the divisor goes into the dividend. This process is continued 
till all the bits of the dividend are considered. However, in digital machines in the 
division the subtraction is performed using the 2’s complement method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 1.17: Divide 1101101 by 101. 

Solution: 
Quotient
DividentDivisor  

 

   

..11.10101

000000001

000000101

000000110

00000101

00001000

0000101

0001001

00101

00111

101

1101101101

 

 So quotient is (10101.11)2 and remainder (.01)2 

1.17 Floating Point Representation of Binary Numbers: It is well known 
that the very small and very large decimal numbers can be expressed in scientific notation 
e.g. 2.48 x 10-24 and 6.75 x 1018. Binary numbers can also be represented in the similar 
fashion. This form of notation will have a binary number of few bits known as the 
mantissa and an exponent of 2 (radix of binary numbers). The format of such 
representation will be different for different computing machines. The 16 bit machine 
will have 10 bit mantissa and 6 bit exponent and 24 bit machine will have 15 bit mantissa 
and 9 bit exponent. The format of 16 bit machine is given below. 

 
                         10 bit     Mantissa   6 bit Exponent 

 0   1  1  0  0  1  1  0  1  0   1  0  1  0  1  0 
                                                   
     Fig. 1.         
 
 The mantissa is in 2’s complement form; the leftmost bit is, therefore, used as 
sign bit. The binary point will be to the right of the sign bit. The 6 bit exponent can 
represent 0 to 63 or in the signed number from – 32 to + 31. However, a common system 
is used to represent exponent part. The exponent part is represented in excess 32 notation 
i.e. the number (32)10 or (100000)2 is added to the desired exponent. The table 1.11 
illustrates representation of exponent part in this system. 
  



 
  Table 1.11 

Desired 
Exponent 

2’s complement 
representation 

Excess 32 notation 
(in 6 bits) 

Binary 
Representation 

– 32 
– 31 
– 30 
– 15 

  0 
+    1 
+  15 
+  30 
+  31 

100000 
100001 
100010 
110001 
000000 
000001 
001111 
011110 
011111 

100000+100000 = 000000 
100001+100000 = 000001 
100010+100000 = 000010 
110001+100000 = 010001 
000000+100000 = 100000 
000001+100000 = 100001 
001111+100000 = 101111 
011110+100000 = 111110 
011111+100000 = 111111 

000000 
000001 
000010 
010001 
100000 
100001 
101111 
111110 
111111 

  
 As discussed above the floating point number given in the above format is: 
         The mantissa part    .110011010 
  The exponent part           101010 
  Subtracting 100000           001010 
  The number is        N = + (.110011010)2 x 210 

              = + (1100110100.00)2 

              = + (820)10 

 
Example 1.18:  What floating point number do the following numbers represent?  (i) 
0100101001101011  (ii) 1010010110101111   
(iii) 0110111010011101 

Solution:  (i) 0100101001101011    

  The mantissa part    .100101001 
  The exponent part           101011 
  Subtracting 100000           001011 
  The number is        N = + (.100101001)2 x 211 

              = + (10010100100.0)2 

              = + (1188)10 
(ii) 1010010110101111 
  The mantissa part  1.010010110 
   –   .101101010  
  The exponent part           101111 
  Subtracting 100000           001111 
  The number is        N = – (.101101010)2 x 215 

              = – (101101010000000.0)2 

              = – (23168)10 

 
(iii) 0110111010011101 



   The mantissa part    .110111010 
  The exponent part          011101 
  Subtracting 100000          101011  
             The number is         N = + (.110111010)2 x 2 – 21 

      = + (.00000000000000000000011011101)2 

       
Example 1.19:  Express the following decimal numbers into 16 bit floating point 
number. 
(i) (45365.125)10   (ii) – (335.625)10  

Solution:   

(i) Binary equivalent of (45365.125)10 1011000100110101.001 
 Binary format     .1011000100110101 x 2 16  
 Mantissa      + .101100010 
 Exponent       010000 
  Equivalent exponent 010000 + 100000 = 
    110000 
So the floating point format will be   0101100010110000 
 
(ii)  Binary equivalent of –(335.625)10 –101001111.101 
        1010110000.011 
 Binary format      –  .010110000 x 29 

 Mantissa       –  .010110000 
 Exponent        001001 
  Equivalent exponent 001001 + 100000 = 
    101001 
So the floating point format will be   1010110000101001 
 
Example 1.20:  In a number system of radix R, A and B are the successive digits such 
that (AB)R = (28)10 and (BA)R = (35)10 . Find the radix R of the number system and the 
values of A and B. 

Solution:  According to the problem: 

  2801 =+ BxRAxR  and  3501 =+ AxRBxR  
or 28=+ BAxR  35=+ ABxR  
also  1+= AB  
so 27=+ AAxR  and 35=++ ARAxR  
After solving these equations we get: 
 8=R   , 3=A    and  4=B  
 
 
 
Example 1.21:  Determine the radix value in the following cases. 



 (i) RR )6()51( =  

 (ii) RRR )102()25()11( =+  
 
Solution: (i)  Decimal equivalent of the problem is given by; 

 615 =+xR  
 Squaring on both side: 
  3615 =+R  
 or  7=R  
(ii) Decimal equivalent of the problem is given by; 
  02 2015211 xRxRxRxRxR ++=+++  
 or 0432 =−− RR  

Solving for R we have: 
 4=R  and  1−=R  
The radix can not be negative, so the required result is 4. 
 

Problems:      
 
1. Discuss decimal number system. Define radix.  
2. Define octal number system. How the counting in octal number system is made? 
3. Define hexadecimal number system. Write the counting from 0 to 40 decimal 

numbers into its equivalent hexadecimal number system. 
4. How the decimal integer numbers are converted to binary numbers? Explain. 
5. How the decimal fractional numbers are converted to binary numbers? Explain. 
6. Define a number system whose radix value is 3. Write the counting of first 30 

decimal numbers into the system whose radix value is 3. 
7. Define a number system whose radix value is 7. Write the counting of first 30 

decimal numbers into the system whose radix value is 7. 
8. Discuss how the octal numbers are converted into its equivalent binary numbers 

and vice – versa. 
9. Discuss how the hexadecimal numbers are converted into its equivalent binary 

numbers and vice – versa. 
10. Write numbers from 1 to 30 in the following number systems: 
 (i)  Binary  (ii) Octal   (iii) Hexadecimal   
 (iv) to a system whose radix value is 6. 
11. Discuss how the addition of binary numbers is performed. Draw the half adder 

and full adder tables. 
12. Discuss how the subtraction of binary numbers is performed. Draw the half 

subtractor and full subtractor tables. 
13. What are signed numbers? Give the different ways of representing the signed 

binary numbers in a digital system.  
14. Explain the 1’s and 2’s complement representation of binary numbers. 
15. What is the range of unsigned and signed decimal numbers as well as binary 

numbers that can be represented in a 12 bit system? 
16. Explain the Addition/Subtraction method of Signed Numbers in 2’s complement 

representation taking suitable examples. 



17. Discuss 9’s and 10’s complement of decimal numbers. How 10’s complement is 
used for the addition of signed decimal numbers. 

18. Discuss (r – 1)’s and r ’s complement of a number system whose radix is r. 
19. Discuss how the multiplication of the binary numbers is performed.  
20. Explain the floating representation of binary numbers in 16 bit machine. 
21. Explain the floating representation of binary numbers in 24 bit machine. 
22. Convert the following decimal numbers into their equivalent binary numbers: (i)

 336 (ii) 679    (iii) 5797   (iv)  4391 
 Ans.: (i) 101010000 (ii) 1010100111 (iii) 1011010100101  
 (iv)  1000100100111 
 
23. Convert the following binary numbers into their equivalent decimal numbers: (i) 

1010111  (ii)  1110101   (iii) 100010011  (iv) 110010001 
 Ans.: (i)  87  (ii) 117  (iii) 275  (iv) 401  

24. Covert the following binary numbers into their octal, hexadecimal and decimal 
equivalent: (i)  1011101 (ii) 10101011101  (iii) 1001010111 (iv)  10111101 
Ans.: (i)   (135)8 , (5D)16 , (93)10       (ii)  (2535)8 ,  (55D)16 , (1373)10 

 (iii) (1127)8 , (257)16 , (599)10   (iv) (275)8 , (BD)16 , (189)10 
 
25. Convert the following hexadecimal number to binary and then to octal 

(i)  2BAFC (ii)  67DEF   (iii)  2567C   (iv) 2AB76 
Ans.:  (i)  (101011101011111100)2  , (535374)8   
 (ii)  (1100111110111101111)2  , (1476757)8 

 (iii)  (101010101101110110)2 ,  (525566)8 
 
26. Convert the following octal numbers into their decimal equivalent: 

(i)  26775 (ii)  67344    (iii)  53276    (iv)  15405 
Ans.:  (i) (11773)10  (ii) (28388)10  (iii)  (22206)10     (iv)  (6917)10 

 
27. Convert the following octal numbers into their binary equivalent: 

(i)  126705 (ii)  207344    (iii)  350276    (iv)  415005 
Ans.: (i)  (1010110111000101)2  (ii)  (10000111011100100)2  

 (iii)  (11101000010111110)2  (iv)  (100001101000000101)2 

 
28. Express the following decimal numbers into their equivalent octal and 

hexadecimal numbers.  
 (i)  798562   (ii)   179856    (iii)  369852  (iv)   9120305 
 Ans.:  (i)  (3027542)8 , (C2F62)16   (ii)   (537220)8 , (2BE90)16  
                     (iii)   (1322274)8 , (5A4BC)16  (iv) (42625061)8 ,( 8B2A31)16  
 
29. Convert the following decimal numbers into binary numbers. 
 (i)  697.625   (ii)  1457.23   (iii)  22097.96   (iv)  39870.0625 
 Ans.: (i) (1010111001.101)2  
  (ii)  (10110110001.0011101011100001 ….)2   
 (iii) (101011001010001. 111101011100001 …)2 

 (iv)   (1001101110111110.0001)2 



 
30. Convert the following decimal numbers into octal numbers. 
 (i)  4537.362 (ii)  7192.025   (iii)  4389.125  (iv)  1767.3 
 Ans.:   (i) (10671.27126010 …)8        (ii)   (16030.1)8  
     (iii)  (3347.231463146…)8   
 
31. Convert the following binary numbers to their equivalent octal and hexadecimal 

numbers. (i) 11011011.011 (ii)    101110111.1011 
           (iii)  1011111001.111011     (iv)   1000101011.011011 
 Ans.: (i)   (333.3)8 , (DB.6)16           (ii)    (567.54)8  , (177.B)16 

  (iii)   (1371.73)8 , (2F9.EC)16 (iv)   (1053.33)8 ,  (228.6C)16 
 
32. Express the following hexadecimal numbers to their equivalent binary and octal 

numbers. (i)   3AC45B.20B        (ii)     6754A.2FE 
 (iii)   4596BC.31DF (iv)  2369.2AB7 
 Ans.: 
 (i)  (1110101100010001011011.0011000111011111)2   ,  
      (16542133.143574)8  (ii) (1100111010101001010.00101111111)8 , 
               (1472512.1376)8          
 (iii) (10001011001011010111100.0011000111011111)2  , 
       (21313274.143574)8  (iv) (10001101101001.0010101010110111)2  
 (21551.125334)8 
 
33. Convert the following decimal numbers into their equivalent numbers in base 3 

and base 5. 
 (i)  8923 (ii)  45967      (iii) 543294 (iv) 30107 

Ans.: (i)  (110020111)3 , (241143)5 (ii)  (2100001111)3 , (2432332)5     (iii)  
(1000121021000)3 , (114341134)5  (iv)  (1112022002)3 , (1430412)5 

34. Add the following numbers in binary: 
(i)  (45)10 + (67)10 (ii)       (246)10 + (397)10       
(iii)  (6754)10 + (2450)10            (iv)     (4096)10 + (256)10 
Ans.: (i)   (1110000)2            (ii)      (1010000011)2 

                    (iii)  (10001111110100)2   (iv)  (1000100000000)2 
35. Subtract the following numbers in binary:  

(i)  2576310 – 245410    (ii)  983210 – 243210   
(iii)  450610 – 200410  (iv)  900610 – 459810 
Ans.:   (i)  1011011000011012    (ii)  11100111010002 

  (iii)  1001110001102        (iv)   10001001110002 
36. Perform the following binary additions. 
 (i)    11010111 +1011010      (ii) 10111101.101 + 10101001.011 
 (iii)    100101101.101 + 10010110.01  
 (iv) 111010110.1101+10111011.0101 
 Ans.: (i) 100110001  (ii) 101100111.000   (iii) 111000011.111 
                         (iv)  1010010010.0010 
37. Perform the following binary subtraction. 
 (i)   11010011 – 1010010      (ii) 10100101.101 – 10111001.001 



 (iii)  100101011.001 – 10100110.01  
 (iv)  110010110.1001–10100011.0111 
 Ans.:  (i) 10000001     (ii)   – 10011.100   (iii)  10000100.111 
  (iv) 11110011.0010  
38. Solve the following: 
  (i)  (11011)2 x (101)2 = (?)2 

  (ii)    (110010)2 x (1011)2 = (?)2 
 (iii) (1101.011)2 x (101.01)2 = (?)2 

 (iv)  (1.10011)2 x (10.101)2 = (?)2 

Ans.:  (i) 10000111 (ii)  1000100110 (iii)  1000110.00111 
 (iv) 100.00101111 
39. Solve the following: 
  (i)   (11001)2 ÷  (1011)2 = (?)2           (ii)  (101010)2 ÷  (1001)2 = (?)2 

 (iii) (10101.011)2 ÷ (100.11)2 = (?)2  (iv) (1.00101)2 ÷ (10.10)2 =(?)2 

 Ans.: (i) Quotient (10)2 and remainder (11)2 

 (ii) Quotient (100)2 and remainder (110)2 

 (iii)  Quotient (100.1)2 and remainder (00)2 

 (iv) Quotient (.011)2 and remainder (.111)2 

40.  Perform the following operations in 12-bit system using 2’s complement method.  
(i) – 149 – 126  (ii)  607 – 319 (iii) – 871 + 112 (iv) 312 – 540. 
Ans.: (i) 111011101101   (ii) 000100100000 (iii) 110100001001 

 (iv) 111100011100 
41. Subtract the following using 10’s complement method: 
 (i) 94562074 – 495421  (ii)  3216547 – 9876540  
 Ans.: (i)  94066653   (ii) – 6659993 
42. What floating point number do the following numbers represent?   
 (i) 0111101001101110  (ii) 1011110110101001   
 (iii) 0110100010010111  (iv) 1110100011010100 

Ans.: (i) + (11110100100000.00)2  
(ii)  – (100001010.00)2  (iii) +(111101001000.00)2  
(iv) –(.000000000000001011101)2 

 
 
 ________ 
 
 

 



2 
Binary Codes 
  
 
 In the preceding chapter the usage of binary numbers and their arithmetic 
operations have been discussed. While working with digital machines which use binary 
numbers, the data is generally given to the input as well the information is taken from the 
output in form of decimal numbers, because we are familiar only with the decimal 
numbers. The conversion of decimal numbers into binary and vice – versa is a slow 
process, which leads a communication problem between the man and the machine. In 
order to simplify this problem of communication between the man and the machine a 
number of codes for the decimal numbers have been devised. In the present chapter these 
codes known as binary codes will be discussed in detail. 
 
2.1 Binary Coded Decimal Numbers: In a digital system which is capable of accepting 
or string only 0’s and 1’s, the usual way of conversion of decimal numbers to binary 
number and vice –versa is a slow process and requires large electronic circuitry. 
Therefore, instead of converting the decimal numbers to binary, it will be simpler to 
convert each decimal digit to binary, i.e. a coding system is used for the conversion of 
each decimal digit to binary. Such a coding system is known as Binary Coded Decimal or 
BCD in short. For example, a decimal number 13 in binary is written as 1101 whereas in 
BCD form individual decimal digit 1 and 3 may be written in four bit binary numbers as 
0001 0011.  
  
 A large number of coding schemes is possible to encode 10 distinct symbols of 
decimal system namely, 0 1 2 ….. 9. To represent each symbol of decimal system in the 
form of 0’s and 1’s of binary system, at least 4 bits are required as 23 = 8 <10 and 24 = 16 
>10. There are 16 possible combinations in which four bits are arranged and it is required 
to have only 10 combinations of 4 bits. In this way, to pick up an ordered sequence of 10 
out of 16 items, as many as 30 billion (3x1010) ways or codes are there. Out of these 
codes only a few are of importance which may be classified in the following categories. 
 1. Weighted codes 
 2.  Self complementing codes 
 3.  Cyclic codes 
 4.  Error detecting codes  
 5. Error correcting codes 

 



2.2 Weighted Codes:  In the weighted codes, weights or values are assigned to the 
binary bits as per their bit position. The decimal value of a code is the algebraic sum of 
weighted bits. In other words, the decimal number N in the weighted codes is given by: 

 i
i

i bWN ∑
=

=
4

1
 

where iW  denotes the weight that is assigned to ith binary bit, 

 ib   is the binary bit (0 or 1) in the ith bit position. 

  
 The most popular weighted codes are 8421, 1284 , 5421, 2421, 5211, 7421 
etc. These weighted codes are given in Table 2.1. 
 

Table 2.1 
 

Decimal 
Numbers 

D 

Weighted codes 
8  4  2  1 

 
8  4 2  1   5  4  2  1  2  4  2  1  5  2  1  1 7  4  2  1  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0  0  0  0 
0  0  0  1 
0  0  1  0 
0  0  1  1 
0  1  0  0 
0  1  0  1 
0  1  1  0 
0  1  1  1 
1  0  0  0 
1  0  0  1 

0  0  0  0 
0  1  1  1 
0  1  1  0 
0  1  0  1 
0  1  0  0 
1  0  1  1 
1  0  1  0 
1  0  0  1 
1  0  0  0 
1  1  1  1 

0  0  0  0 
0  0  0  1 
0  0  1  0 
0  0  1  1 
0  1  0  0 
1  0  0  0 
1  0  0  1 
1  0  1  0 
1  0  1  1 
1  1  0  0 

0  0  0  0 
0  0  0  1 
0  0  1  0 
0  0  1  1 
0  1  0  0 
1  0  1  1 
1  1  0  0 
1  1  0  1 
1  1  1  0 
1  1  1  1 

0  0  0  0 
0  0  0  1 
0  0  1  1 
0  1  0  1 
0  1  1  1 
1  0  0  0 
1  0  1  0 
1  1  0  0 
1  1  1  0 
1  1  1  1 

0  0  0  0 
0  0  0  1 
0  0  1  0 
0  0  1  1 
0  1  0  0 
0  1  0  1 
0  1  1  0 
1  0  0  0 
1  0  0  1 
1  0  1  0 

  
 In the 8421 code, the weight assigned to bit position 1(i = 1) is 1, second position 
(i = 2) is 2, third position (i = 3) is 4 and weight assigned to forth position (i = 3) is 8. So 
the binary number 0110 represents the decimal digit 6 as 0x8+1x4+1x2+0x1 = 6. In the 
similar fashion the representation of decimal numbers (0 through 9) in different weighted 
codes is done. In the weighted codes, the negative weights may also be assigned e.g.       
8 42 1  have the negative weight (–1) to the least significant bit and (–2) to the second 
least significant bit. 
  
 It is important to note that 8421 code is nothing but uses the natural weights for 
the representation of binary numbers hence 8421 codes also called as natural binary 
coded decimal (NBCD). 
 
2.3 Self Complementing Codes:  A code is said to be self complementing if the 
binary representation of a decimal number D in that code is 1’s complement of the 



decimal number (9 – D). For example let D = 5 in some code then that code will be self 
complementing if the binary representation of D and (9 – D) are 1’s complement of each 

other. The weighted codes 2421, 5211 and 8 421  are self complementing whereas 
8421 code is not self complementing, which may be verified from the table (2.1).  A 
necessary condition for a weighted code to be self complementing is that the sum of the 
weights of the code should be 9.  
  
 It is important to note that the binary representation of decimal digits in 2421 and 
5211 may be done in different ways, but these are represented in the sequence as are 
given in the table 2.1, otherwise the codes will not show the self complementing 
property.  
  
 Further it is not a necessary condition that only the weighted codes are self 
complementing. Another important code is the excess – 3 (XS -3)code, which is shown in 
table 2.2. This code in not a weighted code but shows the self complementing property. 
Excess – code is derived from 8421 code by adding 3 (0011) to all code groups. The 
arithmetic becomes simple by the use of this code which will be discussed in the later 
section. 

 
Table 2.2 

 
Decimal numbers 

D 
Excess – 3 code 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0  0  1  1 
0  1  0  0 
0  1  0  1 
0  1  1  0 
0  1  1  1 
1  0  0  0 
1  0  0  1 
1  0  1  0 
1  0  1  1 
1  1  0  0 

 
Example 2.1: Encode the following decimal numbers into 8421, 2421 and excess – 
3 codes. 
 1548 ,  7896,  5602 
Solution: 
Decimal  
   No.   8 4 2 1    2 4 2 1  Excess – 3   
1548  0001010101001000    0001101101001110      0100100001111011 
7896  0111100010010110           1101111011111100          1010101111001001 
5602  0101011000000010           1011110000000010          1000100100110101 
   13  00010011               00010011             01000110 
 



 
Example 2.2: Decode the following BCD numbers: 
 (i) 01000001  0111000000010010    1001000110000110 
 (ii) 01100001  0101000101010000    0101000000000001 
 
Solution: 
 (i) 41   7012    9186 
 (ii) 61   5150    5001 
 
2.4 Cyclic Codes:  Another class of binary codes is the cyclic codes. Before discussing 
the cyclic codes it is necessary to explain the Hamming distance first. Hamming distance 
is defined as the number of places the binary bits differ in two consecutive numbers in a 
particular code. For example in 8421 code hamming distance between 0 (0000) and 
1(0001) is one, as there is a change only in the one bit position (0 to 1 of LSB). Similarly, 
the hamming distance between 1 and 2 is 2; between 3 and 4 is 3. Hence one can say that 
the hamming distance between two successive code groups of 8421 code in not constant. 
There are many other codes in which the hamming distance is not unity. Cyclic codes 
have the unit hamming distance property. In many practical applications such as analog 
to digital converter, codes of unit hamming distance are used. Gray code is a particularly 
useful cyclic code and a four bit gray code is shown in table 2.3. 
 
     Table 2.3 

Decimal Number Gray Code 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 0 0 0 
0 0 0 1 
0 0 1 1 
0 0 1 0 
0 1 1 0 
0 1 1 1 
0 1 0 1 
0 1 0 0 
1 1 0 0 
1 1 0 1 
1 1 1 1 
1 1 1 0 
1 0 1 0 
1 0 1 1 
1 0 0 1 
1 0 0 0 

 
  
 
 
 



This code may also be shown as the elements of  K – map (Karnaugh map) shown in 
figure 2.1.  
    00 01 11 10 
  
 00  0  1  2  3 
 
 01  7  6  5  4 
 
 11  8  9 10 11 
 
 10 15 14 13 12 Fig. 2.1 
  
 Gray code is also called as the reflected binary code. The reflected binary code is 
given below. The method of writing the reflected binary code is that 0 and then 1 is 
written to the LSB and a mirror is supposed to be placed below 1. The mirror image of 0 
& 1 will be 1 & 0. So sequence of the LSB of the code will be 0, 1, 1 & 0. Now 0 is 
written at the second place (as the second LSB) above the mirror and 1 to the numbers 
below the mirror. This code for two bits will be as 00, 01, 11 & 10. For the extension of 
this code to the three bits, a mirror is again supposed to be placed below 10. The mirror 
image for the two bits will be 10, 11, 01 & 00. To the third bit 0 is added to the binary 
number above the mirror and 1 is added to the mirror imaged numbers of two bits. The 
codes for three bits will, therefore, be 000, 001, 011, 010, 110, 111, 101 & 100. Similarly 
it can be extended for four bits, five bits etc.  
                Dec.No.   Gray Code 
       0 0 0 0 0 0 
        1 0 0 0 0 1 
       
        2 0 0 0 1 1 
      3 0 0 0 1 0 
       
      4 0 0 1 1 0 
      5 0 0 1 1 1 
      6 0 0 1 0 1 
      7 0 0 1 0 0 
       
      8 0 1 1 0 0 
      9 0 1 1 0 1 
      10 0 1 1 1 1 
      11 0 1 1 1 0 
      12 0 1 0 1 0 
      13 0 1 0 1 1 
      14 0 1 0 0 1 
      15 0 1 0 0 0 
       
      16 1 1 0 0 0 



      17 1 1 0 0 1 
      18 1 1 0 1 1 
      19 1 1 0 1 0 
      20 1 1 1 1 0 
      21 1 1 1 1 1 
      22 1 1 1 0 1 
      23 1 1 1 0 0 
      24 1 0 1 0 0 
      25 1 0 1 0 1 
      26 1 0 1 1 1 
      27 1 0 1 1 0 
      28 1 0 0 1 0 
      29 1 0 0 1 1 
      30 1 0 0 0 1 
      31 1 0 0 0 0  
       
        
 Further before discussing the method of conversion of binary to gray code and 
vice versa, it is important to discuss the other important cyclic codes. In the gray code 
discussed above is not suitable for its use as cyclic BCD code, since when we move from 
decimal number 9 to 0 (successive digits), the hamming distance is three. The cyclic 
BCD code should have unit hamming distance for all successive digits.  The most 
commonly used cyclic code is shown in table 2.4 and it K map in figure 2.2 
  
  Table 2.4 
   

Decimal Number Gray Code 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 0 0 0 
0 0 0 1 
0 0 1 1 
0 0 1 0 
0 1 1 0 
1 1 1 0 
1 0 1 0 
1 0 1 1 
1 0 0 1 
1 0 0 0 

    
 
 
 
 
 
 



    00 01 11 10 
  
 00  0  1  2  3 
 
 01     4 
 
 11      5 
 Fig. 2.2 
   10  9  8  7  6  
 
 
 It may also be observed that the cyclic code shown in the table 2.4 is a reflected 
BCD code. The reflection in any BCD code can be identified by comparing the upper five 
code words with the lower five. If the upper and lower codes are mirror imaged except 
for one bit, then the code is reflected. Reflection is useful property that makes 9’s 
complementation easy to implement. 
2.4.1 Conversion of Binary to Gray Code: The gray code being the reflected 
binary number is difficult to obtain for a large decimal number. So the conversion of 
binary numbers to gray code is required to be obtained directly. The method of 
converting the binary number to gray code is follows: 

 The most significant bit is recorded as the first most significant bit of the gray 
code, which is then added with the bit of next position. The sum is recorded as the next 
bit of the gray code, of course neglecting the carry, if any. This process is continued till 
the LSB is reached. For example for the conversion of binary number 100010111 we 
proceed as given below: 

 
 Binary 
 1 0 0 0 1 0 1 1 1        
 
 
 
 1 1 0 0 1 1 1 0 0       Gray  
 
 The Gray equivalent of binary number (100010111)2 is (110011100)g. 
 
Example 2.3:  Find the gray equivalent of the following binary numbers: 
     (i)  100010111 (ii)   111010110   (iii) 10000101011 
 
 
 
 
 
 



Solution:  (i) 
 
  
 1 0 0 0 1 0 1 1 1 Binary 
 
 
  
 1 1 0 0 1 1 1 0 0 Gray 
 
So (100010111)2 = (110011100)g 

 

 

 
(ii) 
 
  
 1 1 1 0 1 0 1 1 0 Binary 
 
 
  
 1 0 0 1 1 1 1 0 1 Gray 
 
So (111010110)2 = (100111101)g 
 
(iii)  
 
  
B 1 0 0 0 0 1 0 1 0 1 1 
 
 
G  
 1 1 0 0 0 1 1 1 1 1 0 
 
So  (10000101011)2 = (11000111110)g 
 
2.4.2 Conversion of Gray Code to Binary:   The method of converting the gray code to 
binary number is follows: 

 The most significant number of gray code is recorded as the most significant of 
the binary number, which is then added with the next bit of the gray code. The sum is 
recorded as the next bit of the binary number, neglecting the carry if any. The process is 
continued till the least significant bit is obtained.  



 For example for the conversion of (110011100)g to binary we proceed as given 
below: 
 
 1 1 0 0 1 1 1 0 0       Gray 
 
 
       
 
 1 0 0 0 1 0 1 1 1 Binary 
 
So the binary equivalent of gray code (110011100)g = (100010111)2 . 
 
Example 2.4:  Find the binary equivalent of the following gray code numbers: 
     (i)  101010101 (ii)   110010101 (iii) 10010101111 
 
Solution: (i) 
 
 1 0 1 0 1 0 1 0 1       Gray 
 
 
       
 
 1 1 0 0 1 1 0 0 1 Binary 
 So (101010101)2 = (110011001)g . 
(ii)   
 1 1 0 0 1 0 1 0 1       Gray 
 
 
       
 
 1 0 0 0 1 1 0 0 1 Binary 
 So (110010101)g = (100011001)2 . 
 (iii)  
 
1  0 0 1 0 1 0 1  1 1 1     Gray 
 
 
  
 
1 1 1 0 0 1 1 0 1 0 1 Binary 
 
 So (10010101111)g = (11100110101)2 . 
 



2.5 Error Detecting Codes:     A group of bits is known as word and it moves as an 
entity in the digital systems, i.e. a word is moved from one block to other block  of the 
digital system or transmitted from one place to the other. During this transmission it is 
very likely a bit might change resulting a change in the word and an error is said to have 
occurred. The error (change in bit from 0 to 1 or vice versa) is introduced due to the 
external noise in the physical communication medium. An error detecting code can be 
used for the detection of error in the transmission. This code will simply detect the error 
but will not correct the error. In forming the error detecting codes (also called error 
checking codes), an additional bit is introduced with the word. The additional bit 
included with the word is known as parity bit and is used to make the total number of 1’s 
in the word either even or odd.  
 Two types of parity may be considered for error detection namely even parity and 
odd parity. For even parity, the parity bit is set to 1 so that the sum of bits in the number 
is even i.e. number of 1’s in the number is even. However, for the odd parity, the parity 
bit is set 1 so that the sum of bits in the number is odd. For example, in number 1001101 
there are four 1’s so a parity bit P introduced with the given number is 1 for odd parity 
(number of 1’s becomes odd); and P is 0 for odd parity (number of 1’s remains even). 
The number along with the parity bit will, therefore, be 10011011 for odd parity and 
10011010 for even parity. A message of four bits and parity P is shown in table 2.5.    

Table 2.5 
Word of 4 bits Parity bit P 

(Even) 
Word of 4 

bits 
Parity bit 
P (Odd) 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

0 
1 
1 
0 
1 
0 
0 
1 
1 
0 
0 
1 
0 
1 
1 
0 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

1 
0 
0 
1 
0 
1 
1 
0 
0 
1 
1 
0 
1 
0 
0 
1 

 
 For the error detection the parity bit P generated by some electronic circuitry is 
transmitted along with the word at the transmitter end. The word along with the parity is 
received at the receiving end where the data and parity bit is checked. At the receiving 
end there will be parity check network, which will detect if the proper parity is received. 
The parity check network will give an alarm or indication if parity check fails. This error 
detecting code is suitable if there is a change only in one bit, three bits or to odd number 



of bits. If on the other hand error occurs at two or even number of places, the double 
parity check method is used. 
 For the double parity check consider a block of 36 bits recorded on a magnetic 
tape in 6 tracks with 6 bits along each track. Odd parity bit is added as the seventh bit to 
each track. A seventh row (of 6 bits) is also introduced as the odd parity row for each 
column. The odd parity check network will be used for row as well as for the column. In 
this way, if there is erroneously transmission of bit the parity check fails, on the row and 
column and the place of error is detected. This is illustrated in figure 2.3. 
  
         Row parity bits 
 
    0 0 0 0 0 0 1  0 0 0 0 0 0    1  
Block   0 0 1 0 1 0  1  0 0 1 0 1 0    1 
of  36   0 0 1 0 1 1  0  0 0 1 0 1 1    0 
bits    1 0 0 0 1 1  0  1 0 1 0 1 1    0                Parity 
    0 1 1 0 1 1  1  0 1 1 0 1 1    1               failure  
    0 0 0 1 0 1 1  0 0 0 1 0 1    1 
Column   0 0 0 0 1 0   0 0 0 0 1 0 
Parity bits  
 Parity failure 
 
 Fig. 2.3 
 
2.6 Error Correcting Code or Hamming Code:  In the forgoing section the 
error correcting codes were discussed which can only be used to detect the error occurred 
due to the transmission of binary information. It can neither indicate the place or bit 
position of error nor correct the incorrect bit. Hamming code also called self correcting 
code is most commonly used code which can not only detect the error but also finds the 
error position and correct it. 
 This code is being discussed for correcting a single error on information of any 
length. Suppose 8421 code bits are to be transmitted and the error for one bit position is 
to be corrected. For this at least 3 parity bits are to be used. So to find out the error 
position 7 bit hamming code will be constructed. The word format is given below: 
 
7 6 5 4 3 2 1  Bit Number 
D7 D6 D5 P4 D3 P2 P1  Name of bit position 
 
 In the above format of the Hamming code, D represents the data bit and P 
represents the parity bit. So the bit positions 1, 2 and 4 (P1, P2, and P4) are used for parity 
check bits and bit positions 3, 5, 6 and 7 (D3, D5, and D7) as 4 bit word (8421 code data).  
P1 is the even parity bit for bits  3, 5, 7 (D3, D5 and D7) 
P2 is the even parity bit for bits  3, 6, 7 (D3, D6 and D7) 
P4 is the even parity bit for bits  5, 6, 7 (D5, D6 and D7) 



 The 7 bit Hamming code for 8421 data is shown in table 2.6. 
 

Table 2.6 
 
Decimal 
numbers 

    7 6 5 4             3 2 1 
   D7 D6 D5 P4    D3 P2 P1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 

0 
0 
0 
0 
1 
1 
1 
1 
0 
0 

0 
1 
1 
0 
1 
0 
0 
1 
0 
1 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

0 
1 
1 
0 
0 
1 
1 
0 
1 
0 

0 
1 
0 
1 
1 
0 
1 
0 
1 
0 

 
 The following procedure is used to detect and correct the error after the code is 
received: 
 1. If P1 satisfies as the even parity bit for bits 3, 5, 7 then assume C1 = 0 else 
C1 = 1. 
 2. If P2 satisfies as the even parity bit for bits  3, 6, 7 then assume C2 = 0 else 
C2 = 1 
 3. If P3 satisfies as the even parity bit for bits  5, 6, 7 then assume C3 = 0 else 
C3 = 1. 
 4. The decimal equivalent of C3C2C1 gives the position of incorrect bit, 
which may be corrected. If C3C2C1 = 000 then there is no error in the code. 
 For example a seven bit Hamming code is received as 1000010 and one has to 
find if there is any error in the received data. 

D7 D6 D5 P4 D3 P2 P1 

1 0 0 0 0 1 0 
 
Now C1 is 1 as P1 does not satisfy the even parity bit for bits 3, 5, 7. 
C2 is 0 as P2 satisfies the even parity bit for bits 3, 6, 7. 
C3 is 1 as P4 does not satisfy the even parity bit for 5, 6, 7. 
So C3C2C1 = 101, it indicates that there is an error in the fifth place. At the fifth 

place there is 0 which should be corrected to 1. So the correct hamming code is 1010010. 
From the above discussion it is clear that this code can be used for detecting and 

correcting the error by using extra digital circuitry. This code can also be extended to 
transmit the data of any length by introducing more parity bits. 
 
Example 2.5:  Write the 7 bit Hamming code for a four bit word 1010. 
Solution: 

   D7 D6 D5 P4 D3 P2 P1 

0 1 0 P4 1 P2 P1  



P1 will be zero (even parity bit) for bits 3, 5, 7. 
P2 will be zero (even parity bit) for bits 3, 6, 7. 
P4 will be one (even parity bit) for bits 5, 6, 7. 
So the 7 bit Hamming code will be 0101100. 
 
Example 2.6: A seven bit Hamming code received at the receiver is 1110100. Is there 
any error in the received code? If yes, what is the correct code? 
Solution:  

D7 D6 D5 P4 D3 P2 P1 

1 1 1 0 1 0 0  
Now C1 is 1 as P1 does not satisfy the even parity bit for bits 3, 5, 7. 
C2 is 1 as P2 does not satisfy the even parity bit for bits 3, 6, 7. 
C3 is 1 as P4 does not satisfy the even parity bit for 5, 6, 7. 
So C3C2C1 = 111, it indicates that there is an error in the seventh place. At the 

seventh place there is 1 which should be corrected to 0. So the correct hamming code is 
0110100. 
 
2.7 BCD Addition:   In the present section the addition of BCD numbers will be 
discussed since in digital computers BCD numbers are processed. The BCD code (8421 
Code) represents the decimal numbers in the similar fashion as binary numbers. The 
binary numbers 1010 through 1111 are the illegal codes in 8421 code. Due to these illegal 
codes the addition of decimal numbers in BCD will be different. To understand the BCD 
addition, two cases of decimal addition are considered.  
Case I : decimal numbers 6 & 3 are to be added. 
  Decimal form   BCD form 

6          0110  
   + 3 +  0011 
   9  1001 
  
 BCD number 1001 shows the correct answer as 1001 is equal to 9.  
 
Case II : decimal numbers 6 & 7are to be added. 
  Decimal form   BCD form 

6          0110  
   + 7 +  0111 
          13  1101 
 
 BCD number 1101 is not correct as it is an illegal code since it does not occur in 
BCD. The correct answer would be 0001 0011. 
  
 From the above discussion it is observed that if the sum is less than or equal to 9, 
the correct answer will be obtained. If on the contrary, the sum is more than 9, the 
incorrect answer is obtained because 6 illegal codes 1010 through 1111. So to get the 
correct answer, 0000 is to be added if the sum is less than or equal to 9; and 0110 



(decimal 6) is to be added if the answer is more than 9. The answer is observed to be 
more than 9 if illegal codes 1010 through 1111 are obtained or a carry to the next BCD 
number is occurred. 
  
 For example 476 and 394 are to be added using BCD numbers. 

BCD number for 476 is: 0100  0111  0110 
BCD number for 394 is: 0011  1001  0100 
 
   1111  111    1 
Additon:  0100  0111   0110 
   + 0011  1001   0100 
   1000 0000 1010 

 Correction to be applied: + 0000   0110  0110 
          Correct answer:                          1000   0111  0000 
 Decimal number                           8         7          0 
 In this example 0110 is added to LSD and second LSD because 1010 is the illegal 
code in 8421 and the second LSD gives a carry to the MSD. 
 
Example 2.7:  Add 8765 and 7043 in BCD code. 
Solution: 

BCD number for 8765 is: 1000  0111  0110 0101 
BCD number for 3943 is: 0011  1001  0100 0011 
 
       111  111   1 111 
Additon:                      0000  1000  0111  0110 0101 
                  +   0000 0011  1001  0100 0011 
                       0001 1100 0000 1010 1000 

 Correction to be applied: +  0000 0110   0110  0110 0000 
          
  Correct answer:                0001 0010   0111   0000 1000 
 Decimal number                  1        2         7          0    8 
 So the correct answer is 0001 0010 0111 0000 1000. 
 
 2.8 Excess–3 Addition:  Addition of decimal numbers can also be performed using 
excess–3 codes. One may recall that in excess – 3 codes first three and last three numbers 
of 4 bit binary numbers (0000 through 0010 and 1101 through 1111) are illegal codes. So 
while adding the numbers in excess–3 codes, these illegal codes will have to be 
eliminated. To understand the excess–3 addition, two examples given below are 
considered:  
Case I   Two numbers 3 and 6 are to be added. 
  
  3 Excess- 3 of decimal number 3 is:    0110 



      +  6 Excess- 3 of decimal number 6 is: + 1001 
  9 Sum of these numbers is:     1111 
  
 The sum is wrong due to illegal code 1111. The illegal code 1111 shows the 
excess - 6 because 0011 (3) is added is each number. So to get the correct answer 0011 
(3) is to be subtracted from the above sum. 
 i.e. 1111  –  0011  = 1100 
 1100 gives the correct answer, as it shows 9 in excess – 3 code. 
 
Case II  Two numbers 7 and 8 are to be added. 
  
 7 Excess- 3 of decimal number 7 is:    1010 
      + 8 Excess- 3 of decimal number 8 is: + 1011 
 15 Sum of these numbers is:   1 0101 
  
 In this case too the sum is wrong because of the illegal code 0101. To avoid the 
illegal code and to get the correct answer 0011 (3) is added. 
i.e.        0101 + 0011 = 1000 
 1000 shows the correct answer for the LSD as it shows 5 in excess–3 code. 
 From the above discussion, one can get an inference that if the sum is less than or 
equal to 9, the correct answer is obtained by subtracting 0011 (3) from the incorrect 
answer. However, if the sum is more than 9, then 0011 (3) is to be added to the incorrect 
sum. The answer is observed to be more than 9 if a carry to the next digit is occurred. 

For example addition of 45 and 38 using excess–3 code may be given as: 
Excess – 3 of 45 :  0111  1000  
Excess – 3 of 38 :      + 0110  1011  

   
     1110  0011 
  –  0011 + 0011 
                                                    
 1011         0110 = 83 
 
Example 2.8:  Add 876 and 704 in excess–3 code. 
Solution: 
Excess – 3 of 0876: 0011 1011 1010 1001 
Excess – 3 of 0704 :  + 0011 1010 0011 0111 
  
 0100 0101 1011 0000 
 – 0011 + 0011 – 0011 + 0011  
 
  0100  1000  1011  0011   = 1580 
 



2.9 Alphanumeric Codes: In the preceding sections of this chapter, different 
codes for numeric data have been discussed. But in computers or in digital systems the 
numeric data as well letters of alphabet, punctuation marks and other special characters 
are also processed. So for representing this type of information data, different codes 
(groups of 0’s and 1’s) are to be discussed. These codes are called as alphanumeric codes. 
To represent the decimal numbers 0 through 9 in binary form four bits are used as 24 = 
16. However, in representing the 10 decimal numbers, 26 upper case letters (A, B, C…, 
Z), 26 lower case letters (a, b, c….., z), 7 punctuation marks (, : ; “ ‘ . ? ), and about 20 to 
40 special characters (+, -, <, >, =, $, % …) codes of minimum of 6 bits are required. The 
6 bit alphanumeric code referred to as internal code is shown in table 2.7. 
 

Table 2.7 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Character 6 bit 
internal code 

Character 6 bit 
internal code 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 
P 
Q 
R 
S 
T 
U 
V 
W 
X 

 

010 001 
010 010 
010 011 
010 100 
010 101 
010 110 
010 111 
011 000 
011 001 
100 001 
100 010 
100 011 
100 100 
100 101 
100 110 
100 111 
101 000 
101 001 
110 010 
110 011 
110 100 
110 101 
110 110 
110 111 

Y 
Z 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

BLANK 
. 
( 
+ 
$ 
* 
) 
- 
/ 
, 
= 

111 000 
111 001 
000 000 
000 001 
000 010 
000 011 
000 100 
000 101 
000 110 
000 111 
001 000 
001 001 
110 000 
011 011 
111 100 
010 000 
101 011 
101 100 
011 100 
100 000 
110 001 
111 011 
001 011 

  



 A more commonly used alphanumeric code is the ASCII (American Standard 
Code for Information Interchange) code pronounced as “as-kee”. Basically, it is a 7 bit 
code which is shown in table 2.8. It is used for printers and teletypewriters when 
interfaced with computers. The 8 bit ASCII code is also used for practical purposes, in 
which 8th bit is added for parity.  
 
 Table 2.8 

Character 7 bit ASCII 
code 

Hex Character 7 bit ASCII code Hex 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
: 
; 
< 
= 
> 
? 
@ 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 
P 
Q 
R 
S 
T 
U 
V 
W 

011 0000 
011 0001 
011 0010 
011 0011 
011 0100 
011 0101 
011 0110 
011 0111 
011 1000 
011 1001 
011 1010 
011 1011 
011 1100 
011 1101 
011 1110 
011 111 
100 0000 
100 0001 
100 0010 
100 0011 
100 0100 
100 0101 
100 0110 
100 0111 
100 1000 
100 1001 
100 1010 
100 1011 
100 1100 
100 1101 
100 1110 
100 1111 
101 0000 
101 0001 
101 0010 
101 0011 
101 0100 
101 0101 
101 0110 
101 0111 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
4B 
4C 
4D 
4E 
4F 
50 
51 
52 
53 
54 
55 
56 
57 

X 
Y 
Z 
[ 
\ 
] 
^ 
- 
. 
a 
b 
c 
d 
e 
f 
g 
h 
i 
j 
k 
l 
m 
n 
o 
p 
q 
r 
s 
t 
u 
v 
w 
x 
y 
z 
{ 
: 
} 
~ 

DELETE 

101 1000 
101 1001 
101 1010 
101 1011 
101 1100 
101 1101 
101 1110 
101 1111 
110 0000 
110 0001 
110 0010 
110 0011 
110 0100 
110 0101 
110 0110 
110 0111 
110 1000 
110 1001 
110 1010 
110 1011 
110 1100 
110 1101 
110 1110 
110 1111 
111 0000 
111 0001 
111 0010 
111 0011 
111 0100 
111 0101 
111 0110 
111 0111 
111 1000 
111 1001 
111 1010 
111 1011 
111 1100 
111 1101 
111 1110 
111 1111 

58 
59 
5A 
5B 
5C 
5D 
5E 
5F 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
6A 
6B 
6C 
6D 
6E 
6F 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7A 
7B 
7C 
7D 
7E 
7F 

 
 
 



 Another quite often used 8 bit alphanumeric code is EBCDIC (Extended BCD 
Interchange Code) is shown in table 2.9. 
 

Table 2.9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Problems:  
  
 1. Distinguish between a binary and a BCD code. Why BCD codes are use for 

decimal numbers in digital systems? 
 2. Differentiate between weighted and non – weighted binary codes. List some 

weighted codes and define one of them. 
 3. What is self complementing code? Show that 2421 is a self complementing 

code whereas 8421 is not a self complementing code. 
 4. Discuss the excess–3 code and show that it is a self complementing code. 
 5. Describe the gray code. What are characteristics of gray code? It is also 

known as reflected binary code – comment. 
 6.  Explain how the gray code is converted to binary numbers and vice– versa. 
 7. What is Hamming distance? Describe unit hamming distance cyclic code. 
 8. Discuss 7 bit even parity error correcting hamming code. 
 9. Explain how the BCD addition is performed. 
 10. Explain how the addition in excess–3 codes is performed. 
 11. Name some alphanumeric codes. Write the ASCII code for decimal numbers 0 

through 9. 
 12. Write the following decimal numbers in 8421 code: 
   7958, 5689, 209 

Character 8 bit 
EBCDIC code 

Character 8 bit 
EBCDIC code 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 
P 
Q 
R 

1100 0001 
1100 0010 
1100 0011 
1100 0100 
1100 0101 
1100 0110 
1100 0111 
1100 1000 
1100 1001 
1101 0001 
1101 0010 
1101 0011 
1101 0100 
1101 0101 
1101 0110 
1101 0111 
1101 1000 
1101 1001 

S 
T 
U 
V 
W 
X  
Y 
Z 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1110 0010 
1110 0011 
1110 0100 
1110 0101 
1110 0110 
1110 0111 
1110 1000 
1110 1001 
1111 0000 
1111 0001 
1111 0010 
1111 0011 
1111 0100 
1111 0101 
1111 0110 
1111 0111 
1111 1000 
1111 1001 



 (Ans: 0111100101011000, 0101011010001001, 001000001001) 
  
 13. Convert the following BCD (8421) code numbers to decimal numbers: 
  (i) 0100001100000110 
  (ii) 0010100101110000 

(iii)  1001100000000001 
(iv) 0101010000100001 

      (Ans.: 4316, 2970, 9801, 5421) 
 

14. Convert the following decimal numbers to XS3 (excess –3) code: 
1026, 4375, 6980, 4415 

(Ans.: 0100001101011001, 0111011010101000,  
  1001110010110011, 01110111 0100 1000) 

 
15. Convert the following excess –codes to decimal numbers: 

(i) 1100011101011001 
(ii)  0101011000110110 
(iii)  0110011101000101 
(iv) 1000010010111001 

 (Ans.: 9426, 2303, 3412, 5186) 
 

16. Convert the following decimal numbers to 2421 code numbers: 
1014, 2397, 6419, 8474 

(Ans.: 0001000000010100, 0010001111111101,        
          1100010000011111, 11110010011010100) 

 
17. Convert the following decimal numbers to gray code: 

8975, 4568, 23501, 10254 
(Hint.: first convert the decimal numbers to binary then to gray code)  

 (Ans.: 11001010001000, 1100100110100, 111011000101011, 
 11110000001001) 

 
18. Convert the following gray code numbers to binary numbers. 

(i) (1010111010000101110)g 
(ii)  (1111001011011011011)g 
(iii)  (10110111011111101)g 
(iv) (10000100100100100)g 

(Ans.: (1100101100000110100)2 , (1010001101101101010)2 

 (11011010010101001)2 , (11111000111000111)2  
 

19. Construct 7 –bit even parity Hamming code for transmitting the following 
digital data: 
(i) 0101 (ii) 1000    (iii)  0110 

        (Ans.: 1010010, 0000111, 0110011) 
  



20. A seven bit Hamming code received at the receiver is 1001001. Is there 
any error in the received code? If yes, what is the correct code?  
           (Ans.: yes, 1001011) 

  
21. A seven bit Hamming code received at the receiver is 0010100. Is there 

any error in the received code? If yes, what is the correct code? What is 
correct 4 bit data actually transmitted?     
           (Ans.: yes, 0110100, 1110) 

 
22. Using the BCD (8421) code, perform the addition of following decimal 

numbers verify your answer: 
   (i) 0781 + 123  (ii) 1056 + 4891   
   (iii)  254 + 511  (iv) 3001 + 25 

23. Using XS 3 code, perform the addition of decimal numbers given in 
example 21 and verify your answer. 

24. Write your name in ASCII code. 
25. Encode 0 to 2510 in ASCII, 8421, 5421 and 2421 codes. 
26. Encode your name in 6 bit internal and 8 bit EBCDIC alphanumeric 

codes. 

 
 _________ 
 
 
 
 
 
 
 

 



3 
Boolean Algebra and  
Logic Gates 
 
 In the last two chapters, number system, binary numbers, binary codes and other 
alphanumeric codes have been discussed because in digital systems or digital computers 
binary numbers (groups of 0’s and 1’s) are processed. These binary bits 0 or 1 are 
designated by predefined voltage levels, making thereby the design of digital systems 
very simple. George Boole, an English mathematician later on became famous as logician 
developed an algebra called as Boolean algebra or logic algebra or switching algebra 
based on logics. Logic is basically human reasoning that tells us if certain proposition or 
declarative statement is true. For example, “a switch is ON”, is a logic statement which is 
either true or false. The logic functions or digital functions for Boolean algebra will be 
formed by logics. In this chapter logic operations, logic gates and the Boolean algebra, 
will be discussed which will be used as the tools for the analysis and design of digital 
circuits. 
  
3.1 Logic Operations:  Three basic logic operations (AND, OR and NOT) are used 
in Boolean algebra which will now be discussed in detail.   
AND operation:   Consider a proposition or logical statement “Student having books 
AND his identity card can enter the college”. 
 Outcome or the result of this statement is the entry of the student – True or False 
(Allowed or not allowed). 
 Student should have two essential things: 

(i) Books – True or False (Student has the books or not). 
(ii)  I. Card – True or False (Student has the I. Card or not). 

  
 Table 3.1 illustrates that only the student who has books AND has his identity 
card, can enter the college. So the given proposition consists of two simple propositions 
(student having books and having his Identity card) connected with AND connective. 
This is known as AND operation. 
 

 
 



Table 3.1 
 
 

 
 

 
 
 
  
 
  
 
This composite proposition can be shown by an electronic circuit as shown in figure 3.1, 
consisting of two switches A & B and a bulb L. The switch A represents the logic 
statement that the student having the books only. The ON & OFF positions of the switch 
A show the True and False of the above statement. Similarly the two positions of the 
switch B show the true and false of the second logical statement that the student has his 
identity card. The On and off positions of the bulb show the outcome or the result of the 
composite statement. On and off positions of the bulb respectively represent the true and 
false of the composite statement of the student entry in the college.   
 

A B

Bulb
L

+

-

 
 
 Fig. 3.1 
  
 Table 3.2 shows conditions for the bulb to glow. The bulb will glow only when 
both the switches are on, which is analogous to the statement that the student can enter 
the college when he has the books and his identity card.  
                                    
 
 
 
 
 
 
 

Student having 
    Books               I. Card 

Student 
Entry 

    False                   False 
    False                   True 
    True                    False 
    True                    True  

False 
False 
False 
True 



 
  Table 3.2 

     
 
 
 
 
 
 
 
 
 The logical values may be assigned to the positions of the switches and the bulb. 
For example logic 0 is assigned to off position of the switches and the bulb; and logic 1 
for the on positions. The truth table for the AND operation will therefore be given as 
shown in table 3.3. 
 

Table 3.3 
 
 
 
 
 
 
 
 
The AND operation may be represented in the mathematical form or the logic form as: 
  L = BA⋅  
 It is pronounced as A dot B (A AND B) 
 Mathematically  000 =⋅  
 00110 =⋅=⋅  
 111 =⋅  
 It is clear from all the above discussion A AND B means both. Both is the logic 
behind the word AND. The logic circuit designed for the demonstration of AND 
operation is known as AND gate. The symbolic representation of two input AND gate is 
shown in figure 3.2. 
 

 

A

B

Output
A.B

Fig. 3.2 
  

The AND gates for more than two variables are also defined in the similar 
fashion. 

Switch 
    A                          B 

Bulb 
L 

   off                        off 
   off                        on 
   on                        off 
   on                        on 

off 
off 
off 
on 

Switch 
    A                          B 

Bulb 
L 

   0                            0 
   0                            1 
   1                            0 
   1                            1 

0 
0 
0 
1 



OR operation:   Consider another proposition “Student having books OR his identity 
card can enter the college”. 
 Outcome or the result of this statement too is the same; entry of the student – True 
or False (Allowed or not allowed). 
 Student should have either of the two essential things: 

(i) Books – True or False (Student has the books or not). 
(ii)  I. Card – True or False (Student has the I. Card or not). 

  
 Table 3.4 illustrates that only the student who has books OR has his identity card 
can enter the college. So the given proposition consists of two simple propositions 
(student having books or having his Identity card) connected with OR connective. This is 
known as OR operation.  

  
 Table 3.4 

 
 
 
  
 
  
 
  
  
 The switching or electronic circuit for this operation may be given as shown in 
figure 3.3. 

A

B

Bulb
L

+

 
  Fig. 3.3 
 
 
The truth table for the OR operation is given in table 3.5, after assigning the logical 
values to the positions of the switches and the bulb. For example logic 0 is assigned to off 
position of the switches and the bulb; and logic 1 for the on positions.  

 
 
 
 

Student having 
    Books               I. Card 

Student 
Entry 

    False                   False 
    False                   True 
    True                    False 
    True                    True  

False 
True 
True 
True 



Table 3.5 
 
  
 
 
  
 
 
 
  
 
 
 
 The OR operation may be represented in the mathematical form or the logic form 
as: 
  L = A + B 
 It is pronounced as A OR B 
 Mathematically  0 +  0 = 0 
 0 +  1 = 1 +  0 = 1 
 1+ 1 = 1 
 The logic circuit designed for the demonstration of OR operation is known as OR 
gate. The symbolic representation of two input OR gate is shown in figure 3.3. 
 

 
B

A Output
A+B

Fig. 3.3 
 

OR gates for more than two variables may also be defined. 
 
NOT operation:   Consider the logic statement “The student who does not have the cell 
phone, is allowed to enter the college”. 
 The student’s entry is the outcome or the result of this statement – True or False 
(Allowed or not allowed). 
 Student should not have the cell phone, the only criterion at the check point. The 
student has the cell Phone or not (True or False). 
Table 3.6 illustrates that the student who does not have the cell phone is allowed to enter 
the college. Hence it is known as NOT operator. 
 
 
 
      
 

Switch 
    A                          B 

Bulb 
L 

   0                            0 
   0                            1 
   1                            0 
   1                            1 

0 
1 
1 
1 



Table 3.6 
 
 
 
 
  
 
  
 An electromagnetic relay may be used to demonstrate the NOT operation as 
shown in figure 3.4. When a positive and constant voltage is applied to the coil of the 
relay it gets energized. The bulb does not glow as it is connected to the normally close 
position of the relay. The bulb glows when no voltage is applied to the coil, as relay coil 
is de-energized.  This shows the NOT or Inverter operation.  
 

A.C.Mains

Relay

N/C

To Constant
d.c. voltage BULB L

 
                                              
        Fig. 3.4 
 Logically if input A is 0 the output is 1 represented by A     (A bar). 
 So    
                                                          Table 3.7 
 
  
 
 
 
 
 
 The symbolic representation of NOT gate is shown in figure 3.5. 
   

   A A  
 
 Fig. 3.5 
 
 AND & OR gates are called the binary gates because it is to be operated on at 
least two variables. The NOT or inverter gate is operated only on one variable hence it is 

Student has the 
cell phone 

Student’s entry 

False 
True 

True 
False 

Input 
A 

Output 

A  
0 
1 

1 
0 



called as Unary operator. The detailed design of these gates will be discussed in a later 
chapter. 
 
3.2 Postulates of Boolean Algebra:   The two binary operators AND & OR 

),( +⋅ and one unary operator (NOT)  ( a bar on a variable) discussed in the 
forgoing section are used in defining Boolean Algebra. The operands for these operations 
are the elements belong to a set. Let A and B are the elements which belong to a set S (A, 
B ∈ S). Huntington in 1904 defined the following postulates of Boolean algebra. 
Postulates are the basic or universal rules, which are always assumed to be true and thus 
are not to be proved. The theorems of Boolean algebra may be derived from these 
postulates. 
 
Postulate 1:  Closure Property:   For every A, B ∈ S 
  (i) D = A + B   and D ∈ S:  This is the closure property for       
                                                                            OR operation. 
 (ii)   G = A.B   and G ∈ S:  This is the closure property for  
 AND operation. 
 
Postulate 2:   Commutative Law:  If A and B ∈ S   then  

(i) A + B = B + A 
(ii)  A . B = B . A 

 
Postulate 3:  Identity Element: 

(i) The identity element for OR operator is 0, if A ∈ S and     0 ∈ S 
then A + 0 = 0 + A = A : 0 is known as addition identity. 

(ii) The identity element for AND operator is 1, if A ∈ S  and     1 ∈ S 
then A . 1 = 1 . A = A  : 1 is known as    multiplication identity. 

 
Postulate 4: Distributive Law:   If A, B, C ∈  S then 

(i) A . (B + C) = A . B + A . C 
(ii) A + B . C = (A + B) . (A + C) 

 
Postulate 5: Complementing Law: If  A ∈ S, there exist an element A  (known as 

complement of a) which belong to S ( SA ∈ ) such that 
 (i) A+ A  = 1 
 (ii)  A. A  = 0 
 
Postulate 6 : There are at least two elements A , B ∈ S such that BA ≠ . 
  
 Boolean algebra differs with ordinary algebra on the following points: 

1.   The distributive law A + B . C = (A + B) . (A + C) does not hold in ordinary 
algebra. 



2. Complementing law does not hold in ordinary algebra, i.e., there is no 
equivalent of the unary operator (NOT operation) in ordinary algebra. 

3. Boolean algebra does not have the additive inverse and multiplicative inverse 
due to which no subtraction or division operations exist.  

4. Boolean algebra has only finite set of elements where as the ordinary algebra 
deals with real numbers which constitute a set with infinite number of 
elements. Switching algebra, a special class of Boolean algebra however, 
deals with two valued elements. The elements should have the values 0 and 1 
only. 

 
3.3 Two – Valued Boolean Algebra: The postulates of special class of Boolean 
algebra known as two valued Boolean algebra or switching algebra, may be discussed on 
the similar lines if a set of two elements 0 & 1 are assumed. The postulates are 
summarized below: 

Table 3.8 
OR operation AND operation 

         0 +  0 = 0  
    0 + 1 = 1 + 0 = 1  
          1 + 1 = 1 

10 =  
 

1.1 =  1 
1 . 0 = 0 . 1 = 0 

0 . 0 = 0 

01 =  

  
 These postulates are also given in the general form as: 
  0 + A = A 1 . A = A 

  1=+ AA  0. =AA  
 
3.4 Duality Principle:  According to this theorem the postulates or theorems of 
Boolean algebra are given for one type of operation may be converted to other type of 
operation (i.e. OR to AND or vice versa) just by interchanging 0 with 1 and ‘+’ with ‘.’ 
This principle ensures that if a theorem is proved using the postulates of Boolean algebra 
then dual of this theorem automatically holds and need not to be proved separately. 
 
3.5 Theorems of Boolean Algebra: The following are the general theorems or 
rules of Boolean algebra: 
 
Theorem  1(a) A + A = A 1(b)  A . A = A 
Proof: 1(a) 
When A = 0 :      0 + 0 = 0 = A 
When A = 1:  1 + 1 = 1 = A Thus   A + A = A    is proved. 
 1(b) is the dual of 1(a), which automatically holds. 
 
Theorem  2(a) A + 1 = 1 2(b)  A . 0 = 0 
Proof: 2(a): 



When A = 0 :      0 + 1 = 1  
When A = 1:   1 + 1 = 1 Thus   A + 1 = A    is proved. 
 2(b) is the dual of 2(a). 
 
Theorem 3(a)  A + A . B = A 3(b)  A . (A + B) = A 
Proof 3(a): 
 L.H.S. =  A + A . B 
  = A .1 + A . B (since A .1 = A) 
  = A . (1 + B) 
  = 1⋅A  (since 1 + B = 1) 
  = A Proved. 
 3(b) is the dual of 3(a). 
This theorem is also called as absorption theorem. Corollary of the absorption theorem is 
given as follows: 

 ABAA =⋅+  ABAA =+⋅ )(  
 

Theorem 4  AA =  
Proof: 

When A = 0 AAA ===== 01,10  

When A = 1   AAA ===== 10,01  Thus AA =  

 
 
 
Theorem 5(a)  BABAA +=⋅+          5(b)  BABAA ⋅=+⋅ )(  
Proof 5(a): 

  L.H.S. = BAA ⋅+  
   = )()( BAAA +⋅+  Distributive law 

   = )(1 BA +⋅  (since 1=+ AA ) 
   = A + B Proved   
 5(b) is the dual of 5(a). 
This theorem is also called second absorption theorem. Corollary of this theorem is given 
as     BABAA +=⋅+        BABAA ⋅=+⋅ )(  
 
De Morgan’s Theorem:   De Morgan, a logician gave two very important theorems 
which are used in Boolean algebra, which is stated as:  
 The complement of a product of two variables is equal to the sum of the 
complemented variables. In equation form it is given as: 
 

   BABA +=⋅     
 The dual of this theorem is given in equation form as: 
 



Theorem 6(b)  BABA ⋅=+  
 Which is stated as: The complement of a sum of two variables is equal to the 
product of the complemented variables.  
 
Proof:   Theorem 6(a) is illustrated in the truth tables (3.9) as the columns 4 and 7 of this 
table are identical. Theorem 6(b) is the dual of 6(a) so need not to be proved.  
 
     Table 3.9 
  
  
 
 
 
 
 
  
 The De Morgan’s theorems hold good for n variables given below: 
 
 

  nn AAAAAAAA +⋅⋅⋅⋅⋅⋅+++=⋅⋅⋅⋅⋅⋅ 321321  

 nn AAAAAAAA ⋅⋅⋅⋅⋅⋅⋅⋅=+⋅⋅⋅+++ 321321  
 
Example 3.1:  Using the theorems of Boolean algebra, prove the following identities: 

    (i)   CBACBABACBACBAABA ++=⋅⋅+⋅++⋅+⋅+⋅+ )().()(  

   (ii) CABACBBACACABAA ⋅+⋅=+⋅+⋅⋅+⋅⋅⋅+ )())(()(  

   (iii) CACBBACACBBA ⋅+⋅+⋅=⋅+⋅+⋅  
Solution:  (i)   L.H.S.  

=  CBABACBACBAABA ⋅⋅+⋅++⋅+⋅⋅+⋅+ )()()(  

=  CBABACBACBAABA ⋅⋅+⋅++++⋅⋅+⋅+ )()()(  (Demorgan’s law) 

=  CBABACBACBABA ⋅⋅+⋅++++⋅+⋅+ )()()(       
(Absorption law) 

=  CBABACBACBABBAA ⋅⋅+⋅+⋅++⋅+⋅++⋅ ))()((  (Distributive 
law and Demorgan’s 
law) 

=  )()( CAABCBACBAA ⋅+⋅+⋅++⋅⋅+  (Absorption law) 

=   )( CABCBACA +⋅+⋅++⋅  (Absorption law) 

=  CABCBCAA +⋅+⋅++ .  (Manipulation) 

A  B  BA ⋅  BA ⋅  A  B  BA +  
0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
1 

1 
0 
0 
0 

1 
1 
0 
0 

1 
0 
1 
0 

1 
0 
0 
0 



=   ABCA ⋅++  (Absorption law) 
=   A + B + C  (Absorption law) 
=   R.H.S 
 
(ii)  L.H.S. 

=  )))((()( CBBACACABAA ++⋅+⋅⋅⋅+  

=  )))(((. CBBACCAA +++  (Absorption law) 

=  ))(( CBBACA +++  (Absorption law) 
=  ))(( CBBCA ++  (Absorption law) 
=  ).( CBA +  (Since A.A = A) 

=  A.B + A.C 
=   R.H.S. 
 
(iii)  L.H.S. 

=  CACBBA ⋅+⋅+⋅  

= CACBBA ⋅⋅+⋅⋅+⋅⋅ 111  (Since A.1 = A) 

=   CBBACBAACCBA ⋅+⋅+⋅⋅+++⋅⋅ )()()(  (Since 1=+ AA ) 

=  CBACBACBACBACBACBA ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅    
(Manipulation) 

=  CBACBACBACBACBACBA ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅  
=  )()()( CCBABBCAAACB +⋅⋅++⋅⋅++⋅⋅  

=  BACACB ⋅+⋅+⋅  
=   R.H.S. 
 
3.6 Venn Diagram:   The postulates and theorems of Boolean algebra may be 
illustrated by the pictorial model known as Venn diagram. The Venn diagram consists of 
a rectangle inside which a number of circles intersecting each other are drawn. One circle 
corresponds to one variable. Figure 3.6 shows the Venn diagram for one variable. The 
area inside the circle represents the variable itself (i.e. the shaded area in figure 3.6a 
represents the variable A); and the area outside the circle represents the complement of 
that variable (shaded area in figure 3.6 b showsA ).  
 
 
  
 
 
 
 Figure 3.6 a Figure 3.6 b 

A 

     A                    

A 



 
 Figure 3.7 shows the Venn diagram for two variables consisting of a rectangular 
inside which two circles intersecting each other are drawn. The area common between the 
two circles shows the intersection of two variables represented by ‘.’ sign. The shaded 
area in figure 3.7a represents the intersection of two areas BA ⋅ . The union or the sum of 
two areas represents the OR operation of two variables. A+B is represented by the shaded 
area in figure 3.7b. 
 

  
                              Fig. 3.7a Fig. 3.7 b 
 
 The shaded area represented in figure 3.8 shows BA ⋅  as it the intersection of A  
(outside area of A shown in figure 3.9 a) and B (area of the circle B shown in figure 
3.9b). 
 

 
 Fig. 3.8 
 
 

 
  Fig. 3.9 a Fig. 3.9 b  
 
 The Venn diagram for BA⋅  is shown in figure 3.10. It is the intersection of 
outside regions of the circles A and B (ref. fig.3.11 a & b). 
 
 



 
 Fig. 3.10 
  

 
 Fig. 3.11 a Fig. 3.11 b 
 
 Now the Boolean identity CABACBA ⋅+⋅=+⋅ )(  will be illustrated using 
the Venn diagram. Left hand side of this identity is shown in figure 3.12 which is the 
intersection of the A and (B+C). 
 
 

 
 Fig. 3.12 
 
 The right hand side of the identity is shown in figure 3.13.  
 



 
                                                      Union 

 
 
 Fig. 3.13 
 
 The shaded areas of figures 3.12 and 3.13 are identical which shows the given 
identity is proved. 
 
 
Example 3.2:  Using the Venn diagram prove the following identities: 

  (i) )()( YXYXYXYX +⋅+=⋅+⋅    

 (ii) YXYX ⋅=+  
 
 
Solution: (i)   Figure 3.14 shows the Venn diagram of left hand side of the given identity 
and the Venn diagram for right hand side is shown in figure 3.15.  
 

 
 
         Union  



 
 Fig. 3.14 
 

 
 

Intersection 
 

 
 Fig. 3.15 
 

From these two figures it is clear that the shaded areas are identical, so the 
Boolean identity is proved. 
 

(ii)  Figures 3.16 and 3.17 respectively show the Venn diagrams of left 
hand side and right hand side of the given 

identity YXYX ⋅=+ . 

 
 Shaded area is X + Y Shaded area is YX +  
  



 Fig. 3.16 
 

 
 Shaded area is X    Shaded area is Y  
 
 Intersection 

 
 Fig. 3.17 
 
 

The shaded areas of the Venn diagram shown above are identical, which indicate 
the given identity is proved. 
3.7 Truth Table:  Truth table gives the values of the output variables for all the 
possible combinations of the input variables. Consider a Boolean function F = A . B of 
the logic AND operation. In this function A & B are the two input independent variables 
and will have 2N (22 = 4) possible input combinations, where N is the number of input 
variables. Each input combination gives rise an output. All possible values of input and 
output variables listed in the form of a table is known as truth table.  The truth table of 
this AND operation is shown in table 3.10. 

Table 3.10 
 
 

 
 
 
 
 

  
 
 
 To draw the truth table of a given function following procedure is followed: 

Input Variables 
    A                          B 

output 
F= BA ⋅  

   0                            0 
   0                            1 
   1                            0 
   1                            1 

0 
1 
1 
1 



 A table is drawn having one column each for independent variables and one for 
dependent variable. The entries of all the possible values of the independent variables are 
made in the different horizontal rows in binary progression. The number of horizontal 
rows will depend on the number of independent variables given by 2N , where N is equal 
to the number of independent variables. The values in the dependent function are filled in 
the table after calculating it from the given function. 
Example 3.3: Draw the truth table of a Boolean function given below: 

    CBAF +⋅=  
Solution:  The given expression has the three independent variables, so it will have 8 
different horizontal rows (as 23 = 8). Putting all possible values of the independent 
variables in the binary progression and evaluated values of the dependent variable F from 

the given expression CBAF +⋅= , the required truth table is obtained which is shown 
below (table 3.11). 

 
Table 3.11 

Input variables 
A            B                C 

Dependent 
variable  

F 
0             0                 0 
0             0                 1 
0             1                 0 
0             1                 1 
1             0                 0 
1             0                 1 
1             1                 0 
1             1                 1 

0 
1 
1 
1 
0 
1 
0 
1 

3.8 Canonical Forms for Boolean Function:  There are two basic forms of 
Boolean function corresponding to a given truth table. These forms are Canonical SP 
form (Sum of Products) and Canonical PS form (Product of Sums). 
3.8.1  Canonical SP (or SOP) Form:   The canonical SP form for Boolean function of 
the truth table are obtained by summing (ORing) the product (ANDed) terms 
corresponding to the 1’s entry in the output column of the truth table. The product terms 
also known as minterms are formed by ANDing the complemented and un-
complemented variables in such a way that the complement of variable is taken for the 
0’s entry to the input variable and the variable itself is taken for 1’s entry in the input 
variable. The minterms (possible ANDed terms or products) for the two variables A and 
B are shown in table 3.12.                                                   
 
 
Table 3.12 
 
 
 
 
 

Input variables 
A         B 

Minterms 

0                   0 
0                   1 
1                   0 
1                   1 

BA⋅  
BA ⋅  
BA ⋅  
BA ⋅  



Similarly, table 3.13 shows the minterms for three variables truth table. 
 
 
 Table 3.13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 In general, there will be 2N different minterms for N variables. Further it is also 
convenient to refer the minterms in the form of minterm notations as shown in table 3.13. 
The subscript to m corresponds to the decimal equivalent of the binary number formed by 

the independent variables. For example the minterm for the minterm notation 6m  is 

CBA ⋅⋅ , as 110 is the binary equivalent of the decimal number 6 (subscript of m). There 
will be 16 minterms for four variable truth table from m0 to 15m .  

 The required canonical SP form of the Boolean expression corresponding to a 
given truth table is finally obtained by ORing the minterms that produce 1 output in the 
truth table. 
 Consider a truth table (table 3.14) whose Boolean expression in SP form is to be 
obtained.  
  
        Table 3.14 

A        B        C F 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

0 
0 
1 
0 
0 
1 
1 
1 

 

Input variables 
A B C 

Minterms 
 

Minterm 
notation 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

CBA ⋅⋅  

CBA ⋅⋅  

CBA ⋅⋅  

CBA ⋅⋅  

CBA ⋅⋅  

CBA ⋅⋅  

CBA ⋅⋅  

CBA ⋅⋅  

0m  

1m  

2m  

3m  

4m  

5m  

6m  

7m  



 The minterms corresponding to the input conditions that result 1 at the output in 

the above table are ,CBA ⋅⋅  ,CBA ⋅⋅  ,CBA ⋅⋅  CBA ⋅⋅ . The required Boolean 
expression is obtained by ORing these minterms as: 

 CBACBACBACBAF ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  ------ (3.1) 
 In minterm notation this expression is written as: 

  7652 mmmmF +++=  

 ),,,(
7652∑= mmmm  ------ (3.2)  

 Or simply 

  ∑= )7,6,5,2(F  ------ (3.3) 

 The decimal numbers in the above expression indicate the subscript of the 
minterm notation. 
3.8.2  Canonical PS (or POS) Form:  The Boolean expression in canonical PS form of a 
truth table can be obtained by taking the product (ANDing) of the sum (ORed)  terms 
corresponding to the 0’s entry in the output column of the truth table. The ORed terms 
are called as maxterms. The maxterms are formed by ORing the complemented and Un-
complemented variables present in a row of the truth table in such a way that the 
complement of variable is taken for the 1’s entry to the input variable and the variable 
itself is taken for 0’s entry in the input variable. 
 The maxterms with their notations for three variables are shown in table 3.15.  
   
 
 
 
   Table 3.15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input variables 
A B C 

Maxterms 
 

Maxterm 
notation 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

CBA ++  

CBA ++  

CBA ++  

CBA ++  

CBA ++  

CBA ++  

CBA ++  

CBA ++  

0M  

1M  

2M  

3M  

4M  

5M  

 

6M  

7M  



 The subscript to M corresponds to the decimal equivalent of the binary number 
formed by the independent variables. For example the minterm for the minterm notation 

5M  is CBA ++ , as 101 is the binary equivalent of the decimal number 5 (subscript of 

M). There will be 16 minterms for four variable truth table from M0 to M15 .  
 The Boolean expression in canonical PS form of the truth table given in table 3.14 
is obtained by ANDing the maxterms that produces o output in the truth table. 
 The maxterms corresponding to the input conditions that result 0 at the output in 

the table 3.14 are CBA ++ , CBA ++ , CBA ++ , CBA ++ . The required Boolean 
expression is therefore obtained as: 

 F(in PS form) )()()()( CBACBACBACBA ++⋅++⋅++⋅++=  ------ (3.4) 
In maxterm notation this expression is written as: 

 F(in PS form) 4310 ... MMMM=  ------ (3.5) 

 = ),,,( 4310 MMMM∏  

Or Simply  

         F(in PS form) )4,3,1,0(∏=  ------ (3.6) 
  
 It is important to note that equations (3.1) and (3.4) represent the Boolean 
expressions in canonical SP and canonical PS forms respectively of the same truth table 
(table 3.14). These two expressions must be equivalent. The equivalence may be shown 

by considering directly the expression for F  in SP form from table 3.14 as: 

 F  (in SP form) ∑= 4310 ,,, mmmm  

  or             CBACBACBACBAF ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  ----- (3.7) 
 
Taking the complement on both side of this equation we get: 
  

  CBACBACBACBAF ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  

                               )()()()( CBACBACBACBA ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=  

 )()()()( CBACBACBACBA ++⋅++⋅++⋅++=   

 )()()()( CBACBACBACBA ++⋅++⋅++⋅++=  
 ------ (3.8) 
 The equation (3.8) is the same as equation (3.4). This method gives us a method 
of getting the PS form from SP form of the same Boolean expression. Similarly, by 

taking F  (in PS form) and then complementing on both sides the conversion of PS form 
to SP form is obtained. 
  

 Thus F )4,3,1,0(∏=  in PS form is converted to           

                           ∑= )7,6,5,2(F  in SP form. 



 ------ (3.9) 
  
 From the above discussion it is concluded that the two standard forms of Boolean 
function may be obtained from a given truth table. These functions will not directly be 
realized using the basic gates. These functions are to be minimized using the theorem of 
Boolean algebra or other methods, which will be discussed in later chapter. It is clear 
from the equation (3.9) that the conversion of one standard form to other is obtained by 
interchanging ∑  and ∏  and having the numbers missing in the original form.  
 
Example 3.4:   Express the following function into canonical form: 

  (i) )()()( ZYYXZYXF +⋅+⋅++=   

 (ii) CBBACBAG ⋅+⋅+⋅⋅=  
 

Solution: (i)  )()()( ZYYXZYXF +⋅+⋅++=  
 Expending the terms we get: 

 F )()()( ZYXXZZYXZYX ++⋅⋅⋅++⋅++=  

)()()()()( ZYXZYXZYXZYXZYX ++⋅++⋅++⋅++⋅++=

51320 MMMMM=  

  = ),,,,( 53210 MMMMM∏  

 (ii)    CBBACBAG ⋅+⋅+⋅⋅=  
 Expending the terms we get: 

 CBAACCBACBAG ⋅⋅+++⋅⋅+⋅⋅= )()(  

    CBACBACBACBACBA ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=  

    15237 mmmmm ++++=   

    75321 mmmmm ++++=  

 =∑ ),,,,( 75321 mmmmm  

 
Example 3.5:   Express the following Boolean function in PS form. 

 CBBAF ⋅+⋅=  
 

Solution:  We have  CBBAF ⋅+⋅=  
 Applying the distributive law, we get: 

)()( CBABBAF +⋅⋅+⋅=  
)()( CBCAB +⋅+⋅=  

)()()( CBAACBBABAA ++⋅⋅+⋅+⋅+⋅=  
)()()()()()( CBACBACBACBABABA ++⋅++⋅++⋅++⋅+⋅+=  

)()()()()()( CBACBACBACBACCBACCBA ++⋅++⋅++⋅++⋅⋅++⋅⋅++=  



)()()()()()()( CBACBACBACBACBACBACBA ++⋅++⋅++⋅++⋅++⋅++⋅++=
)()()()()( CBACBACBACBACBA ++⋅++⋅++⋅++⋅++=  

76320 MMMMM=  
= ),,,,( 76320 MMMMM∏  
 
Example 3.6:   Express the following Boolean function in SP form. 

 CBAF +⋅=  
Solution:   The given Boolean function is: 

 CBAF +⋅=  
 Expending the terms we get: 

 CAACCBA ⋅+++⋅⋅= )()(  
 CACACBACBA ⋅+⋅+⋅⋅+⋅⋅=  
 CBBACBBACBACBA ⋅+⋅+⋅+⋅+⋅⋅+⋅⋅= )()(  
 CBACBACBACBACBACBA ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=  
 CBACBACBACBACBACBA ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=  
 CBACBACBACBACBA ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=  
 13745 mmmmm ++++=  

 75431 mmmmm ++++=  

 ),,,,( 75431 mmmmm∑=  
 
Example 3.7:  Using the theorems of Boolean algebra, reduce the following functions: 
 (i) )15,14,7,6,2,1,0(),,,(1 ∑=DCBAF  

 (ii) )15,14,13,7,6,3,2(),,,(2 ∑=WZYXF  
Solution: 
 
(i) )15,14,7,6,2,1,0(),,,(1 ∑=DCBAF

DCBADCBADCBADCBADCBADCBADCBADCBA ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=  

)()()()( DDCBADDCBADDCBADDCBA +⋅⋅⋅++⋅⋅⋅++⋅⋅⋅++⋅⋅⋅=  

CBACBACBACBA ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  

)()( AACBCCBA +⋅⋅++⋅⋅=  

CBBA ⋅+⋅=  
 
(ii)   )15,14,13,7,6,3,2(),,,(2 ∑=WZYXF  

WZYXWZYXWZYXWZYXWZYXWZYXWZYX ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=
)()()( WWZYXWZYXWWZYXWWZYX +⋅⋅⋅+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅=  

ZYXWZYXZYXZYX ⋅⋅+⋅⋅⋅+⋅⋅+⋅⋅=  

)()( ZWZYXYYZX +⋅⋅⋅++⋅⋅=  



 (Since WZWZZ +=⋅+ ) 

ZYXWYXZX ⋅⋅+⋅⋅+⋅=  

WYXYXXZ ⋅⋅+⋅+= )(          

WYXYXZ ⋅⋅++= )(       

WYXZYZX ⋅⋅+⋅+⋅=           
 
Example 3.8:  Using the theorems of Boolean algebra, reduce the following functions: 
 (i) )7,5,4,1,0(),,(1 ∏=cbaF  
 (ii) )15,14,13,11,7,5,3(),,,(2 ∑=dcbaF  
Solution: 
(i)   )7,5,4,1,0(),,(1 ∏=cbaF  

)()()()()( cbacbacbacbacba ++⋅++⋅++⋅++⋅++=  

         (Distributive law) 

)()()( cbababa ++⋅+⋅+=                                         (Since 0=⋅ cc ) 

))(()( cbbaba +⋅+⋅+=      (Distributive law) 

)()( cbaba ⋅+⋅+=  

)()()( cababa +⋅+⋅+=  

)()( caaab +⋅⋅+=  

)( cab +⋅=  
 
(ii) )15,14,13,11,7,5,3(),,,(2 ∑=dcbaF  

)()()()()()()( dcbadcbadcbadcbadcbadcbadcba +++⋅+++⋅+++⋅+++⋅+++⋅+++⋅+++=  

)()()()()()()( dcbadcbadcbadcbadcbadcbadcba +++⋅+++⋅+++⋅+++⋅+++⋅+++⋅+++=  

)()()()( ddcbadcbaccdbaaadcb ⋅+++⋅+++⋅⋅+++⋅⋅+++=  

)()()()( cbadcbadbadcb ++⋅+++⋅++⋅++=  

))(()()( dccbadbadcb +⋅++⋅++⋅++=    (Distributive law) 

   (Since dcdcc ⋅=+⋅ )( ) 

)()()()( dbacbadbadcb ++⋅++⋅++⋅++=            (Distributive law) 

)()()( aadbcbadcb ⋅++⋅++⋅++=  

)()()( dbcbadcb +⋅++⋅++=  

)()())(( dbcbacbbd +⋅++⋅+⋅+=  

)()()( dbcbacbd +⋅++⋅⋅+=  

)()()()( dbcbacdbd +⋅++⋅+⋅+=  

)()()( cbacdbd ++⋅+⋅+=                           (Since aaa =⋅ ) 



 
 
3.9 Realization of Boolean Function Using Gates:   The Boolean functions discussed 
above nay be realized using AND, OR and NOT gates. Consider a Boolean function: 

 cbacbacbacbacbaf ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=             ------ (3.10) 
Realization of this Boolean function is shown in figure (3.16). 

f

a b c

 
 Figure 3.16 
 
 AND, OR and Not gates are called as universal gates because any Boolean 
function can be realized using these gate. It is further noted that this circuit needs 9 gates 
(three NOT gates, five 3 input AND gates and one 5 input OR gates) for its realization. 
Use of Boolean algebra help in getting the minimal Boolean function as given below: 

    cbacbacbacbacbaf ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=  

 cbaccbaccba ⋅⋅++⋅⋅++⋅⋅= )()(  

 cbababa ⋅⋅+⋅+⋅=  

 cbabba ⋅⋅++⋅= )(  

 cbaa ⋅⋅+=  

 cba ⋅+=                              (Since babaa +=⋅+ ) 
 This reduced Boolean function need to have only three gates (one NOT gate, one 
2 input AND gate and one 2 input OR gate) for its realization as shown in figure (3.17). 
 



cba

f

 
Figure 3.17 

  
 It is clear form the above discussion that the minimized Boolean function needs 
less number of gates for the realization. This signifies the importance of Boolean algebra. 
The minimized functions not only help in reducing the number of gates but also increase 
the reliability of the circuit and speed of operation.  

 
3.10 Other Logic Operations and Logic Gates:  The use of three Boolean 
operators namely AND, OR and NOT has been discussed in the forgoing sections of this 
chapter. The gates for these operators are known as universal gates as all the Boolean 
functions can be realized using these gates. Besides these operators there are other 
operators which will now be discussed. For two input variables two truth tables are 
known; one for AND operation and other for OR operation. However, for two variables 

there may be 16 ( )2
22= different truth tables. In general 

N22 truth tables may be 
constructed, where N is the number of input variables. So for two variables 16 different 
Boolean operators or functions may be defined. The truth table of 16 functions for two 
variables A and B are shown in table 3.16.  
 

Table 3.16 
A    B 

0f  
1f  2f

 

3f  4f  5f

 

6f

 

7f  8f  

 

7f  

9f  

 

6f  

10f

 

5f  

11f  

 

4f  

12f
 

3f  

13f  

 

2f  

14f
 

1f  

15f

 

0f  

0     0 
0     1 
1     0 
1     1 

0 
0 
0 
0 

0 
0 
0 
1 

0 
0 
1 
0 

0 
0 
1 
1 

0 
1 
0 
0 

0 
1 
0 
1 

0 
1 
1 
0 

0 
1 
1 
1 

1 
0 
0 
0 

1 
0 
0 
1 

1 
0 
1 
0 

1 
0 
1 
1 

1 
1 
0 
0 

1 
1 
0 
1 

1 
1 
1 
0 

1 
1 
1 
1 

 
 



 Out of the 16 function listed in table 3.16, eight functions are basically the 
complementation of other eight functions. These 16 functions are expressed algebraically 
in table 3.17. 

 
Table 3.17 

  
Function  Operator  Symbol  Comments 

00 =f   NULL    Always 0 

BAf ⋅=1  AND  BA ⋅   A and B 

BAf ⋅=2
 INHIBITION BA/   A but not B 

Af =3     Always A 

BAf ⋅=4  INHIBITION AB /   B but not A 

Bf =5     Always B 

BABAf +=6  EXCLUSIVE –OR BA⊕   A or B but not both   

BAf +=7        OR BA+    A or B 

)(8 BAf +=       NOR BA ↓   Not (A or B) 

BABAf ⋅+⋅=9  EQUIVALENCE A Θ B  A equals B 

Bf =10  COMPLEMENT B  Not  B 

BAf +=11  IMPLECATION  AB ⊃  If B then A 

Af =12  COMPLEMENT A  Not  A 

BAf +=13  IMPLECATION  BA ⊃  If A then B 

BAf ⋅=14  NAND BA ↑  Not (A and B) 

115 =f  IDENTITY  Always 1 

 
 
 The Null, Identity, A and B functions are trivial, since Null and Identity functions 
always produce 0 and 1 respectively, and A and B functions always produce the input 
itself. We are already familiar with AND, OR and Complement (NOT or ,A B ) 
functions. The other functions are NAND, NOR, Exclusive OR, Equivalence, Inhibition 
and Implication. The NAND function is the complement of AND and it is also known as 
‘NOT of AND’. Similarly, NOR is the complement of OR which is also known as ‘NOT 
of OR’. The Exclusive OR (also known as XOR or EOR) is similar to OR but produce an 
output 1 when either of two inputs is 1 but not both. In other words XOR produces output 
1 if the inputs are dissimilar. The equivalence is the complement of XOR, hence it is also 
known as Exclusive-NOR (or XNOR). This function produces output as 1 when both the 
inputs are equal. The logicians may use the functions Implication and Inhibition but are 
seldom used in computer logic, since they are not commutative.  
 The electronic circuits which can perform the operation or functions discussed 
above are known as gates. The symbolic representation and truth tables for these gates 
are shown in table 3.18. 



 
 
                                         Table 3.18 
Logic gates  Symbols De-Morgan’s  Truth Table 
    representation 

B

A
AND F=A . B

A    B      F
0    0      0
0    1      0
1    0      0
1    1      1

 

A

B

F=A + B
A    B      F
0    0      0
0    1      1
1    0      1
1    1      1

OR

 

A
INVERTER

F = A
   A      F
   0      1
   1      0

F = A + B

A

BNAND
B

A
A    B      F
0    0      1
0    1      1
1    0      1
1    1      0

F=A . B

      

A

B B

A

F = A . B

F=A + B
A    B      F
0    0      1
0    1      0
1    0      0
1    1      0

NOR

  

A

B
Ex-OR
XOR

F=A + B
A    B      F
0    0      0
0    1      1
1    0      1
1    1      0

 



B

A
Ex-NOR
or 
equivalence

A    B      F
0    0      1
0    1      0
1    0      0
1    1      1

F=A . B

 
 
 The logic gates for Inhibition and Implication operators or functions are not 
designed since these functions are not commutative. In fact, the binary logic gates are 
designed only for the operators which satisfy the following factors: 

(i) The operators should be commutative and associative. 
(ii)  The gates for the operators itself or in association with other gates should 

be able to realize all the Boolean functions. 
(iii)  It should be feasible to design the gates and the cost for making the gates 

should not be very large. 
  The exclusive-OR and Equivalence operators satisfy the first two properties but 
relatively more expensive to construct these gates for more than two inputs. However, 
NAND and NOR operators satisfy all the above properties so gates for these operators are 
constructed and commonly used. These gates also called the universal gates are used in 
preference to AND, OR, NOT gates.  
 It is necessary to discuss that the NAND/NOR are defined for only two inputs as 
these operators are not associative, i.e.  

    )()( CBACBA ↑↑≠↑↑   

and    )()( CBACBA ↑↓≠↓↓  
 So multiple input NAND/ NOR gates are defined as the complement of multiple 
input AND/OR gates as shown in figure 3.18. 
 

B
A

B
A

C C

A.B.C A + B + C

 
     NAND 
 

A + BA

B
A

BC

+ C A . B . C

 
     NOR 
      Figure 3.18 
  
 Further AND, OR, NOT gates can be implemented with NAND’s or NOR’s alone 
as follows: 
(i) NAND as NOT :  AAA ⋅=  
 also   1⋅= AA       illustrated as shown in figure 3.19(a): 
 



A
A.A = A A

1

A.1 = A

 
 Fig. 3.19(a) 
 
(ii) NAND as AND: =⋅=⋅ BABA Complement of BA ⋅  
 which may be illustrated as shown in figure 3.19(b). 
 
 

A

B

A.B A.B

 
Fig. 3.19(b) 

(iii) NAND as OR: 

 BABABABA ↑=⋅=+=+  
 which may be illustrated as shown in figure 3.19 (c). 
 

A

B

A

B

A.B=A + B

B

A

B

A
A+B

 
   Fig. 3.19(c) 

 
 

(i) NOR as NOT :  AAA +=  

 also   0+= AA       illustrated as shown in figure 3.20(a): 
 

A
AA+A = A

0

A+0 = A

 
 Fig.3.20(a) 
    
(ii) NOR as OR: 

 =+=+ BABA  Complement of  BA+  
 which may be illustrated as shown in figure 3.20(b). 
 



 
B

A A+B A+B

 
Fig. 3.20(b) 

 
 

 
(iii) NOR as AND:  

 BABABABA ↓=+=⋅=⋅  
 which may be illustrated as shown in figure 3.20 (c). 
 

A

B

A

B
B

A

B

AA+B=A . B
A.B

 
 Fig. 3.20(c) 
 
 The minimization of Boolean expressions using the theorems of Boolean algebra 
have already been discussed which help in reducing the literals or variables. The reduced 
Boolean expressions can be realized with less number of AND, OR, NOT gates and also 
each (AND/OR) gate having minimum number of inputs. There are also other methods 
for minimizing the Boolean expressions which will be discussed in a later chapter. 
However, for realization of Boolean expressions using the NAND/NOR gates alone, 
more number of these gates are required. This is not true when IC’s are used, since 
several gates are available in an IC. So for making the circuit using the NAND/NOR 
gates alone will not cost more. 
3.11 Realization of Boolean expressions using NAND/NOR alone:  The 
given Boolean expression is generally simplified using the theorems Boolean algebra or 
other methods to be discussed in a later chapter, to obtain the minimal Boolean 
expressions having less number of variables and their complements. Now the logic circuit 
diagram corresponding to the simplified Boolean expression is drawn. If the Boolean 
expression is in the sum of products (SP) form, then NAND gates should be used for 
realization. However, NOR gates should be used for realization, if the simplified Boolean 
expression is in product of sums (PS) form. This method enables the realization simple 
and requires least number of cascading gates. 
 The general rules for NAND gates realization of Boolean expression given in SP 
form, are given below: 

1. For each product terms, use the literals or variables as inputs to NAND 
gates.  

2. Feed the output of all such NAND gates to a second level NAND gate. 
3. Any literal appearing alone as a term is complemented and connected to 

the NAND gate at the second level. 



 For example let EBCADF ++=  is given for realization. NAND gates 
realization of this expression is shown in figure 3.21. 
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Fig. 3.21 

 
Similarly, if we have a Boolean expression in PS form as 

ECBDAF ⋅+⋅+= )()( , the NAND realization of this expression is shown in figure 
3.22. This circuit requires three levels of gating. Each level adds to the propagation delay. 
The aim of the circuit designers should be that there should be minimum number levels 
of gating. The realization of this circuit with NOR gates will have only two levels of 
gating. The NOR realization of this circuit is shown in figure 3.23. Hence NOR 
realization is preferred for the Boolean expressions given in PS form. 
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Fig. 3.22 
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 Fig. 3.23 
  



 The general rules for NOR gates realization of Boolean expression given in PS 
form, are given below: 

4. For each sum terms use the literals as inputs to NOR gates.  
5. Feed the output of all such NOR gates to a second level NOR gate. 
6. Any literal appearing alone as a term is complemented and connected to 

the NOR gate at the second level. 
 
Example 3.9: (i)  Prove the associative law for exclusive – OR operation. 

(iii)  Prove that the NAND operation for three variables is not 
associative.  

Solution:  (i) The associative law for exclusive – OR operation is given as: 
   CBACBA ⊕⊕=⊕⊕ )()(  
 L.H.S. = )( CBA ⊕⊕  

 )( CBCBA ⋅+⋅⊕=  

 )()( CBCBACBCBA ⋅+⋅⋅+⋅+⋅⋅=  

 )()( CBCBACBACBA ⋅⋅⋅⋅+⋅⋅+⋅⋅=  

 )()( CBCBACBACBA +⋅+⋅+⋅⋅+⋅⋅=  
  )()( CBCBACBACBA +⋅+⋅+⋅⋅+⋅⋅=   
 ))()(( CBCCBBACBACBA +⋅++⋅⋅+⋅⋅+⋅⋅=  
 )( BCCBACBACBA ⋅+⋅⋅+⋅⋅+⋅⋅=  
 CBACBACBACBA ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  
 R.H.S. CBA ⊕⊕= )(  

 CBABA ⊕⋅+⋅= )(  

 CBABACBABA ⋅⋅+⋅+⋅⋅+⋅= )()(  

 CBACBACBABA ⋅⋅+⋅⋅+⋅⋅⋅⋅= )()(  

 CBACBACBABA ⋅⋅+⋅⋅+⋅+⋅+= )()(  
 CBACBACBABA ⋅⋅+⋅⋅+⋅+⋅+= )()(  
 CBACBACBABBAA ⋅⋅+⋅⋅+⋅+⋅++⋅= ))()((  
 CBACBACBACBA ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  
    L.H.S. = R.H.S  Hence proved. 
 

(ii) We are to prove that CBACBA ↑↑≠↑↑ )()(  

L.H.S. = )( CBA ↑↑  

 )( CBA ⋅↑=  

 )( CBA ⋅⋅=  

 )( CBA ⋅+=  

 CBA ⋅+=  



 R.H.S. CBA ↑↑= )(  

 CBA ⋅⋅= )(  

 CBA +⋅=  
 L.H.S.  ≠   R.H.S.  Hence proved 

 

PROBLEMS: 

1. State and prove Demorgan’s law for two variables. How can it be proved 
for n variables? 

2. Discuss the theorems of Boolean algebra. 

3. What is the difference between the ordinary algebra and Boolean algebra? 

4. What do you understand by logics? Discuss the AND and OR operations 
using the suitable diagram. Draw the truth table for three input AND and 
OR operations. 

5. What do you understand by logics? Discuss NOT operations using a 
suitable diagram.  

6. What is Venn diagram? Prove the following identities using Venn 
diagrams: 

(i) CABACBA ⋅+⋅=+⋅ )(  
(ii) )()( cabacba +⋅+=⋅+  

(iii) aaa =+  

(iv) baba ⋅=+  

7. Prove the following postulates of Boolean algebra and then verify the 
following identities using Venn diagram. 

(i) babaa +=⋅+  
(ii) abaa =⋅+  

(iii) abaa =⋅+  

(iv) baba +=⋅  

8. Describe the method of constructing truth table of a Boolean expression. 
Taking a suitable function of three variables draw the truth table. 

9. Discuss the method of getting canonical PS form of Boolean function of a 
given truth table. 

10. Discuss the method of getting canonical SP form of Boolean function of a 
given truth table. 

11. Describe the method of converting the PS form of Boolean function to SP 
form. 



12. Mention and explain the different Boolean operators from a two bit truth 
table. How many of them are used to deign the gates? Why NAND and 
NOR gates are known as universal gates. 

13. Explain how AND, OR, NOT gates can be realized using NAND gates 
alone. 

14. Explain how AND, OR, NOT gates can be realized using NOR gates 
alone. 

15. Prove the associative law for exclusive - OR and equivalence (XNOR) 
operators. 

16. Prove that the associative law does not hold for NAND operators for three 
variables. 

17. Prove that the associative law does not hold for NOR operators for three 
variables. 

18. Using the theorems of Boolean algebra , prove the following identities: 

  (i)   CBABAACBCBA ++=⋅+⋅++⋅+ )()(  

  (ii) ZYZYYZXX +=⋅+++⋅ )(  

  (iii) )( DBADBCAA +⋅=⋅+⋅+    

    (iv) BAABA ⋅=+⊕ .)(  
    (v) BBAA =⊕⊕ )(  

19. Prove the following: 

(i) BABABABA ⋅+⋅=⋅+⋅  

20. Using the theorems of Boolean algebra , prove the following identities: 

(i) ZWXZYWZYXZWXWZYXWZYXWZYX +=++++  
 

(ii)  
YZWXXYZWWXYZWZXYWZXY

ZWYXWZYXWZYXWZYXYZWX

+=++++

++++
 

 (iii)  CBBACBCABA ⋅+⋅=⋅+⋅+⋅  

21. Construct the truth table of the Boolean expressions and from the truth 
table find the canonical form of the Boolean expression. 

(i) BDDCBAZ +⋅+⋅=  
(ii) ZYYXF ⋅+⋅=  

22. Simplify the following functions using the theorems Boolean algebra. 

(i)  ∑= )10,9,8,2,1,0(),,,( dcbaF  

(ii) ∑= )15,14,13,9,6,4,1,0(),,,( dcbaF  

(iii) ∑= )15,12,10,8,5,4,0(),,,( WZYXF  



(iv) ∑= )15,14,11,9,7,6,5,3,2,1(),,,( DCBAF  

23. Realized the minimal Boolean expressions obtained in above  problem 
(22) using  

(i) AND, OR NOT gates. 
(ii)  NAND gates only. 

24. Simplify the following functions using the theorems Boolean algebra. 

(i)  ∏= )15,14,13,12,6,4(),,,( WZYXP  

(ii) )15,14,13,12,11,7,6,4,3(),,,( ∏=DCBAZ  

(iii) ∏= )15,13,11,10,9,8,3,2,1,0(),,,( WZYXF  

25. Realized the minimal Boolean expressions obtained in above  problem 
(24) using: 

(i) AND, OR NOT gates. 
(ii)  NOR gates only. 

26. Express the following function into canonical form: 

  (i) cabacbaF ⋅+⋅=),,(  

  (ii) DACBADCBADCBAF ⋅+⋅⋅+⋅⋅⋅=),,,(  

 (iii) WZYXZYZYX ⋅⋅⋅+⋅+⋅⋅=W)Z,Y,F(X,  

 (iv) DBCBDCADCBAF ⋅+⋅+⋅⋅=),,,(  

27. Express the following function in to canonical SP form 

)()(),,( CBCACBAZ +⋅+=  

28. Express the following function in to canonical PS form. 

BACACBAZ ⋅+⋅=),,(  
 

   
  
 
 __________ 
 



4 
 
Simplification of Boolean 
Functions 
 
 In the preceding chapter it has been discussed that the Boolean functions can be 
simplified using the theorems of Boolean algebra. The reduced Boolean expression helps 
in getting the simple, less expensive and smaller circuit. This method of simplification is 
not used in practice as it is difficult to apply. Further, it is impossible to guarantee that the 
reduced expression is minimal and it cannot be reduced beyond the obtained expression. 
The two other methods for simplifications of Boolean expression will be discussed in the 
following sections of this chapter. One is known as Karnaugh map (K – map) method and 
other is known as Quine – McClusky (Q – M ) tabular method. 

 
4.1 Karnaugh map (K – map) method:  The Karnaugh map method is very 
commonly used for the simplification of Boolean expressions, since no algebraic rules 
are applied in this method. It is simply a graphic method and provides systematic 
approach for getting the simplified Boolean expression. If this method is properly used 
then the available Boolean expression will be minimal and will not further be simplified 
by any method. The Karnaugh map also called K – map method is suitable for 
simplification Boolean expression which contains four or less number of variables (or 
literals) with their complements. 
 
4.1.2  Two Variable K – map:  For two variable K – map  two lines are drawn; one 
horizontal and the other vertical. On one line the complement of one variable followed by 
the variable itself is written and on the other line the complement of the other variable 
followed by that variable itself is written. Let the two variables are A and B. So A  and 
variable A, are written on vertical line; B  and variable B are written on horizontal line or 
otherwise as shown in figure (4.1). The other method of writing K – map for two 
variables is that in place of A ,  0 is written and in place of A, 1 is written; as illustrated 
in figure (4.2), where A and B are shown separately over and below of a leaning line. 
 



 
Figure 4.1 

 

 
Figure 4.2 

 
 These two figures are similar and show the same meaning. One can use either of 
the two ways mentioned above. Each K – map show four squares represented by four 
minterms m0, m1, m2, and m3. In the truth table of two variables if there are 1’s entry 
corresponding to the some minterms, then 1s are entered corresponding to those 
minterms. Let us assume that we have 1s entry for the minterms m2 and m3. The K – map 
for the same is represented as shown in figure 4.3. 

  
   Figure 4.3 
 
4.1.3 Three Variable K – map: For three variables two adjacent variables are taken on 
either side (vertical line or horizontal line) of the K – map and the remaining one variable 
on the other side. Let A, B and C are the three variables, the two variables will have four 

combinations labeled on one side as BA. ,  BA. , BA. and BA.  ; C  and C  on the other 
side as shown in figure 4.4.  



 
 Fig. 4.4 

 
The other method of writing K – map for three variables is that in place of the possible 

combinations of two variables A & B it is written as 00, 01, 11 and 10; and in place of C  
& C ,  0 & 1 are written; as illustrated in figure (4.5), where AB and C are shown 
separately over and below of a leaning line. 
 

 
 
 Fig. 4.5 

  
4.1.4 Four Variable K – map: For four variables two adjacent variables are taken on 
either side (vertical line or horizontal line) of the K – map and the two variables on the 
other side. Let A, B, C and D are the four variables, the two variables will have four 
combinations labeled on one side as BA. ,  BA. , BA. and BA.  ; and other two will also 



have the four combinations as DC. ,  DC. , DC. and DC.  on the other side as shown in 
figure 4.6.  

                      Fig. 4.6 
 
The possible combinations of AB and CD (discussed above) may also be shown 
separately over and below of a leaning line as illustrated in figure 4.7. 

 
     Fig. 4.7 
 

 If a Boolean function of three variables or four variables is given, the 1s entry in 
the K – map is done for those combinations which are present in the given expression and 
for the other combinations 0s entry are made. 

Example 4.1:  Draw the K – maps for the following Boolean function of three variables.   
 ∑= ),,,,(),,( 765311 mmmmmCBAF   



Solution: In the K – map of three variables 1s entry are made for the combinations 

76531 ,,,, mmmmm  and in the remaining combinations, 0s are entered. The K – map for 

the same is shown in figure 4.8. 

  
 Fig. 4.8 
 
Example 4.2:  Draw the K – maps for the following Boolean function of four variables.   
 ∑= ),,,,,,,(),,,( 151411764321 mmmmmmmmDCBAF   
Solution:  In the K – map of four variables 1s entry are made for the combinations 

15141176432 ,,,,,,, mmmmmmmm  and in the remaining combinations, 0s are entered. The K 
– map for the same is shown in figure 4.9. 
 

  
Fig. 4.9 

 
4.2 Encircling of Groups:  After constructing K – map, the pairs quads and octets of 
adjacent 1s in the K – map are made for getting the minimal Boolean expression. A pair 
eliminates one variable with its complement; a quad and an octet eliminate two variables 
and three variables respectively with their complements. Now it will be discussed how 
pairs, quads and octets are formed in the K – map and help in minimizing the Boolean 
expression.  
 
4.2.1 Pairs:   In the three-variable or four variable K – map having 1s and 0’s entry, 
two adjacent 1s (vertically or horizontally) are encircled. The diagonally adjacent 1s are 
never encircled. The encircled 1s forms the pairs, as shown in figure 4.10. 



                Fig. 4.10(a)     Fig. 4.10(b) 
 
 
 Now it is clear from the K – map of three variables (ref. figure 4.10 a) that there 

are two encircled pairs of adjacent 1s and these pairs correspond to the terms BA⋅  and 

CA⋅ . The method of writing these terms is that the variable, which gets changed from 
complemented form to un-complemented form or vice versa, is dropped with its 
complement. This can be illustrated as follows: 
 Consider the pair (fig. 4.10a) whose term isBA ⋅ , the two 1s contained in the pair 
has the binary numbers 000 and 001 for the variables ABC. In the binary numbers, the 
variable C changes from 0 to 1 (complemented to un-complemented), so this variable is 
dropped with its complement. The binary number left is 00 having the term (in SOP 

form) as BA ⋅ . Similarly, consider the second pair whose term isCA⋅ . The two 1s 
contained in this pair have the binary numbers 110 & 100 for variables ABC. The 
variable B changes from 1 to 0 so this variable is dropped with its complement. The 
remaining (common) binary number 10 for variables AC will have the term (in SOP) 

as CA⋅ .  
 The Boolean algebra is involved in getting the expression for a pair. In the first 
encircled pair (discussed above) of three variable K – map, each 1 of the pair show the 

terms CBA ⋅⋅  and CBA ⋅⋅ (corresponding to binary numbers 000 & 001). When these 
terms are ANDed, BA⋅  is obtained: 

   

BA

CCBA

CBACBA

⋅=

+⋅=

⋅⋅+⋅⋅=

)(  

 Similarly, one can verify the terms corresponding to encircled pairs in four 
variable K – map as given in figure (4.10 b).  



 From the above discussion it is clear that a pair eliminates one variable with its 
complements, i.e., the pair will contain the term of two variables in three variable K – 
map and it will contain the term of three variables in four variable K – map.  
 
4.2.2 Quads:  In the K –map if four 1s are adjacent in a row or column or in the form of a 
square, then these 1s are encircled called as quads. A term is written for each quad using 
the same techniques discussed above. The variables which changes from complemented 
to uncomplemented or vice versa are dropped and the variables which are common in all 
the four 1s of a quad are considered to write term in SOP form. Consider a K – map 
shown in figure 4.11.   

 
               Fig. 4.11a  Fig.4.11b 
 
 In the K – map of three variables (figure 4.11a), the encircled group of 1s shows 
the quad whose four elements represent the binary numbers 000, 010, 110 & 100 for 
variables ABC.  In the binary numbers, 0 for C is common for all the four binary 

numbers; so  C  (in SOP form) is the term for this quad. The variables AB are dropped as 
each of the variable changes 0 to 1 or 1 to 0. The Boolean algebra is involved in getting 
the expression for a quad. The quad is the combination of two pairs (shown by dotted 

encircles in figure 4.11a). In the encircled quad, the two pairs will show the terms CA⋅  

and CA⋅ . When these terms are ANDed, C  is obtained as: 

   

C

AAC

CACA

=

+⋅=

⋅+⋅=

)(  

 Similarly in the K – map of four variables (figure 4.11b), the two quads are 
encircled. One can verify the terms for each quad. 
 It is clearly illustrated that the quad will contain the term of one variable in a K – 
map of three variables and it will contain the terms of two variables in the K – map four 
variables. It may, therefore, be stated that a quad eliminates two variables with their 
complements. 
 



4.2.3 Octets:  The eight adjacent 1s are encircled in a K – map known as octet. Figure 
4.12 shows the encircled octet (solid line) in a K – map of 4 variables. The term for the 
octet is B, which is written with the same technique as used for pairs and quads. 

 

 
Fig. 4.12 

  
An octet eliminates three variables with their complements and gives a term of 

one variable in a K –map of four variables. In fact an octet is a combination of two quads 

as shown by dotted lines (figure 4.112). The terms for two quads are CB ⋅   and CB ⋅ . 
When these two terms are combined it gives:  

CBCB ⋅+⋅=  
 )( CCB +=  
 B=  
4.2.4 Overlapping groups: While making encircled groups in the K – map, it is always 
tried to have the groups of largest number of 1s first than others, i.e. octets are encircled 
first than quads and than pairs. It is important to use same 1 more than once. In other 
words same 1 may be used in more than one encircled groups. Such groups are called as 
the overlapped groups. Some overlapped groups are shown in figure 4.13. 

 
  Fig. 4.13(a)      Fig. 4.13(b) 



               

 
 Fig. 4.13 (c)     Fig. 4.13(d) 

 The terms for each encircled groups are written in the same manner as is done for 
normal pairs, quads and octets. 
4.2.5 Rolling groups:  It is also allowed to roll the K – map so that grouping of 
largest number of 1s may be formed. To understand this consider a K – map as shown in 
figure (4.14a). In this K – map while encircling, one can obtain two quads but using the 
rolling of K – map, an octet may be formed as shown in figure (4.14b). Here the rolling is 
done in such a way that the left hand side encircled quad touches the right hand side 
encircled quad. This in fact looks like an octet. The rolling is shown by half encircling the 
two groups as shown in figure (4.14b). Thus the term corresponding to the rolled octet is 
written in the same fashion as in normal encircling.  

 
 Fig. 4.14a Fig.4.14b 
 
The rolling is possible for quads and pairs also as illustrated in figure 4.15.  



 
             Fig. 4.15a     Fig. 4.15b 
  
 The rolling is not only possible with the 1s of extreme left columns and the 1s of 
extreme right columns of the K – map, but it is possible with the 1s of upper most row 
and the 1s of lower most column as shown in figure 4.16. 

 
 Fig.4.16a Fig. 4.16b 
 
4.2.6 Redundant Groups:   While encircling the groups in the K – maps, there is a 
possibility that all the elements (1s) of some group/groups are overlapped by other 
groups. Such a group whose all 1s are overlapped by other groups is called a redundant 
group. The redundant groups may be illustrated by considering a K – map shown in 
figure 4.17.  
 



  
  
 Fig.4.17 
 In this K – map the encircled groups are: one quad and four pairs. But quad is 
redundant since all its four 1s are used in forming other pairs. The quad is, therefore, 
eliminated. So the valid encircled groups will be as shown in figure 4.18.  

  
  
 Fig. 4.18 
 
 The encircled groups of this figure are simplified one and the minimal expression 
of this K – map is given as : 

  CBADCBDCBCBAF ⋅⋅+⋅⋅+⋅⋅+⋅⋅=   
  
4.3.7 Procedure for Simplification: The different rules for encircling the groups in the 
K – map have been discussed in the above sections. Now using these rules the method of 
getting the minimal Boolean expression of the given truth table (or function) will be 
summarized below: 



• After forming the K – map, enter 1s for the min-terms that correspond to 1 in 
the truth table (or enter 1s for the min-terms of the given function to be 
simplified). Enter 0s for the remaining min-terms. 

• Encircle octets, quads and pairs of course remembering rolling and 
overlapping. Try to form the groups of maximum number of 1s. 

• If any such 1s occur which are not used in any of the encircled groups, then 
these isolated 1s are encircled separately. 

• Review all the encircled groups and remove the redundant groups, if any. 

• Write the terms for each encircled group. 

• The final minimal Boolean expression corresponding to the K – map will be 
obtained by ORing all the terms obtained above. 

 
 
Example 4.3:  Using K –map simplify following Boolean function of three variables. 
 ∑= ),,,,(),,( 76510 mmmmmCBAF   
Solution:  The K –map for the given function is drawn, after encircling the groups of 1s, 
as shown in figure 4.19. The required Boolean expression is given by: 

   CBBABAF ⋅+⋅+⋅=  
 

  
 Figure 4.19 
 
 
Example 4.4: Using K –map simplify following Boolean function of four variables. 
 ∑= )12,11,9,7,4,2,1,0(),,,( DCBAF   
 
Solution:  The K –map for the given function is drawn, after encircling the groups of 
1s, as shown in figure 4.20. The required Boolean expression is given by: 

  DCBADBADCBDBACBAF ⋅⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=  
 



  
                                     
                                     Fig. 4.20 
 
Example 4.5:  Minimize the following function using K – map and realize it with AND, 
OR & NOT  logic gates. 

∑= )15,14,11,10,8,5,2,1,0(),,,( DCBAX  
Solution:  The K –map drawn after encircling the groups of 1s, for the given function is 
shown in figure 4.21. The required Boolean expression is given by:   
 DCBDBCAX ⋅⋅+⋅+⋅=  
 It is interested to note from this figure that the four 1s at the corners of the K –
map forms a quad due to the rolling on both sides, whose term will be  DB ⋅ . 

 
 Fig.4.21 
  



 After getting the minimal Boolean expression, realization of the function will be 
as shown in figure 4.22. 
 

 
 
    Fig. 4.22 

 
4.3 Incompletely Specified Functions:  In digital circuits we come across of two 
types of functions; namely completely specified functions and incompletely specified 
functions. The functions whose values are specified for all min-terms are known as 
completely specified functions and in the K –map either 0s or 1s are entered for all the 
min-terms; such functions have been considered so far. But sometimes we encounter 
situations in which some min-terms do not occur. For example: Input data to a digital 
system are sent in 8421 code in which the combinations 0000 through 1001 occur, and 
1010 through 1111 are known as illegal combinations as these combinations do not 
occur. So the combinations 0000 to 1001 will have the output as 0 or 1 and accordingly 
these values may be entered in the K – map. The combinations 1010 to 1111 will have 
the output neither 0 nor 1, as these combinations do not occur in the given system. So 
these combinations are called as the incompletely specified functions. In the K –map φ is 
entered for every incompletely specified function. The φ is called as ‘don’t care’ 
condition. While encircling the groups in the K –map φ may assume to be either 0 or 1, 
whichever helps in giving the simplest expression. The don’t cares are treated as 1s inside 
encircled groups in the K –map and are treated as 0s outside the encircled groups. 
 This can be illustrated by taking an example. Suppose we wish to minimize the 
following function of four variable having the ‘don’t cares’ also. The ‘don’t cares’ are 
shown by φ below the summation symbol. 

 ∑∑ +=
φ

)11,10,9,8,7,6()13,5,3,2,1(),,,( DCBAX  

 This function shows that in the K –map 1s are entered corresponding to the min-
terms 1,2,3,5,13 and φ are entered for 6,7,8,9,10,11 and 0s are entered for the remaining 
terms. The K –map with these entries are shown in figure 4.23(a) and its encircling & 
simplification is shown in figure 4.23(b). There are two encircled quads and φ which are 
inside the encircled groups are treated as 1s. The last column of this K –map is not 



encircled to form the quad as its all elements are φ. It must be remembered that no such 
group is formed whose all the elements are φ. The minimal Boolean function of this K –
map is given by: 
 

 DCCAX ⋅+⋅=  

                            
                   Fig. 4.23 a                 Fig.4.23 b  
 

The general procedure of getting the minimal Boolean expression of a K-map 
including the ‘don’t care’ conditions is summarized below: 

• After forming the K – map, enter 1s for the min-terms that correspond to 1 in 
the truth table (or enter 1s for the min-terms of the given function to be 
simplified). Enter φ to the ‘don’t care’ conditions and 0s for the remaining 
min-terms. 

• Remembering rolling and overlapping, encircle octets, quads and pairs. The φ 
may be treated as 1 if these help in forming largest groups. No such group will 
be formed whose all the elements are φ. 

• If any such 1s occur which are not used in any of the encircled groups, then 
these isolated 1s are encircled separately. 

• Review all the encircled groups and remove the redundant groups, if any. 

• Write the terms for each encircled group. 

• The final minimal Boolean expression corresponding to the K – map will be 
obtained by ORing all the terms obtained above. 

Example 4.6:  Minimize the following function using K – map and realize it with NAND 
gates only. 

∑∑ +=
φ

)15,14,13,12,11,10()9,8,6,5,3,2,0(),,,( ZYXWF  



Solution:   The K –map is drawn for the given function and encircling of the groups is 
done as shown in figure 4.24. The required Boolean expression is given by:   
     

ZYXYXZXZYWF ⋅⋅+⋅+⋅+⋅+=  

 
 
    Fig. 4.24 
  
 The realization of this function using NAND gates only is shown in figure 4.25.  

  
 Fig. 4.25 
 
4.4 NOR Implementation of Boolean Functions: The implementation of 
Boolean function with NOR gates requires the simplified Boolean function in product of 
sums form. But the K –map discussed above gives the simplified expression in sum of 



products form. So for getting the Boolean expression in POS form the encircling may be 
done with 0s and don’t care conditions. The same rules will be followed for encircling 
with 0s and φ.  However, the terms for encircled groups are obtained in max-term form. 
The variables which get changed in moving from one element to the other adjacent 
element in the encircled groups of 0s will be eliminated with their complements; and the 
variables common to all the elements in the encircled group will be used in writing the 
max-term. For example if 01 is common for AB variables in an encircle group of 0s, then 

the max-term corresponding to 01 will be )( BA+ . The final minimal Boolean expression 
for the K –map will be obtained by ANDing all the terms obtained above. 
 It can further be illustrated by taking an example. Find the minimal Boolean 
expression using K –map for the following function. 
 )15,14,13,2,1,0()11,10,8,7,6,4(),,,( ∏ ∏⋅=

φ
DCBAF  

 In this given function 0s are entered for the terms 4,6,7,8,10,11and φ are entered 
for 0,1,2,13,14,15 in the K –map and the minimal expression is obtained in POS form. 
The K –map is shown in figure 4.26. 

 )()()()( DCACACBDBF ++⋅+⋅+⋅+=  
 

  
Fig. 4.26 

 
Example 4.7:  Minimize the following function using K – map and realize it with NOR 
gates only. 

 )13,11,9()15,14,12,8,5,4,1,0(),,,( ∏ ∏⋅=
φ

DCBAF  

Solution:    The K –map is drawn for the given function and encircling of the groups is 
done as shown in figure 4.27. The required Boolean expression is given by:   
    CBAF ⋅+= )(  



 
  Fig. 4.27 
  
 The realization of this function using NOR gates is shown in figure 4.28. 

  
 Fig. 4.28 
 
Example 4.8:   Minimize the following function using K – map and realize it with NOR 
gates only. 

∑∑ +=
φ

)15,11,7,2()14,10,8,5,1,0(),,,( DCBAF  

Solution: The entries of 0s, 1s and don’t care conditions in the K –map are made as per 
the given problem. The encircling of the groups are done with 0s and φ (shown in figure 
4.29), since the minimized function is to be realized with NOR gates only.   The 
minimized function in POS form is given by: 

 )()()( DCBDACAF ++⋅+⋅+=  
 



  
Fig. 4.29 

  
 The realization of this function using NOR gates is shown in figure 4.30. 

 
 
 Fig. 4.30 
 
4.5 Five and Six Variable K – map:   The simplification of the Boolean function up to 

four variables have been discussed in the forgoing sections of this chapter. Maps for 
more than four variables become complicated and its use are not very simple. The 
five variable map should have 32 squares as it will have min-terms and 6 variable 
map will have 64 squares as it will have 64 min-terms. So the 5 variable K –map 
will have two blocks (two K –maps four variables each) of 16 squares as shown in 
figure 4.31. If the 5 variables are ABCDE then variable A will represent that the 

two K –maps (of four variables BCDE) for A  and A .  
 



 
 Fig 4.31 
 
 Similarly, map of six variables will have four blocks (four K –maps of four 
variables) of 16 squares each. If six variables are ABCDEF then the four K-maps of four 

variables (CDEF) will belong to BA⋅ , BA⋅ , BA⋅  &  BA ⋅ variables as shown in figure 
4.32.   
 

 
Fig. 4.32 

 
4.5.1 Simplification of Five and Six Variable Maps: It has been discussed 
that the K –map of five variables has two blocks of 16 squares and the K –map of six 
variables has four blocks of 16 squares. A pair (two adjacent min-terms) in one block and 



other pair in the other adjacent block will said to be adjacent if the positions of two pairs 
are same in their respective blocks. For example squares 13 & 9 (forming pair of one 
block) are adjacent to the squares of 29 & 25 (pair of the adjacent block) in five-variable 
K –map and thus reduces two variables using the same procedure as used in four-variable 
map. Similarly, a quad (four adjacent min-terms) of one block and other quad of the other 
adjacent bock will be adjacent if the positions of the two quads are the same in their 
respective blocks.  That is the four squares 19, 23, 31 & 27 (forming quad of one block) 
are adjacent to the squares 51, 55, 63 & 59 in adjacent block of six-variable map; and 
these two quads will eliminate three variables. The elements of the diagonal blocks will 
not be adjacent even if their positions are same. The simplification can be illustrated by 
using the following two examples. 
 
Example 4.9:  Simplify the Boolean function of five variables:                                
      ∑= )29,28,27,24,23,22,20,19,18,16,13,12,11,8,7,6,4,3,2,0(),,,,( EDCBAF  

Solution: The  K-map for five variables is drawn and 1s are entered for the min 
terms given in the problem and remaining entries are filled with 0s as shown in figure 
4.33. 

 

 
 Fig. 4.33 
 
 The encircling is done as given in figure 4.33.  
 The min-terms 0, 4, 12 & 8 of block A  (forming quad) and the min-terms 16, 20, 
28 & 24 of other block A  are adjacent, thus giving the term of two variables ED ⋅ . 

 The min-terms 3, 2, 7 & 6 of block A  (forming quad) and the min-terms 19, 18, 
23 & 22 of other block A  are adjacent, thus giving the term of two variables DB ⋅ . 
 The min-terms 12, 13 of block A  (forming a pair) and the min-terms 28, 29 of 

other block A  are adjacent, thus giving the term of three variables DCB ⋅⋅ . 



Similarly, isolated 1 (min-term 11) of block A  and isolated 1 (min-term 27) of 

block A  are adjacent, thus gives the term EDCB ⋅⋅⋅ . 
Now ORing all the terms obtained above, the minimized Boolean expression is 

given by: 

EDCDCBDBEDF ⋅⋅+⋅⋅+⋅+⋅=  
 
Example 4.10:  Simplify the Boolean function of six variables:                            

∑= )62,60,58,56,54,52,50,41,30,28,26,24,22,20,18,15,14,11,10,7,6,3,2(),,,,( EDCBAF

 
Solution:  Figure 4.34 shows the K –map of the given problem. 
 

 
 Fig. 4.34 
 The encircling is done as given in figure 4.34.  
 The adjacent groups of 1s are shown by dotted lines and the minimized Boolean 
expression is shown as: 

FEDCBAFCBFDBFEBEBAF ⋅⋅⋅⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=  
 
4.6  Quine – McCluskey Method : The K –map for the simplification of Boolean 
function has been discussed in detail. This method was proved to useful tool for the 
simplification of Boolean function up to four variables. However, this method can be 
used for more than four variables (five or six variables) but it not very simple to use, 
since it is difficult to find if the best selection of encircled groups have been made.  
  



A method developed by Quine and improved by McCluskey was found to be good 
for the simplification of Boolean functions of any number of variables. This method is 
known as Quine – McCluskey method or Q – M tabular method or simply tabular 
method. 
  

In mapping it has been observed that any adjacent minterm can be reduced because 
they differ by only one literal. This is also the fundamental principle of the Q – M tabular 
method of minimization of Boolean functions. 
  

The following steps are to be used for the minimization of Boolean functions in this 
method: 

Step I  All minterms are arranged in groups of same number of 1s in their 
binary equivalents. 

Step II Each term of groups of low number of 1s is compared with every term 
of groups of higher number of 1s. These terms are then combined. Two 
terms of adjacent groups are said to be combined, if their binary 
representation differ by single bit in the same position. The combined 
terms consist of the original fixed representation with a dash (–) sign at 
the differing place. A tick mark (√ ) is placed on the right hand side of 
every term, which has been combined with at least one term. 

Step III Compare and combine the new terms obtained in step II with the terms 
of groups of higher numbers in the similar fashion. The two terms are 
combined which differ by only single 1 and whose dashes are in the 
same positions. This procedure is continued till no further combinations 
are possible.  

Step IV All those terms which remained without tick mark (√) are known as the 
prime implicants, as they can not be reduced further. Finally the 
necessary prime implicants are obtained by rejecting those implicants 
which have been covered in one or more prime implicants. The 
necessary prime implicants will then give the required Boolean 
expression. 

This method can well be illustrated by considering the following example. 
 
 
Example 4.11: Simplify the Boolean function given in example 4.9, using Q – M 
method. 
 
 
Solution:  The given Boolean function is : 

      ∑= )29,28,27,24,23,22,20,19,18,16,13,12,11,8,7,6,4,3,2,0(),,,,( EDCBAF   
 
 
We follow the steps given in Q – M method and find the prime implicants: 
 



 
 
No. of  Min- Binary  Combination Combination II 
zeros terms equivalents  with Binary Nos. with binary Nos. 
0 0 √ 0 0 0 0 0 0,2 √ 0 0 0 – 0  0,2,4,6  √ 0 0 – – 0 
__________________________ 0,4 √ 0 0 – 0 0  0,2,16,18 √ – 0 0 – 0 
 2 √ 0 0 0 1 0 0,8 √ 0 – 0 0 0  0,4,8,12  √ 0 – – 0 0 
1 4 √ 0 0 1 0 0  0,16 √     – 0 0 0 0  0,4,16,20 √ – 0 – 0 0 
 8 √ 0 1 0 0 0      _________________  0,8,16,24 √ – – 0 0 0 
 16 √ 1 0 0 0 0 2,3 √ 0 0 0 1 –  ______________________ 

___________________ 2,6 √ 0 0 – 1 0  2,3,6,7  √ 0 0 – 1 – 
 3 √ 0 0 0 1 1 2,18 √ – 0 0 1 0  2,3,18,20 √ – 0 0 1 – 
 6 √ 0 0 1 1 0 4,6 √ 0 0 1 – 0  2,6,18,22 √ – 0 – 1 0 
2 12 √ 0 1 1 0 0 4,12 √ 0 – 1 0 0  4,6,20,22 √ – 0 1 – 0 
 18 √ 1 0 0 1 0 4,20 √ – 0 1 0 0  4,12,20,28 √ – – 1 0 0 
 20 √ 1 0 1 0 0 8,12 √ 0 1 – 0 0  8,12,24,28 √ – 1 – 0 0 
 24 √ 1 1 0 0 0 8,24 √ – 1 0 0 0  16,18,20,22 √ 1 0 – – 0 
___________________________  16,18 √ 1 0 0 – 0  16,20,24,28 √ 1 – – 0 0 
 7 √ 0 0 1 1 1 16,20 √ 1 0 – 0 0  _______________________ 
 11 √ 0 1 0 1 1 16,24 √ 1 – 0 0 0  3,7,19,23  √ – 0 – 1 1 
3 13 √ 0 1 1 0 1        ________________ 3,11,19,27 – – 0 1 1 
 19 √ 1 0 0 1 1 3,7 √ 0 0 – 1 1 6,7,22,23  √ – 0 1 1 – 
 22 √ 1 0 1 1 0 3,11 √ 0 – 0 1 1 12,13,28,29 – 1 1 0 – 
 28 √ 1 1 1 0 0 3,19 √ – 0 0 1 1 18,19,22,23 √ 1 0 – 1 – 
___________________________ 6,7 √ 0 0 1 1 – ________________________ 
 23 √ 1 0 1 1 1 6,22 √ – 0 1 1 0 
4 27 √ 1 1 0 1 1 12,13 √ 0 1 1 0 – 
 29 √ 1 1 1 0 1 12,28 √ – 1 1 0 0 
____________________________ 18,19 √ 1 0 0 1 – 
  18,22 √ 1 0 – 1 0 
  20,22 √ 1 0 1 – 0 
  20,28 √ 1 – 1 0 0 
  24,28 √ 1 1 – 0 0 
  __________________ 
 7,23 √ – 0 1 1 1 
 11,27 √ – 1 0 1 1 
 13,29 √ – 1 1 0 1 
 19,23 √ 1 0 – 1 1 
 19,27 √ 1 – 0 1 1 
 22,23 √ 1 0 1 1 – 
 28,29 √ 1 1 1 0 – 

                        Contd.  
 
 
Contd. 

 Combination III  
with binary Nos. 
0,2,4,6:16,18,20,22 – 0 – – 0 
0,4,8,12:16,20,24,28 – – – 0 0 
__________________________________________ 
2,3,6,7:18,19,22,23 – 0 – 1 – 
 

 



 The prime implicants from this table are those terms which remained without tick 
mark (√), as they can not be reduced further. Now the essential prime implicants will be 
obtained as given below: 
 

 
 
 
 The essential prime implicants (ticked marked) are represented in the following 
form:  
 
 3,11,19,27   – – 0 1 1 EDC ⋅⋅=  

 12,13,28,29   – 1 1 0 – DCB ⋅⋅=  
  0,4,8,12:16,20,24,28   – – – 0 0    ED ⋅=  

  2,3,6,7:18,19,22,23    – 0 – 1 – DB ⋅=  
  
 Thus the required minimized Boolean expression is given by: 

  EDCDCBEDDBF ⋅⋅+⋅⋅+⋅+⋅=  
  

The result is the sane as obtained in the example 4.9. 
 

PROBLEMS: 
 

1. Discuss K –map for the reduction of Boolean function of 4 variables. 
2. Taking a suitable example, verify that a quad eliminates two variables and an 

octet eliminates three variables in a K - map of four variables. 
3. What are pairs quads and octets? What is their importance in K –maps? 
4. What are the rules for getting the minimal Boolean function using K – maps? 

Illustrate with examples.  
5. Discuss the redundant groups in K – map. 
6. What do you understand by incompletely specified functions how these are 

used in eliminating the Boolean functions? 
7. Discuss K –map method of reduction the Boolean function of five variables. 
8. Discuss K –map method of reduction the Boolean function of six five 

variables. 



9. Discuss the Quine – Mccluskey method of reduction of Boolean functions. 
10. Simplify the following Boolean functions using K –map and verify your 

answer using the theorems of Boolean algebra also. 
(i)  ∑= )7,5,4,1,0(),,(1 cbaF  

(ii) ∑= )7,5,4,3,2,1,0(),,(2 cbaF  

(iii) ∑= )7,6,3,1(),,(3 YXWF  

    Ans.: (i) cabF ⋅+=1  

     (ii) cbaF ++=2  

               (iii) YWXWF ⋅+⋅=3   

11. Simplify the following Boolean functions using K –map and realized the 
minimized functions with NAND gates only. 

(i) CBACBACBACBAZ ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  

(ii) CBACBACBACBACBAZ ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=   

(iii) YXWYXWYXWYXWYXWf ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=  

    Ans.: (i) CBABACAZ ⋅⋅+⋅+⋅=  

     (ii) CABACAZ ⋅+⋅+⋅=  

     (iii) YWYXYWf ⋅+⋅+⋅=  
12. Simplify the following Boolean functions using K –map and verify your 

answer using the theorems of Boolean algebra also. 

   (i)   )()()()(1 CBACBACBACBAf ++++++++⋅++=  

   (ii)   )()()(2 CBACBACBAf ++⋅++⋅++=    

   (iii)   )()()()(3 CBACBACBACBAf ++⋅++⋅++⋅++=  

                                           Ans.: (i)   )()()(1 CBABACAf ++⋅+⋅+=  

         (ii)  )()(2 CBBAf +⋅+=  

         (iii)  )()(3 BACAf +⋅+=  

13. Minimize the following Boolean functions using K –map and then realize 
them with NOR gates only. 

(i) ∏= )7,6,4,3,2,1(),,( cbaZ  

(ii) ∏= )6,5,4,3,2,0(),,( cbaZ  

(iii) ∏= )6,5,3,2,1,0(),,( cbaZ  

    Ans.: (i)  )()( cacabZ +⋅+⋅=  

              (ii) )()( babacZ +⋅+⋅=  

          (iii) )()( cbcbaZ +⋅+⋅=   
14. Get the minimal Boolean functions of the following using K – map: 

(i) ∑∑ +=
φ

)6,3,1()5,2,0(),,(1 CBAf  



(ii) ∑∑ +=
φ

)7,6,5,0()4,1(),,(2 ZYXf  

(iii) ∑∑ +=
φ

)3,2,1,0()6,5(),,(3 cbaf  

     Ans.: (i) CBAf ⋅+=1  

       (ii)  YXf +=2  

       (iii)  cbcbf ⋅+⋅=3  

15. Obtain the minimal SOP expression of the following functions and implement 
them using NAND gates only. 

(i) ∑= )15,14,13,9,6,4,1,0(),,,(1 DCBAF  

(ii) ∑= )15,14,13,9,8,7,4,3,2,1,0(),,,(2 DCBAF  

(iii) ∑= )15,14,12,11,9,8,6,5,3,2,0(),,,(3 DCBAF  

(iv) ∑= )15,12,10,8,5,4,0(),,,(4 DCBAF  

(v) ∑= )15,7,5,3,2,1(),,,(5 DCBAF  

Ans.: (i) DCBDBADCBDCAF ⋅⋅+⋅⋅+⋅⋅+⋅⋅=1  

         (ii) DCBCABADCBAF ⋅⋅+⋅+⋅+⋅+⋅=2  

        (iii) DCBACBADCBCBADBACBADBAF ⋅⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=3  

        (iv) DCBACBADBADCF ⋅⋅⋅+⋅⋅+⋅⋅+⋅=4  

        (v)  CBADCBDAF ⋅⋅+⋅⋅+⋅=5  

16. Obtain the minimal Boolean functions of the following, using K – map: 
(i) ∑∑ +=

φ
)15,14,13,12,11,10()9,8,7,6,5,3,2,0(),,,(1 DCBAF  

(ii) ∑ ∑+= )15,14,13,12,11,10()9,8,7,4,3,2,1,0(),,,(2
φ

DCBAF  

(iii)  ∑∑ +=
φ

)15,11,9,8,7,6()13,5,3,2,1(),,,(3 DCBAF  

(iv)   ∑∑ +=
φ

)15,14,5,1()13,12,10,9,2(),,,(4 DCBAF  

(v)    ∑∑ +=
φ

)15,11,2()14,10,8,5,1,0(),,,(5 DCBAF   

Ans.: (i) DBDBCAF ⋅+⋅++=1  

                (ii) DCDCBF ⋅+⋅+=2  

               (iii) DCAF +⋅=3  

               (iv) DCBBADCF ⋅⋅+⋅+⋅=4  

               (v)  DCACADBF ⋅⋅+⋅+⋅=5  

 
17. Using K – map, obtain the minimal POS expressions of the following and 

implement them with NOR gates only. 



(i) ∏= )15,14,13,12,11,10,9,5,4,2,1,0(),,,(1 DCBAF  

(ii)  ∏= )15,14,13,12,11,9,7,5,3,2(),,,(2 DCBAF  

(iii) ∏= )14,13,10,8,5,4,3,2,1,0(),,,(3 DCBAF  

(iv) ∏= )13,11,9,8,7,6,4,2,1,0(),,,(4 DCBAF  

(v) ∏= )15,13,12,11,7,6,5,1(),,,(5 DCBAF  

Ans.:  (i) )()()()()(1 DBACABACADCF ++⋅+⋅+⋅+⋅+=  

          (ii) )()()()(2 CBADADBBAF ++⋅+⋅+⋅+=  

         (iii) )()()()()(3 DCBDCACADBBAF ++⋅++⋅+⋅+⋅+=  

         (iv) )()()()(4 DBADCACBDAF ++⋅++⋅+⋅+=  

          (v)  )()()()(5 DCADCACBACBAF ++⋅++⋅++⋅++=  

18. Using K – map, obtain the minimal POS expressions of the following and 
implement them with NOR gates only. 

(i)  )4,2()14,13,12,6,5,1(),,,(1 ∏∏ ⋅=
φ

DCBAF  

(ii) )12,5,1()15,14,11,10,7,3,2(),,,(2 ∏∏ ⋅=
φ

DCBAF  

(iii)  )15,14,13,12,11,10()8,7,6,5,3,2(),,,(3 ∏∏ ⋅=
φ

DCBAF  

(iv) )6,1,0()12,9,7,5,4,2(),,,(4 ∏∏ ⋅=
φ

DCBAF  

(v) )13,9,2()15,14,7,6,5,4,3,1,0(),,,(5 ∏∏ ⋅=
φ

DCBAF  

Ans.:  (i) )()()(1 DCACBDBF ++⋅+⋅+=  

        (ii) )()()(2 DCCBCAF +⋅+⋅+=  

(iii) )(3 DBCF +⋅=  

         (iv) )()()(4 DCBDABAF ++⋅+⋅+=  

          (v)  )(5 CBAF +⋅=  
19. Minimize the following functions using K – map method. 

(i) ∑= )31,25,19,18,17,16,15,14,9,8,7,4,3,2,1,0(),,,,(1 EDCBAF  

(ii) ∑ ∑+= )26,25,24,2,1,0()29,23,22,21,20,15,14,13,12,10,7,6,5,4(),,,,(2
φ

EDCBAF  

(iii) ∑ ∑+= )31,30,29,28,24,13,12()23,22,20,19,17,16,11,10,9,7,6,4,2,1(),,,,(3
φ

EDCBAF  

(iv) ∏= )43,42,41,40,36,34,29,28,20,19,17,15,14,10,9,8,7,5,4,2,1,0(),,,,,(4 FEDCBAF  

(v) 
∑= )61,60,58,57,56,50,48,47,45,42,40,34,32,26,24,20,18,16,15,13,10,8,,4,2,0(),,,,,(5 FEDCBAF

 
(vi) ∑= )31,30,29,27,26,25,24,21,20,19,18,16,15,14,13,12,11,10,9,5,4(),,,,(6 EDCBAF  

 



Ans.:(i)  EDCBEDCBEDBADCBAEDBADCCBF ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅+⋅=1  

        (ii)  EDBACBCAF ⋅⋅⋅+⋅+⋅=2  

(iii) DCBADCBADCBAECBAEDBADCBEDCBEDCF ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅=3  

(iv) ⋅+++⋅+++⋅+++⋅+++= )()()()(4 FEDBDCBAEDCBECBAF  

    ⋅++++⋅++++⋅++++ )()()( FDCBAFEDBAEDCBA  

    )()( FEDCBEDCBA ++++⋅++++  

(v)  ECBAFECAFDCBFDF ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅=5  

(vi)  CBADCAECADCBEBDBF ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅+⋅=6  

20. Minimize the functions given in problem 19 using Q –M tabular method. 
21. Minimize the functions given in problem 16 using Q –M tabular method. 
22. Minimize the functions given in problem 15 using Q –M tabular method. 
 
 
 _________ 

 

 
 
 
 



5 
Combinational Switching 

Circuits 
 
 
 
 
 In the forgoing chapters of this book, detailed study of the Boolean algebra and 
various methods of simplification of Boolean functions have been made. The different 
logic gates may be used to implement the simplified Boolean functions. In the present 
chapter, however, the design of the special class of logic circuits for digital systems 
known as combinational switching circuits will be discussed. Basically there are two 
types of switching circuits namely the combinational and sequential switching circuits.  
The combinational circuits depend on the verbal statement of the problem. That is the 
input and output variables are obtained from the given statement; which then lead to 
provide the minterms for simplification and implementation of the logic circuits. The 
sequential switching circuits will be discussed in a later chapter. 
 
5.1 Combinational Circuits:   The combinational circuits are the network of logic 
gates having a set of input independent variables, and outputs as the Boolean functions of 
inputs. In these circuits the independent input variables are obtained from the word 
statement of the requirement of the digital system to be designed. The output variables in 
these circuits depend only on the present value of the inputs and do not depend upon their 
previous values. That is the combinational logic circuits need not to have the memory 
elements. The other class of the switching circuits called sequential circuits do have the 
memory elements in addition to the input and output variables. Figure 5.1 illustrates the 
input – output relationship of the combinational circuits. 
 

 
Fig. 5.1 

 



 The output variables Y1,Y2,Y3 ….Ym are some functions of the input variables 
X1,X2,X3 …Xn such that : 

  ).......,,( 32111 nXXXXFY =  

  ).......,,( 32122 nXXXXFY =  
 ……………….. 

 ……………….. 

 ).......,,( 3211 nm XXXXFY =  

 The procedure for the design of the combinational logic circuit is given below: 

• From the word statement of the problem input independent variables and 
output dependent variables are isolated. 

• The logical symbols as well as the logic values (0 or 1) are assigned to 
these variables. 

• The truth table is formed between the required output variables and the 
given input variables. 

• Using K – map or Q – M tabular method, the simplified Boolean function 
for each output variables is obtained. 

• The logic circuit is then drawn using the gates for each output variables. 

 A few examples for the design of the combinational circuits will now be 
discussed. 

Example 5.1:  A railway station has four platforms marked as P1, P2, P3 and P4 as shown 
in the figure 5.2. The trains can come only from left hand side and enter these platforms. 
The trains are to be routed to these platforms in the order of preference P1, P2, P3 and in 
the last to P4. Each platform has a switch will be turned ON if the platform is not empty. 
There is an outer signal S which will be either green or red. This signal will be green if it 
allows the train to enter the station otherwise red. There are three track changer switches 
T1, T2, T3 which allows changing the tracks. Design a railway track switching circuit 
using AND, OR and NOT gates, which can perform the operations mentioned above.   

 



 Fig. 5.2 
Solution:   From the word statement of the problem it is clear that P1, P2, P3 and P4 are 
the four input variables, outer signal S and track changers T1, T2 and T3 are the four 
output variables. The input as well as output variables are two valued functions, since the 
platforms are either empty or occupies, track changers are either to be changed or not to 
be changed, similarly the outer signal S has two options that it is either green or red. The 
switching system having input and output variables is shown in figure 5.3. 
 

 
 Fig. 5.3 

 

 Now the logic values are assigned to the input and output variables. Logic 0’s are 
assigned to the platforms P1, P2, P3 & P4 if these are empty otherwise logic 1. The track 
changer T1 is not to be changed if the train is allowed to enter P1 otherwise it is to be 
changed. So logic 1 is assigned to T1 if track is not to be changed and logic o if the track 
is to be changed. Similarly logic values are assigned to the other track changers. The 
Signal S is assigned logic 1 to the green signal and logic 0 to the red signal. 

 The truth table will be drawn for all the input and output variables as given in 
table 5.1. Also the K-maps for the output variables are drawn as shown in figure 5.4. 
 
  Table 5.1 

 



 
     Fig. 5.4 
 

 The Boolean expressions for S can directly be obtained as: 

   4321 PPPPS +++=  

   4321 PPPP ⋅⋅⋅=  

 The expressions for T1, T2 and T3 are obtained from their respective K –map as:  

    11 PT =  
     22 PT =  
  33 PT =  
 
 The switching circuit for the railway track circuit is given in figure 5.5. 
 

 
 



Example 5.2:  Design the combinational logic circuit using NAND gates only for the 
following word statement. 

 The insurance policy will be issued to the applicant, if he is: 

(i)  a married female of 22 years or more, or 

(ii)   a female under 22 years, or  

(iii)   a married male under 22 years and who has not been involved in a car 
accident, or 

(iv) a married male who has been involved in a car accident, or 

(v) a married male of 22 years old or above and who has not been involved in  a 
car accident. 

 Design the circuit which can issue the insurance policy to the applicant. 
 
Solution:   From the word statement of the problem that it has four input variables and 
one output variables. 

The input variables are  

(i) The applicant is married or not –we assign the symbol X for it. Logic 1 is 
assigned to X if the applicant is married otherwise assign logic 0. 

(ii)  The applicant is male or not – assign the symbol Y for it. Logic 1 is assigned to Y 
if the applicant is male and logic 0 to female. 

(iii)  The applicant is 22 years old or more – assign the symbol Z for it. Logic 1 is 
assigned if the applicant is below 22 years and logic 0 is assigned if the applicant 
is 22 years old or more. 

(iv) The applicant is involved in a car accident- assign the symbol W for it. Logic 1 is 
assigned to W if the applicant has involved in a car accident otherwise W is 
assigned logic 0. 

 Output is the policy issued to the applicant. Let P is the symbol for the policy. 
Logic 1 is assigned to P if the poly is issued to the applicant otherwise P is assigned logic 
0.  
 The switching system having input and output variables is shown in figure 5.6. 
Table 5.2 shows the truth table for all the conditions discussed above. The K-map for the 
output variable P is shown in figure 5.7.     
 

 
     



    
 
 Table 5.2 

 
 
 Fig. 5.7 
 

 

 The Boolean expression for the output variable P is given as: 

     ZYXP ⋅+=  

 From this expression it is clear that the policy will be issued to the applicant who 
is married or a female under 22 years. The circuit will be realized using NAND gates as 
shown in figure 5.8. 
 

 
Fig. 5.8 

 
Example 5.3:  The entrance to a group of four flats has a tube light. The tube light is to 
be switched ON and OFF independently by the tenants of the four flats using switches 
located in their flats. Design a switching circuit to implement this using: 



 (i) Exclusive – OR gates. 

 (ii) NAND gates only. 

Solution:  The input variables to this problem are the four switches each located in the 
flats of four tenants. Let these switches are S1, S2, S3, S4, which are two valued 
functions. Logic 0 is assigned to OFF position of the switch and logic 1 ON position of 
the switch. The output variable is the tube light L, which will either glow or not glow. 
Logic 1 is assigned if the tube light glows and logic 0 is assigned if it does not glow. So 
the switching circuit to be designed has four input variables (four switches) and one 
output variable L (tube light) as shown in figure 5.9. 
 

 
 Table 5.4 shows the values of the output variable for each possible combination of 
input variables. The K – map is drawn for this table as given in figure 5.10. 
 
          Table 5.4 

 
  The Boolean expression for the tube light L is given by: 
 

+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅= 4321432143214321 SSSSSSSSSSSSSSSSL  

         4321432143214321 SSSSSSSSSSSSSSSS ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅   

     +⋅+⋅⋅⋅+⋅+⋅⋅⋅= )4343(21)4343(21 SSSSSSSSSSSS  
 )4343(21)4343(21 SSSSSSSSSSSS ⋅+⋅⋅⋅+⋅+⋅⋅⋅  



     )2121()4343()2121()4343( SSSSSSSSSSSSSSSS ⋅+⋅⋅⋅+⋅+⋅+⋅⋅⋅+⋅=  

     )21()43()21()43( SSSSSSSS ⊕⋅⊕+⊕⋅⊕=  

     )43()21( SSSS ⊕⊕⊕=  

     4321 SSSS ⊕⊕⊕=  
 From this expression it is clear that the tube light will be ON when any one of the 
four switches is ON or any three switches are ON. Similarly, the tube light will be OFF 
when all the switches are OFF or any two are OFF or all the switches are OFF.  
 (i) The circuit can be realized using exclusive -OR gates as shown in figure 5.11.  

 
(ii)  The circuit realized with NAND gates is shown in figure 5.12. 
 

 



Example 5.4:  There are five board of directors (A, B, C, D, E) of a company. The board 
of director A owns 10% shares, B owns 30% shares, C owns 20% shares, D owns 25% 
shares and E 15% shares of the total shares. For the adoption of the particular policy to be 
passed in the board’s meeting more than 66% should vote in favour of the policy. The 
weightage to the votes depend upon the percentage shares owned by the directors. In the 
board’s room each director has a switch which he turns ON if votes in favour of policy. 
Design a switching circuit to ring a bell if policy is accepted in the board’s meeting. Only 
the NAND gates should be used to realize the circuit. 

Solution: From this problem it is clear that there are five input variables and one 
output variable. A, B, C, D and E, five switches of the board of directors are the input 
variables to which logic 1 is assigned if the switch is turned ON otherwise logic 0. 
Similarly, the output variable R is for bell to which logic 1 is assigned if it rings 
otherwise logic 0. 

The switching system having input and output variables is shown in figure 5.13. 
Table 5.5 shows the truth table for all the conditions discussed above.  

 

 
 

       Table 5.5 
Since there are five input variables so the five 

variable K-map for the output variable R is shown in 
figure 5.14.     
 

The expression for the alarm R is given by: 
 

EDCAECBADCBEDBR ⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅⋅=
 

This expression indicates that in order to pass a 
policy (ring the alarm), the board of directors BDE or 
BCD or ABCE or ACDE should vote in favour of 
policy.  

  
 



 
     Fig. 5.14 
 

The realization of this circuit with NAND gates is shown in figure 5.15. 

  
   Fig. 5.15 
 
Example 5.5: Design a combinational circuit which multiplies two 3-bit binary numbers 
a2a1a0 and b2b1b0, the bits a2 and b2 are the sign bits for the two numbers. The five bit 
output x4x3x2x1x0 should have the right sign indicating by x4 and right magnitude 
x3x2x1x0.  
 
Solution:  The logic circuit to be designed has the six input variables and five output 
variables as shown in figure 5.16. The sign bit a2, b2 (input bits) and x3 (output bit) are 
assigned logic 0 if these are positive and logic 1 if negative. The other input output 
variables will have the usual logic values.  
 



 
 It is well known that multiplication of two positive numbers or two negative 
numbers is positive and multiplication one positive number and other negative number is 
negative. Truth table 5.6 shows the outcome of two different sign bits. The Boolean 
expression for sign bit X4 in terms of input sign bits is given by: 
 

 
 

 2222224 bababax ⊕=⋅+⋅=  

 The table 5.7 shows all possible combinations of the input and output variables. 

 The Boolean expressions for x2, x1, x0 are obtained from the K-maps drawn for 
each variable as shown in figure 5.17. However, the expression for x3 may directly be 
obtained from the truth table as given below: 
 
      Table 5.7 

  
 The Boolean expressions for x2, x1, x0 are obtained from the K-maps drawn for 
each variable as shown in figure 5.17. However, the expression for x3 may directly be 
obtained from the truth table as given below: 



    01013 bbaax ⋅⋅⋅=  

 

   
                  Fig. 5.17 
 

  0111012 bbabaax ⋅⋅+⋅⋅=  

  1001010110011 babbaabbabaax ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  

  000 bax ⋅=  
  
 The realization of these expressions with And, OR and Not gates is shown in 
figure 5.18. 



 
                                                       Fig. 5.18 

 
 
5.2 Half Adder:   A half adder is one which adds two binary digits simultaneously. 
It also falls in the category of combinational circuits. Let A and B are the two binary 
digits which are to be added together and are the two valued input variables. It will give 
two outputs as Sum and Carry. It is recalled that when a binary digit 0 is added with 0 the 
sum is 0 and it will have no carry. If 0 is added with 1 sum is 1 and no carry. Similarly 1 
is added with 1 sum is 0 and it will have a carry as 1. The table 5.8 shows the truth table 
for half adder. 
 
 Table 5.8 The Boolean expressions for Sum S and Carry C 

   are given by: 

 BABAS ⋅+⋅=  
  BA⊕=  
     BAC ⋅=  

 
 The expression for sum S is nothing but the exclusive OR function of the two 
input digits A and B. Figure 5.19 shows the circuit diagram for half adder using exclusive 
– OR and AND gates. 



 

 
     Figure 5.19   
  
 The above circuit may also be realized by using NAND gates only as given in 
figure 5.20. 

 Figure 5.20 
 
 This circuit utilizes 7 NAND gates for its realization. The circuit may further be 
modified to realize it using 5 NAND gates only as given in figure 5.21. The modification 
of the circuit is not straight forward but can only be modified by inspection. The 
symbolic representation of the half adder is given in figure 5.22. 

 
 
 

 
           Figure 5.22 
 

                    Figure 5.21 
 
 



Example 5.1:  Design the half adder using NOR gates only. 

Solution:  Since the half adder is to be designed with NOR gates only, so the expressions 
for sum S is obtained in POS form as given below (using the half adder table 5.8). 

  )()( BABAS +⋅+=  

and the carry C is: BAC ⋅=  

The realization of these expressions for S and C is shown in figure 5.23. 
 

 Figure 5.23 
 
5.3 Full Adder:  When two binary numbers of two bits are added (A1A0 and B1B0), 
then first A0 and B0 are added, and the sum S0 and carry C0 to the next bit are obtained. A 
half adder is used for this. For the addition of A1 B1 bits, there may be a third bit known 
as carry bit from the previous column. The result will be the sum S1 and the carry to the 
next bit C1.  The addition of three bits is known as full adder. 

  
 

 The truth table for Full adder is shown in table 5.9 

    Table 5.9 

   



 The minimal Boolean expression for S1 and C1 is obtained using K – map. The K 
–map for S1 and is given in figure 5.24. 

 

 
 
The expression for sum S1 is given by: 

     

     

     
     
  
 It is recalled that 11 BA ⊕   is the sum of half adder S  so S1 is further given by:  

0001 CSCSCSS ⊕=⋅+⋅=  
 The K –map for carry C1 is given in figure 5.25 

 
 
 

Fig. 5.25  

  
The expression for carry C1 is given by: 

  0101110 CACBBAC ⋅+⋅+⋅=  

This expression may further be expanded in the following form: 

 01110111111 )()( CBBACBAABAC ⋅+⋅+⋅⋅++⋅=  

     01101101111 CBACBACBABA ⋅⋅+⋅⋅+⋅⋅+⋅=   

   01111011 )()1( CBABACBA ⋅⋅+⋅++⋅⋅=  

   01111 )( CBABA ⋅⊕+⋅=  



 The term 11 BA ⋅  is the carry bit (say C) of the half adder (adder of two bits 1A  & 

1B ) and 11 BA ⊕  is the sum S of half adder. So the expression for C1 may be rewritten as: 

 01 CSCC ⋅+=  
 The full adder may therefore, be realized as shown in figure 5.26. 

  
Fig. 5.26 

 
 It is clear that a full adder consists of two half adders and an OR gate as given in 
figure 5.27. 

 
  
  Fig. 5.27 
 
 The realization of Full Adder with 9 NAND gates is shown in figure 5.28. The 
symbolic representation of the half adder is given in figure 5.29. 
 



 
  Fig. 5.28 

 
                 Fig. 5.29 

Example 5.2:  Design the Full adder using NOR gates only. 

Solution:  Since the full adder is the combination of two half adders, so realization of full 
adder with NOR gates only, is shown in figure 5.30. 



  
                                   Fig. 5.30 
 
5.4 Parallel Binary Adder:  Four full adders may be connected as shown in figure 
5.31, to add two binary numbers each of 4 bit long. The addition of two four bit numbers 
is given by: 

       
 

 
 
 Fig. 5.31 
   



 The addition of more number of bits may be added in the similar fashion. This is 
known as parallel binary adder. 

 Parallel binary adders are available in the form of ICs. The two-bit binary full 
adder IC is 74LS82; its functional block diagram is given in figure 5.32. 

 

 
                                     Figure 5.32 
 

The two 7482 IC’s may be connected to use a four bit adder. The ‘carry to the 
next adder’ pin of one IC may be connected to the ‘carry from the previous column’ pin 
of the second IC. However, 4-bit parallel adder IC 74C83 is also available, whose 
functional block diagram is shown in figure 5.33. The two such IC’s may be connected to 
use as the 8 – bit adder. This can be extended to any number of bits. 

 
      Fig. 5.33 
 
Example 5.4:  Design a half subtractor using NAND gates only. 
 
Solution: A half subtractor may be designed by the same method as the half adder. The 
truth table for the half subtractor is given in table 5.10. 

 
 
 



Table 5.10 In this table X0 and Y0 are the minuend and subtrahend 
respectively; D0 the difference of the two bits (X0 & Y 0) and 
B0 is the borrow bit from the next bit. The Boolean 
expressions for Difference D0 and borrow bit B0 are given as:  

                      

00000 YXYXD ⋅+⋅= 00 YX ⊕=  

000 YXB ⋅=  
 

 The realization of these expressions using NAND gates only may, therefore, be 
given in figure 5.34. 
 

 
  Fig. 5.34 
  
 The symbolic representation of half subtractor is given in figure 5.35. 

 Fig. 5.35 
  
Example 5.4:  Design a Full subtractor using NAND gates only. 
 
Solution:  The truth table for full subtractor is shown in table 5.11, in which X1, Y1 are 
the minuend and subtrahend respectively and B0 is the borrow bit from the previous bit. 
The output terms D1 and B1 are the difference bit and borrow to the next bit. 
 
 



        
         Table 5.11                      The Boolean expression for difference D1 is given  

by: 

 
 0111101111 )()( BYXYXBYXYX ⋅⋅+⋅+⋅⋅+⋅=  

 011011 )()( BYXBYX ⋅⊕+⋅⊕=  
 011 BYX ⊕⊕=  
 
The Boolean expression for the borrow B1 to the next bit 

is obtained from the K –map shown in figure 5.36. 
 

0101111 BXBYYXB ⋅+⋅+⋅=  

    0111011111 )()( BYYXBYXXYX ⋅+⋅+⋅⋅++⋅=  

01101101101111 BYXBYXBYXBYXYX ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅=

01111011 )()1( BYXYXBYX ⋅⋅+⋅++⋅⋅=  

 Fig. 5.36    0111111 )( BYXYXYX ⋅⋅+⋅+⋅=  

 0011 BDYX ⋅+⋅=    where D0 is the difference of 
the half subtractor. 
 
 The full subtractor circuit may now be shown to be implemented using NAND 
gates as illustrated in figure 5.37 
 

 Fig. 5.37 



 
 The full subtractor is the combination of two half subtractors and gates as shown 
in figure 5.38.  

 
 Fig. 5.38 
 
 The symbolic representation of half subtractor is given in figure 5.39 

 Fig. 5.39 
 
5.5 BCD or 8421 Adder:  The BCD numbers are generally processed in digital 
systems, so it is necessary to design BCD adder. Before discussing the design details of 
the 8421 adder, it is essential to know how the two decimal numbers are added in this 
code. 
 Let the two decimal numbers 3 & 4 added in 8421 code. 

 The result 0111 (+ 7) is correct. 
 Further the addition of two other decimal numbers 7 and 6 in 8421 code gives the 
incorrect answer. This is illustrated as given below: 

            
  
 The result 1101 is correct in natural binary number but it is incorrect in 8421 
code. Its answer should have been 00010011 (13). However, to get the correct answer 6 
(0110) is added to the incorrect sum, as it avoids the illegal number 1010 through 1111 of 



the 8421 code. So when 0110 is added to the incorrect answer 1101, the correct answer is 
obtained as follows: 

   
 
 It is, therefore, concluded that if the sum of the numbers is more than 9, then 6 
(0110) is added to the incorrect sum otherwise nothing is added.  
 Now general approach of the addition of two numbers is considered, say 
A3A2A1A0 and B3B2B1B0 are being added in 8421 code as: 

  

 Now if the sum S4S3S2S1S0 is more than 9, then 0110 is added to it otherwise 
0000 is added. Manually the addition of decimal number 6 (0110) can easily be carried 
out, but for the design of BCD adder, 6 should automatically be got added whenever the 
sum is more than 9. 

The following approach will help in getting the automatic addition of decimal 
number 6 in the incorrect sum. The sum S4S3S2S1S0 is more than 9 if S4 is 1 and/ or 
S3S2S1S0 is any of the 6 illegal BCD numbers 1010 through 1111. So a term 

13234 SSSSSX ++=  will indicate if the sum is more than 9. That is if X is 1 than 0110 

is added to the incorrect sum otherwise 0000 is added to it. In general 0XX0 is always 
added to the incorrect sum as follows: 

   
 X4 is the carry bit which is not to be used, as the term X will take care of the carry 
bit for the next digit. The circuit for BCD addition for full one decimal digit (four bits) 
can easily be drawn as shown in figure 5.40.  
 
 

 



 
 Fig. 5.40 
 The BCD adder can also be designed using two parallel binary adders (2 IC’s 
74LS83) and a few gates as shown in figure 5.41. 
 

 
                     Fig. 5.41 



5.6 Excess – 3 Adder:    For the design of the excess –3 adder one should remember 
the addition of decimal numbers in XS –3 code. In XS –3 code first three number 0000 
through 0010 and the last three numbers 1101 through 1111 are illegal. So to avoid these 
illegal numbers, 0011 is added to the incorrect answer if it is more than 9 else 0011 is to 
be subtracted.  

 Consider the two numbers say A3A2A1A0 and B3B2B1B0 to be added in XS –3 code 
as: 
  

  

 The sum S4S3S2S1S0 is more than 9, if S4 is 1 otherwise sum is less than or equal 
to 9. So if S4 is more than 9, then 0011 is to be added to the incorrect sum else 0011 is to 
be subtracted.  

For the subtraction of 0011 from the uncorrected sum 1’s complement method is 
used i.e. 1100 (1’s complement of 0011) is added to the incorrect sum and finally end 
around carry (EAC) is added to it.  

It is concluded that if sum is more than 9 (S4 = 1), then 0011 is to be added to the 
incorrect sum; and if sum is less than or equal to 9 (S4 = 0), then 1100 (1’s complement 

of 0011) is added. Therefore, one can say that in both the cases 4444 ... SSSS  is to be 
added as given below: 

 
The circuit for XS –3 addition for full one decimal digit (four bits) can easily be 

implemented as shown in figure 5.42.  



 
 
 Fig. 5.42 
 
5.7 Two’s Complement Adder/Subtractor:   The two’s complement 
adder/subtractor is most commonly used in arithmetic circuits because it greatly 
simplifies the method of operation. It can be used to add and subtract the binary numbers.  

 Consider a binary number B3B2B1B0 to be subtracted from or added to another 
binary number A3A2A1A0. For addition, B3B2B1B0 is directly added to A3A2A1A0; and for 
subtraction 2’s complement of B3B2B1B0 is added to it. The 2’s complement is taken by 
inverting B3B2B1B0 and adding 1 to it.  

 Figure 5.43 shows the circuit diagram of 2’s complement adder/ subtractor. A 
SUB signal provided in the circuit, is used to directly load B’s to the full adders for 
addition of binary numbers and for subtraction 2’s complement of the B’s are loaded to 
the full adders. 

 
  Fig. 5.43 



 In this circuit B’s are given to the full adders through exclusive- OR gates. The 
SUB signal is given as low (logic 0) when the circuit is to be used as binary adder and it 
is given as high (logic 1) for subtractor.  

 When SUB signal is low, the bits B’s are passed through the exclusive– OR gates 
to the full adders without inversion, since BSUBB =⊕ (for SUB = 0). The circuit, 
therefore, act as simple parallel binary adder. If on the other hand SUB signal is high, the 

bits B’s gets inverted through exclusive – OR gates, since BSUBB =⊕  (for SUB = 1). 
So 1’s complement of the B’s goes to the full adder and also SUB signal connected to the 
carry terminal of the first full adder, results the 2’s complement of the bits B’s. The 
circuit, therefore, works as the subtractor. The final carry S4 is as the carry bit for the 
binary adder and it is used as the sign bit for the subtractor. 
 

PROBLEMS 

1. What are combinational circuits? Give the design procedure of combinational 
logic circuits. 

2. Discuss the design of a railway switching circuit. The word statement of the 
problem is the same as that given in the solved example 5.1 (given in the text) 
with the difference that the railway station has three platforms instead of four 
also there are only two track changers. 

3. Repeat the problem 2, if the trains are allowed to enter from either direction. 
(Hint:  one more variable may be assumed to illustrate the direction. If coming 
from L.H.S., that variable is 0 otherwise 1. This problem will have four input 
variables). 

4. The entrance to a group of three flats has a tube light. The tube light is to be 
switched ON and OFF independently by the tenants of the three flats using 
switches located in their flats. Design a switching circuit to implement this 
using: 

 (i) Exclusive – OR gates.   (ii) NOR gates only. 

5. Design a switching circuit to generate even parity bit for the decimal numbers 
transmitted in excess – 3 code. Use 

  (i) NOR gates to realize the circuit  

 (ii) NAND gates to realize the circuit. 

6. Four inputs A, B, C and D control three LEDs. The red LED glows when: 
  A is 1, B is 0  B is 1, C is 0  
  A is 0, B is 1  B is 1, C is 1 
  C is 1, D is 1  B & C are 1 
   C is 0, D is 1  A & C are 1 

 The green LED will glow, when: 

  B and C are 1 
  C and D are 1 
  A and D are 1 



  A and D are 1 

 The yellow LED will glow when: 

  A and B are 1 
  C and D are 1 
  All are 1 
  B is o, D is 1 

 Draw the simplest logic circuit to implement this. 

7. Repeat the solved example 5.5, having only four board of directors instead of 
five. The board of directors has 45%, 20%, 10% and 25% shares. 

8. Design a combinational circuit, which can receive only valid 4-bit excess- 3 or 
4-bit 2421 BCD code. The circuit should have two outputs, one to indicate the 
valid excess –3 signal and other to indicate the valid 2421 signal. NAND gates 
should be used to implement the circuit. 

9. A circuit receives four- bit 2421 code. Design the simplest logic circuit which 
gives an output 1 whenever the inputs are equivalent odd decimal numbers. 

10. A circuit receives four- bit 8421 code. Design the simplest logic circuit which 
gives an output 1 whenever the inputs are equivalent even decimal numbers. 

11. Design a simple logic circuit using OR gates only, that will output 1 whenever 
ay of the following binary numbers appears at the input. 

  0000, 0100, 1010, 1110, 1111 

12. What is half adder? Discuss the design of half adder circuit using: 

   (i) 5 NAND gates, (ii) 5 NOR gates. 

13. What is full adder? Discuss the design of full adder circuit using: 

 (i) two exclusive-OR gates, two AND gates and one OR gate, (ii) 9 NAND 
gates, (iii) NOR gates. 

 Also show that a full adder is a combination of two half adder. 

14. What is half subtractor? Discuss the design of half subtractor circuit using: 

   (i) 5 NAND gates (ii) 5 NOR gates. 

15. What is full subtractor? Discuss the design of full subtractor circuit using: 
 (i) NAND gates, (ii) NOR gates. 

 Also show that a full subtractor is a combination of two half subtractors. 

16. Discuss the parallel binary adder. Explain how two 7482 ICs may be connected 
to form a four bit adder. 

17. Explain four bit parallel binary adder IC 7483. How two 7483 ICs are connected 
to form an eight bit adder? 

18.  Discuss the details of the design of 8421 adder.  



19.  Explain how the 8421 adder is designed using two 4-bit parallel binary adder 
and a few gates. 

20. Give the details of the design of the excess – 3 adder. 

21.  Discuss 2’s complement adder/ subtractor circuit. Give its design details. 
 

 
 

__________ 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



6 
More Combinational 

Circuits 
 

 The construction details, working and applications of some more combinational 
circuits will be discussed in this chapter. These will include the multiplexers, de-
multiplexers, decoders, encoders, code converters, PLA’s, magnitude comparators and 
parity generator cum checkers etc. 

6.1 Multiplexers:    A multiplexer (MUX) also known as data selector, is a logic 
circuit which allows the digital information from multi-inputs to a single output line. The 
selection of the input data to be routed to the output line is done by the select terminals. 
The number of select terminals depends on the number of input lines to be routed to 
output line, given by the general formula as:   
  NK =2 , 
where N is the number of input lines and K is the number of select terminals. In other 
words, if there are 4 input lines to be routed to output line, then two select terminals are 
needed as 422 = . 
The block diagram for 4:1 multiplexer is shown in figure 6.1.                                                                

Fig. 6.1 

In which 3210 ,,, XXXX  are the 4 input lines and 01,SS  are the select terminals and X is 
the output terminal. Normally a strobe terminal or enable terminal (G) is provided in the 
MUXs which is normally active-low.  The active-low means it performs the operation 
when it is low; it also helps to cascade the MUXs. The Boolean function to perform the 
multiplexing action is given as: 

                 013012011010 SSXSSXSSXSSXX ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  



  The output  X will follow the input data depending on the select terminals 01,SS , 

as given in the table 6.1.  
      

Table 6.1 
 

  Select terminals 
     S1              S0 

     Output  
        X 

0 0 
0 1 
1 0 
1              1  

X = X0 
X = X1 
X = X2 
X = X3 

 
Note that only one of the inputs 3210 ,,, XXXX is routed to the output X (one at a 

time). The realization of the Boolean function X with NAND gates only is shown in 
figure 6.2. 

 

 
    Fig. 6.2  
 

 The MUXs are available in the form of the following IC’s: 

74157 quadruple two – input multiplexer/data selector. 

74151A eight - input multiplexer/data selector. 

74150 sixteen - input multiplexer/data selector. 

74157 Quadruple two – input multiplexer/data selector:  The internal logic diagram of 
the IC 74157 is given in figure 6.3. It consists of four two input multiplexers on a single 



chip. Each of the four multiplexers has a common data select line S and a common chip 
enable terminal G. A low signal to the chip enable terminal G allows the selected input 
data to rout to the output. Since there are only two inputs to be selected from each 
multiplexer, a single data select terminal is sufficient.   

 
       Fig. 6.3 
 
74151A Eight - input multiplexer/data selector:  Figure 6.4 shows the logic block 
diagram for a 8 – input multiplexer/ data selector IC 74151A. It has 8 data inputs X0 
through X7, three data select terminals S2 S1, & S0 and an enable terminal G. when enable 
terminal G is high, the multiplexer is disabled and output X is zero irrespective of the 
select input terminal. However, when the enable terminal G is low the input data is routed 
to the output as per data select terminals S2 S1, & S0 as illustrated in table 6.2. 
 

 
 



 
         

Fig. 6.4 
 
74150 Sixteen - input multiplexer/data selector:  The IC 74150 is 16:1 multiplexer 
having 16 input lines and one output line. It has four select terminals S3, S2, S1& S0 and 
one enable terminal G which is kept low for multiplexing action. The block diagram of 
the 16:1 MUX is given in figure 6.5.   



Fig. 6.5 
 
6.1.1  Expansion of Multiplexers:   For the expansion of number of input terminals of 
the multiplexers two MUXs may be  cascaded. Two 4:1 MUXs may be cascaded to form 
8:1 MUX. Similarly two 8:1 MUXs may be cascaded to have a 16:1 multiplexer and so 
on. Figure 6.6 illustrates how two 4:1 MUXs are cascaded to form 8:1 MUX. The enable 
terminal G of the MUXs in-conjunction with a NOT gate provides the third select 
terminal. When S2 is zero the first MUX will be enabled and inputs X0 through X3 will be 
routed to its output; and when S2 is 1, the second MUX will be enabled, X4 through X7 
will be routed to the output of the second MUX. The outputs of the two MUXs are 
connected to the inputs of an OR gate which then gives the final output (ref. fig. 6.6). 



 
Fig. 6.6 

 

6.1.2 Applications of Multiplexers:  Primary aim of the MUXs is the multiplexing 
operation, that is, the selected input is routed to the output. In addition to this, 
Implementation of Boolean function can easily be done with MUXs, since MUXs are 
available in the form of integrated circuits. The method of implementing the Boolean 
function is that the truth table is first constructed for the given function to be 
implemented. Then logic 1 is connected to each data input of the multiplexer 
corresponding to each combination of the input variables which has 1 in the output 
column of the truth table. The logic 0 is, however, connected to the remaining inputs of 
the MUX. The variables are connected to the data select inputs of the multiplexer.  

The Boolean functions of N – variables can also be implemented by the 
Multiplexers of (N – 1) select lines. A function of 4 variables can be implemented with 
8:1 multiplexer having 3 select lines. Let A, B, C, D are the input variables of the 
function F, which is to be implemented with a multiplexer. The variable A is the most 
significant bit and D is the least significant bit. Variables B, C, D are assumed to be the 
select terminals for the multiplexer. The truth table is drawn for the given function. It is 
well known that in the truth table variables BCD progresses twice through the sequence 
000, 001…. 111; once with A = 0 and other with A = 1. The connections to be made to 
the data inputs of the multiplexer, following rules are observed.  

1. A logical 0 is connected to the data input of MUX, if the 0 occurs at the 
output in the truth table, both times when MSB is 0 and 1 (other variables 
having the same value).  

2. A logical 1 is connected to the data input of MUX, if the 1 occurs at the 



output in the truth table, both times when MSB is 0 and 1 (other variables 
having the same value).  

3. MSB is connected to the data input of MUX, if the output in the truth table 
is different both times when MSB is 0 and 1(other variables having the 
same value); and also output is the same as the MSB. 

4. The complement of the MSB is connected to the data input of MUX, if the 
output in the truth table is same both times when MSB is 0 and 1(other 
variables having the same value); and also output is the same as the 
complement of MSB. 

Example 6.1:   Realize the following function of three variables with 8:1 MUX. 

  ∑= )7,4,3,1,0(),,( CBAF  

Solution:  The truth table of the given function is drawn as shown in table 6.3. To realize 
the given function using 8:1 MUX, the variable A, B, C are assumed to be the three select 
terminals as shown in figure 6.7. The logic 1 is connected to each data input of the 
multiplexer corresponding to each combination of the input variables which has 1 in the 
output column of the truth table. The logic 0 is connected to the remaining inputs of the 
MUX. The inputs X0, X1, X3, X4, X7 are, therefore, connected to the logic 1 and X2, X5, 
X6 are connected to logic 0.  

 
 
Example 6.2:   Use Multiplexers to implement of Full adder.  
 
Solution: It is well known that a full adder adds three bits of information. Let A B C are 
three bits to be added. Let augend bit is A, addend bit is B and C is the carry from the 
previous column; SUM and CARRY to the next bit are given in the table 6.4. 
Implementation of SUM and CARRY is shown in figure 6.8. 



                  

 
      Fig. 6.8 

 

Example 6.3:   Realize the following function of four variables with 8:1 MUX. 

  ∑= )15,13,11,7,5,3,1,0(),,,( DCBAF  

 
Solution:  The truth table for the given function is first of all drawn (table 6.5) and YZW 
are assumed to be the select terminals of the 8:1 MUX. The inputs to the multiplexer are 
obtained from the truth table as given below.  
  X0 = A       X1 = A  

 X2 =  0       X3 =  1 
X4 =  0       X5 =  1 
X6 =  0        X7 =  1 

Figure 6.9 shows the implementation of the given function.  
 



 
 

6.2 Demultiplexers:    A demultiplexer performs the reverse process of multiplexer; it 
receives the information on a single line and steers to several output lines.  Demultiplexer 
can also be called the Data Distributor as it can transmit the same data to the different 
lines. It transmits the data to 2N output lines, for which the select terminals of N bits are 
required. For example, to transmit the single data to four output lines (1:4 DMUX), select 
terminals of two bits are required; similarly for 1:8 DMUX select terminals of 3 bits are 
required and so on. The functional block diagrams of 1:4 DMUX and 1:8 DMUX are 
shown in figure 6.10(a) and 6.10(b) respectively. 

 
                             

 In a 1:4 DMUX, let X is the data input which is to be steered to 4 output lines X0, 
X1, X2, X3; the select terminals are S1, S0.  



 If S1S0 = 00  ,  the input data X will be go to the output X0. 

 If S1S0 = 01  ,  the input data X will be go to the output X1. 

 If S1S0 = 10  ,  the input data X will be go to the output X2. 

 If S1S0 = 11  ,  the input data X will be go to the output X3. 

 The Boolean expressions for X0, X1, X2, X3 are given by: 

 010 SSXX ⋅⋅=  

 011 SSXX ⋅⋅=  

 012 SSXX ⋅⋅=  

 013 SSXX ⋅⋅=  

 The implementation of these functions (or 1:4 DMUX) can be done as shown in 
figure 6.11. 

 
 

Fig. 6.11 
 

6.3 Decoder:    A decoder is a logic circuit which has a set of inputs representing a 
binary number and gives only one output corresponding to the input number. The decoder 
activates one output at a time depending upon the input binary number; all other outputs 
will be inactive. Figure 6.12 shows the functional block diagram of a decoder having N 
inputs and K outputs. The possible combinations of N inputs will be 2N = K, so there will 
be K outputs.   

 
                                                  Fig. 6.12 



 Figure 6.13 shows the circuit diagram of 3 – to – 8 line decoder. It will have three 
input lines and 23 = 8 output lines. When the three bit binary number is fed to the input of 
the decoder, as discussed above one output line corresponding to input binary is activated 
and all other output lines will be inactive. It is also called binary to octal decoder or 
converter because it takes a binary code as input and activates one of the eight (octal) 
output lines corresponding to the input binary code. The 3 – to – 8 can also be referred to 
as a 1 – of – 8 line decoder, because only one of the eight outputs is activated at a time. 
The truth table for 3 – to – 8 line decoder is shown in table 6.6. 
 

        Fig. 6.13 
 

Table 6.6 

 



 It is clear from the figure 6.13 that an Enable input line is connected to the fourth 
input of each gate. When the Enable input is connected to logic 0, all the gates will be 
disabled and force all output to be zero irrespective of the input data (ABC). However, 
the decoder will give the required data when the Enable terminal is held at logic 1. The 
functional block diagram of 3 to 8 line decoder is shown in figure 6.14. 
 

 
                                         Fig. 6.14 

 

The 4:16 line decoder can also be explained on the same pattern. It may be 
mentioned here that if AND are used in designing the decoder circuit, then Enable and all 
outputs will be active high. If on the other hand the decoder circuit is designed using 
NAND gates then the Enable as well as the outputs terminals will be active low.  

Further it is interesting to note that the decoder can function as a demultiplexer. 
For example a 2:4 line decoder with Enable terminal can be used as a 1:4 DMUX, if the 
Enable terminal E is used as the data input line for the DMUX and the two input A & B 
of the decoder as the select terminals for the DMUX. It is illustrated in figure 6.15.  
 

 
 Fig. 6.15 
 
 Decoder/Demultiplexer circuits can be expanded to form the larger decoder 
circuit. For example two 3:8 line decoders with Enable terminal can be connected to form 
a 4:16 line decoder. Figure 6.16 shows the construction of a 4:16 line decoder with two 
3:8 line decoders. From this figure it is clear that when the enable terminal E is 0, 
decoder (1) is enabled and decoder (2) is disabled. The decoder (1), therefore, gives the 
outputs as per the value of ABC. When the enable terminal E is 1, decoder (1) is disabled 



and decoder (2) is enabled. The decoder (2) now gives the output as the input values. 
Here E terminal works as the most significant bit and C as the least significant bit. So 
EABC generates the binary input 0000 through 1111. 
 

 
Fig. 6.16 

 
 The Boolean functions given in standard SOP form can be realized using the 
decoder circuits. For the realization of Boolean expressions, the decoder requires some 
gates also. The use of decoder for the implementation is more economical, as number of 
Boolean expressions can be implemented using one decoder and a few gates. However, in 
multiplexers one MUX is used for one Boolean function. 
 

Example 6.4:   Using a 4 –to – 16 line decoder, implement the following functions given 
in standard SOP form.  

 ∑= )14,12,7,6,4,2,1,0(),,,(1 DCBAF  

 ∑= )15,13,10,8,5,3(),,,(2 DCBAF  

 ∑= )12,11,7,6,5(),,,(3 DCBAF  

Solution:  The realization of the given Boolean functions using one decoder and a few 
gates is shown in figure 6.17. The decoder used here is active high, so enable terminal E 
is connected to logic 1. Three OR gates are used for the implementation of three function; 
one OR gate for one function. 
 
 
  



  
                             Fig. 6.17 
 
Example 6.5:   Implement a full subtractor circuit with a 3 to 8 line decoder and two OR 
gates. 
Solution:  The Boolean expressions for Difference D and Borrow B bits of full subtractor 
are given as follows (refer chapter 5): 

 ∑= )7,4,2,1(D  

 ∑= )7,3,2,1(B  

The realization of these functions with 3 to 8 line decoder and two OR gates, is shown in 
figure 6.18. 
 

  
 
 Fig. 6.18 
 



6.3.1  BCD – to – Decimal Decoder:   The BCD to Decimal decoder converts each BCD 
input character (8421 code) into one of ten possible decimal form. It is also referred to as 
4 – to – 10 line decoder. The method of implementation is essentially the same as for 4 – 
to – 16 line decoder discussed above, with the difference that it has only ten decimal 
digits 0 through 9. The BCD to Decimal decoder is also available in the form of IC. The 
most commonly used BCD to decimal decoder TTL IC is 74LS42. It is designed using 
NAND gates, which therefore gives the active low outputs. Figures 6.19(a) and 6.19(b) 
show the logic and block diagram of BCD to decimal decoder IC 7442 respectively. 
Table 6.7 shows the truth table of IC 7442. 
 

 
 
 
 Given below the list of most commonly used demultiplexer ICs available in the 
market: 

Description    IC No. 
Dual 1:4 DMUX  74155 

                                           (2:4 line decoder) 

1:8 DMUX   74138 
                                           (3:8 line decoder) 

                                           1:16 DMUX 
(4:16 line decoder)  74154 

 
 



Table 6.7 

 
 

6.3.2 BCD – to – Seven – Segment Decoder:   A decoder for BCD to 7 – segment will 
now be discussed. A seven segment display consists of seven display lights (segments) 
arranged in a pattern shown in figure 6.20.  The light emitting gallium arsenide or 
phosphide diodes are generally used for the segments of these display devices. These 
devices, also known as seven – segment LED display devices, are operated at low voltage 
and low power and hence directly connected to ICs.  The segments of the display devices 
are marked as a, b, c, d, e, f, g. The numeric digits 0 through 9 may be displayed if the 
corresponding segments glow as shown in figure 6.20 by the darken segments.  

 

Fig. 6.20 



 The seven – segment LED display devices are of two types, one is known as 
common cathode and the other is known as common anode. In the common cathode LED 
display device, the cathodes of all its LEDs are connected to the common terminal of the 
device. When the common terminal is grounded and positive voltages are applied to the 
anodes of the corresponding LEDs of the display device, then the numerals will be 
displayed on the devices. However, in the common anode LED display devices, the 
anodes of all its LEDs are connected to the common terminal of the device which is to be 
connected to the positive supply; and when the low voltages are applied to the anodes of 
the devices, the numerals are displayed. BCD to seven - segment decoders are available 
in the form of ICs. The common cathode LED display devices are connected to such 
BCD to seven segment decoder ICs which provide active high outputs and common 
anode LED display devices to such decoder ICs which provide active low outputs. Other 
display devices are LCD (Liquid Crystal Devices). 

 The design of a combinational circuit will be discussed. It will decode 4 – bit 
BCD codes to decimal digits. The logic circuit will have 4 inputs and seven outputs 
(figure 6.21). Seven outputs will correspond to the segments of the display. 

 

 

Fig. 6.21 

 A truth table indicating the 4 – bit BCD inputs and seven segment outputs is 
shown in table 6.8. Seven segments show the output 1 if it is to glow. The K – maps for 
the seven segments a, b, c, d, e, f, g are shown in figure 6.22 (a) to (g). From these K – 
maps the minimal Boolean expressions are obtained for each segment. The expressions 
are given as:   

    CBDBCAa ⋅+⋅++=   

    DCDCBb ⋅+⋅+=  

   DCBc ++=   

  DCBCBDBAd ⋅⋅+⋅+⋅+=  

 DCDBe ⋅+⋅=  

 DBCBDCAf ⋅+⋅+⋅+=  

   DCCBCBAg ⋅+⋅+⋅+=   
  



 The expressions for the seven segments a through d can be implemented using 
the AND OR and Not gates as shown in figure 6.23. 
 

 
Table 6.8 

 



 

 



 

Fig. 6.23 

 

 A few ICs are available for BCD to seven segment decoder/driver. ICs 7447 & 
7446 are generally used BCD to seven segment decoder/driver. These decoder ICs has 
four input lines and 7 output lines for each segment of the display device. The both ICs 
give active low outputs and their pin configuration is same. The maximum voltage rating 
of IC 7447 is 15 volts where as it is 30 volts for IC 7446. The function of lamp test (LT), 
Ripple blanking input (RBI), ripple blanking output (RBO) and Blanking inputs are also 
provided in these decoder ICs. The lamp test is used to check the segments of the display 
device. If LT is at logic 0 then all the segments of the display device will be ON. For 
normal operation of the decoder LT should be connected to logic 1. For normal operation 
of the decoder the ripple blanking input (RBI) should be connected to logic 1. For 
blanking out leading zeros in multi – digit display, RBI is to be connected to logic 0. The 
terminal blanking input and ripple blanking out (BI/RBO) is also used for blanking out 0s 
in multiplexed display. The set up for single seven – segment LED display using BCD – 
to – seven segment decoder/driver IC 7447 is shown in figure 6.24. 



 

  

 Fig. 6.24 

 

6.4 Code converter: Code converter is most commonly used in digital systems.  
Sometimes binary numbers are provided in one type of binary codes and required the 
numbers in other types of binary codes. So the code converter converts the binary 
numbers provided in one type of codes to other type of codes. The process of code 
converter is illustrated by taking an example. Suppose it is desired to convert the digits 
given in 8421 to cyclic code.  A truth table is drawn in which four input variables say 
a,b,c,d are taken for the given code and flour output variables for output variables say 
X,Y,Z,W are taken for the required code. The binary numbers in the given code are 
written for the input variables and their corresponding binary numbers in the required 
code are written for the output variables (table 6.9).  

 Using the K – map, simplified Boolean functions for each variable in the required 
code is obtained in terms of the variable of the given code. In the above example of 
conversion of 8421 code to cyclic code, the Boolean function of the variables of cyclic 
codes are obtained in terms of the variables of 8421 code. These expressions are given as: 

 

 Figure 6.25 shows the K – map for each expression. The realization of these 
expressions using NAND gates is shown in figure 6.26. 
      
 
 



 
 
 
 
 
 
 
 
 

Table 6.9 
  
 
 
 
 
 
 
  
 
  
 
 
 
 
 

 

8 – 4 – 2 – 1 Code 
a        b        c        d 

Cyclic Code 
  X       Y        Z      W 

0        0        0        0 
0        0        0        1 
0        0        1        0 
0        0        1        1 

     0        1        0        0 
     0        1        0        1 
     0        1        1        0 
     0        1        1        1 
     1        0        0        0 
     1        0        0        1 

0        0        0        0 
0        0        0        1 
0        0        1        1 
0        0        1        0 
0        1        1        0 
1        1        1        0 
1        0        1        0 
1        0        1        1 
1        0        0        1 
1        0        0        0 



 
                            Fig. 6.25 

 
 
 Fig. 6.26 
 
6.5 Encoders:   An encoder a combinational circuit which performs the reverse 
operation of decoder. The decoder accepts N bit input code and activates one of the 
several out lines corresponding to that code. However, an encoder has a number of input 
lines, only one of which is activated at a time. It provides the N bit code at the output 
corresponding to activated input line. The decoders studied in the foregoing section were 



binary to octal, BCD to decimal decoder etc. The encoders will therefore, be like octal to 
binary and decimal to BCD encoders. Figure 6.27 shows the functional block diagram of 
an encoder having K inputs and N outputs. In the K input lines only one line will be high 
at a time.    

 
         Fig. 6.27 
 
6.5.1  Octal – to – Binary Encoder:  An octal – to – binary encoder (also known as 8 – 
line to 3 – line encoder) has 8 input lines and provides three bit output lines for producing 
output code corresponding to the activated input line. The truth table for octal – to – 
binary encoder is given in table 6.10.  From this table it may be noted that binary output 
X0 gives the logic 1 if any of the input digits D1 or D3 or D5 or D7 is at logic 1.  Therefore 
the Boolean expression for X0 is given by: 

75310 DDDDX +++=  

 Similarly, the expressions for X1 and X2 may be given as: 

76321 DDDDX +++=  

76542 DDDDX +++=  

 The logic circuit for the octal – to – binary encoder with active high inputs is 
shown in figure 6.28. 

 
 Fig. 6.28 



 
 
6.5.2   Decimal – to – BCD Encoder:  The decimal – to – BCD encoder has 10 inputs – 
one for each decimal digit, and 4 output lines for BCD codes. The logic symbol of this 
encoder is shown in figure 6.29. Table 6.11 shows the truth table for decimal to BCD 
encoder. The expressions for the output variables with respect to the truth table are given 
by: 

 975310 DDDDDX ++++=  

  76321 DDDDX +++=  

 76542 DDDDX +++=  

 983 DDX +=  

 The logic circuit for the decimal – to – BCD encoder with active high inputs is 
shown in figure 6.30. 

 
Fig. 6.29 

 

 

 Fig. 6.30 

6.6 Priority Encoder:    In the logic circuit for encoders, it has been discussed that 
only one of the inputs is kept high at a time and output is obtained corresponding to the 
high input. But it is worth mentioning that if the two or more inputs are inadvertently 
activated at a time then undesirable results will be obtained. The priority encoder 



performs the same logic function as that of encoder with the additional facility of priority 
function, when two or more input lines are activated simultaneously. The priority 
function means that the encoder will provide the output corresponding to the highest 
order activated input line. Decimal to BCD priority encoder will now be discussed in 
detail. 

6.6.1  Decimal –  to –  BCD Priority Encoder:  Decimal – to – BCD priority encoder 
should have ten input lines D0 through D9 and four output lines X0 to X3 like normal 
Decimal to BCD encoder. The additional facility provided in the priority encoder is that 
when two more lines say D4 and D8 are activated simultaneously, the BCD output will be 
available corresponding to the line which has higher number i.e. the output will be 
available corresponding to D8 line.  The additional logic circuitry will provide the priority 
function to the encoder. This is accomplished as follows: 

 Referring to the table 6.11, the truth table for the decimal to BCD encoder, X0 is 
high when D1 or D3 or D5 or D7 or D9 is high. But for priority function, D0 must be 
allowed to activate the output X0 only if no higher order digits other than those that also 
activate X0 are high. This can be stated as: 

 X0 is high if D1 is high and D2, D4, D6 and D8 are low, OR 

  D3 is high and D4, D6, and D8 are low, OR 

   D5 is high and D6 and D8 are low, OR  

  D7 is high and D8 is low, OR 

    D9 is high.  

 The above statements can be expressed in the form of expression for X0 as: 

9878658643864210 DDDDDDDDDDDDDDDX +⋅+⋅⋅+⋅⋅⋅+⋅⋅⋅⋅=  

The statements for getting the expression for output X1 are: 

X1 is high when D2 or D3 or D6 or D7 is high. So for priority encoder  

 X1 is high if D2 is high and D4, D5, D8 and D9 are low, OR 

  D3 is high and D4, D5, D8 and D9 are low, OR 

   D6 is high and D8 and D9 are low, OR  

    D7 is high and D8 and D9 are low.  

The expression for X1 is of the form: 

98798698543985421 DDDDDDDDDDDDDDDDX ⋅⋅+⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅=  

The statements for getting the expression for output X2 are: 

X2 is high when D4 or D5 or D6 or D7 is high. So for priority encoder  

 X2 is high if D4 is high and D8 and D9 are low, OR 

  D5 is high and D8 and D9 are low, OR 

   D6 is high and D8 and D9 are low, OR  



    D7 is high and D8 and D9 are low.  

The expression for X2 is of the form: 

9879869859841 DDDDDDDDDDDDX ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  

Similarly, the statements for getting the expression for output X3 are: 

X3 is high when D8 or D9 is high. So for priority encoder  

 X3 is high if D8 is high or D9 is high. 

 The expression for X3  is, therefore, given by: 

983 DDX +=  

The logic circuit diagram for the Decimal – to – BCD priority encoder is shown in 
figure 6.31 with active high outputs. 

 
 
 Fig. 6.31 
 
 Decimal to BCD priority encoder, is available in the form of IC 74147. The input 
and output variables in this IC are active low. The block diagram of this IC is shown in 
figure 6.32 and table 6.12 illustrates its truth table.      
 



  
 

                 Fig. 6.32 
 

 
 

Table 6.12 

 
 
 
6.6.2 Octal to Binary Priority Encoder:  The block diagram of octal to binary priority 
encoder IC 74148 is shown in figure 6.33, and the truth table for the same in given in 
table 6.13. The internal logic circuit for this IC has active low inputs and active low 

 
                                     Fig. 6.33 

 



 
Table 6.13 

 
 
outputs. One enable input is provided in this IC which is also active low.  Two active low 
carry outputs are also provided in the IC. The enable input and carry output help to 
cascade circuits to handle more inputs. Very useful circuits such as hexadecimal to binary 
encoder are designed by cascading octal to binary priority encoders. A hexadecimal to 
binary priority encoder finds wide use in computers and microprocessors etc. 

 
6.7 Magnitude Comparator:     Magnitude comparator also called as the magnitude 
digital (or binary) comparator. It compares and indicates if the binary number P is equal 
to or greater than or less than the other binary number Q. Let P0 and Q0 are the two bits to 
be compared. The result for the equality of these two bits may be given by XNOR gate. 
The XNOR gate gives an output as logic 1 if two bits are equal otherwise logic 0. This 
condition is given by:  

   
 The condition   00 QP >   is given by: 

      

 In this expression if 00 QP >  (P0 = 1 and Q0 = 0), R = 1 and if on the other hand 

00 QP ≤  (P0 = 0 and Q0 = 1 or P0 = Q0 = 0 or P0 = Q0 = 1), R = 0. 

 The condition   00 QP <   is given by:  

                                   

 It is clear from this expression that if 00 QP < (P0 = 0 and Q0 = 1), S = 1 and if on 

the other hand 00 QP ≥ (P0 = 1 and Q0 = 0 or P0 = Q0 = 0 or P0 = Q0 = 1), S = 0. 



 The logic diagram for one bit comparator is shown in figure 6.34. 
 
 

 
 Fig. 6.34 

 Now the comparator which compares two unsigned four – bit binary numbers will 
be discussed. Let P3P2P1P0 and Q3Q2Q1Q0 are the two unsigned binary numbers of four 
bits. The comparator gives three outputs indicating if Ps > Qs or Ps = Qs or Ps < Qs. The 
two binary numbers will be equal if and only if P3 = Q3, P2 = Q2, P1 = Q1 and P0 = Q0. 
The logic expression for the equality of two binary numbers will be given by the AND 
operation of the equality of the individual bit (XNOR of individual bit), as: 

 )()()()()( 00112233 QPQPQPQPQsPs ⊕⋅⊕⋅⊕⋅⊕==  

The statements for getting the expression for Ps > Qs are: 

Ps will be greater than Qs  

 if P3 = 1 and P3 = 0    OR 

if P3 = Q3 and if P2 = 1 and Q2 = 0 OR 

if P3 = Q3, and if P2 = Q2, and if P1 =1 and Q1 = 0 OR 

if P3 = Q3, and if P2 = Q2, and if P1 = Q1 and if P0 = 1 and  Q0 = 0 

 These statements can be expressed in the form of expression for Ps > Qs as: 

00112233112233223333 )()()()()()()( QPQPQPQPQPQPQPQPQPQPQsPs ⋅⋅⊕⋅⊕⋅⊕+⋅⋅⊕⋅⊕+⋅⋅⊕+⋅=>
 Similarly, the statements for getting the expression for Ps < Qs are: 

Ps will be less than Qs  

 if P3 = 0 and P3 = 1    OR 

if P3 = Q3 and if P2 = 0 and Q2 = 1 OR 

if P3 = Q3, and if P2 = Q2, and if P1 = 0 and Q1 = 1 OR 

if P3 = Q3, and if P2 = Q2, and if P1 = Q1 and if P0 = 0 and  Q0 = 1 

 These statements give the expressions for Ps < Qs as: 



00112233112233223333 )()()()()()()( QPQPQPQPQPQPQPQPQPQPQsPs ⋅⋅⊕⋅⊕⋅⊕+⋅⋅⊕⋅⊕+⋅⋅⊕+⋅=<
  

 Figure 6.35 shows the implementation of the three expressions for Ps > Qs, Ps = 
Qs  and Ps < Qs of the four bit magnitude comparator. The outputs of this comparator are 
active high.  

  
 

 
 Fig. 6.35 

 Figure 6.36 shows the logic diagram of 4 – bit comparator IC 7485. This IC has 4 
input and 4 output terminals with active high, and in addition it has three cascading 
inputs. These inputs allow several comparators to cascade for comparison of any number 
of bits. For the expansion of the comparators, Ps > Qs, Ps = Qs and Ps < Qs outputs of the 
one comparator (to which the least significant data is connected) to the corresponding 
cascading inputs of the second comparator (to which next significant data is connected). 
The cascading inputs of the first comparator (to which the least significant data is 
connected) must be connected as follows: 

Cascading Input “= “ to logic 1 and cascading inputs “>” and “<” to logic 0. 



 
Fig. 6.36 

 Cascading of two comparators (ICs 7485) to compare the magnitudes of two 8 – 
bit binary numbers is shown in figure 6.37.   
 

 
  Fig. 6.37 
 
6.8 Parity Generator/ Checker:  In some digital systems the data or information in 
the form of the binary bits is sent from one block or the system to the other block or the 
system. In the transmission of the data, error may occur due to change of data bit (0 by 1 
or vice versa). This change may be due to component malfunctions or the electrical noise. 
This problem is removed by adding one additional bit in the data to be transmitted. This 
extra bit is known as parity bit.  The parity bit detects the single error in the transmission. 
Parity is the number of 1’s in the given data or word. If the number of 1’s in the given 
data is even then parity is called as even parity; if on the other hand the number of 1’s is 
odd then the parity is called as odd parity. The parity bit of the data or the word is 
generated by the parity generator. The logic diagram of the parity bit generator of four bit 
is shown in figure 6.38. This parity generator gives output P (parity bit) as logic 1 if the 



number of  1’s in the four bit input data is even; and P is logic 0 if the number of 1’s in 
the four bit input data is odd. That is for even parity of the input data, output is 1 and for 
odd parity of the input data, output is 0.  
 

 
Fig. 6.38 

 
The parity bit P generated by the parity generator is sent along with the data and 

at the receiver end data as well as the parity bit is checked by the parity checker. The 
logic circuit for the parity checker (fig.6.39) is the same as that of the parity generator 
with the only difference that in the parity checker the terminal P’ in not grounded, but the 
parity bit received at the receiver end is connected to the point P’. So at the receiver the 
received data and the parity bit form the five bit data which is always having the odd 
parity. It is clear from the fact that if the data A, B, C and D is odd (even) then parity bit 
is 0 (1), and therefore the received data and the parity bit is always is odd.  

 

  

 Fig. 6.39 

 As illustrated in figure 6.40, a parity bit P1 is generated and transmitted along with 
the data. At the receiver, the received data and parity bit are tested. If the output P2 of the 
checker is 0, then no error is there in the received data. If on the other hand output P2 is 1, 
then there is an error in the received data.  
 
 



 
Fig. 6.40 

 Parity generator/checker is available in the form of IC. Figure 6.41 shows the 
block diagram of 8 bit parity generator/checker IC 74180 and its truth table is given in 
table 6.14.  This IC can be used to check for even or odd parity on a 9 – bit code (8 – bit 
data and one parity bit). It can also be used to generate a 9 – bit even or odd parity code.  
 
 Table 6.14 

 
          Fig. 6.41 

6.9 Programmable Logic Devices:  Different gates and other combinational logic 
circuits available in the form of ICs are used for the logic designs. In many system 
designs, the designers use large number of ICs, since such circuits have several input and 
output variables. The recent development of programmable logic devices has presented a 
cost effective method of realizing such circuits. The programmable logic devices (PLDs) 
are medium scale integrated circuits and these devices can replace a number of standard 
ICs. Thus PLDs help in designing larger circuit on small space with ease.  

 A PLD is a programmable IC which contains large number of interconnected 
gates, flip – flops and registers etc. Many of the interconnections are fusible. The 
connections which are not required by the designers are fused or broken. Programming of 
fuse blowing as per the required circuit pattern is done by the manufacturer or by the 
customer.  

 PLDs fall into three categories. They are known as: 

(i) Field Programmable Logic Array (FPLA) 

(ii)  Programmable Array logic 



(iii)  Programmable Read Only Memory (PROM) 

 PLDs consist of an array of AND gates followed by an array of OR gates. Both 
true and complement form of the input variables are fed to AND array. Simplified 
procedure is adopted to represent the internal circuitry of these devices. Figure 6.42 
demonstrate the connection to an AND gate. The circled cross marks () to the input 
lines shows the fusible connections to the input lines. If there is no circled cross mark, it 
indicates that the connection has been broken or fused. Further, the dot marks ( ) on the 
input lines show the hard wire connections to the corresponding input lines. Figure 6.42 
(a) indicates a four input AND gate with fusible connections to BBAA ,,,  inputs. If the 
connections are fused to A and B inputs, then no mark will be shown to these points refer 
figure 6.42 (b). The output of this AND gate isBA⋅ . Similarly, the dot marks () to the 
input lines (figure 6.42 c) indicate the hardwire connection to the input lines. The output 
of this gate is BA ⋅ . Similar connections are used for OR array also.  

 

6.9.1 Field Programmable Logic Array (FPLA):   Figure 6.43 demonstrates the basic 
structure of Field Programmable Logic array (FPLA). In this logic device, both AND 
array and OR array are programmable. The circled cross marks to the input lines of AND 
and OR gates indicate that these connections are fusible or programmable. It may be 
noted from the architecture of the FPLA that when it is not programmed all the true and 
complemented variables are connected to the inputs of each AND gate. The AND gates 

will give the outputs 0, since 01100 =⋅⋅⋅⋅⋅⋅⋅ XXXX . The outputs of the OR gates will 

also be zero since it is the summation of outputs of all AND gates. So when FPLA is not 
programmed all outputs of the device will be zero. Now if the circled cross mark of some 
inputs of AND gate are burnt (or programmed to remove fuse), then min-term of the 
remaining input variables (or their complements) will be obtained. Similarly by burning 
the unused circled cross marks of OR array will give the required outputs in SOP form. 
So the programming of the device allows the implementation of arbitrary logic functions 
in a two level sum – of – product (SOP) form. The AND array creates the required min-
terms, while the OR array takes the sum of products to form the outputs. It is very 
versatile since both AND and OR arrays are programmable. However, it has some 
disadvantages; it is more difficult to manufacture, program or test than other PLDs.  



 
 Fig. 6.43 
 FPLA has a number of input variables, AND gates and OR gates. The actual 
FPLA available are specified by  p x q x r, where p is the number of input variables, q is 
the number of AND gates and r is the number of OR gates (outputs). One FPLA 840 has 
14 input variables, 32 AND gates and 6 OR gates.  
Example 6.6: Consider a FPLA of 4 input variables, 10 AND gates and 4 OR gates 

 
 Fig. 6.44 



shown in figure 6.44. How would it be programmed to implement the logic circuit for 
8421 code to cyclic code converter?  

Solution:  In section 6.4, logic circuit for 8421 code to cyclic code has been implemented 
using AND, OR and NOT gates. The Boolean expressions for four variables X, Y, Z, and 
W of cyclic code given in terms of a, b, c and d variables of 8421 code are reproduced 
below (from section 6.4) as: 

  
 These expressions are realized using FPLA as shown in figure 6.45. 
 

 
Fig. 6.45 

 

Example 6.7:  Implement a BCD to seven segment decoder circuit using a FPLA of 
proper specification. 

Solution:  The expressions for the seven segments of BCD to seven segment decoder are 
given by after K – map minimization (as discussed in section 6.3.2) as: 

    CBDBCAa ⋅+⋅++=   

    DCDCBb ⋅+⋅+=  

   DCBc ++=   

  DCBCBDBAd ⋅⋅+⋅+⋅+=  

 DCDBe ⋅+⋅=  



 DBCBDCAf ⋅+⋅+⋅+=  

   DCCBCBAg ⋅+⋅+⋅+=   

 There are 15 independent min-terms in these expressions. So for their realization 
the FPLA should have 4 input variables, 15 AND gates and 6 OR gate. The realization of 
7 outputs of BCD to seven segment display is shown in figure 6.46. 
 
 

  
 
 Fig. 4.46 
 
6.9.2 Programmable Array Logic (PAL):  Another class of Programmable logic 
devices is the programmable array logic (PAL) which is widely used and easily 
programmable. The PAL has an AND array followed by OR array similar to FPLA, with 
the difference that the inputs to AND array are programmable while the inputs to OR 
gates are hard wired (fixed OR array). Figure 6.47 shows the architecture of a PAL 
device having 16 AND gates and four OR gates. Every AND gate can be programmed to 
generate any desired product of 6 input variables and their complements. Each OR gate is 
hard wire to only four AND outputs. This limits each output function to four min-terms. 
If the function requires more than four product terms then one has to use such a PAL 
which has more OR inputs. If on the other hand one needs less than four product terms, 
the unneeded terms to the input of OR gate are made 0 by not burning (or programming) 
the corresponding input lines of AND gates. The PAL structure is the most generic one 
for the implementation of arbitrary logic functions.  



  
 
 Fig. 6.47 
 
 
Example 6.8:  Using the PAL shown in figure 6.47, implement the following SOP 
functions of 4 variables. 

 DCBADCBADCBADCBAY ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=0  

 DCBAY ⋅⋅⋅=1  

 CDBAY ++⋅=2

 DCBDCBABADCBY ⋅⋅+⋅⋅⋅+⋅+⋅⋅=3  

Solution:   Figure 6.48 shows the implementation of the given functions using the PAL. 
 
 



 
       

Fig. 6.48 

6.9.3  Programmable Read Only Memory (PROM):  Another class of  PLDs  is 
programmable read only memory (PROM), in which AND array is not programmable 
while OR array is programmable. So connections from input lines to the AND gates are 
hard wired, while the connections to the OR gates from the outputs of the AND array are 
programmable (each joint is marked with circled cross mark ). If there are N input 
variables, then 2N product terms are generated. One AND gate will be used for each 
product term, so there will be 2N AND gates or rows. The OR array will be of any 
number. Figure 6.49 shows 16 X 4 PROM. Since 16 = 24, so it will have 4 address or 
inputs lines and 4 data outputs. For the programming of OR array, circled cross marks are 
removed or fused for the unused product terms and these marks are retained for the used 
product terms. PROMs find many applications like the implementation of Boolean 
functions, code converters and data storage tables. 

Example 6.9:   Using 16 X 4 PROM, implement the following functions of 4 variables. 

∑= )15,14,10,9,8,5,4,1,0(),,,(0 DCBAY  

   ∑= )15,13,11,10,9,4,3,2(),,,(1 DCBAY  

                                           
       ∑= )13,10,7,6,5(),,,(3 DCBAY  



Solution:  By making the suitable programming of OR array, the given Boolean 
functions are realized using 16 X 4 PROM as shown in figure 6.50. 
 

 
   
                     Fig. 6.49  Fig. 6.50 
            

Example 6.10:  Using 16 X 4 PROM, implement the 4 –bit binary– to– gray conversion. 

Solution:  The conversion table of 4 –bit binary to gray is shown in table 6.15. The 
implementation of this converter is, therefore, is shown in figure 6.51. 

 The expressions for the outputs of gray code are given by: 

  ∑= )15,14,13,12,11,10,9,8(),,,(0 DCBAY  

                          ∑= )11,10,9,8,7,6,5,4(),,,(1 DCBAY  

              ∑= )13,12,11,10,5,4,3,2(),,,(2 DCBAY                          

                               ∑= )14,13,10,9,6,5,2,1(),,,(3 DCBAY  

 

 

 



                           Table 6.15 

 
        Fig. 6.51 
 

PROBLEMS 

1. Explain the working of a multiplexer. What are its uses? 

2. Discuss the method of implementing the Boolean expressions using Multiplexers. 

3. Implement a full subtractor circuit using MUXs. 

4. How can two 8:1MUXs be cascaded to use it a 16:1 MUX? 

5. What is a Demultiplexer? Draw the logic circuit of 1: 4 demultiplexer and discuss 
it working.  

6. What is a decoder? Discuss 3 to 8 line decoder having an enable terminal (active 
high). Also show that a decoder and Demultiplexer are same. 

7. Implement SUM and Carry of a full adder with 3 to 8 line decoder and two OR 
gates. 

8. What is BCD to decimal decoder? Draw its logic diagram and explain its 
working. 

9. How can two 3 to 8 line decoder be used as a 4 to 16 line decoder? 



10. Design a decoder that displays 4 bit BCD input to seven segment form. Realize 
the circuit using  

(i)    4 : 1 MUXs 
(ii)  NAND gates alone 
(iii)  NOR gates alone 

11. Repeat the problem 10 if the inputs are in 4 bit excess – 3 code. 

12. What is a code converter? Design an 8421 to 2421 code converter. Draw its logic 
diagram using  

(i) NAND gates 
(ii)  NOR gates 
(iii)  MUXs 
(iv) 4 X 16 PROM  

13. What is an encoder? Draw the logic diagram of octal to binary encoder. 

14. Draw and explain the logic diagram of Decimal to BCD encoder. 

15. What is priority encoder? Draw the logic diagram of decimal to BCD priority 
encoder. 

16. Discuss octal to Binary priority encoder. 

17. What is magnitude comparator? Draw the logic diagram of 4 – bit magnitude 
comparator and explain its working. 

18. How two 4 – bit magnitude comparators be used as a 8 –bit comparator. 

19. What are programmable logic devices? Name popularly known PLDs. Explain 
any one of them in detail. 

20.  Discuss 4 – bit parity bit generator cum checker. 
21. Realize the following function of four variables using 8:1 MUXs. 
  (i)  ∑= )15,13,7,6,4,2,0(),,,(1 DCBAF  

  (ii)  ∑= )15,14,10,9,8,5,4,3,1,0(),,,(2 DCBAF  

  (iii) ∑= )15,14,13,12,10,9,8,7,6,4,0(),,,(3 DCBAF  

  (iv)  ∑= )15,14,13,12,9,8,5,3,2,1,0(),,,(4 DCBAF  

22. Repeat the problem 21 using 4 to 16 line decoder and 4 OR gates. 

23. What is Field Programmable Logic Array (FPLA)? Explain how the programming 
of AND and OR arrays in FPLA is done.  

24. What are Programmable array logic (PAL) devices? What is the difference 
between FPLA and PAL devices? 

25. Explain Programmable Read only Memory (PROM). How does the architecture 
of a FPLA differ from those of PROM and PAL? 

26. Implement a excess – 3 to seven segment decoder using FLA of proper 
specification. 



27. Using the PAL shown in figure 6.47, implement the following SOP functions of 4 
variables. 

 DCADCBADBADCAX ⋅⋅+⋅⋅⋅+⋅⋅+⋅⋅=0  

 DCBAX ⋅⋅⋅=1  

 CADCAX ⋅+⋅+=2   

 DBDABACBX ⋅+⋅+⋅+⋅=3  

28. Using 16 X 4 PROM, implement the 4 –bit binary– to– Excess 3 conversion 
 
 

___________ 
 



7 
Logic Families 

 
 
 

In the last two chapters, discussions on the design of combinational circuits have 
thoroughly been made. The combinational logic circuits were implemented with the use 
different logic gates knowing only the characteristics of these gates.  However, the 
electronic hardware of these gates has not so far been discussed. The discussion in this 
chapter will, therefore, confine to the hardware of different logic families with their 
operational characteristics and their relative advantages and disadvantages.  

7.1  AND Gate:  Consider the circuit for two input positive logic AND gate as shown 
in figure 7.1. The positive logic means that logic 1 is assumed to higher voltage and logic 
0 is assumed to lower voltage. Similarly, if logic 1 is assumed for lower voltage and logic 
0 is assumed for higher voltage then it is referred to as negative logic. It consists of two 
diodes D1 and D2, the anodes of which are connected to positive supply through a 
resistance R. The output is taken across the load resistance RL. The operation of this 
circuit may be explained as given below: 

  
 Fig. 7.1 
 
(i) When both Inputs are at logic 0:   When both the two inputs A and B are connected 
to logic 0 (grounded), then both the diodes will be in forward bias. Since the anodes of 
these diodes are connected to positive supply and cathodes are grounded. The voltage 
across the load resistance RL will, therefore, be equal to the forward voltage drop of the 



diode. If the diodes are silicon diode, then in no case this voltage will be more than 0.7 
volt, which is assumed to be logic o. 

(ii) When either of two inputs is at logic 1:  In this case, the diode whose cathode is at 
logic 1 (+5 Volts) will be in the reverse bias and other diode (whose cathode is grounded) 
will be in forward bias. The voltage across the load resistance RL will, therefore, be equal 
to the forward voltage drop of the diode. So the output is at logic 0. 

(iii) When both the inputs are at logic 1:   In this case both the diodes will be in reverse 
bias. So the output voltage will be equal to logic 1, as no current will flow through the 
diode and whole of the current will flow through the load resistance. So the voltage 
across the load resistance will be approximately +5 volts (logic 1). 

 It verifies the operation of AND gate. Similarly one can explain the operation of 
more than two variables AND gate. 

7.2 OR Gate:  The operation of positive logic two input OR gate may be explained by 
considering the circuit shown in figure 7.2.  

(i) When both Inputs are at logic 0:   When both the two inputs A and B of the OR gate 
are connected to ground (logic 0), the output will be zero (logic 0), since positive 
terminal of the supply is isolated from rest of the circuit.  

 
 Fig. 7.2 

(ii) When either of two inputs is at logic 1:  In this case, the anode of the diode whose 
input is at logic 1 gets connected to the positive terminal of the supply. That diode will be 
in forward bias, giving the voltage drop of 0.7 volt across the diode. The total voltage 
across the load resistance RL will, therefore, be approximately 4.3 volts (logic 1). 

(iii) When both the inputs are at logic 1:   In this case when both the inputs are at logic 
1 i.e. when the anodes of both the diodes are at positive terminal of the supply, both the 
diodes will be in forward bias. The voltage drop across the load resistance RL will be 
equal to 4.3 volts (logic 1). 

 It verifies the operation of OR gate. The operation of more than two variables OR 
gate may be explained in the same fashion. 



7.3 NOT (Inverter) gate:   Figure 7.3 shows the circuit diagram of an inverter 
(NOT) gate. It consists of a transistor in common emitter configuration. It is a unary gate 
since input to this gate is only one. The principle of operation may be explained as: 

 When the input A is at logic 0, the emitter base junction of the transistor will be in 
reverse bias and therefore the transistor goes into cutoff.  The collector (output) voltage 
will be nearly equal to +VCC (logic 1).  If on the other hand the input is at logic 1 (+ VCC), 
the transistor will go in to saturation. The value of resistance R is so chosen so that it 
ensures the emitter base voltage to be equal to VBE,Sat 8.0≈  volts. The collector (output) 
voltage will be equal to VCE,Sat 2.0≈  volts (logic 0). 

 So when input is logic 0, output is logic1; if input is logic 1, output is logic 0. 
This shows the inverter operation. 

 
 Fig. 7.3 

7.4 Logic Families:  The basic logic gates discussed above were designed using 
discrete components like diodes, transistors and resistances etc. In the recent past, it has 
been possible to fabricate many hundreds of thousands of active and passive components 
on a small silicon chip. Such fabricated devices are known as integrated circuits (ICs). 
The Integrated circuits are broadly classified in two categories namely Linear or analog 
ICs and digital ICs. The analog ICs mainly contain amplifiers, operational amplifiers, 
audio and power amplifiers etc. However, the digital ICs contain logic gates etc. The 
variety of logic gates are fabricated in digital ICs using various technologies. The digital 
ICs may further be classified into following categories depending upon their level of 
integration: 

(i)  Small Scale Integrated Circuits (SSI): Twelve gates per IC are fabricated in SSI and 
total number of components per chip is less than 100.   

(ii) Medium Scale Integrated Circuits (MSI):  These ICs contain 12 to 100 gates per IC 
and total number of components per IC is 100 to 1000. 

(iii) Large Scale Integrated Circuits (LSI): The large scale integrated circuits contain 
100 to 1000 gates per IC and number of components is 1000 to 10000 per IC. 

(iv) Very  Large Scale Integrated Circuits (LSI):  These ICs contain more than 1000 
and less than 10000 gates per IC and total number of components per chip is 10000 to 
100000.  



(v) Ultra  Large Scale Integrated Circuits (LSI): More than 10000 gates per IC are 
fabricated and total components are more than 100000 per chip. 

 The logic families are classified into two categories depending upon the 
technologies used for fabrication. 

1. Bipolar Logic Families 

2. Uni-polar Logic Families 

The bipolar logic families are mainly of two types.  

a.  Saturated Logic Circuits:  In which the transistors are driven into 
saturation.   

b. Non-Saturated Logic: In non-saturated transistor logic circuits, the 
transistors are avoided to go into saturation. 

The Saturated logic circuits may further be classified into the following 
categories: 

1. Resistor – Transistor Logic (RTL) 

2. Direct Coupled Transistor Logic (DCTL) 

3. Integrated Injection Logic (IIL or I2L) 

4. Diode – Transistor Logic (DTL) 

5. High Threshold Logic (HTL) 

6. Transistor – Transistor Logic (TTL) 

The non-saturated logic families are:  

1. Schottky Transistor – Transistor Logic (STTL) 

2. Emitter Coupled Logic (ECL) 

The Uni-polar logic families contains MOS FETs, these are: 

1. NMOS or  PMOS Logic  

2. CMOS (Complementary MOS) logic 

 Before discussing the details of logic families mentioned above, it is necessary to 
explain the following characteristics related to them. These parameters will help in 
comparing the performances of the logic families. 

(i) Fan – in:   The maximum number of inputs that can be applied to a logic gate is 
known as Fan – in. Thus a three input AND has fan – in as three.  

(ii) Fan – out: The fan –out of logic gate is the number of gates that can be driven by it. 
Thus, if a fan-out of a typical gate is 10, then it implies that this gate can drive 10 such 
gates. 

(iii) Propagation Delay Time:  The propagation delay time of a gate is defined as the 
time interval between the application of the inputs to a gate and appearance of the signal 
at the output of the gate. In other words it is defined as the time interval between a 



change in input state and the resulting change in output state of the gate. This delay is a 
very small quantity; it is of the order of few nano second say 20 nsec (20x10-9 sec) or 50 
nsec (50x10-9 sec).  The propagation delay of the gate also specifies the speed of the logic 
gate. The delay time is measured between 50% voltage levels of input and output 
waveforms. Figure 7.4 shows the input and output waveforms of an inverter. If tPHL is the 
delay time when the output goes from low state (logic 0) to high state (logic 1) and tPLH is 
the delay time when the output goes from high state (logic 1) to low state (logic 0), the 
propagation delay time of the gate tpd expressed as the average of the two delays as: 

2
PLHPHL

pd
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Fig. 7.4 

(iv)  Power Dissipation:  It is defined as the amount of power that can be dissipated in an 
IC. It is calculated as the product of the d.c. voltage applied to an IC and the current 
drawn from the d.c. source. It is always desirable to have low power dissipation per gate. 
The normal working power per gate is required from few micro-watts to few milli-watts. 
The product of speed and power dissipation per gate is known as the figure of merit of 
the logic family. A low value of this product is desirable.  

(v) Operating Temperature:   The temperature range in which an IC functions properly 
is known as the operating temperature of the gate. It is specified by the manufacturer. The 
acceptable temperature range of the ICs is from 0 to +70 0C for commercial applications 
and this range is from – 55 0C to 125 0C for military purposes. 

(vi) Noise Margin: Spurious signals called noise are sometimes generated in the 
connecting leads of the logic circuits due to the stray electric and magnetic fields in the 
surroundings. This results the unpredictable operation of the logic circuit. The noise 
margin is sometimes called Noise- immunity. It is defined as the difference between the 
maximum permitted low input and the maximum guaranteed low output, and that 



between the minimum permitted high input and the minimum guaranteed high output. 
The idea of noise margin is illustrated in figure 7.5.  
 

 
Fig. 7.5 

Figure 7.5 shows that VOH(min) is the minimum high voltage for logic 1 and 
VOL(max) is the maximum low voltage for logic 0. The output should not occur in the 
disallowed range. Similarly, VIH(min) is the minimum high input voltage and VIL(max) is 
the maximum low input voltage and the voltage level between VIH(min) and VIL(max) is 
the indeterminate range and this voltage range should not be applied to the inputs of the 
logic gate. 

 As per definition of the noise margin, the noise margin for high state (VNH) and 
the noise margin for low state (VNL) are given by: 

  VNH = VOH(min) – VIH(min) 

 VNL = VOL(max) – VIL(max) 

 The large noise margin is always desirable. 

7.5 Resistor – Transistor Logic (RTL):   The resistor–transistor logic is the most 
common family of logic circuits. It consists of resistors and transistors hence known as 
resistor transistor logic. Figure 7.6 shows the basic circuit for two - input RTL NOR gate. 
The operation of this circuit may be explained as follows: 

 When both the inputs A and B are at logic 0, the two transistors T1 and T2 will be 
in cutoff and no current flows through collector emitter circuit of the transistors. The 
output will, therefore, be high (logic 1). When either of the two inputs is at logic 1, the 
corresponding transistor will go into saturation and output will be VCE,Sat of the transistor 
( 2.0≈  V). The output is said to be at logic 0. The output will also be low, if both the 
inputs are at logic 0, as both the transistors will saturate. It is concluded that it performs 
the operation of the NOR gate.  



 Though this is a simplest logic circuit yet it has become obsolete. RTL has the 
advantage that its power dissipation per gate is low. The disadvantages of this family are 
that it has low noise margin and its propagation delay is relatively larger.  

 
                                                                    Fig. 7.6 

7.6 Direct Coupled Transistor Logic (DCTL): The direct coupled transistor 
logic circuit is similar to RTL, which obtained by omitting the base resistances in RTL. 
The DCTL circuit for two-input NOR gate is shown in figure 7.7. When one or both the 
inputs are high (logic1), the corresponding transistor or transistors will be conducting and 
the current flows through the resistance R gives the output low (logic 0). It, however, 
corresponds to high output voltage when both the inputs are at low. This logic is very 
simple and requires a few components but it has the disadvantage of low noise margin.  

 
 Fig. 7.7 

7.7 Integrated Injection Logic (IIL or I 2L) :  This family of bipolar 
transistors is the simplest logic family and it has high packing density due to which a 
large number of digital functions can be formed on a single chip. The I2L family is 
available in LSI package for complex digital functions such as microprocessor etc and 
thus individual gates in SSI package are not available.   
 Figure 7.8 shows the logic diagram of three - input I2L NOR gate. The basic unit 
of this circuit is an inverter which is shown in the shaded box. The PNP transistor T1 
serves as a constant current source that injects the current into the base of the transistor 



T4. If the input is at logic 0 (grounded), the injected current becomes grounded thus 
diverting the current from the base of transistor T4. This transistor, therefore, goes into 
cutoff and the output is high. If on the other hand when the input A of the inverter is high, 
the injected current from the current source flows into the base of the transistor T4 thus 
turning it ON. The output is low. The circuit for three - input NOR gate is the 
combination of three inverters and its operation may be explained in the similar fashion. 
It has a low power requirement and reasonably good switching speeds. 

 
Fig. 7.8 

7.8 Diode – Transistor Logic (DTL):   The next family after RTL was diode 
transistor logic (DTL), which has high noise margin though slow speed. In DTL diodes 
and transistor are used hence the name diode transistor logic. Figure 7.9 shows the 
positive logic two input DTL NAND gate. Its operation may be explained as given 
below: 
When both the inputs are at logic 0, the diodes D1 and D2 will be in forward bias and the 
voltage at the point P will be equal to the forward voltage drop of the diode 7.0≈  V). 
This voltage is being applied to the base of the transistor T1 through the diode D3, due to 
which the transistor T1 goes in to cutoff. The output voltage will, therefore, be high 
(logic1). The diode D3 ensures that the transistor T1 is in cutoff. In the absence of this 
diode the transistor could be in active region and output would not be high enough. When 
either of the two inputs is at logic 1, the corresponding diode will be in reverse bias and 
the other diode will be in forward bias due to which the voltage at point P will be equal to 
the forward voltage of the diode. This takes the transistor T1 into cutoff, giving the output 
voltage to be high (logic 1). Now when both the inputs are connected to logic 1, both the 
diodes D1 and D2 will be in reverse bias and the voltage at the point P is high due to 
which the transistor T1 goes into saturation. The output will be VCE,Sat of the transistor 
( 2.0≈  V). The output is said to be at logic 0. The function of resistance R2 connected 
between the base of the transistor T1 and ground is to remove the stored base charge 
when the transistor has to be turned off from the saturated state. The lesser the value of 



this resistance lesser will be the propagation delay time of the gate, but the value of this 
resistance can not be decreased beyond certain value, otherwise the transistor T1 will 
never be in saturation.  

The propagation delay of this logic is high approximately 50 nsec. 

        
 

Fig. 7.9 

  

7.9  High – Threshold Logic (HTL):  A high threshold logic gate is a 
modification of a DTL gate. It is designed for industrial applications by providing large 
noise margin. Figure 7.10 shows the logic diagram of two – input HTL NAND gate. This 
logic circuit has been designed for higher supply voltage (15 V). It utilizes a zener diode 
of breakdown voltage of 6.9 V.  

  

 

  Fig. 7.10 



 The transistor T2 will conduct when the emitter of transistor T1 is at 7.5 V, as the 
sum of 6.9 V zener voltage and VBE of T2 (0.6 V). The low output level of the HTL gate 
will be 0.2 V and high level will be about 15 V. When one of the inputs or both the inputs 
are at low transistor T2 is off. When both the inputs are high transistor T2 saturates.  

 The advantage of this gate is that its noise margin is high however it is slow in 
speed. 

 

7.10 Transistor – Transistor Logic (TTL):  The TTL is the most popular 
amongst all logic families and is widely used IC technology.. It is the modified form of 
DTL. The propagation delay time is reduced in TTL by using multi-emitter transistor in 
place of diodes. Figure 7.11 (a) shows the schematic diagram of a basic TTL positive 
logic NAND gate. It consists of a multi-emitter transistor T1. A two emitter transistor is 
equivalent to two transistors with common base and common collector as shown in figure 
7.11 (b). 

 The operation of TTL NAND gate may be explained as follows:   

 When either of two inputs A or both the inputs are at logic 0, emitter base 
junction of the multi-emitter transistor will be in forward bias and base current is supplied 
by the resistor R1. The transistor T1 saturates and the voltage at the point will be equal to 
VCE,Sat of the transistor ( 2.0≈  V). The transistor T2 will be in cutoff and output voltage 
will be high (logic 1). 

 
                                                Fig. 7.11 (a)                                           Fig. 7.11 (b) 
  

 When both the inputs are at logic 1 (+5 V), the emitter base junctions of transistor 
T1 will be reverse biased and current will flow, through R1 and through the forward 
biased base collector junction of transistor T1 into the base of transistor T2. In this mode 
the transistor is said to be operated in the inverted mode, as the collector of transistor T1 

operates as emitter and the emitter as collector. The voltage at the point P will be 
sufficient to drive the transistor T2 into saturation, the output voltage will therefore, be 
equal to VCE,Sat ( 2.0≈ V) or logic 0. 

 The propagation delay time of this gate is smaller than that of DTL NAND gate, 
since when the transistor T2 goes into cutoff region from saturation region, the transistor 



T1 saturates and provides a low impedance path to ground. Thus the stored base charge of 
the transistor T2 is quickly removed thereby reducing the propagation delay time.  

 The output resistance of the basic TTL circuit (fig. 7.11 a) is low when the 
transistor T2 saturates or output is low (logic 0). However, the output resistance of this 
circuit is almost equal to the resistance R, when the transistor is in cutoff or output is high 
(logic 1).  This will restrict the fan out of the gate. The reduction in resistor R would 
increase the power dissipation in R and in the gate. Also the reduction in the value of R 
would difficult to saturate the transistor T2. To overcome this difficulty, TTL gate with 
totem pole arrangement is used.  

 

7.10.1  TTL NAND Gate with Totem-pole Output:   Figure 7.12 shows the standard 
form of a TTL circuit with input NAND gate. The circuit works as follows: 

 When either the inputs or both the inputs are low (logic 0), the transistor T2 goes 
into cutoff. The transistor T4 will also be in cutoff, as the voltage drop across the resistor 
R3 is nearly zero. Now the transistor T3 conducts and works as emitter follower. The 
output voltage available at the emitter of this transistor will be equal to the collector 
voltage of the transistor T2, which is high (logic1). The emitter follower, however, 
provides a low output resistance to the input of the driven gate.  

 

 
    Fig. 7.12 

 When both the inputs are high (or at logic 1), transistor T2 conducts and acts as an 
emitter follower. The potential across R3 will be sufficient to drive the transistor T4 into 
saturation. Because the transistor T4 saturates, the output voltage will, therefore, be equal 
to VCE,Sat ( 2.0≈ V) or logic 0. Since this output is taken at the collector of the transistor 
T4, which is in saturation, so it provides the low output impedance. The diode D prevents 
the transistor T3 from being conducting when the transistor T4 saturates. The potential 



across the emitter base junction of the transistor T4 is approximately 0.8 V (VBE,Sat) and 
collector emitter voltage of T2 is 0.2 V (VCE,Sat). This means a total of 1.0 V is applied to 
the base of transistor T3. In the absence of the diode D, this voltage would be sufficient 
for the conduction of the transistor T3. The diode D, however, reduces the base emitter 
voltage of transistor T3 below 0.7 V, required voltage for the conduction of a transistor. 
Thus the diode D drives the transistor T3 into cutoff when T4 saturates. 

 Diodes D1 and D2 protect the transistor T1 from being damaged when the negative 
spikes of the voltage appears at the inputs. When the negative spikes appear at the input 
terminals the diodes conducts and the spikes are grounded. The transistors T3 and T4 and 
the diode D form the totem pole output, which provides the low output impedance in 
every case. The TTL gates are faster having the propagation delay of about 15 nsec.  

 

7.10.2  TTL Inverter:    Figure 7.13 shows a TTL circuit for an inverter. The operation 
principle of this is same as discussed for TTL NAND gate, with the difference that it has 
only one input. So when input A is at logic 0, output will be high (logic 1) and if input is 
high (logic 1), output will be low (logic 0). This circuit also has the totem-pole output. 

 

 

 Fig. 7.13 

 

 7.10.3  TTL NOR Gate:   Figure 7.14 shows a TTL circuit for two input NOR gate. It 
consists of two input transistors T1 and T2 and two other transistors T3 and T4 connected 
in parallel which acts as a phase splitter. In addition the output is obtained using the 
totem pole circuit comprising transistors T3, T4 and diode D. The operation of this circuit 
may be explained as follows: 

 When both the inputs are low, the emitter base junctions of the input transistors 
will be in forward bias, no current will flow through the base of transistors T3 and T4. So 



these transistors will be in cutoff. The transistor T5 will, therefore, conduct and T6 will be 
in cutoff, producing a high (logic 1) output. 

 When input A is low and input B is high, the transistor T3 is in cutoff and 
transistor T4 saturates. The transistor T6 will, therefore, conduct and T5 will be in cutoff, 
producing a low (logic 0) output. 

 Similarly, when input A is high and input B is low, the transistor T4 saturates and 
transistor T3 goes in cutoff. The transistor T6 will, therefore, conduct and T5 will be in 
cutoff, producing a low (logic 0) output. 

When both the inputs are high, the emitter base junctions of the input transistors 
will be in reverse bias, the current will flow through the base of transistors T3 and T4. So 
these transistors will saturate. The transistor T6 will, therefore, conduct and T5 will be in 
cutoff, producing a high (logic 0) output. 

 

 

Fig. 7.14 

 

7.10.4    TTL  AND Gate :   Figure 7.15 shows a TTL two input AND gate. The AND 
operation is obtained by inserting an extra inversion circuit before the totem output of the 
TTL NAND gate. This converts the NAND gate to an AND gate. The extra inversion 
circuit comprises the transistors T2 and T3.  



 

Fig. 7.15 

7.10.5    TTL  OR Gate :   The TTL OR gate is obtained by inserting a common emitter 
circuit before the totem pole output of the TTL NOR gate as shown in figure 7.16. The 
common emitter circuit provides an inversion, which converts the NOR gate to an OR 
gate. The transistor T5 with associated components forms the common emitter circuit. 

 

 
 Fig. 7.16 
 



7.10.6  Open Collector TTL Gates:  It has been discussed in the previous sections that 
in all TTL gates totem pole output circuit is connected. The integrated circuits for TTL 
gates are also available with open collector output. Figure 7.17 (a) shows a two input 
TTL NAND gate with open collector. The other gates are also available with open 
collector outputs. In the open collector output gates the lower transistor of the totem pole 
circuit is used with its collector open or floating. In order to get the proper output, one 
has to connect an external pull-up resistor between the collector and the positive supply 
as shown in figure 7.17 (b).  

 

     Fig. 7.17 (a)      Fig. 7.17 (b) 

The advantage of the open collector gates is that their outputs can be wired 
together and connected to a common pull-up resistor, thus eliminating the need of an 
AND gate. This can be illustrated by connecting the open collectors of three NAND gates 
together with a pull-up resistor R as shown in figure 7.18 (a). Its equivalent circuit is 
given in figure 7.18 (b), in which output of three NAND gates (open collector) are 
connected together to a pull-up resistor R. 

 
Fig. 7.18 (a)      Fig. 7.18 (b) 



 When any or all transistors are in saturation, the output voltage is pulled down to 
a low value. On the other hand, if all the transistors are in cutoff, the pull up resistor R 
pulls the output voltage to a high value. It therefore produces the ANDing of the outputs 
of three gates. To get the ANDing operation by wiring the outputs of open collector 
devices to a common pull-up resistor is known as wire –AND. Any number of gates may 
be ANDed together with this method. The output of circuit shown in figure 7.18 (b) is 
given by: 

 )()()( FEDCBAOutput ⋅⋅⋅⋅⋅=  

The wire – AND is not possible with the TTL devices having totem pole outputs. 
If the outputs of two or more such devices are connected together and one output is low 
and the other high, the final output gets short circuited, resulting thereby too much power 
dissipation. So for ANDing the outputs of TTL devices, a separate AND gate is needed. 

The main disadvantage of open-collector gates is their slow speed.  

7.10.7  Tri-state TTL Gates:  It has been observed from the above discussion that the 
open collector gate has the facility for wire – AND, but they are slow in speed. However, 
the gates with totem pole outputs are faster in speed but the connections for wire –AND 
are not possible. This led to the development of new device called tri-state TTL gates. 
The tri-state devices allow three possible output states namely, High, Low and High 
impedance. The high impedance state offers high impedance between the output terminal 
and ground or positive supply. Output in this case is floating. A simple tri-state TTL 
circuit for inverter is shown in figure 7.19 (b) and its logical symbol is given in figure 
7.19 (b). In this circuit input A is the normal logic input while the ENABLE E terminal is 
an enable input that can produce high impedance output. 

 

 Fig. 7.19 (a) Fig. 7.19 (b) 

When ENABLE E terminal is high (logic 1), the diode D1 remains in reverse bias 
so it has no effect on the working of transistors T3 and T4 and therefore circuit operates as 
normal inverter. When ENABLE E terminal is low (logic 0), the diode D1 will be in 



forward bias and it takes away the base current of transistor T3. So this transistor will be 
turned off. The forward bias diode D1 also forward biases the emitter base junction of the 
transistor T1, transistor T2 will therefore be turned off, which in turn turns off the 
transistor T4. So by applying logic 0 to the ENABLE E terminal both the transistors T3 
and T4 of totem pole output go in cutoff state. 

The tri-state configuration is possible with other gates also with the similar 
circuits. The advantage of this configuration is that wire –ANDing of the outputs of tri-
state ICs is possible and its speed is also fast. 

7.10.8  More TTL Circuits:  There are three families of TTL circuits, namely: 

High Speed TTL circuits   

Medium Speed TTL Circuits  

Slow Speed TTL Circuits  

The circuit of TTL NAND gate has been reproduced in figure 7.20 with three 
values of each resistor R1, R2, R3 and R4 for the three families. The low values of these 
resistances are for high speed but the power dissipation will be larger because low values 
of resistances will draw large current from the supply. The 54H/74H series for TTL gates 
are available and designed for high speed. The alphabet H represent for high speed. The 
typical propagation delay for high speed gate is 6 nsec and power consumption is 22 mW. 
The medium values of these resistances are for medium speed. The 54/74 series is 
available for medium speed TTL gates. This is the standard series and the typical 
propagation delay for this series is 10 nsec and power consumption is 10 mW. For slow 
speed TTL gates the values of resistances used are high and the series available for slow 
speed is 54L/74L. The typical propagation delay for slow speed gate is 33 nsec and 
power consumption is 1 mW. The 54 series the counterpart of 74 series and both are 
equivalent. The 54 series is used generally for military purposes, as this series can be 
operated for wider temperature range and voltage ratings.  

 
Fig. 7.20 



7.11  Schottky Transistor – Transistor Logic (STTL):   In Schottky TTL 
circuits, the operation speed is much more larger than the high speed TTL circuits. The 
transistors used in TTL circuits take certain time when the transistors switch form 
saturation to cutoff. This limits the propagation delay of the gates. This delay can 
however, be reduced by replacing the transistors in TTL circuits by the Schottky 
transistors. The Schottky transistor is formed by connecting Schottky barrier diode 
between base and collector of a transistor as shown in figure 7.21 (a). The Schottky 
barrier diode (SBD) has a forward drop of only 0.25 V, it therefore prevent the transistor 
from saturating fully. Figure 7.21 (b) shows the circuit diagram of two-input Schottky 
TTL NAND gate. Notice the transistor T4 is the ordinary transistor.  

 

 
    Fig. 7.21 (a)      Fig. 7.21 (b) 

 The 54S/74S series is available for Schottky Transistor – Transistor Logic (STTL) 
gates. This series of logic family has less power consumption as compared to 54H/74H 
series and the speed is double to that of 54/74 series. Still low power 54LS/74LS series of 
Schottky TTL is available. This series is obtained by increasing the resistances used in 
54S/74S series. This family of logic gates therefore has the same switching speed as that 
of standard TTL family (54/74), and the power dissipation is 1/5 of the 54/74 series. 

7.12  Emitter Coupled Logic (ECL):  Emitter Coupled Logic (ECL) circuits fall 
in the category of non-saturated digital logic family i.e. the transistors in this family do 
not saturate. This eliminates the storage time delay, so the speed of operation of this 
family is increased. This logic family has the fastest speed and propagation delay time 
per gate is approximately 1 nsec.  

 Figure 7.22 (a) shows the basic circuit of four-input ECL OR/NOR gate. The 
outputs provide both OR and NOR functions. The transistors T1 through T5 form the 
differential amplifier circuit, transistor T6 forms the internal temperature and voltage 



compensation bias network and the transistors T7 and T8 gives the emitter follower 
outputs for OR and NOR functions. Logic levels for this family are negative, – 0.9 V is 
assumed for logic 1 and – 1.75 V for logic 0. The operation of this circuit may be 
explained as follows: 

 When all the inputs are at low (– 1.75 V), the transistors T1 through T4 are off, as 
emitter base junctions are reverse biased. The transistor T5 is conducting not saturated. 
Due to the proper biasing of the transistor T6, the base of transistor T5 remains at – 1.29 
V. Therefore its emitter is at – 2.09 V which is 0.8 V below the base voltage. The 
transistor T5 therefore conducts. The differential voltage between base and emitter of the 
transistors T1 through T4 is about –0.34 V, so they are in cutoff. The emitter follower 
transistors T7 and T8 give the outputs – 1.75 V (logic 0) and – 0.9 V (logic1) respectively. 

 When any one or all the inputs are at – 0.9 V (logic1), in that condition the 
corresponding transistor or transistors will conduct. The voltage at the emitters of T1 
through T5 therefore rises to – 2.09 V. Since the base of transistor T5 is held constant at – 
1.29 V due to the bias network, it goes into cutoff. The emitter follower transistors T7 and 
T8 give the outputs – 0.9 V (logic1) and – 1.75 V (logic 0) respectively. Symbolic 
representation of OR/NOR ECL gate is shown in figure 7.22 (b). 

 

 
 Fig. 7.22 (a) Fig. 7.22 (b) 
 
 The wired logic can be formed by connecting together the outputs of two or more 
ECL gates as shown in figure 7.23. The external -wired connection of two NOR outputs 
produces a wired –OR function.  The internal –wired connection of two OR outputs in 
some ECL ICs is used to produce a wired –AND logic. 



 
 
 Fig. 7.23 
 
7.13 MOS Logic:   The logic families discussed so far were based on bipolar 
transistor. Their comparisons were made with respect to certain parameters of the logic 
family. One more logic family based on the unipolar devices such as Metal Oxide 
Semiconductor field effect transistor (MOS FET) will now be discussed. The MOS logic 
family is the simplest to fabricate and occupies less space. It requires N channel MOS or 
P channel MOS field effect transistors and no other components such as resistors, diodes 
etc. This logic family has the high packing density, low power dissipation and high fan-
out.  

 The logic circuits may be designed using NMOS (enhancement type N channel 
MOS FET’s) or PMOS (enhancement type P channel MOS FET’s). From the operations 
of MOS FET’s one can note following characteristics of MOS FET’s. The NMOS 
conducts when gate is at a positive potential with respect to source and PMOS, however, 
conducts when gate is at a negative potential with respect to source. If the gate is at zero 
potential neither of the two MOS FET’s will conduct.  

7.13.1 MOS inverter: Figure 7.24 (a) shows the circuit diagram for NMOS inverter and 
figure 7.24(b) shows for PMOS inverter. The working operation of the circuits is same. 
The MOS FET T1 in both the circuits work as resistor since T1 is conducting as gate is 
connected to drain.  

 

 
                                    Fig. 7.24(a) Fig. 7.24(b) 
 



 In figure 7.24(a) when input A is at logic 0 (ground potential), the MOS FET T2 
will be OFF giving the high voltage at the output. So the output is at logic 1. If on the 
other hand input A is at logic 1 (VDD potential), the MOS FET T2 will be ON and output 
will be at logic 0. This verifies the operation of inverter. The operation of PMOS will be 
discussed in the similar fashion with the only difference that it works for negative logic.  

7.13.2 MOS NOR gate: Figure 7.25(a) shows the circuit diagram of NMOS positive 
logic three-input NOR gate and 7.25(b) for PMOS negative logic three-input NOR gate. 
In NMOS NOR gate (ref. fig. 7.25 a), when all the three inputs are at logic 0 (ground 
potential), MOS FET’s T2 through T4 will be off giving the high output (logic 1). If all the 
three inputs or any (one or two) of the three inputs are at logic 1, the corresponding MOS 
FET or MOS FETs will conduct giving low output (logic 0). This verifies the operation 
of positive logic NOR gate. The working operation of PMOS NOR gate may be 
explained in the similar which works for negative logic. The MOS FET T1 acts as a 
resistor in both the circuits.  

 

 
 Fig. 7.25(a)      Fig. 7.25(b) 
 

7.13.3 MOS NAND gate:  Three input NAND gate with NMOS and PMOS transistors 
are shown in figure 7.26(a) and 7.26(b) respectively. The NMOS NAND gate works with 
positive logic and PMOS NAND gate work with negative logic. The working of NMOS 
NAND gate is explained as follows (ref. 7.26 A). 

 The NMOS FET’s T2 through T4 will conduct when all the three inputs are at 
logic 1 (+ VDD), giving the output low (logic 0). When either of the three inputs or any 
(one or two) of the inputs is at logic 0 (ground potential), the corresponding MOS FET or 
MOS FET’s will be off giving the high output (logic1). This verifies the operation of 
positive logic NAND gate,  

 Similarly, one can explain the operation of PMOS NAND gate which work with 
negative logic.  



 
 

 Fig. 7.26(a) Fig. 7.26(b) 
 
7.14 Complementary MOS (CMOS) Logic:  The complementary metal oxide 
semiconductor (CMOS) logic family contains both enhancement type P-channel and N-
channel MOS FET’s arranged in a complementary connection. The power consumption 
of CMOS logic family is very less as neither of P-channel or N-channel MOS FET’s 
conducts simultaneously when no signal is applied to the input terminals of the logic. 
Thus only the leakage current flows between the terminals of the supply. The CMOS gate 
can be operated on wide range of supply voltage between 3 V to 15 V. It has good noise 
margin better than TTL devices. Fan-out of this is much larger. The speed of the CMOS 
logic is comparable with that of TTL circuits but larger than Schottky TTL circuits.  
 

7.14.1 CMOS Inverter:   Figure 7.27 shows the circuit diagram of CMOS inverter which 
consist of a PMOS transistor T1 and an NMOS transistor T2 which are connected in 
complementary mode. The drains of both the transistors are connected together, through 
which the output is taken. The source terminal of PMOS transistor T1 is connected to the 
positive supply, where as the source of the NMOS transistor T2 is grounded.  

 When the input A is grounded (logic 0), the gate of PMOS transistor T1 is at the 
negative potential with respect to its source, so it is ON. The gate of NMOS transistor T2 
is at ground potential, so it is off. The output is, therefore, high (+VDD), logic 1. 

If on the other hand input A is high (logic 1), the gate of PMOS transistor T1 is at 
zero potential with respect to its source, so it is off. The gate of NMOS transistor T2 is at 
the positive potential with respect to ground, so it is ON. The output is, therefore, low 
logic 0. 

 



  
 Fig. 7.27    

7.14.2  CMOS NAND Gate:  The circuit diagram of CMOS NAND gate is shown in 
figure 7.28. The two PMOS transistors T1 and T2 are connected in parallel with the 
sources connected together and two NMOS transistors T3 and T4 are connected in series. 

 When both the inputs are at logic 0 (grounded), the gates of T1 and T2 are at 
negative potentials with respect to their sources; the gates of T3 and T4 are at zero 
potential. So both PMOS transistors (T1 and T2) are ON and NMOS transistors T3 and T4 
are off. The output will, therefore, be high (logic 1). 

 When input A is at logic 0 (grounded) and input B is at logic 1, the gate of T1 is at 
negative potential with respect to its source and the gate of T2 will be zero; the gates of T4 
and T3 are at zero potential and VDD potential respectively. So T1 and T3 are ON and T2 
and T4 are off. The output will, therefore, be high (logic 1). 

 

 

Fig. 7.28 

 When input A is at logic 1 and input B is at logic 0 (grounded), T1 and T3 will be 
off and T2 and T4 will  be ON. The output will, therefore, be high (logic 1). 



 When both the inputs are at logic 1 (+VDD), the gates of T1 and T2 are at zero 
potential; the gates of T3 and T4 are at negative potentials with respect to their sources. So 
both PMOS transistors (T1 and T2) are off and NMOS transistors T3 and T4 are ON. The 
output will, therefore, be grounded (logic0). 
 

7.14.3  CMOS NOR Gate:  :  The circuit diagram of CMOS NOR gate is given in figure 
7.29. The two PMOS transistors T1 and T2 are connected in series and two NMOS 
transistors T3 and T4 are connected in parallel. 

 When both the inputs are at logic 0 (grounded), the gate of T1 and T2 are at 
negative potentials; the gates of T3 and T4 are at zero potential. So both PMOS transistors 
(T1 and T2) are ON and NMOS transistors T3 and T4 are off. The output will, therefore, 
be high (logic 1). 

 When input A is at logic 0 (grounded) and input B is at logic 1, the gate of T1 is at 
negative potential with respect to its source and the gate of T2 will be zero; the gates of T3 
and T4 are at zero potential and VDD potential respectively. So T1 and T3 are ON and T2 
and T4 are off. The output will, therefore, be low (logic 0). 

 When input A is at logic 1 and input B is at logic 0 (grounded), T1 and T3 will be 
off and T2 and T4 will  be ON. The output will be low (logic 0). 

 When both the inputs are at logic 1 (+VDD), the gates of T1 and T2 are at zero 
potential; the gates of T3 and T4 are at VDD potential. So both PMOS transistors (T1 and 
T2) are off and NMOS transistors T3 and T4 are ON. The output will, therefore, be 
grounded (logic0). 
 

 
Fig. 7.29 

 
7.15 Comparison of Logic Families:   The comparison of important logic families 
are given in table 7.1 in respect of logic parameters. 
 



Table 7.1 
 

Logic 
Parameters RTL DTL TTL ECL MOS CMOS 

Basic gates with 
+ve logic 

NOR NAND NAND OR/NOR NAND NAND/NOR 

Maximum fan-in  5 10 8 5 8 8 

Fan-out 5 8 10 25 20 >50 

Power 
dissipation / gate 

(in mW) 
 

12 10 10 50 1 
0.01 static at 

1 MHz 

Propagation 
delay per gate 

(nsec) 
 

20 30 12 4 400 70 

Noise immunity Nominal Good 
Very 
Good 

Good Nominal Very good 

Number of 
functions 

 
High 

Fairly 
high 

Very 
high 

High Fair Good 

Clock rate,  
MHz 

5 12 15 300 2 5 

 
 
 
 
 

 



Problems: 
 

1. What are positive and negative logics? Explain the logic diagram of two-input 
AND gate. 

2. What do you understand by the term logic? Discuss three-input diode OR gate. 

3. How an inverter circuit works, explain with neat diagram using a transistor. 

4. What is logic family? Give the classification of logic family. Mention the 
classification of digital ICs. 

5. Define the following parameters related to logic gates: 
 Fan-in, Fan-out, Propagation delay time, Power dissipation and Noise margin. 

6. Draw the logic circuit diagram of RTL NOR gate. Explain its operation. Mention 
its advantages and disadvantages of RTL family 

7. Draw the DCTL circuit of three input-NOR gate and explain its operation. 

8. Discuss the operation of three-input I2L NOR gate. Mention its advantages and 
disadvantages of this logic family. 

9. Draw the circuit diagram of DTL NAND gate for three-inputs. Explain its 
working. What is the function of resistance connected between the base and 
emitter of the transistor used in the circuit? What are the disadvantages of this 
logic family? 

10.  Draw the logic diagram of two-input HTL NAND gate. Explain its operation. 
Mention its advantages also. 

11. Draw the basic circuit diagram of positive logic two-input TTL NAND gate. 
Explain its operation and mention its disadvantages. How the disadvantages of 
this basic circuit are removed? 

12. Draw and explain the circuit diagram of positive logic two-input TTL NAND gate 
with totem-pole output. What are the advantages and disadvantages of this logic 
family? 

13. Draw and explain the following TTL circuits with Totem-pole outputs: 
 (i) TTL inverter 
 (ii) Positive logic two-input TTL NOR gate  
 (iii) Positive logic two-input TTL AND gate   
 (iv) Positive logic two-input TTL OR gate 

14. Draw and explain the circuit of open collector two input TTL NAND gate. What 
is the main advantage of this open collector gate? 

15. Show open collector TTL NAND gate can be used as wire-AND. 

16. Prove that two open collector TTL inverters when connected together produce the 
NOR operation. 

17. Write short note on Tri-state inverter. 



18. Draw and explain the working of two-input Schottky TTL NAND gate. What is 
the use of Schottky transistors in this logic? 

19. What are the advantages of emitter coupled logic? Discuss the working of four-
input NOR/OR ECL gate. Show that external wire connections for two ECL NOR 
outputs (or OR outputs) produce a wired-OR (wired-AND) function.  

20. Draw and discuss the following NMOS gates: 
 (i) inverter 
 (ii) Positive logic two-input NOR gate  
 (iii) Positive logic two-input NAND gate  

21. Discuss CMOS NAND and NOR gates. What are advantages of CMOS logic. 

22. Write short note on CMOS inverter. 

23. State the various logic families available in the market. Give the comparison of 
the logic families with respect to following parameters: 

 Fan-in, Fan-out, power dissipation, propagation delay, Noise immunity and clock 
rate. 

  
 
 
 
 
 
 
 
 
 

__________ 
 
 
 
 



8 
Flip-flops 

 
 

 Basically, two types of switching circuits are used in digital systems, namely 
combinational and sequential switching circuits. The combinational circuits which are the 
combinations of logic circuits have been discussed in 5th and 6th chapters of this book. 
The other class of switching circuits is known as sequential circuits. In sequential circuits 
the outputs not only depend on the instant (present) values of the input variables but also 
on the past outputs. The past outputs are, in fact, the functions of the previous inputs. So 
the sequential circuits have the direct inputs which are externally controlled and known 
as primary inputs. An arrangement is also made to feedback the past outputs to the input 
terminals. These feedback terminals are known as the secondary inputs. The secondary 
inputs are the delayed outputs and act as the memory elements. A basic memory element 
which is capable of storing one bit of information is the flip-flop. The detailed discussion 
on the various flip-flops will be made in this chapter. 
 

8.1 R S Flip-flop:   Flip-flop is a basic memory element used in sequential circuits. 
The flip-flop has two stable states – logic 0 or logic 1. The flip-flop will either be in one 
of the two stable states after application of the input signals; it will remain to be in that 
state even if the inputs are removed. Flip-flops are also known as the latch or toggle. The 
RS flip-flop is the simplest flip-flop which can be constructed using NOR gates or 
NAND gates. Figure 8.1 shows the basic circuit of RS flip-flop constructed using NOR 

 Fig. 8.1 
 
gates. In this circuit R & S are the two inputs and X & Y are the outputs which are being 
applied back to the input terminals of the NOR gates. The behaviour of this circuit may 



be analysed by replacing each NOR gate by an ideal NOR gate and a delay factor 
represented by a rectangular as shown in figure 8.2. The delay factor is the propagation 

 Fig. 8.2 

delay time of each gate which is supposed to be different for each gate. Let delay of one 
gate is D and that of  other gate is d. Further it is assumed that x and y are outputs of ideal 
NOR gates, which is transferred to the final output after the delay of each gate. So at any 
instant of time t the output X was the same as x was before (t – D) sec.  Similarly one can 
explain for Y output. 

 So       X(t) = x(t – D)     and      Y(t) = y(t – d)   

 The outputs x and y are given by: 

 YRYRx ⋅=+= )(   XSXSy ⋅=+= )(  

 The K-maps for x, y and xy (values of both x and y are placed together) are 
shown in figure 8.3(a), (b) and (c) respectively.  
 

 
 Fig. 8.3(a)                  Fig. 8.3(b)                     Fig. 8.3(c) 
 
 For particular values of input variables R & S, if the values of X and Y are not 
equal to x and y, then the circuit is unstable and further change will take place. This 
change will go on till the values of X and Y are not equal to x and y. So when the values 
of XY are equal to xy, then the circuit is said to have attained the stable state. In that 
condition no further change will take place. In the K-map (fig.8.3 c), encircled values 
show the stable states, since the encircled values (xy) are the same as XY in the same row 
of the map.  

 Now we analyse the behaviour of this RS latch. Let us consider a situation that RS 
= 00 and XY = 11 corresponding to which xy = 00 (3rd row and 4th column of K-map of 
figure 8.3 c). This is unstable state as the values of xy are not equal to the values of XY, 



so further change will take place. Thus XY must acquire the values of xy. This means 
that both X and Y must change from 1 to 0, but this change will not simultaneously occur 
as the delays of the two NOR gates are not same. Two cases will occur. 

(i) It is assumed that D < d, X will therefore change faster than Y. So X will have 
the value as 0 and Y is yet to be changed. In this process XY will have the 
intermediate value as 01. This intermediate value of XY as 01 will 
immediately produce the value of xy as 01. So for RS = 10 and xy = XY = 01, 
the circuit will be in the stable state E (2nd row and 4th column of K-map of 
fig. 8.3c).  

(ii)  If on the other hand d < D, Y would have changed faster than X. So XY will 
have the intermediate value as 10, due to which xy will immediately get the 
value as 00 (4th row and 4th column in the K – map of fig. 8.3c). This is not a 
stable state and further change will, therefore, take place. Now XY will attain 
the value as 00 after some delay; this new value of XY will produce the new 
value of xy as 01, which is still not a stable state. So XY will change to as 01. 
This will lead the value of xy as 01 (shifts to 2nd row), i.e. the circuit will 
reach to stable state E. 

 From the above discussion, it is clear that the latch will reach to the stable state E 
either directly through one transition stage or through several stages (shown by arrows in 
the K-map). This is called the race condition. In this type of race the destination is the 
same stable state E, however, one would never know which path will be followed for the 
transitions as the delay in the gates is an inherent quantity. So this type of race is a valid 
race as it gives the predictable output. 

 Similarly one can find that if RS = 11, the circuit will reach to the stable state D 
and if RS = 01, circuit will be in the stable state C.  

 If RS = 00, the circuit may either be in the stable state A or B, as there are two 
stable state in the first column (fig. 8.3c). The actual state attained by the circuit will 
depend upon the previous values of inputs RS. The values of RS could be changed to 00 
either from 01 or from 10.  

(i) The values of RS are changed to 00 from 10. In this condition the circuit was 
in the stable state E when RS were 10 (xy = XY = 01). Now RS are changed 
to 00. So RS = 00 and XY = 01, xy will be 01. The circuit will reach to the 
stable state A. 

(ii)  The second case is now considered that the values of RS are changed to 00 
from 01. When the circuit was having the values of RS as 01, the circuit was 
in the stable state C where xy = XY =10. Now the values RS are changed to 
00. In this condition of RS =  00 and XY = 10, xy will have the values 10, the 
circuit attains the stable state B. 

 It is interesting to note from the above discussion that when RS are changed to 00 
either from 01 or 10, the values of the outputs are their previous stable values (before the 
change).  

 There is one more possibility that the values of RS are changed to 00 from 11. 
The circuit was therefore in the stable state D (XY = xy = 00) before the change. Now RS 



are changed to 00. So RS = 00 and XY = 00, it will have xy = 11 (1st row and 1st column), 
which is not a stable state so further change will take place. Thus XY must acquire the 
values of xy. This means that both X and Y must change from 0 to 1, but this change will 
not simultaneously occur as the delays of the two NOR gates are not same. Two cases 
will further occur. 

(a)  It is assumed that D < d, X will, therefore, change faster than Y. So X will 
have the value as 1 and Y is yet to be changed. In this process XY will have 
the intermediate value as 10. This intermediate value of XY as 10 will 
immediately produce the value of xy as 10. So for RS = 00 and xy = XY = 10, 
the circuit will be in the stable state B. 

(b) If on the other hand d < D, Y would have changed faster than X. So XY will 
have the intermediate value as 01, due to which xy will immediately get the 
value as 01 the circuit will reach to stable state A. 

 From the above discussion, it is clear that the latch will reach either to the stable 
state B or to the stable state A. There is again a race condition. In this type of race the 
destination is not the same. One would never know the outcome as it will depend on the 
inherent delay of the gates. So this type of race, known as critical race, is not a valid race 
as output is not predictable. This type of race is avoided in such circuits. 

 Following are the inferences of the above analysis of R S flip-flop: 

1. If the values of RS are changed to 01 both from 00 or 10 or 11, the flip-flop will 
reach to the stable state and output will be XY = xy = 10. It may be noted that X 
and Y are complement of each other. 

2. If the values of RS are changed to 10 both from 00 or 01 or 11, the flip-flop will 
reach to the stable state and output will be XY = xy = 01. Further X and Y are 
complement of each other. 

3. If the values of RS are changed to 00 either from 01 or 10, the flip-flop will have 
the previous stable state. The output will either be XY = xy = 10 or 01. X and Y 
are complement of each other. 

4. If the values of RS are changed to 11 both from 01 or 10 or 00, the flip-flop will 
reach to the stable state and output will be XY = xy = 00. It may be noted that X 
and Y are not complement of each other. 

5. If the values of RS are changed to 00 from 11, a critical race will occur in the 
latch and the output will be unpredictable. It may be XY = xy = 01 or 10. 

 Thus if the condition RS = 11 is disallowed, the behaviour of the latch will be 
predictable and XY will always be complement of each other. The outputs X and Y are 

therefore, renamed as Q  and Q  respectively. So the behaviour of the latch is summarized 
in table 8.1. The symbolic representation of this R S flip-flop is shown in figure 8.4. As it 
is this flip-flop is known as asynchronous, since its behaviour depends upon the sequence 
in which the input signals change. The outputs will be affected whenever the inputs 
changes.  
 
                                      



  Table 8.1 

 
8.1.1   R S Flip-flop with NAND Gates:    The R S latch constructed using NOR gates, 
has been reproduced in figure 8.5(a). The equivalent circuit of this latch is shown in 
figure 8.5(b), in which inputs and outputs are inverted. The gates 1 and 2 of figure 8.5(b) 
are the Demorgan’s form of NAND gates. So the latch is further redrawn with alternate 
symbols of NAND gates as shown in figure 8.5(c). This circuit is, therefore, the R S latch 
with NAND gates. Basically all the three circuits are same so their behaviour will also be 
same as summarized in table 8.1. 
 

 

                                  Fig. 8.5  

8.1.2   Active Low R S Flip-flop with NAND Gates:    Consider the circuit shown in 
figure 8.6, in which R and S inputs are directly applied to the cross coupled NAND gates 
and not through the two NOT gates. This circuit is known as the active low R S latch 
with NAND gates and its characteristic table is shown in table 8.2. It may be noted from 
this table that when both the inputs are 11, the latch stores the previous value. It sets and 
resets the latch when the inputs are 10 and 01 respectively. This NAND latch gives the 
ambiguous output (disallowed output) when inputs are 00. The direct approach is used to 
explain its behaviour though it may be explained in the similar fashion as for NOR latch.      



         

          Fig. 8.6 

 Referring to figure 8.6, let initially, the output 0=Q  and 1=Q . If 01 are applied 
to the inputs (R = 0 and S = 1), then output of gate 1 will remain as 1 and the output of 

gate 2 as 0.  If on the contrary 1=Q and 0=Q , and inputs are 01 (R = 0 and S = 1), the 

output of gate 1 will be 1 ( 1=Q ) and that of gate 2 will be 0 ( 0=Q ). So if R = 0 and S 
= 1, the output Q  will always be 0 i.e. it resets the latch.  

 If the output 0=Q  and 1=Q , and 10 are applied to the inputs (R = 1 and S = 0), 
then output of gate 1 will be 0 and the output of gate 2 as1.  If on the contrary 1=Q and 

0=Q , and inputs are 10 (R = 1 and S = 0), the output of gate 1 will be 0 ( 0=Q ) and 
that of gate 2 will be 1 ( 1=Q ). So if R = 1 and S = 0, the output Q  will always be 1 i.e. 
it sets the latch.  

  If the output 0=Q  and 1=Q , and inputs are 11 (R = 1 and S = 1), then output 

of gate 1 will be 1 and the output of gate 2 as 0.  If on the contrary 1=Q and 0=Q , and 

inputs are 11 (R = 1 and S = 1), the output of gate 1 will be 0 ( 0=Q ) and that of gate 2 
will be 1 ( 1=Q ). So if R = 1 and S = 1, the output will always be its previous value i.e. it 
is in store mode.  

 If the output 0=Q  and 1=Q , and inputs are 0 0 (R = 0 and S = 0), then outputs 

of gate 1 and gate 2 will be 0.  If on the contrary 1=Q and 0=Q , and inputs are 0 0 (R = 
0 and S = 0), the output of gate 1 and that of gate 2 will be 1. So if R = 1 and S = 1, then 

outputs  1== QQ  irrespective of previous state. This is a disallowed condition.  

The table 8.2 is verified from the above discussion. 

8.2 Clocked R S Flip-flop:    The R S flip-flop or latch discussed in the previous 
sections was known as asynchronous flip-flop, since its behaviour depends upon the 
sequence in which the input signals change. The outputs were affected whenever the 
inputs changes. Now another type of flip-flop called the clocked R S flip-flop will be 
discussed which fall in the category of the synchronous flip-flop. In synchronous flip-flop 
the behaviour of the circuit can be defined from the knowledge of its signals at discrete 
instants of time. The synchronization is achieved by the timing device known as system 
clock. The system clock generates the periodic train of clock pulses and the outputs are 
affected to the application of clock pulse. Synchronous flip-flops are extensively used in 



the sequential circuits because of their high reliability and ease of the design. The 
periodic train of clock pulses is shown in figure 8.7. The clock pulse remains high for 
short time is known as pulse width or pulse duration denoted by TP. The front edge of the 
pulse is called as the leading edge of the pulse and the back edge of the pulse is known as 
trailing edge of the pulse. The time duration of the complete wave denoted by T is known 
as the time period.  

 
Fig. 8.7 

 The clocked R S flip-flop is illustrated in figure 8.8(a), in which the inputs R and 
S are applied along with the clock pulse to the NOR latch through two AND gates (called 
loading gates). During the pulse width TP, both the AND gates will be enabled and R S 
inputs gets connected to the inputs of the latch. However, when the clock pulse is low 
both the AND gates will be disabled and inputs of the latch will be low. Therefore the 
latch will be in the store mode. The behaviour of this circuit may be explained below. 

 

 During the arrival of the nth clock pulse, let the inputs to AND gates are Rn and Sn, 
which are applied to the inputs of the latch. Now as the internal of (n+1)th pulse start, the 
output Qn+1 will depend upon Rn, Sn and Qn as: 

 nnn QRQ +=+1      and    nnn QSQ +=  

So  )(1 nnnnnnn QSRQSRQ +⋅=++=+  

 It can further be verified that when Rn = Sn = 0 then output Q(n+1) will be same as 
Qn. So if Qn = 0 then Qn+1 will be 0; if Qn = 1 then Qn+1 will also be 1. The flip-flop is 
said to in the store mode. 



 If Rn = 0 and Sn = 1, then the flop-flop will be in the set mode and gives the 
output as 1 irrespective of Qn is 0 or 1. 

 The flip-flop will be in the set mode (Qn+1 = 1), if the inputs Rn = 1 and Sn = 0; 
the previous output could be either 0 or 1. 

 The flip-flop disallows the condition for Rn = Sn = 1.  

 The behaviour of this clocked R S flip-flop is characterized in table 8.3. The 
Boolean expression for Qn+1 can also be verified from K-map of table 8.3. The symbolic 
representation of the clocked R S flip-flop is shown in figure 8.8(b). 

 
     Table 8.3 

 

8.2.1 Clocked R S Flip-flop with NAND Latch:  The asynchronous R S flip-flop (active 
high) is designed by the circuit shown by shaded portion in figure 8.9(a). Now two AND 
gates are used for loading the inputs R S and the clock pulse. Instead of using AND gates, 
 

 

NAND gates may be used as shown in figure 8.9(b). It may be noted that AND and  NOT 
gates form NAND gates.  When the clock pulse is low, the outputs of loading NAND 

gates are high putting the NAND latch in store mode. So Q   and Q  will have its previous 
value. Now when the clock pulse is high, the circuit will behave as the clocked R S flip-
flop discussed above. It also verifies the table 8.3. 

Example 8.1 Draw the waveform of the output Q of clocked R S flip-flop, if R and S 
inputs applied to it, are as represented in figure 8.10(a). The latch is initially reset. 



Solution:   The waveform of the output Q of clocked R S flip-flop is shown in fig. 
8.10(b), in which mode of operation of the flip-flop is indicated. The changes at the 
output take place at the leading edge of the clock pulse (CLK). 
 

 

Example 8.2:   Modify an asynchronous R S flip-flop so that when both the inputs R and 
S are 1, the flip-flop is set. 

Solution:  The flip-flop is modified as shown in figure 8.11, in which two new inputs 
named as R’ and S’ are used. The table 8.4 verifies that when R’ and S’ are 11, the inputs 
R S are 01 and flip-flop is set. 
 

 
       Fig. 8.11  
 
8.3 Triggering of Flip-flops:  It has been discussed in clocked flip-flops that the 
flip-flops work after the application of clock pulse, i.e. when the clock pulse goes low to 
high, the flip-flop triggers (or flip-flop enables). Such type of triggering, known as level 
triggering is generally used. But in some digital systems changes in the output occur 
either at leading edge (positive edge or rising edge) or at the trailing edge (negative edge 
or falling edge) of the clock pulse. Such type of triggering is known as edge triggering.  



So the flip-flops should either be positive edge triggered flip-flops or negative edge 
triggered flip-flops. A small triangle shown at the clock terminal of the flip-flop indicates 
the positive edge triggered flip-flop. Figure 8.12(a) shows the symbol of positive edge 
triggered R S flip-flop. However, small triangle with a bubble at the clock terminal of the 
flip-flop indicates the negative edge triggered flip-flop. The symbol for negative edge 
triggered R S flip-flop is shown in figure 8.12(b).  
 

 
8.3.1  Edge Detector Circuit:  The narrow spikes at the leading edge or at the trailing 
edge of the clock pulse is obtained by the edge detector circuit. Figure 8.13(a) shows the 
edge detector circuit for the generation of narrow spikes at the leading edge of the clock 

 
 Fig. 8.13 

pulse. In this circuit the clock pulse is applied to an inverter and an AND gate. The 

inverter produces an output (CLK ) after some time delay of a few nanoseconds because 
of the propagation delay of NOT gate. The AND gate will produce high output for few 

nanosecond (equal to the propagation delay of inverter), when both CLK and CLK  are 
high. The AND gate, therefore, produces a narrow spike at the leading edge of the clock 
pulse (CLK) as shown in figure 8.13(b). 



 Similarly, the edge detector circuit may be drawn for the generation of narrow 
spikes at the trailing edge of the clock pulse. Figure 8.13(c) shows such circuit in which 
an inverter and an active low AND gate are used. The active low AND gate will produce 
high output for few nanosecond (equal to the propagation delay of inverter), when both 

CLK and CLK  are low. This circuit, therefore, produces a narrow spike at the trailing 
edge of the clock pulse (CLK) as shown in figure 8.13(d). 

 
8.4  The D Flip-flop:  The modified form of clocked R S flip-flop is a D flip-flop 
which is illustrated in figure 8.14(a). The D flip-flop has only one input in addition to the 
clock pulse. The R and S inputs of R S flip-flop are not used in some applications when 
both the inputs are 00 or 11. This condition also eliminates the condition of RS = 11. So 
in D flip-flop R S inputs are always kept complement of each other and D input is applied 
to the S input and complement of S is applied to R input as shown in figure 8.14 (a) and 
(b). 

 

 Fig. 8.14 

 When the input D is high and positive clock pulse is applied the latch will set, 
irrespective of previous value of the output Q. Similarly, if D input is low and clock pulse 
is applied, the latch will be reset; again the output will not depend upon its previous 
value. The behaviour of this flip-flop is shown in table 8.5. It may be noted that the value 
of D (data) will reach the output after the application of clock pulse i.e. nn DQ =+1 . When 

no pulse is applied to the flip-flop or CLK is 0, the value of D will not reach to the output 
and the output will have its previous value. In other words the output Q will follow the 
input D when the clock is high. The D flip-flop is also called as the delay flip-flop. The 
symbolic representation of this flip-flop is shown in figure 8.15. 

  

Example 8.3: Draw the waveform of the output Q of D flip-flop, if D input and clock 
pulse are represented in figure 8.16 (a). The latch is initially reset. 



Solution: The required wave Q output of d flip-flop is shown in figure 8.16 (b). The 
output follows the input D when the clock is high.  

 
8.5  The J K Flip-flop:  In R S flip-flop when both the inputs are 11, the outputs (Q  

and Q) were not complement to each other and this condition was disallowed. The R S 
flip-flop can be modified so that even when R and S inputs are 11, the outputs are 
complements of each other. The J K flip-flop shown in figure 8.17(a) is the modified 

 
 Fig. 8.17(a)    Fig. 8.17(b) 
form of R S flip-flop. This flip-flop has two inputs J and K, the J input correspond to S 
(set) input and K input correspond to R (Reset) input. It may be noted that the outputs of 
the latch are connecting to its own loading gate, which forms the complementing outputs 
when both J and K inputs are 11. If the flip-flop is set before being JK = 11, the R and S 
inputs will become 01 when JK = 11 and the flip-flop will be set giving the output Q as 1. 
If on the other hand flip-flop is set before being JK = 11, the flip-flop will be reset after 
becoming J K to be 11. 

 To analyse the behaviour of this flip-flop, the K-map for xy is drawn as shown in 
figure 8.17 (b), by getting the following functions: 

 When CLK = 1         KXR ⋅=  and   YJS ⋅=  



  YXKYRx +⋅=+=        and  XYJXSy +⋅=+=  

 In the K-map all the stable states are encircled and one can observe from these 
stable states that x and y are complements to each other. When the inputs J K are 00, the 
outputs will be either 01 or 10 storing their previous values. When JK = 01 the flip flop 
will be in the reset mode and when JK = 10 it will be in the set mode. 

 When JK = 11, the outputs will be complement to each other, but this will not 
give a stable state. This condition will now be discussed in detail. The inputs J K will be 
changed to 11 either from 00 or from 01 or from 10. Let the inputs J K change from 10 to 
11. When the inputs J K were 10, the flip-flop was in the set mode and Q was equal to1. 
After changing J K to 11, the inputs R S become 10 which will reset the latch. Thus the 

content of the latch is complemented i.e. the outputs QQ change 01 to 10. But this is not 

a stable state. As the outputs QQ are 10, these outputs will be applied back to the input 
terminals. The latch will, therefore, be reset if the clock pulse still high and output will 
again be the complementation of the previous outputs. This way the complementation 
will go endlessly till the clock pulse is high. So the complementation to occur only once, 
it becomes necessary that the clock pulse should be 0, before the output data (after delay) 
is applied back to the input terminals. This is possible if the width of the clock pulse is 
less than the delay in latch i.e. TP < d or D. This condition is known as race around 
condition. 

8.5.1  Edge Triggered J K Flip-flop:   It has been observed that the width of the clock 
pulse in J K flip-flop should be less than the delay in latch. However, the delay is an 
inherent quantity which can not be known by the user for the particular IC. This problem 
of pulse width can be eliminated if narrow spikes of few nanoseconds at the leading or 
trailing edge of the clock pulse is used. The narrow spikes can be generated by the edge 
detector circuit discussed in section 8.3.1. Figure 8.18 shows the symbolic representation 
of positive edge triggered J K flip-flop and its operation is given in table 8.6.   

 The upward arrows in the characteristic table of J K flip-flop shows that the 
transition at outputs of flip-flop will occur at the leading edge of the clock pulse.  

When J and K inputs are 00, no change in the output values will take place at the 
positive edge of the clock pulse i.e. Q n+1 = Q n, the circuit is in store mode.  

When J K = 01, the flip-flop resets at the positive edge of the clock pulse i.e. Q n+1 
= 0. 

 



   

  When J K = 11, the flip-flop toggles at the positive edge of the clock pulse i.e. it 

gives the complements of the previous outputs nn QQ =+1 . 

Figure 8.19 shows the symbolic representation of negative edge triggered J K flip-
flop and its operation is given in table 8.7. 

 

 For simplicity the circuit diagram of edge triggered J K flip-flops using NOR and 
NAND latch are shown in figures 8.20 and 8.21 respectively. 

 
Fig. 8.20 

 
  Fig. 8.21   



Example 8.4: Draw the waveform of the output Q of a negative edge triggered J K flip-
flop (figure 8.22 a), if J K inputs and clock pulse are represented in figure 8.22 (b). The 
flip-flop is initially reset. 

Solution: The wave form of the output Q of the negative edge triggered J K flip-flop is 
shown in figure 8.22(C), the mode of operations at the trailing edge of the clock pulse 
(CLK) are also indicated in the figure. 

 

 
 

8.5.2  Edge Triggered T (Toggle) Flip-flop:   When J K inputs of an edge triggered 
Flip-flop are connected together to form a single input marked as T is known as Toggle 

  
     Fig. 8.23 
 
(T) flip-flop. Figure 8.23 shows a negative edge triggered T flip-flop. This flip-flop will 
have only two options, i.e. when T = 0, the flip-flop will be in the store mode and gives 



no change in the output. When input T = 1, the flip-flop will be in the complement mode 
i.e. it toggles or gives the complemented output of the previous value at the trailing edge 
of the clock pulse. The behaviour of T flip-flop is given in table 8.8. 

  

Example 8.5: Draw the waveform of the output Q of a negative edge triggered T flip-
flop (figure 8.24 a), if T input is connected to 1 (+5 V).The clock pulse are represented in 
figure 8.24 (b). The flip-flop is initially reset. 

Solution:  The T input of the flip-flop is connected to logic 1, so this flip-flop will toggle 
at the trailing edge of the clock pulse as shown in figure 8.24(c). It is clear from this 
figure that the frequency of the output wave is half of the input frequency. The T flip 
may, therefore, be used for the frequency division of the input clock. 

 

 
Fig. 8.24 

8.5.3 Asynchronous Inputs:  In synchronous flip-flops discussed above, the data is 
transferred synchronously to the outputs of flip-flops, only at the triggering edge of the 
clock pulse. These inputs connected to the flip-flops are known as synchronous inputs. In 
these flip-flops when power is switched ON, the state of flip-flop will be uncertain i.e. the 
output may either be in the set mode or in the reset mode. In many applications it is 
desired that the flip-flop is initially set or reset. This can be done by providing the extra 

inputs known as preset (PRE) and Clear (CLR) inputs. Figure 8.25(a) shows edge 

triggered J K flip-flop with preset (PRE) and clear (CLR) inputs. These inputs are called 
as asynchronous inputs as these inputs operate independently and do not depend on the 
clock pulse. 

  

 

 



 

 

 

If both PRE and CLR asynchronous inputs are 1, the circuit behaves as a normal J K 
flip-flop and gives the outputs as per its characteristic table.  

If PRE = 0 and CLR = 1, the output of gate 3 will be 1 (Q = 1). Consequently, 

all the three inputs of the gate 4 will be 1 giving the output Q  = 0. Hence PRE = 0 sets 
the flip-flop. 

 If PRE = 1 and CLR =0, the output of gate 4 will be 1 (Q  = 1). Consequently, 

all the three inputs of the gate 3 will be 1 giving the output Q = 0. Hence CLR = 0 resets 
the flip-flop. 
 

 
 (a) (b) 
 Fig. 8.25 

 If both PRE and CLR asynchronous inputs are 0, the circuit gives uncertain state 
and this condition must not be used.  

 One this thing should be remembered that once the state of the flip-flop is 

established asynchronously (set or reset), these asynchronous inputs PRE and CLR 
must be connected to 1, before the application of next clock pulse. Figure 8.24(b) shows 
the logic symbol of this flip-flop, in which asynchronous inputs are indicated separately. 
These inputs are active-low. The table 8.9 summarizes the operation of this flip-flop.  
 
 
 



 

 
8.6 Master Slave J K flip-flop:  Before the development of edge triggered flip-
flops, the race around condition in J K flip-flop was removed using master slave flip-flop. 
A master slave J K fillip-flop is constructed using two J K flip-flops as shown in figure 
8.26; one flip-flop is known as master flip-flop and other as slave flip-flop. The master 
flip-flop works on leading edge of the clock pulse and that of slave flip-flop works on the 
trailing edge of the clock pulse. So the master flip-flop responds to the inputs before the 
slave flip-flop. The master-slave flip-flop is in fact the pulse triggered flip-flop. 

 

Fig. 8.26 

 The complete circuit diagram of a master-slave J K flip-flop using NOR latch is 
given in figure 8.27. Note that the outputs of the slave flip-flop are feedback to the master 
flip-flop. This will make the output of the flip-flop complement when JK = 11. At the 

 

 Fig. 8.28 

start of the leading of the clock pulse, the master flip-flop works with the previous values 
of the outputs and the present values of the J K inputs, and whatever change to occur will 



occur in the output of the master flip-flop till the clock pulse is high. So the final output is 
obtained at the trailing edge of the clock pulse. Table 8.7 may be verified with this 
circuit.  The master – slave J K flip-flop with NAND latch is shown in figure 8.29. 
 

 
                                                                           Fig. 8.29 
 
8.7 Excitation Table of Flip-flops:   The operational characteristics of various flip-
flops have been discussed in earlier sections of this chapter. The truth table also referred 
to as characteristic table gives the operation of flip-flop. The characteristic table specifies 
the next state of the flip-flop when the inputs and present state is known. The 
characteristic tables for R S, J K, D and T type flip-flops are reproduced in tables 8.10(a) 
to (d) respectively. The suffix n indicated in the inputs and the outputs denote the present 

 
state of inputs and outputs; and the suffix (n + 1) in the outputs denotes the next state. It 
is generally required the input conditions of flip-flops for different transition from present 
state to next state. The table which illustrates these transitions is known as the excitation 



table. The excitation table may be obtained from the characteristic table of the flip-flop. 
The excitation tables for R S, J K, D and T type flip-flops are given in tables 8.11(a) to 
(d) respectively. It may be noted from table 8.11(a), that when there is transition from 0 
to 1 (present state to next state, Qn to Q n+1), the inputs Rn Sn should be either 00 or 10. 
That is input S should definitely be 0, where as input R can be 0 or 1 (may be denoted by 
φ, don’t care condition). So for 0 to 0 transitions, inputs R S should be φ 0. Similarly, one 
can draw and verify the excitation table for other flip-flops. 

 

 
 
8.8 Conversion of Flip-flops:   A combinational circuit is designed for the 
conversion of one type of given flip-flop to other type. The general model for such 
conversion is illustrated in figure 8.30. The inputs of the required flip-flop are fed as 

 
 Fig. 8.30 



 
inputs to the combinational circuit which are connected to the inputs of the given flip-
flop.  The outputs of the given flip-flop will be the outputs of the required flip-flop. The 
combinational logic circuit is obtained from the excitation tables of both the flip-flops 
(given and required). The Boolean expressions for the inputs of the required flip-flop are 
obtained from the K-map drawn for the inputs and outputs of the given flip-flop. The 
combinational logic circuit may be drawn as usual.  The conversion may be illustrated in 
the following examples. 

Example 8.6:  Convert a J K flip-flop to R S flip-flop. 

Solution:  From the excitation tables (8.11b and 8.11a) of J K and R S flip-flops 
respectively, truth table is drawn as given in table 8.12. 

 

 Now from this truth table, the Boolean expressions for J and K are obtained from 
the K –maps drawn in figure 8.31(a & b) as: 

  SJ =  and        RK =  

 The logic diagram showing the conversion from J K flip-flop to R S flip-flop is 
given in figure 8.31(c). 

  

 

Example 8.7:  Convert a D flip-flop to J K flip-flop. 

Solution:  From the excitation tables of D and J K flip-flops, truth table is drawn as given 
in table 8.13.  



 Now from this truth table, the Boolean expressions for D input is obtained from 
the K –maps drawn in figure 8.32 (a) as: 

                  QKQJD ⋅+⋅=  
  

  

 The logic diagram showing the conversion from D flip-flop to J K flip-flop is 
given in figure 8.32 (b). 

 

 
 
                 Fig. 8.32(a) Fig. 8.32(b) 
 

8.9 Flip-flop Parameters:  Several parameters for the application of flip-flop will be 
discussed which are important to specify the performance, operating requirements and 
limitations of the circuit. These parameters are available in the data sheets for flip-flop 
ICs, and are applicable to all types of flip-flops. 

Propagation Delay Time:  As the flip-flops are the combination of logic gates, the flip-
flop will also not respond immediately after the application of the clock pulse or 
asynchronous inputs. The flip-flops will also have the propagation delay time. The 
propagation time delay for the flip-flops may be defined as the time interval between the 
application of triggering edge or asynchronous inputs and the resulting output of the flip-



flop. The propagation delays that occur for the positive transition of the clock pulse 
applied to a flip-flop are illustrated in figure 8.33. They are defined as: 

 
1. Propagation Delay PLHt  measured from the triggering edge of the clock pulse 

to the low to high transition of the output (refer figure 8.33a). 

2. Propagation Delay PHLt  measured from the triggering edge of the clock pulse 
to the high to low transition of the output (refer figure 8.33b). 

 

            Fig. 8.33(a)         Fig. 8.33(b) 

 The propagation delays that occur for the asynchronous inputs applied to a flip-
flop are defined as: 

1. Propagation Delay PLHt  measured from the PRE input to the low to high 
transition of the output (refer figure 8.34a). 

2. Propagation Delay PHLt  measured from the CLR input to the high to low 
transition of the output (refer figure 8.34b). 
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Set-up Time:  It is minimum time required for the inputs to settle before the triggering 
edge of the clock. It is generally denoted by St  and figure 8.35(a) illustrates the set-up 

time for a D flip-flop. 



Hold Time: It is the time for which the data must be stable after the triggering edge of 
the clock. It is denoted by Ht  and hold time for a D flip-flop is illustrated in figure 
8.35(b). 

 
 Fig. 8.35(a)           Fig. 8.35(b) 
 

Maximum Clock Frequency:  It is the maximum frequency at which a flip-flop can be 
reliably triggered. If the clock frequency is more than this frequency, the flip-flop will not 
function properly. 

Pulse Widths:  The minimum pulse widths for the clock and the asynchronous inputs are 
specified by the manufacturer of the flip-flop ICs. The minimum high time (tCH) and 
minimum low time (tCL) of the clock pulse are shown in figure 8.36(a). Similarly, the 
minimum low time for asynchronous inputs is given in figure 8.36(b). 
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Problems: 
1. Draw the circuit of R S flip-flop with NOR gates and discuss the behaviour of this 

circuit. 

2. Discuss various types of races in asynchronous flip-flops. 

3. What is the difference between asynchronous and synchronous flip-flops? Draw 
and explain clocked R S flip-flop with NOR latch. 

4. Explain the behaviour of R S flip-flop with NAND latch. 

5. Modify an asynchronous R S flip-flop so that when both the inputs R and S are 1, 
the flip-flop is reset. 

6. Discuss the edge detector circuits for triggering the flip-flops. 

7. Draw and explain D flip-flop with NAND latch. 



8. How does a J K flip-flop differ from S R flip-flop in its basic operation? What are 
its advantages over S R flip-flop? 

9. Discuss standard J K flip-flop with NOR latch and show that for inputs J K = 11, 
the complementation in the output will be obtained when width of the clock pulse 
is less than the delay in latch. 

10. What do you mean by level trigger flip-flop? How does it differ from an edge 
trigger flip-flop? 

11. Discuss the edge trigger J K flip-flop. 

12. What is purpose of asynchronous inputs in flip-flop? How these inputs work? 

13. What is master slave flip-flop? Discuss its working. 

14. Describe the working of edge trigger T flip-flop. How a T flip-flop be used as 
divide-by-two device? 

15. What is excitation table? How the excitation tables for R S, J K, D and T type 
flip-flops are formed? 

16. Define the following terms related to flip-flops. 

(i) Propagation delay time   (ii)  Set up time 
(iii)  Hold time   (iv)  Maximum clock frequency 
(v)   Pulse width 

17. Discuss the method of converting one type of flip-flop to another type. Convert J- 
K flip flop to D flip-flop. 

18. Carry out the following conversions: 

(i) D to J K FF (ii)   D to R S FF 
(iii)  T to R S FF (iv)   R S to D FF  

19. Carry out the following conversions: 

(i) T to D FF (ii)  J K to D FF 
(iii) J K to T FF (iv)  R S to T FF  

20. A J K flip-flop can be used as R S flip-flop, but R S flip-flop can not be used as J 
K flip-flop – Comment on this statement. 

21. If Q  output of D flip-flop is connected to its D input, verify that this circuit 
behaves as a T flip-flop. 

22. Verify that the circuit shown in figure 8.37 behaves as J K flip-flop. 

               
                  Fig. 8.37 Fig. 8.38 



23. Prepare the truth table for the circuit shown in figure 8.38 and show that it works 
as R S flip-flop. 

24. Verify that the circuit shown in figure 8.39, works as T – type flip-flop. 

 
 Fig. 8.39 

25. A clock is connected to an S R flip-flop as shown in figure 8.40; draw the output 
waveform in relation to clock. Also mention the function it performs. 

  

 
 Fig. 8.40 
 
 
 
 
 _______________ 
 



9 
Shift Registers 

 
 A register is another form of a sequential circuit that can be set to a specific state 
and retains until externally changed. A register is used to manipulate data for 
computational purposes by shifting the data in a register in either the left or right 
directions, and therefore, is called a shift register. This chapter will explain how to design 
a shift register and implement the operations Shift Left, Shift Right and bi-directional 
rotation of the data. A number of applications of shift register will also be discussed.  
 
9.1 Registers:  In computers or digital system a string of bits are normally stored and 
processed. A register is, in fact, a unit which can store a string of bits. Since a flip-flop 
can store a bit so for constructing a register for storing n number of bits, n flip-flops can 
be used. A single bit register is designed using a single D flip-flop. Consider a negative 
edge triggered D flip-flop as shown in figure 9.1. It is recalled from the characteristic 
table of D flip-flop that the flip-flop transfer the data applied to the D input to its output 
at the trailing edge of the clock pulse. So when logic 1 is applied to the D input of the 
flip-flop, then after the application of the clock pulse input 1 is transferred to its output at 
the trailing edge of the clock pulse. Now if the input 1 is removed, the flip-flop will 
continue be in the set state, retaining thereby the logic 1. Similarly logic 0 may be 
retained or stored in the D flip-flop. 
 

  
           Fig.9.1 
 
 An n-bit Register is a set of n flip-flops with a common clock. This n-bit register 
can store n-bit word. All the flip-flops of a given register should respond to the clock 
pulse simultaneously. Figure 9.2 shows four bit register having a common clock. All the 

flip-flops can be cleared by applying 0 to CLR terminal. Data inputs are given at D 
inputs of the flip-flops. The four bit data is transferred to the outputs at the trailing edge 
of the clock pulse and the data is retained until other pulse. 



 

 
 Figure 9.2 
 

9.2 Classifications of Registers:    The process of information in a register is called 
loading the register. Shifting the data in a register in either the left or right directions is 
called a shift register. Transferring information into all the flip-flops of a register can be 
done in two ways. One way is that all the data bits are loaded simultaneously, other data 
bits are loaded bit by bit (i.e. one bit at a time). Shift registers may, therefore, be 
classified into: 

 Serial Load Shift Register 

 Parallel Load Shift Register 

 The stored information in these shift registers can be transferred out of the register 
in parallel or in series. Based on these configurations, four combinations of loading and 
reading the data are possible. They are given as: 

1. Serial In Parallel Out (SIPO) Shift Register:  In this type of register, 
the data is loaded serially, one bit at a time; and when the output is 
required, the data stored in the register can be read in parallel form. 

2. Serial In Serial Out (SISO) Shift Register:  In this type of register, 
data can be moved serially in and out of the register one bit at a time. 

3. Parallel In Parallel Out (PIPO) Shift Register:  In this type of register 
the data is loaded simultaneously to all the flip-flops, and when the 
output is required, the data stored is read serially from the register one 
bit at a time under clock control. 

4. Parallel In Serial Out (PISO) Shift Register:  In this type of register 
the data is loaded simultaneously to all the flip-flops, and when the 
output is required, the data stored in the register can be read in parallel 
form. 

9.3  Serial In Parallel Out (SIPO) Shift Register:  Consider the schematic 
diagram of SISO shift register shown in Figure 9.3. For simplification purposes, the flip-
flops chosen are D type, but they can also be JK types. The flip-flops are negative edge 

triggered. Firstly CLR signal is applied as 0, which clears all the flip-flops giving the Q’s 
outputs 0. The clock pulse (CLK) is applied and at the trailing edge of the clock pulse, 
the input on the INPUT DATA line is transferred to the output of the first flip-flop. 



Whatever the output of the first flip-flop at that time is transferred to the output of the 
second flip-flop and, similarly, the operation extends to the remaining flip-flops to the 
right until the last flip-flop. Since the data is loaded to the flip-flop serially with each 
clock pulse, so it is called serial loading of registers (Serial In). If the output is sensed at 
each one of the flip-flop outputs (each Q), the circuit is termed a parallel-out register. So 
such register in which data is fed serially to the input and output is taken in parallel 
fashion, are called serial in parallel out (SIPO) shift register.  
 

  
     Fig. 9.3 
 To understand the operation of this shift register, consider the data 1111 is to be 
loaded serially and one wants to obtain the data at the output in parallel fashion. The 

CLR signal first resets all the flip-flops giving Q3 Q2 Q1 Q0 as 0 0 0 0. Now the data is 
applied as 1 to input data terminal and at the trailing edge of the first clock pulse data as 1 
will be shifted to the right side giving the outputs Q3 Q2 Q1 Q0 as 1 0 0 0. Similarly at the 
trailing edge of the second clock pulse the outputs Q3 Q2 Q1 Q0 will be 1 1 0 0. During 
the trailing edge of the third and fourth pulse the outputs will be 1 1 1 0 and 1 1 1 1 
respectively. This way the data 1111 is loaded to the register serially and outputs are 
obtained simultaneously at Q3 Q2 Q1 Q0.  

 
           Fig. 9.4 



 The systematic shifting of data is given in table 9.1 and its timing diagram is 
shown in figure 9.4. The logic block diagram of SIPO shift register is shown in figure 
9.5.  

  
 Fig. 9.5 
 
9.4  Serial In Serial Out (SISO) Shift Register:  A basic four-bit serial in serial 
out shift register can be constructed using four D flip-flops, as shown in figure 9.6. The 

operation of the circuit is as follows.  The register is first cleared by applying CLR signal 
as 0, forcing all four outputs to zero.  The input data is then applied sequentially to the 
input data terminal of the first flip-flop.  During each clock pulse, one bit is transmitted 
from left to right. The data is entered into the register serially during first four clock 
pulses in the similar manner as has been discussed in SIPO shift register. To get the data 
out of the register serially, entered data must now be shifted serially and taken off at the 
Q0 output. For this purpose four more clock pulses are applied and four bit required data 
will be available serially at the Q0 output. Assume a data word 1101 is to be entered 
serially and taken at the output Q0 bit by bit.    
 

 
  Fig. 9.6 
 
 Consider a data word 1101 is to be loaded serially and one wants to obtain this 

data at the output Q0 bit by bit. Firstly all the flip-flops are cleared by applying CLR 
signal. Now the LSB 1 of the data is applied to the input data terminal and then during 
the negative edge of the clock pulse data 1 is shifted to Q3 and giving the outputs Q3 Q2 
Q1 Q0 as 1 0 0 0. The second LSB 0 of the data is applied to the input terminal and at the 
trailing edge of the clock pulse outputs Q3 Q2 Q1 Q0 will be available as 0 1 0 0. Similarly 
at the trailing edge of the third and fourth clock with input bits as 1 1, the outputs Q3 Q2 
Q1 Q0 will be 1 0 1 0 and 1 1 0 1 respectively. So at the 4th clock pulse LSB 1 is available 
at Q0 output. During 5th, 6th and 7th pulse with input data as 0 0 0, the serial output 



terminal Q0 will deliver second LSB, third LSB and MSB of the data. All the flip-flops 
may also be cleared by applying one more clock pulse with 0 as the input data. The 
systematic shifting of data is illustrated in table 9.12. The logic block diagram of SISO 
shift register is shown in figure 9.7.  
 

 
 Fig. 9.7 
 
9.5  Parallel In Parallel Out (PIPO) Shift Register:  For parallel in - parallel 
out shift registers, all data bits appear on the parallel outputs immediately following the 
simultaneous entry of the data bits.  The four-bit parallel in - parallel out shift register 
constructed by D flip-flops is shown in figure 9.8.  
 

 
 

Fig. 9.8 
 



 The D's are the parallel inputs and the Q's are the parallel outputs.  Once the 
parallel transfer signal is high all the AND gates will be enabled and the data bits gets 
connected to their respective flip-flop. Now after the application of clock pulse all the 
data at the D inputs appear at the corresponding Q outputs simultaneously. The logic 
block diagram of PIPO shift register is shown in figure 9.9.  

 
Fig. 9.9 

 
9.6  Parallel In Serial Out (PISO) Shift Register:  A four-bit parallel in - serial 
out shift register is shown in figure 9.10.  The circuit uses D flip-flops and NAND gates 
for entering data (i.e. writing) to the register. D3, D2, D1 and D0 are the parallel inputs, 
where D3 is the most significant bit and D0 is the least significant bit. To write data in, 

the mode control line ( SHIFTWRITE/ ) is applied low and the data is clocked in. The 
data can be shifted when the mode control line is high as SHIFT is active high. The 
register performs right shift operation on the application of a clock pulses.  

 
 Fig. 9.10 



 It can be understood in more detail, the data to be entered to the register is applied 

to the parallel data input terminal and mode control line ( SHIFTWRITE/ ) is made low, 
it allows all the four bits of the data word to be entered in parallel into the register. In this 
condition NAND gates 1 through 5 will be enabled which allow each data bit to be 
entered into D inputs of their respective flip-flop. After the application of clock pulse the 
data applied to the inputs of flip-flops will appear at the output of the respective flip-flop. 
The data is said to be stored in the register.  

 After the data is stored into the register, mode control line ( SHIFTWRITE/ ) is 
made high, NAND gates 6 through 8 will be enabled which will force the data to be 
shifted from their present state to next state after the application of clock pulse. Further 
shifting is possible with next consecutive pulses. Table 9.3 illustrates the entering of the 
data (say 1001) into the register and it’s shifting with clock pulses. The logic block 
diagram of PISO shift register is shown in figure 9.11.   

 
 
 Fig. 9.11 

9.7  Bidirectional Shift Register:  The registers discussed so far involved only 
right shift operations.  Each right shift operation has the effect of successively dividing 
the binary number by two.  If the operation is reversed (left shift), this has the effect of 
multiplying the number by two.  With suitable gating arrangement a serial shift register 
can perform both operations. A bidirectional, or reversible, shift register is one in which 
the data can be shift either left or right.  A four-bit bidirectional shift register using D 
flip-flops is shown in figure 9.12.  

Here a set of NAND gates are configured as OR gates to select data inputs from 

the right or left adjacent bi-stables, as selected by the SHLSHR/  control line. When this 
control line is high data is moved or shifted to the right side, and if it is low data will be 
moved to the left side. Hence this shift register is also called as Left Right or 
Bidirectional shift register. 

The operation of this circuit may be explained as follows. In the beginning CLR 

signal is made low which clear all the flip-flops. When SHLSHR/  control line is high, 
one can understand from the logic of the gates connected in this circuit that the output Q 
of all the flip-flops gets connected to the D input of the following flip-flop. The data bit 
gets connected to D input of first flip-flop. Now after the application clock pulse to the 
CLK terminal, data bits are shifted one place to the right. Further occurrence of the nest 



pulses will shift data in right. However, when the SHLSHR/  control line is low, the 
configuration of logic gates makes the data bit to connect to D input of 4th flip-flop also 
the output of each flip-flop is passed through to the D input of the preceding flip-flop. 
After the application clock pulse to the CLK terminal, data bits are shifted one place to 
the left. In this mode this circuit works as the left shift register. 
 

 
 Fig. 9.12 

9.8  Universal Shift Register:  Consider the schematic diagram shown in Figure 
9.13. It has facilities for serial loading (serial in) and serial output and parallel loading 
(parallel in) and parallel output, and, additionally, it has shift-left and shift-right facilities. 
Therefore, this kind of shift register, which can operate in all the four different modes 
discussed in preceding sections and also has the facility of bi-directional shifting of data, 
is called a universal shift register. Figure 9.13 shows the logic diagram of 4-bit universal 
shift register.  

It has four D flip-flops and the associated NAND gates, which makes it possible 
to shift the data to the right or left direction. The mode control inputs S0 and S1 enable the 
required operating mode of the register. The different modes are shown in table 9.4. From 
this table it is clear that when both these mode control inputs are 00 or 11, no shifting 
occurs. When both are 00, the content of the register will have its previous value (i.e. no 
change) and when both are 11, the input data D3 D2 D1 D0 are loaded in parallel fashion 
in the register. When control inputs S1 S0 are 01 or 10, the data is shifted right or left 

respectively after the application of clock pulse. The asynchronous input CLR is used to 
clear or reset the register. This is an active low input. 
 
  Table 9.4 
 

S1 S0 Operating Mode 
0               0 
0               1 
1               0 
1               1 

No change 
Shift right 
Shift left 
Parallel load 



 
 
 
 

 
 

 



 

9.9  Cyclic Shift Registers:  In a regular shift register, a given number can be shifted 
to the left or right when a shift pulse is applied. Bits shifted out one end of the register 
may be lost. However, in a cyclic shift register, bits shifted out one end are shifted back 
in the other end. The cyclic shift registers also known as shift register counters are 
constructed by modifying serial in serial out (SISO) shift registers. There are two 
following types of cyclic shift registers: 

1. Ring Counter  

2. Johnson Counter or Twisted Ring Counter 

These cyclic shift registers will be discussed in the following sections. 

9.9.1 Ring Counter:  The ring counter can be obtained from a serial in serial out (SISO) 
shift register by connecting the Q0 output of the last flip-flop to the D input of the first 
flip-flop. The ring counter, constructed using the D flip-flops is shown in figure 9.14.  

 
Figure 9.14  

 In this counter a single 1 is stored in the register and it is made to circulate in the 
register after the application of clock pulsed. Initially, the output Q3 is made 1 by 
presetting this flip-flop and other flip-flops are reset so that the outputs Q3 Q2 Q1 Q0 are 
1000. Since the output Q of each flip-flop is connected to the D input of the next stage, so 
the contents of each register are shifted to the right by one bit after the application of 
clock pulses. After the first pulse, the content of the shift register is 0100. After a second 
pulse, the state of the register is 0010, then 0001, and the register returns to the initial 
state of 1000 at the fourth pulse. In this shift register at a time one flip-flop gives the 
output 1. The 1 can be used to switch on a sequence of machines, one after another, 
whose operating time is controlled by the length of the clock pulses. A ring counter will 
have as many different codes as there are flip-flops since the only difference between 
outputs of the ring code is the place where the 1 is. The cyclic Shift registers are used in 
calculators. On the display of some pocket calculators, it can be seen that the numbers 
shift over as each new number is keyed in. This is due to the shift register.  

The systematic shifting of data is given in table 9.5 and its timing diagram is 
shown in figure 9.15. 

   



 
 
 

 

  
    

   Fig. 9.15 

   

9.9.2 Johnson Counter or Twisted Ring Counter:  The basic difference between the 
Johnson counter and ring counter is that in the Johnson counter the complement of the 
output of the last flip flop is connected back to the D input of the first flip flop rather than 
the output itself. This feedback arrangement produces a unique sequence of states. The 
four bit Johnson counter has a total of 8 states. In general, an n stage Johnson counter will 
produce a modulus of 2n, (n will also be the number of stages of the counter). 

The schematic diagram of 4 bit Johnson counter also known as twisted ring 
counter is shown in figure 9.16. The working of this circuit may be explained as follows: 



Initially, it is considered that the counter is set to 0 (Q3 Q2 Q1 Q0 are 0000) as the 
first pulse occurs. At the occurrence of the second clock pulse first flip flop changes its 
output state from 0 to 1 (Q3 becomes 1). Now as Q1 = 1 so the second flip flop will also 
changes the state from 0 to 1 at the next pulse. The flip flops 1, 3 and 4 remain 
unchanged. The similar changes occur at the next pulses as given in the table 9.5. The 
wave form of this counter is shown in figure 9.17. 

 The twisted ring counters are very useful especially when a sequence of events 
takes place one after the other without reverting to initial value. 

 
Fig. 9.15 

 

 



 
         Fig. 9.17 
9.10 Shift Register IC Details:  Shift register IC’s currently available are given in 
the table 9.7: 
 
    Table 9.7  

IC No. Description No. of bits 
7491, 7491A Serial-in Serial out 8 - bit 

7494 Parallel-in Serial-out 4 - bit 
7495 Serial/Parallel-in Parallel out (left shift, right 

shift) 
4 - bit 

7496 Parallel-in/Parallel-out Serial-in /Serial-out 5 - bit 
7499 Bi – directional (Universal) 4 - bit 
74164 Serial-in Parallel-out 8 - bit 
74165 Serial/Parallel-in Serial-out 8 - bit 
74166 Serial/Parallel-in Serail-out 8 - bit 

74178, 74179 Bi – directional (Universal) 4 - bit 
74194 Bi – directional (Universal) 4 - bit 
74195 Serial/Parallel-in Parallel-out 4 - bit 
74198 Bi – directional (Universal) 8 - bit 
74199 Serial/Parallel-in Parallel-out 8 - bit 

74295A Tri-state Serial/Parallel-in Parallel-out bi-
directional 

4 - bit 

74395 Tri-state cascaded Serial/Parallel-in 
Serial/Parallel-out  

4 - bit 

 
 Brief details of a few IC’s mentioned above are given below: 
IC 7491: It is an 8-bit serial in serial out shift register. The logic diagram of this IC 
has 8 S – R flip flops used as D flip flops as usual. There are two gated data input lines, A 
and B, for serial data entry. When the bit is entered through the input A, input B must be 

high and vice versa. The serial data output is QH and its complement isQH . The pin 
diagram of IC7491 is shown in figure 9.18. 



Fig. 9.18 
 
IC 74164 :    The 74164 is an eight bit serial- in parallel-out shift register. The pin 
diagram of this IC is shown in figure9.19. This device has two gated serial inputs, A and 

B, and a clear CLR input with active low. The parallel outputs (8 bits) are QA through 
QH. When the bit is entered through the input A, input B must be high and vice versa. 

    Fig. 9.19 

IC 74194:    The 74194 is a bidirectional shift register in IC form. The pin diagram of 
this IC is given in figure9.20. Parallel loading, which is synchronous with a positive 
transition of the clock, is accomplished by applying the four bits of data to the parallel 
inputs and a high to S0 and S1 inputs.   

When S0 is high and S1 is low, shift right operation is performed with the positive 
edge of the clock pulse. Serial data in this mode are entered at the shift right serial input 
(SR) terminal. 

               Fig. 9.20 
When S0 is low and S1 is high, data bits shift left and the data is entered at the 

shift left (SL) terminal. 
 



IC 74195:    The IC 74195 is a 4 bit Serial/Parallel-in Parallel-out shift register. Pin 
diagram of this IC is shown in figure 3.17. When the SH/LD input is low, the data on the 
parallel inputs are entered synchronously on the positive edge of the clock pulse. When 
this input is high, stored data will shift right QA through QD synchronously with the 
clock pulse. Since J and K  are connected together, it can be used as the serial data inputs 
to the first stage of the register QA; QD can be used for serial output data. 

Fig.9.21 

9.11 Applications of Shift Registers:  Shift registers are primarily used for 
temporary storage of data and bit manipulations, but these find numerous applications in 
digital systems.  A few important applications of shift registers will be discussed here. 

9.11.1 Serial Adder:  The most important application of shift registers is the serial adder. 
Figure 9.22 shows the block diagram of the serial adder, in which the augend bits and 
addend bits are loaded in parallel fashion to the register A and register B respectively. 
These bits (augend and addend) are shifted in the right direction so that they get added 
(bit by bit) in full adder circuit. Initially carry bit is set to zero using a flip-flop. The 
output CARRY of the full adder is transferred to a D flip-flop, which gets added to the 
next bit. The SUM bit of the full adder is transferred to the register A (augend register).  

 

 Fig. 9.22 

 The complete schematic diagram as well as the control signals necessary to 
implement the serial addition is shown in figure 9.23. The shift register along with the 
full adder and modulo 5 counter/ decoder makes it possible to add two data words each of 



4 bits. The full adder adds the augend and addend bits serially and the result is placed in 
the position occupied by the augend.  

 
 Fig. 9.23  
 The circuit diagram contains four D - flip flops to store the augend bits in parallel 
fashion and other 4 D - flip flops for addend bits. One more D – flip flop is connected to 
the carry bit of the full adder to store and shift it to the augend positions (augend bit 
register).  Modulo 5 counter / decoder delivers the control signal to the circuit as shown 
in figure 9.24. 

 
  Fig.9.24 



 The working of this serial adder may be explained as follows: 

 During the first clock pulse, carry flip flop is cleared and the augend and addend 
bits ( A3A2A1A0 and B3B2B1B0) are entered in their respective flip flops. At the second 
clock pulse, add signal is set and it remains set till the completion of the addition 
operation (i.e. for four clock pulses). 

 When the add signal is 1, the contents of the augend and addend registers are 
shifted right and are added bit by bit in the full adder circuit. The carry, if any, sets the 
carry flip flop at the trailing edge of the clock pulse. The content of the carry flip flop 
gets added during the next pulse by the full adder. Each bit of the sum re-enters the 
augend register. Overflow, if any, will be available in the carry flip flop. 

 After addition is complete the sum S3S2S1S0 are stored in augend flip flop and 
carry bit generated is stored in carry flip flop. 

9.11.2 Parity Generator cum Checker: Another application to generate and check the 
parity bit of 4 bit number will be discussed. The schematic diagram for the same is shown 
in figure 9.25. 

 
    Fig. 9.25 

 

 This circuit contains five flip flops, four to store the 4 bit number and to store the 
parity bit. The control signal for the parity generator cum checker is shown in figure9.26. 



 
   Fig. 9.26 

 Parity Checker:   To use the circuit as parity checker, the parity generator signal 
(PG) is set to 0. The working of this circuit is explained as follows: 

 Load the data signal (LD) is set to 1 during the first clock pulse.  Parity bit P and 
the data bits (XYZW) are loaded in the parity and shift register flip flops through the 
preset (PRE) terminal of the flip flops. The error flip flop (6) is also set to parity bit P. 
The route data signal (RD) is kept high for four clock pulses. During this time contents 
(XYZW) are shifted 4 times. As parity generator signal is zero, the parity flip flop is 
unaffected. 

 If parity bit P is 0, then error flip flop (6) is toggled by the output of the excusive- 
OR gate for each data bit having a value 1 i.e. error flip flop(6) toggles as many times as 
equal to the number of 1’s in data XYZW. So after the 4 clock pulses, if the output of 
error flip flop 1 then parity check fails, further if 0 is there at the output of error flip flop 
(6) then parity check is correct. 

 If parity bit P is 1, then error flip flop (6) is toggled by the output of the excusive- 
OR gate for each data bit having a value 0 i.e. error flip flop toggles as many times as 
equal to the number of 0’s in data XYZW. So after the 4 clock pulses, if the output of 
error flip flop 1 then parity check fails, further if 0 is there at the output of error flip 
flop(6) then parity check is correct. 

 Parity Generator:   For parity generator, parity generator signal (PG) is set to 1 
and P is reset to 0. Now when route data signal (RD) is 1, data bits (XYZW) are entered 
into the shift register flip flops. The output of the exclusive OR gate is feedback to the P 
flip flop. If the odd number of 1’s is there in the data (XYZW) then output Q of flip-flop 
1 is set to 1 at the end of fifth clock pulse. If on the other hand even number of 1’s is 
there in the data then output Q of flip-flop 1 is set to 0. Thus correct parity bit is 
generated and stored in the flip flop 1. 

9.11.3  Time Delay:  Serial In Serial Out (SISO) shift register can be used to introduce 

time delay τ∆ in digital signals from input to output given by: 
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Where N is the number of flip-flops or number of stages, 
           TCLK is the time period of the clock, 
 fCLK is the frequency of the clock. 

 From this equation it is clear that the delay can be controlled by changing the 
value of N. Consider a serial in serial out (SISO) shift register of N stages as shown in 
figure 9.27(a), to which a clock of 500 KHz frequency (2µ S time period) is applied. The 
data input connected to the serial input of the shift register, will be obtained at the serial 
out terminal after as delay of 16µ S. The timing diagram for the delay is shown in figure 
9.27(b). 
 

 
9.11.4  Data Conversion: The data conversion means data available in serial form is to 
convert in parallel form or vice-versa. The conversion from serial to parallel form is 
possible with Serial in parallel out (SIPO) shift register and the conversion of data from 
parallel form to serial form is possible with parallel in serial out (PISO) shift register.  
 
9.11.5 Sequence Generator: An important use of shift register is a sequence generator, 

Fig. 9.28 



which generates a prescribed sequence of binary bits in synchronization with the clock. 
This system is also referred to as a word generator or code generator. The basic structure 
of sequence generator is shown in figure 9.28. The parallel outputs of the shift register 
are connected to the inputs of some combinational circuit, whose output may be 
connected to the serial input of the shift register. 

 As an example, consider the sequence generator that can generate the binary 
sequence 101011….. In the required sequence there are 6 bits for which three state shift 
register is needed since Np 2≤ , where N is the number flip-flops in the shift register and 
p is the number of bits in the required sequence. Table 9.8 illustrates the six combinations 
of three bits which are required to generate the given sequence. The output Q2 of the shift 
register should be the required sequence of the generator and the outputs Q1 and Q0 are 
the same sequence delayed by one and two clock pulses respectively. 

 
  Table 9.8 

Clock 
pulses 

 
Q2 

 
Q1 

 
Q0 

1 
2 
3 
4 
5 
6 

1 
0 
1 
0 
1 
1 

1 
1 
0 
1 
0 
1 

1 
1 
1 
0 
1 
0 

 

 The states in the table are not distinct as row 3rd and 5th are same. Now consider N 
= 4 and a table is prepared in the similar manner as shown in table 9.9. The last column in 
the table shows the output (W) which gives the required sequence (Q3) shifted after clock 
pulses. The expression for W is obtained from the K – map (figure 9.29) of table 9.8 as: 

 0202 QQQQW ⋅+⋅=  

 
 Fig. 9.29 
 
 The circuit for the sequence generator may be drawn as shown in figure 9.30. 
 



 
      Fig. 9.30 
Problems: 
 

1. What is register? How can a flip-flop be used to store a bit. 

2. Mention the classifications of registers. Describe the working of serial in 
serial out shift register. 

3. Describe the working of parallel in parallel out shift register. Explain how 
number can be shifted in or out from this register.  

4. What is the difference between a parallel in parallel out shift register and 
parallel in serial out shift register? Discuss the working of parallel in serial 
out shift register. 

5. Explain the operation of serial in parallel out shift register. 

6. Draw the circuit of four bit bi-directional shift register, explain its 
working. 

7. A 4-bit serial in parallel out right shift register initially contains 0101. The 
data 1011 is to be entered. After three clock pulses, what is the data at 
outputs of the register? 

8. What do you understand by the cyclic shift register? Explain the operation 
of ring counter using timing diagram . 

9. What is the difference between a ring counter and twisted ring counter? 
Discuss the operation of four bit Johnson counter using timing diagram 
and the sequence. 

10. If the initial state of a 6-bit ring counter is 101101, what is the state of the 
counter after the third clock pulse? Explain with trimming diagram. 



11. What is the main advantage of a universal shift register? Draw and explain 
the circuit of four bit universal shift register. 

12. Name any two applications of shift register. Explain one application in 
detail. 

13. Explain how can a shift registers be used in serial adder circuit. Draw and 
explain the circuit of four bit serial adder circuit.  

14. Discuss the use of shift registers for generating and checking the parity bit. 

15. Discuss the use of shift register in sequence generator. 

16. Design a sequence generator to generate a sequence ….10110 … 

17. Design a sequence generator to generate a sequence ….110011 … 

 
 

___________ 
 



 

10 

Counters 
  

 
 Counters are the important building block of digital systems. These are used to 
count the pulses. The clock pulses occur at regular and known intervals, so a counter can 
be used to measure time and consequently frequency and time period. So counters are 
sequential logic circuits that proceed through a well-defined sequence of states after 
application of clock pulses. The counters are constructed using flip-flops and logic gates.  
Counters are classified into two following broad categories. 

1. Asynchronous or ripple counter 
2. Synchronous counter 

 In asynchronous counters, external clock is applied to the first flip-flop and other 
successive flip-flops are triggered by the outputs of the preceding flip-flops. However, in 
synchronous counters all the flip-flops are triggered simultaneously by the external clock 
pulses. In this chapter the design of these counters with up and down counting sequences 
will be discussed.  

10.1  ASYNCHRONOUS COUNTERS 
 It is well known that if a clock of frequency f is applied to the clock input of a 
negative triggered T flip-flop, whose T input is connected to high (logic 1), it toggles at 
the trailing edge of each pulse (figure 10.1). The frequency 

 

         Fig. 10.1(a)     Fig. 10.1(b) 

of the output will be f / 2.  If two flip-flops are connected in series as shown in figure 
10.2, the output frequency obtained will be the division of input frequency by a factor of 
4. This will have the four unique states 00, 01, 10, 11 (shown in timing diagram of figure 
10.2a). The frequency division is basically a counter. This circuit is called as two bit 
asynchronous or ripple counter. 



 
 
 Fig. 10.2(a)              Fig. 10.2(b) 
  
 In this wary any number of flip-flops may be connected in series.  A counter with 
n number of flip-flops will have n2 unique states which will count in natural sequence 
and the counter is called a modulus (short mod)n2 counter. The modulus of a counter 
represents the total number of states through which the counter can move. The binary 
counter with one flip-flop will have two states and the counter is called as Mod-2 or 
divide-by-2 counter (ref. fig. 10.1). The counter with 2 flip-flops will have 4 (as 42 =n ) 
states (including zero) and the counter is called as Mod-4 or divide-by-4 counter (ref. 
fig.10.2). It will have 00, 01, 10 and 11…..states. Similarly, Mod-8, Mod-16…counters 
may be discussed. 

  In these asynchronous or ripple counters all the flip-flops are not synchronously 
controlled by the same clock pulse. As discussed above, in asynchronous counters 
external clock is applied to the first flip-flop and other successive flip-flops are triggered 
by the outputs of the preceding flip-flops. Further, it is well known that when an input 
pulse is applied to a flip-flop, it gives an output after some time delay (propagation 
delay). Consider a counter with two flip-flops connected in series and if propagation 
delay of each flip-flop is 20 nsec., then the output of the second flip-flop will be obtained 
after a time delay of 40 nsec. Since each flip-flop is toggled by the changing state of the 
preceding flip-flop, the delay accumulates with the number of flip-flops. That is this 
delay ripples through the flip-flops and becomes quite appreciable when the number of 
flip-flops is increased. This delay may become comparable to the period of the clock (or 
more than the clock period). In this condition there is a possibility that the first flip-flop 
responds to the new clock pulse before the previous pulse has effected transition of the 
last flip-flop, this may lead the skipping of certain count which is undesirable. So the 
asynchronous counter becomes too slow for carrying out the counting, if the clock 
frequency is large enough or the number of flip-flops are increased.  

10.2 ASYNCHRONOUS BINARY (MOD-16) COUNTER 
 Asynchronous binary counter or Mod-16 counter will have 16 unique states and 

needs 4 flip-flops to design this circuit as 1624 = . A series combination of four T flip-
flops is shown in figure 10.3, in which the output of first flip-flop is connected to the 
clock input of the second; the output of the second is connected to the clock input of the 
third, and so on. The clock is applied to the clock input of first T flip-flop and T inputs of 



all the flip-flops are connected to high (logic 1). The clear terminal of all the flip-flops 

are connected together toCLR, which resets the counter when logic 0 is applied toCLR.  

 

 
 Fig. 10.3 
 
 It is well known that a T flip-flop toggles at the trailing edge of the clock pulse, so 
first flip-flop changes it state each time the clock input goes from high to low. The 
subsequent flip-flops change state when their inputs change from 1 to 0. The waveforms 
at the input and outputs of all the flip-flops are shown in figure 10.4, while the states of 
flip-flops corresponding to input clock pulses are given in table 10.1. 
 

 
 Fig. 10.4 
 
 In the asynchronous counters one can use J K flip-flops in place of T flip-flops. 
The J and K inputs of J K flip-flops may be tide together which works as T input. The 
ripple mod -16 counter designed using J K flip-flops is shown in figure 10.5. The figure 

10.6 shows this counter designed using D flip-flops, in which Q  outputs of all the flip-
flops are connected to their D inputs. The D flip-flops connected like this work as T flip-
flops. 



 
 

  
Fig. 10.5 

  

 
 

Fig. 10.6 



Example 10.1:  Design a mod-8 asynchronous counter using T flip-flops. 

Solution:   A mod-8 counter also called divide-by-8 counter can be designed using 3 T 

flip-flops as 823 = . This counter will have 8 possible states starting from 000 to 111. At 
the eighth clock pulse the counter is reset and counting is started from the beginning with 
the next pulse. The three T flip-flops are connected to be connected in series as shown in 
figure 10.7. The waveforms at the input and outputs of all the flip-flops are shown in 
figure 10.8, while the states of flip-flops corresponding to input clock pulses are given in 
table 10.2. 

 
Fig.10.7 

 

 
 Fig.10.8 
10.3 ASYNCHRONOUS DOWN COUNTERS 
 So far the counters which count in the forward direction are considered. Some 
times it is also desirable to have the digital counters which count in the backward or 
reverse direction like ….. 3 2 1 0 3… (or 11 10 01 00 11….). In the up counter or forward 
counters, the external clock is applied to the first flip-flop and other successive flip-flops 
are triggered by the outputs of the preceding flip-flops. In the down counter the external 
clock is applied to the clock terminal of the first flip-flop as in the case of the up counter, 

the other successive flip-flops are, however, triggered by the Qoutputs of the preceding 
flip-flop. The outputs are taken at Q’s outputs. The figure 10.9(a) shows the logic 
diagram of asynchronous Mod-4 down counter. The output waveforms of this counter are 
shown in figure 10.9(b), which are in the down sequence. 



 
 Fig. 10.9(a)     Fig.10.9 (b) 
10.4 ASYNCHRONOUS MOD-16 DOWN COUNTER 
 The asynchronous mod-16 down counter will count in the down sequence having 
16 distinct states. It needs 4 T flip-flops as 1624 = . The down sequence will be 15, 14, 
13, 12 ……1, 0, 15 ……It may be designed in the similar fashion as mod-4 down 
counter. Figure 10.10 shows the down counter, in which external clock pulse is applied to 

T0 input of first flip-flop. The 0Q  output of 1st flip-flop is connected to T1 input of 2nd 

flip-flop, similarly 1Q  output to T2 and 2Q  output to T3.  

 
 Fig. 10.10 
 This circuit may also be designed with J K flip-flops, as shown in figure 10.11. 

Fig. 10.11 
 The output waveforms are shown in figure 10.12, which correspond to down or 
reverse counting. The Q0 output will toggle at the trailing edge of the clock pulse, and Q1 

through Q3 will change their outputs at the trailing edge ofQ ’s outputs of the preceding 
flip-flops.  



 
 Fig. 10.12 

 The states of the flip-flop outputs in the reverse sequence are given in table 10.3. 

 
 



10.5 ASYNCHRONOUS MOD-16 UP / DOWN COUNTER 
 A counter can work both as Up counter and down counter (up / down counter) if 

AND- OR control gates are used for connecting the Q’s and Q ’s outputs of the preceding 
stage to the input of the next stage. Figure 10.13 shows the circuit for a mod-16 up / 
down asynchronous counter. Here the T flip-flops are used along with AND-OR control 
gates.  
 

 
      Fig. 10.13 
 

 In this circuit when control input DOWNUP /  is high, the counter works as up or 
forward counter as the outputs Q0, Q1, Q2 gets connected to the T inputs of the next 

stages. Again when DOWNUP / input is low, the counter works as down counter as the 
complemented outputs gets connected to the T inputs of the next stages. 
 



 
 Fig. 10.14(a) 

 
Fig. 10.14 (b) 

 
 Figures 10.14 (a) and (b) show the waveforms taken at Q’s outputs for Up and 
down counter respectively. The counting sequences are shown in Table 10.4 for working 
the circuit as UP or down counter. 



 
 

10.6 OTHER ASYNCHRONOUS COUNTERS 
 It is quite often desired to have counters which can count through modulo other 
than 2, 4, 8, 16 etc., that is not a power of 2, for example Mod-3, Mod-5, Mod-6, Mod-10 
etc. These are obtained from the binary counters of higher modulo by providing a 

feedback toCLR which resets all the flip-flops after the desired count. Combinational 
logic circuits are used for the reset pulse. 

10.6.1 Asynchronous Decade Counter 

 The decade counter also called as divide-by-10 counter can have 10 distinct 
states. It can count from 0 to 9 and then reset to count again in the same sequence. Four T 
flip-flops are needed to design this counter. Table 10.5 shows the counting sequence for 
this counter. It is clear from this table that the counter should reset when Q3 Q2 Q1 Q0 
becomes 1 0 1 0 i.e. a low pulse should be generated when Q3 Q1 = 11. So Q3 and Q1 
outputs should be applied to a NAND gate, whose output will be low when Q3 Q1 = 11. 

This low pulse should be applied to CLR terminals of all the flip-flops.  

 



 

 Figure 10.15 shows the logic diagram of the ripple decade counter. At the trailing 
edge of the 10th pulse, the counter temporarily goes to 1010 state, but immediately resets 
to 0000, because of the feedback provided by the output of the NAND gate.  

 

 
 

Fig. 10.15 
 

 The waveforms taken at Q’s outputs are shown in figure 10.16. 
 



 
Fig 10.16 

 
 

10.7 SYNCHRONOUS COUNTERS 
 In the forgoing sections of this chapter, the asynchronous or ripple counters 
were discussed in which the flip-flops were connected in series. These counters are 
simple to design but have delay which is the sum of delays of individual stages. The total 
accumulated delay in the counters cause a limitation on the speed of the asynchronous or 
ripples counters. In order to overcome this advantage synchronous counters are used. In 
these counters all the flip-flops are triggered simultaneously by the same clock pulse. The 
transition of all the flip-flops from present state to the next state will, therefore, occur at 
the same time, which reduces the delay of the counter. Synchronous counters can be 
designed by using JK, D or T type flip-flops.  
 
10.7.1 Synchronous Binary Counter 
 The manner in which the counts progress in a binary counter is shown in table 
10.6. Four T flip-flops are needed to design this binary counter. It may be noted from the 
table 10.6 that the output Q0 changes its state for every clock pulse. So to get the toggled 
output Q0 for every pulse, the T input of first flip-flop should be connected to high (logic 
1). The output Q1 changes its state, whenever Q0 is 1 and stores when Q0 = 0. The T input 
of second flip-flop should therefore be connected to Q0 output of first flip-flop. Similarly, 
output Q2 toggles when Q0 and Q1 are both 1. The output Q3 toggles when Q1, Q2 and Q3 
are 1. From the above discussion the Boolean expressions for inputs of all the flip-flops 
are given by: 

For the design of this counter it needs four flip-flops. A table is drawn in which 
inputs are outputs of the four flip-flops say Q3 Q2 Q1 Q0 used as the inputs in the table. 
The outputs Q3 through Q0 should be in binary sequence and resets after Q3 Q2 Q1 Q0 = 
1001. The J K inputs for each flip-flop for the transition from present state to next state 



are obtained from the excitation table (8.11) of the corresponding flip-flop. This is shown 
in table 10.8. 

 
 

 10 =T ,   01 QT = ,        102 QQT ⋅=  and    2103 QQQT ⋅⋅=  

 The logic circuit diagram of synchronous binary counter is shown in figure 10.17.  

 
Fig. 10.17 

  
 
 It is clear from this figure that the clock inputs of all the flip-flops are connected 
together. This counter can also be designed by using 4 J K flip-flops (J and K inputs tied 
together) as shown in figure 10.18. 
 



 
     Fig. 10.18 
 Figures 10.19 show the waveforms taken at Q’s outputs of all the flip-flops of 
synchronous binary counter. Note from the waveforms that output toggles at the trailing 
edge of the pulse and output Q1 toggle when Q0 is 1, Q2 toggles when both Q0 and Q1 are 
1 and Q3 toggles when Q0 Q1 Q2 are all 1. 
 

 
Fig. 10.19 

10.7.2 Design of Synchronous Mod – N Counter 

 The design process of synchronous Mod – N counter will now be discussed. The 
value of N need not necessarily be a power of 2, for example Mod-5, Mod-6, Mod-8, 
Mod-10, Mod-11 etc. It is also desired to have counters in which the counting sequence is 
not always being the natural binary sequence. The counting sequence may be in cyclic 
code, 5421 code, 2421 code etc. The following procedure should be adopted for the 
design of synchronous counters for any counting sequence and modulus: 

• First find the number of flip-flops n required to design a counter of Mod – 
N. It is obtained from the equation nN 2≤ .  



• A table is formed whose inputs are the required counting sequence of the 
counter. 

•  Flip-flop inputs are obtained from the excitation table of the flip-flops 
(discussed in the preceding chapter) for each counting sequence of the 
table (obtained in step second). The flip-flop inputs, that are capable of 
producing next state of the counter from the present state, are entered in 
the table.   

• Karnaugh map is formed for each flip-flop input in terms of flip-flop 
outputs as the input variables. 

• Simplify the K-map and get the minimal Boolean expression for each flip-
flop input. 

• Finally the required counter circuit is obtained by connecting the flip-flops 
and other gates as per the expressions obtained above. 

 The excitation table for R S, D, J K and T type flip-flops are reproduced in table 
10.7 for the ready reference to the readers. 

 

 
 

 Using the procedure discussed above for the design of synchronous Mod-N 
counter, a few counters will be discussed in the following section.  
 

10.7.3 Synchronous Decade counter 

 A decade counter also known as Mod-10 or divide-by-ten counter, can count from 
0 to 9 and then it resets and count again. Let the counter counts in the natural binary 
sequence and it is designed using J K flip-flops.  

For the design of this counter it needs four flip-flops. A table is drawn in which 
inputs are outputs of the four flip-flops say Q3 Q2 Q1 Q0 used as the inputs in the table. 
The outputs Q3 through Q0 should be in binary sequence and resets after Q3 Q2 Q1 Q0 = 
1001. The J K inputs for each flip-flop for the transition from present state to next state 
are obtained from the excitation table (10.7) of the corresponding flip-flop. This is shown 
in table 10.8. 



  
 

The K-maps for J3, K3, J2, K2, J1 and K1 are drawn as shown in figures 10.20(a) 
through (f) and the expressions for these input variables of J K flip-flops are given as: 
 
 0123 QQQJ ⋅⋅=  03 QK =  

 012 QQJ ⋅=       012 QQK ⋅=  

 031 QQJ ⋅=            01 QK =  

The expression for K1 may be taken as: 

 031 QQK ⋅=  

 Since it become equal to J1  

  i.e.  0311 QQKJ ⋅==  

 The expressions for J0 and K0 may directly be written from the table 10.8, as 
 
 100 == KJ  

 

 
 Fig.10.20(a) Fig. 10.20(b) 



 
                                              Fig. 10.20(c) Fig. 10.20(d) 
 

 
 Fig.10.20(e) Fig.10.20(f) 
 
 The logic circuit diagram of synchronous decade counter whose outputs will be in 
the straight binary number is given in figure 10.21. 
 

 
 

Fig. 10.21 
 Figure 10.21 shows the waveforms at the outputs of all the flip-flops. The 
sequence of the counter can be verified from the waveforms. At the trailing edge of the 



clock pulse Q0 output toggles. The various modes of operation of other outputs are shown 
in figure 10.21. These are obtained from the expressions of inputs of flip-flops by putting 
the previous values of outputs just before the trailing edge of the clock pulse.  

 
 Fig. 10.21 
 
Example 10.2:  Design a synchronous Mod-12 up counter. The counting was made in 
natural binary sequence. Use T flip-flops to design the counter. 

Solution:   For the design of this counter it needs four flip-flops. This counter will count 
from 0000 to 1011 and resets to 0000 after this and again count. Table 10.9 shows the 
counting sequence of this counter. The outputs of the four flip-flops say Q3 Q2 Q1 Q0 used 
as the inputs in the table and the T inputs for each flip-flop for the transition from present 
state to next state are obtained from the excitation table (11.7) of the corresponding flip-
flop.  

 
 



 
 Fig. 10.22 (a) Fig. 10.22(b) 
 

 
Fig. 10.22(c) 

 
The K-maps for T3, T2 and T1 are drawn as shown in figures 10.22 (a) through (c) 

and the expressions for these input variables of T flip-flops are given as: 
   0130123 QQQQQQT ⋅⋅+⋅⋅=  

 0132 QQQT ⋅⋅=  

  01 QT =  

 The expressions for T0 may be obtained directly from the table 10.9, as all entries 
in T0 column of this table are 1. 
    10 =T  

 The logic circuit diagram of synchronous Mod.-12 counter, whose outputs will be 
in the straight binary number from 0000 to 1011, is given in figure 10.23. 
 



 
 Fig. 10.23 

Figure 10.24 shows the waveforms at the outputs of all the flip-flops. The 
sequence of the counter can be verified from the waveforms. 

 
 Fig. 10.24 

10.8 SYNCHRONOUS COUNTERS WITH ARBITRARY 
COUNTING   SEQUENCE 

  There are applications where it is required to design N-bit counters counting in 
some arbitrary counting sequence. For the design of such counters, the state diagram 
showing all the required states is drawn, then a table is formed in which present and the 
next states of the counters are written. The values of the inputs of the required number of 
flip-flops are entered as per the excitation table of the flip-flops. Finally, by getting the 
simplified Boolean expressions for the flip-flops inputs, the logic circuit for the counter is 
designed. The design of such counters may be understood by considering a following 
example. 



Example 10.3:  Design a synchronous Mod-10 counter to count in the sequence 0, 2, 4, 
5, 6, 8, 9, 3, 1, 7, 0. Use J K flip-flops to design the counter. 

Solution:   For the design of this decade counter, four J K flip-flops are required. The 
state diagram showing the required states in the counter in sequence wise is given in 
figure 10.25. 

 Fig. 10.25 
 Table 10.10 shows present states of the counting sequence and next states after 
the clock pulse and input values of the flip-flops. 

 

The K-maps for all inputs of the flip-flops are drawn as shown in figures 10.26 (a) 
through (g) and the expressions for these inputs are given as: 

  0123 QQQJ ⋅⋅= ,  03 QK =  

 013012 QQQQQJ ⋅⋅+⋅= , 12 QK =   

 0231 QQQJ +⋅= ,  11 =K (directly from the table) 

 3120 QQQJ +⋅= , 020 QQK ⋅=  

 



  
 Fig. 10.26(a)          Fig. 10.26(b) 
 

 
 Fig. 10.26(c) Fig. 10.26(d) 
 

  
 Fig. 10.26(e)   Fig. 10.26(f) 



 
 Fig. 10.26(g) 

 
 The logic circuit diagram of this synchronous counter, whose outputs will be in 
the given sequence, is shown in figure 10.27. 
 

 
Fig. 10.27 

Figure 10.28 shows the waveforms at the outputs of all the flip-flops. The 
sequence of the counter is verified from the waveforms. 

 



 
Fig. 10.28 

10.9 SYNCHRONOUS CONTROLLED COUNTERS  
 Another class of synchronous counters called controlled counters will now be 
discussed, in which a control input is applied. The control input will decide which 
sequence is to be followed by the counter. The up-down counters fall in the category of 
controlled counters. The control input will decide whether the counter is used for up 
counter or down counter. The procedure for the design of such counter is the same as the 
other synchronous counters discussed above. Any type of flip-flops may be used for the 
design of such counters. 

 Consider the design of a counter that can count in mod-8 or mod-4 counter with 
an additional control input S. If the control input S is 0, the counter works as mod-4 
counter and if S is 1, it works as mod-8 counter.  
 For the design of this counter, three J K flip-flops are required as 23 = 8. The state 
diagram showing the required states in the counter in sequence wise is given in figure 
10.29. The transition from 000 to 001 will take place when the control input S is 0 or 1 

 Fig. 10.29 
and the transition from 011 to 000 will take place when S = 0, and transition from 011 to 
100 will take place when S = 1. Table 10.11 shows present states of the counting 



sequence and next states after the clock pulse and input values of the flip-flops. In the 
present state the control signal is also taken as one of the inputs. The table is according to 
the required sequence. 

 

 The expressions for 0J  and 0K  are obtained directly from the table. The K-maps 

for other inputs of the flip-flops are drawn as shown in figures 10.30 (a) through (d) and 
the expressions for these inputs are given as: 
    100 == KJ    011 QKJ ==    

  SQQJ ⋅⋅= 012  012 QQK ⋅=  

 
 Fig. 10.30 (a)   Fig. 10.30 (b) 
 



 
                                            Fig. 10.30 (c)   Fig. 10.30 (d) 
 The logic circuit diagram of this synchronous counter is shown in figure 10.31. 

 
Fig. 10.31 

Figure 10.32 shows the waveforms at the outputs of all the flip-flops. The 
sequence of the counter is verified from the waveforms. If the counter is reset and the 
control input S is zero then it will follow the sequence of mod – 4 i.e. it will count 000, 
001, 010, 011 and repeats. However, if the counter is reset and the control input S is 1, 
then the counter will count the sequence 000, 001, 010, 011, 100, 101, 110, 111 and 
repeats.  

 



 
 Fig. 10.32 

Example 10.4:  Design a synchronous Mod-8 up down counter. A control input may be 
used that allows the counter to count in the up sequence or down sequence. Use T flip-
flops to design this counter. 
Solution:  For the design of this counter, three T flip-flops are required as 23 = 8. The 
state diagram showing the required states in the counter in sequence wise is given in 
figure 10.33.  A control signal S is used in the counter. If the control signal is 1, the 
counter works as up counter and if S = 0, the counter works as down counter. 

Fig. 10.33 
Table 10.11 shows present states of the counting sequence and next states after 

the clock pulse and input values of the flip-flops. In the present state the control signal is 
also taken as one of the inputs. Use of transition table of T flip-flops is made for getting T 
inputs of the flip-flops. The table is according to the required sequence. 

 
 
 



  

The expressions for 0T  is obtained directly from the table. The K-maps for other 

inputs of the flip-flops are drawn as shown in figures 10.34 (a) and (b) and the 
expressions for these inputs are given as: 
 

    

SQQSQQT OO ⋅⋅+⋅⋅= 112       SQSQT OO ⋅+⋅=1       10 =T  

 

          
 
 Fig. 10.34(a)   Fig. 10.34(b) 

The logic circuit diagram of this synchronous counter is shown in figure 10.35. 
Figure 10.36 shows the waveforms at the outputs of all the flip-flops. The sequence of the 
counter is verified from the waveforms. If the counter is reset and the control input S is 1 
then it works as mod -8 up counter i.e. it will count 000, 001, 010, 011, 100, 101, 110, 
111 and repeats. However, if the counter is reset and the control input S is 0, then it 



works as mod -8 down counter i.e. it will count 000, 111, 110, 101, 100, 011, 010, 001 
and repeats. 

 

  
 Fig. 10.35 

 
 Fig. 10.36 
 
10.10 GENERATION OF CONTROL SIGNALS  
 In many digital applications control signals are required to start, execute as well 
as step various operations in a specified time sequence. For the design of such control 



signals, a counter circuit is designed whose outputs are connected to a decoder. The 
decoder gives the required control signal. The counter circuit may be synchronous or 
asynchronous. The procedure for designing the counter is the same as discussed above in 
this chapter. The block diagram for generating the control signal is shown in figure 10.37. 
The design of control signal may well be understood by considering the following 
example. 

Fig. 10.37 
 
Example 10.5    Generate a control signal which can deliver the following pulse train. 
The pulse train repeats after 7 pulses. The counter may be designed using T flip-flops. 
        

       Fig. 10.38 
 

Solution:   From the given problem it is clear that a control signal (say S) is to be 
generated which gives the periodic pulse train of 0111101 and then repeats. The pulse 
train repeats after 7 seven pulses. So the outputs of Mod-7 counter are to be connected to 
a decoder circuit. For this a mod –7 counter is to be designed. Three T flips are required 
for the design of mod -7 counter. Table 10.13 shows the counting sequence and required 
inputs of T flip-flops. The expressions for inputs of T flip-flops obtained from the K –
maps shown in figure 10.39 are given as: 
 01122 QQQQT ⋅+⋅=              0121 QQQT +⋅=  

 120 QQT +=  

 
                         Table 10.13 

Fig. 1039(a) 
 



 
 
                           Fig. 10.39(b)              Fig. 10.39(c) 
 
 The truth table for the decoder is obtained by direct observation of the given 
timing sequence (ref. fig. 10.38). It is shown in table 10.14. The Boolean expression for 
the output S of decoder is obtained using the K-map of figure 10.40, the unused counts 
are treated as don’t care conditions. The expression is given by: 

02021 .. QQQQQS ++=  

  Table 10.14 

               
 Fig. 10.40 
 

The complete logic diagram of the counter with decoder is shown in figure 10.41 
and timing diagram for such control signal may also be drawn as shown in figure 10.42. 



 
 
 Fig. 10.41 
 
 

Fig. 10.42 
 
10.11 COUNTER ICs 
 

Counters are available in the form of ICs, a few most commonly used 
asynchronous counter ICs are given in table 10.15. 

 
 
 
 



  Table 10.15 

 
 

Details of few of the above mentioned ICs are given below: 
 
IC 7490 Decade Counter (divide-by-two and divide-by-five):  This IC consists of four 
master slave flip-flops internally connected to provide divide by two and divide by five 
counter. The logic diagram of this IC is given in figure 10.43(a) with its pin diagram and 
logic symbol in 10.43(b) and 10.43(c) respectively. The output from flip-flop (0) is not 
internally connected to the succeeding stages; therefore the count may be separated into 
two independent count modes.  

(i) It is used as a binary coded decimal decade counter; the 1CLK  clock input 
must be externally connected to the Q0 output. The clock input 

CLK receives the incoming count, and a count sequence is obtained in 
accordance with the BCD count for 9’s complement decimal application. 

(ii)  If a symmetrical divide-by-ten count is desired for frequency synthesizers 
or other applications requiring division of a binary count by a power of 

ten, Q3 output must be externally connected to CLK  input. The input 

count is then applied at the 1CLK  input and a divide by ten square wave is 
obtained at output Q0. 

(iii)  For operation as divide-by-two counter and a divide by five counter, no 
external interconnections are required. Flip-flop (0) is used as a binary 

element for the divide-by-two function. The 1CLK  input is used to obtain 
binary divide-by-five operation at the Q1, Q2 and Q3 outputs. In this mode 
two counters operate independently; however, all four flip-flops are reset 
simultaneously. 

Tables 10.16 and 10.17 indicate BCD counting sequence and reset conditions 
respectively. 



 
 
 
 Fig  10.43(a) 
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 Table 10.16 Table 10.17 

  
 
IC 7492 Divide-by-twelve Counter (divide-by-two and divide-by-six):   
 This IC is a 4-bit binary counter consisting of four master slave flip-flops which 
are internally connected to provide a divide-by-two counter and divide-by-six counter. A 
gated direct reset line is provided which inhibits the count inputs and simultaneously 
returns the four flip-flop outputs to a low level. The logic diagram of this IC is given in 
figure 10.44(a) with its pin diagram and logic symbol in 10.44(b) and 10.44(c) 
respectively. The output from flip-flop (0) is not internally connected to the succeeding 
stages; therefore the counter may be operated into two independent count modes. 

(i) To use it as a divide-by-two counter, output Q0 must be externally 

connected to clock input 1CLK . The input count pulses are applied to 

input CLK . This IC when used as divide-by-twelve counter, it counts 
from 0 to 11, but counts from 0 to 13 with skipping counts 6 and 7 as 
shown in truth table 10.18. 

(ii)  When it is used as divide-by-six counter, the input count pulses are 

applied to input 1CLK . Simultaneous frequency division of 3 and 6 are 
available at the Q2 and Q3 outputs. The truth table 10.19 shows the reset 
conditions of this IC. 

 

Fig. 10.44(a) 



 

 
 Fig. 10.44(b)    Fig. 10.44(c) 
 
 Table 10.18 Table 10.19 

 
 
IC 7493 Divide-by-sixteen Counter (divide-by-two and divide-by-eight):   
 This IC is a 4-bit binary counter consisting of four master slave flip-flops which 
are internally connected to provide a divide-by-two counter and a divide-by-six counter. 
A gated direct reset line is provided which inhibits the count inputs and simultaneously 
returns the four flip-flop outputs to a low level. The logic diagram of this IC is given in 
figure 10.45(a) with its pin diagram and logic symbol in 10.45(b) and 10.45(c) 
respectively. The output from flip-flop (0) is not internally connected to the succeeding 
stages; therefore the counter may be operated into two independent count modes. 

(i) When this is used as a 4-bit ripple counter, the ouput Q0 must be 

externally connected to input 1CLR . The input count pulses are applied to 

input CLR. Division of 2, 4, 8 and 16 are simultaneously performed as 
shown in truth table 10.20. 

(ii)  It can be used as a 3-bit ripple counter, the input count pulses are applied 

to input 1CLR . Simultaneous frequency divisions of 2, 4 and are available 
at Q1, Q2 and Q3 outputs. Table 10.21 shows the reset conditions of this 
IC. 

 



 
 Fig. 10.45(a) 
 

 
 Fig. 10.45(b)                             Fig. 10.45(c)  
  
  Table 10.20 Table 10.21 

 
 
The list of synchronous counter ICs is given in table 10.22. The detailed 

description of few of these ICs will be discussed below:  
   



Table 10.22 

 
 
IC 74160 Synchronous Decade Counter with Clear: The logic pin diagram of this IC is 
shown in figure 10.46. It works on the positive edge of the clock pulse, which is applied 
to T input (pin -2) terminal. The truth table of this IC is shown in table 10.23. It may be 
preset to any BCD count data applied to the A B C D inputs, and set terminal S as low 
and reset terminal R is high. A low on R will reset the counter. The carry out terminal CO 
will be high on the terminal count 1001, which helps in cascading several such counter 
ICs. The counter enable terminals FE1 and FE2 must be high to count the input pulses 
 Table 10.23 

               
 
 Fig. 10.46 
 
 
IC 74163 Synchronous Four-bit Binary Counter The logic pin diagram of this IC is 
shown in figure 10.47. It works on the positive edge of the clock pulse, which is applied 
to T input (pin -2) terminal. The truth table of this IC is shown in table 10.24. It may be 
preset to any BCD count data applied to the A B C D inputs, and set terminal S as low 
and reset terminal R is high. A low on R will reset the counter. The carry out terminal U 
will be high on the terminal count 1111, which helps in cascading several such counter 
ICs. The counter enable terminals FE1 and FE2 must be high to count the input pulses 
 
 
 
 



      Table 10.24 

 
                   Fig. 10.47 
 
IC 74190 Synchronous UP/Down Decade Counter:  Figure 10.48 shows the logic pin 
diagram of the IC 74190 which can work in either up direction or down ward direction. 
The clock pulse is applied to T input (pin -14) Terminal. The truth table of this IC is 
shown in table 10.25. When BA terminal is high the counter counts down and then it is 
low, the counter counts up. It may be preset to any BCD count data applied to the D C B 
A inputs, and set terminal S as low and reset terminal R is high. A low on R will reset the 
counter. The pin U produces a high pulse when terminal count 9 (1001) is reached in the 
up counting or when the terminal count 0 (0000) is reached in the down counting.  
 

Fig. 10.48 
 
   Table 10.25 

 
 
10.12 Counter Applications 
 There are numerous applications of counters in digital circuits. A few important 
applications of counters, such as event counter, digital clock and digital frequency meter, 
are being discussed below: 
 



10.12.1  Event Counter 
 Event counter is one which can count and display the physical counts. For 
example, the number of persons entering to a room or hall is to be counted and displayed 
in the digital form. This system will have a beam of light to fall on the Light Dependent 
Resistor (LDR), the output of which is connected to the clock input of the counter and 
display circuit. Whenever someone crosses or interrupts the light to fall on the LDR, a 
pulse will be produced. These pulses will be counted and simultaneously displayed on the 
display device. The complete circuit diagram with 4-digit display device is shown in 
figure 10.49, which is capable of storing the numbers from 0000 to 9999. It consists of 
four decade counter ICs 7490, which gives the outputs in BCD form. The BCD outputs 
are converted to seven segment outputs using BCD to seven segment decoder/driver ICs 
7447. The seven segment outputs, when connected to FNDs, give the decimal display of 
the counted pulses. The counter may be reset if the reset switch is momentarily switched 
off. The IC9 (7413) produces a positive going pulse whenever a beam of light is 
interrupted by the entrants in the hall.  
 

 
 
    Fig. 10.49 
 
 
 
 
 



 
10.12.2  Digital Frequency Meter 
  
 The digital frequency meter is an electronic instrument used to measure the 
frequency of a periodic waveform. The basic principle for the precise determination of 
frequency of an unknown signal is illustrated in figure 10.50. The unknown signal is 
applied to amplifier/attenuator, where the signal is amplified if it is a weak signal and 
attenuated if the signal of high amplitude. The amplified signal is then connected to a 
Schmitt trigger circuit where the signal is converted to a square wave. The square is 
differentiated to get the narrow pulse train. The number of pulses in the pulse train is 
equal to the frequency of the input unknown signal.  This narrow pulse train is then 
applied to one input of a two input AND gate. The second input of this AND gate is 
connected another standard sample pulse of constant width. The sample pulse controls for 
how long the pulse train is allowed to pass through the AND gate to the digital counter. If 
the width of this sample pulse is kept as 1 second, then the AND gate will allow the pulse 
train to go to the input of the counter for 1 second. The counter will display the counts on 
the display devices (in digital form) counted by it for 1 second. The number displayed on 
the display devices will show the frequency of the input signal directly in Hz, since the 
number of pulses in the pulse train is equal to the frequency of the input unknown signal. 
The digital counter basically contains BCD counter, decoder and display unit (seven 
segment display).  
 Further for the continuous counting of the pulses the counter should be reset at the 
beginning of the sample pulse, which is done with the help of resetting and latching pulse 
generator. A positive going pulse is applied to reset the counter. Counter latching 
operation is performed if the reset terminal of the counter is grounded.   

 

     Fig. 10.50 

 The accuracy of the counter will depend on the accuracy of the width of the 
sample pulse. The sample pulse of standard time period is, therefore, obtained from a 



high frequency quartz crystal oscillator, say, 1 MHz. The frequency of this crystal 
oscillator is divided by a factor of 10 6 using frequency divider circuit, which gives a 
square wave of 1 Hz frequency. Finally the 1 Hz frequency is divided a factor of 2, to 
obtain a square whose pulse width is 1 second. If the width of the sample pulse is taken 
as 1 msec, then the counter will display the frequency directly in KHz, if it is taken as 1 
µsec, the counter will display the frequency in MHz. 
 A very simple digital frequency meter is shown in figure 10.51, which is capable 
of measuring the frequency of the signal directly in Hz. The frequency to be measured is 
applied to one input of Schmitt trigger NAND gate 3. The gate period is controlled by a 
square wave (½ Hz sample pulse), which is connected to the second input of this gate. 
The ½ Hz pulse is generated from some external source. This pulse keeps the counter 
latching for 1 sec and counting is stopped for next 1sec. During the low period of this 
pulse, the display unit will show the updated counts directly in Hz. For getting the 
resetting pulse, the sample pulse is differentiated by R and C network of proper value, the 
negative peaks of the differentiated is clipped off using the switching diode D2. The 
positive spike at the leading edge of the sample pulse is therefore obtained which is used 
to reset the counter. The counter and display circuit is basically the same as discussed in 
the object counter.  
 

 
 
 Fig. 10.51 
 
 



10.12.3  Digital Clock 
 Digital clock makes use of the counter and decoding circuits. In digital clock the 
real time is displayed in the digital form. It displays Hours, minutes and seconds. The 
block diagram shown in figure 10.52 illustrates the design principle of digital clock. For 
the design of clock a 1 Hz continuous is obtained from some standard oscillator. The 
accuracy of the clock will depend on this standard oscillator. This 1 Hz pulse is counted 
by divide-by-sixty counter (a decade counter and a divide-by-six counter) which will 
count from 00 to 59 and reset to 00 at 60. The output of this counter will give a pulse for 
every 60 seconds (or 1 minute). The 1 cycle/minute pulses will again be counted by 
another divide-by-sixty counter which will be reset to 00 after the count 59 and thus a 
pulse for every one hour. The 1 cycle/hour pulses will now be counted by divide by 
twelve or divide-by-twenty four counter. The decoder and display devices (FNDs) are 
connected to the every counter circuit which gives the digital read out of the real time. 
 

 
  Fig. 10.52 
 
 The complete circuit diagram of digital clock (twenty hours) is shown in figure 
10.53. It makes use of the counter circuits, designed using decade counter ICs 7490, BCD 
to seven segment decoder ICs 7447 and FNDs (common anode). The decade counter IC1 
is wired in divide-by-ten mode, so that it resets to zero as soon as the tenth pulse is 
reached to counter. Similarly, the IC2 (decade counter IC 7490) is wired in divide-by-six 
mode so that when the sixth pulse occurs at the input of this IC, it resets to zero. At the 
6th pulse BCD output of the IC2 becomes 0110, so C B inputs (pins 8 and 9 of IC2) are 
connected to the pins 2 and 3 respectively to rest this counter at this pulse. The most 
significant bit is not be used as the counting in this case is limited to 5, so pin 11 of this 
IC is not used. The carry out signal for the next IC3 is therefore taken from pin 8 of IC2. 
The ICs 3rd and 4th are wired exactly in the similar way as the ICs 1st and 2nd respectively. 
The IC 5 and IC 6 are wired in divide-by-twenty four counter. The IC5 and IC6 are wired 
in divide by ten mode but these ICs are reset when the counting is 24 (0010 0100) i.e. 
when pin 8 of IC5 and pin 9 of IC6 are simultaneously are 1. These pins (pin 8 of IC5 
and pin 9 of IC6) are connected to the reset pins of IC5 and IC6 as shown in figure 5.53. 
Now to each counter IC (7490) is connected to BCD to decimal decoder IC (7447) whose 
outputs are connected to different FNDs. 



 Two switches S1 and S2 are used for current time setting. These switches are 
push to ON switches. When switch S1 is pressed 1 Hz pulse directly goes to the minutes 
counter, the switch may be released when the minus are set. Similarly, switch S2 is used 
to set the Hours. 

 
 
 
 
 



10.12.4 Parallel to Serial Data Conversion  
 The counter circuits can also be used to convert the parallel data into serial form. 
The parallel data is applied to a multiplexer inputs and the serial data is taken at the 
output of the multiplexer. The data select terminals of the multiplexer is connected to a 
counter circuits, whose output drives the MUX and data at the output terminal of the 
multiplexer will be in serial form. 
 Figure 10.54 illustrates how eight bit parallel data is converted to serial data. For 
this 8:1 multiplexer is taken. The three data select terminals (S0 to S2) are connected to 
the output of mod-8 counter, which gives the data in binary from 000 to 111 on every 
clock pulse. So when counter’s output is 000, the D0 data will be available at the 
multiplexer output. Similarly at the arrival of the 001 at the counter output second data D1 
will be transmitted to the MUX output and so on.  
  

 
 

Fig. 10.54 
 

PROBLEMS 
1. What do you understand by counters? What is the difference between the 

asynchronous and synchronous counters? 
2. Explain the meaning of counter. Draw the circuit of a 4-stage ripple counter and 

show the waveform at the various output stages. 
3. Draw and explain the circuit of asynchronous binary counter (Mod-16). Also 

draw the wave shapes at different output stages. 
4. Design a Mod-12 ripple counter and show the output states and wave forms of 

each flip-flop. 
5. Design a Mod-14 ripple counter and show the output states and wave forms of 

each flip-flop. 
6. Design an asynchronous decade counter and show the output states and wave 

forms of each flip-flop. 
7. Design a Mod-16 ripple down counter and show the output states and wave forms 

of each flip-flop. 
8. Discuss the design of a Mod-16 ripple up/down counter and show the output 

states and wave forms of each flip-flop. 



9. Design a Mod-11 ripple counter and show the output states and wave forms of 
each flip-flop. 

10. Discuss the design of a synchronous decade counter using T flip-flops and show 
the output states and wave forms of each flip-flop. 

11. Repeat the problem 10 with J K flip-flops. 
12. Design a Mod.-8 synchronous counter using J K flip-flops and show the output 

states and wave forms of each flip-flop. 
13. Repeat the problem 12 with T flip-flops. 
14. Design a synchronous binary counter (Mod-16) using J K flip-flops, and show the 

output states and wave forms of each flip-flop. 
15. Repeat the problem 14 with T flip-flops. 
16. Discuss the design of a synchronous decade counter using R S flip-flops and show 

the output states and wave forms of each flip-flop. 
17. Discuss the design of synchronous decade counter using J K flip-flops; the 

counting is made in 2421 code. Show the output states and wave forms of each 
flip-flop. 

18. Repeat the problem 17 using T flip-flops. 
19. Design a synchronous decimal counter to count in excess-3 code. Use T flip-flops 

to design the counter. Show the output states and wave forms of each flip-flop. 
20. Repeat the problem 19 using R S flip-flops. 
21. Repeat the problem 19 using J K flip-flops. 
22. Design a Mod-13 synchronous counter to count in natural binary sequence. Use T 

flip-flops to realize the circuit. Show the output states and wave forms of each 
flip-flop. 

23. Repeat the problem 22 using R S flip-flops. 
24. Repeat the problem 22 using J K flip-flops. 
25. Design a controlled counter that can count Mod-5 if the control input is 0 and 

count Mod-8 if the control input is 1. Use J K flip-flops to realize the circuit. Also 
show the output states and wave forms of each flip-flop. 

26. Repeat the problem 25 using T flip-flops. 
27. Design a synchronous counter that can count in the following sequence 1, 3, 4, 5, 

8, 9 ,0, 2, 6, 7 and repeats. Use J K flip-flops to realize the circuit. Also show the 
output states and wave forms of each flip-flop. 

28. Repeat the problem 27 using T flip-flops. 
29. Design a synchronous Mod-8 up/down counter use J K flip-flops to realize the 

circuit. Also show the output states and wave forms of each flip-flop. 
30. Repeat the problem 29 using T flip-flops. 
31. Design a synchronous Mod-7 up/down counter use J K flip-flops to realize the 

circuit. Also show the output states and wave forms of each flip-flop. 
32. Design a synchronous Mod-6 up/down counter use J K flip-flops to realize the 

circuit. Also show the output states and wave forms of each flip-flop. 
33. Design a circuit using a counter to generate the following pulse train 110100 and 

repeats. 
34. Design a circuit using a counter to generate the following pulse train 011001 and 

repeats. 
35. Discuss how a counter is used to convert the parallel data to serial data. 



36. Discuss the design principle of digital frequency meter. 
37. Discuss the design principle of digital clock. 
38. How a four digit event counter is designed using the counters. 

 
 
 

_________ 
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DIGITAL TO ANALOG AN D ANALOG 
TO DIGITAL CONVERTER S 

 
 
Sometimes the information available for processing is in digital form while in 

most of the cases it is available in analog form. For example, the outputs of digital 
voltmeter, digital frequency meter, digital clock and calculators etc. are available in 
digital form but most physical quantities such as temperature, pressure, light, voltage and 
current etc. gives information in analog form. It is often necessary to convert information 
in one form to another form. For example, to convert the temperature (reading of mercury 
thermometer which is in analog form) in digital readout or in digital form, a transducer 
such as thermocouple or thermister is first used to convert the physical quantity to 
electrical quantity; an analog to digital converter then converts this quantity to digital 
form. Similarly, for plotting the output of a digital system on a curve plotter or X-Y 
recorder, the digital output is first converted to analog output with the help of digital to 
analog converter, the output of which drives a servomotor. So analog to digital (A/D) 
converters or digital to analog (D/A) converters are the interfacing devices which couple 
the digital system to analog or vice-versa. In this chapter various types of A/D and D/A 
converters will be discussed. 
11.1  DIGITAL TO ANALOG CONVERTER 
 Digital to Analog (D/A) converter converts the digital information into analog 
form. The input may be of n-bit long having different voltage levels. So in the D/A 
converters some method is to be used which can convert this voltage level of n-bits to its 
equivalent analog form. This can be accomplished by using different resistive networks. 
Following two types of resistive networks are basically used for this purpose: 

1. Resistive Divider Network or weighted resistor network 
2. Binary Ladder Network or R-2R network 
 

  The converter which comprises the resistive divider network is known as 
Resistive divider D/A converter and the D/A converter which comprises the binary ladder 
network is known as binary ladder D/A converter. These converters will now be 
discussed separately.  
11.1.1   Resistive Divider D/A converter 
 As discussed above the resistive divider D/A converter consists of a resistive 
divider network, so before discussing the complete circuit diagram of a resistive divider 
D/A converter it is better to understand the working of resistive divider network. The 



resistive divider network changes each of the n-bit digital level into its equivalent analog 
output. The discussion is now made for the method of converting the n-bit digital input to 
its equivalent analog signal. A weight is assigned to each bit of n-bit digital input in such 
a way that the sum of weight must be equal to 1. In general, the binary weight assigned to 

LSB in an n-bit digital input is 
12

1

−n
 . The weights assigned to 2nd LSB, 3rd LSB, 4th 

LSB and so on are obtained by multiplying the weight of LSB to 21(=2), 22 (=4), 23 
(8)…. respectively. For instance, weights assigned to different bits of 4-bit binary input 
b3 b2 b1 b0 are: 
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The sum of weights assigned to each bit of 4-bit digital input is 1 as 1
15

8

15

4

15

2

15

1 =+++ . 

 In a four bit binary system there will be 16 different possible input combinations, 
corresponding to which the analog signal will be obtained if it is assumed that a certain 
reference voltage (VREF) is applied whenever there is a 1 in binary bit. In a 4 bit digital 
system if VREF =15 volts, the analog voltage available for each combination of binary 
input should be as given in table 11.1. 
 
 Table 11.1 

 
 
 So the analog voltage for binary word = (weight of the binary word) x VREF 

 It may be noted from this table 11.1 that the analog voltage corresponding to 
binary equivalent is discrete step value as given in figure 11.1. The discrete step is of 1 
volt if VREF is assumed to be 15 volts in a four bit digital input. The step voltage (analog) 



will be dependent on the reference voltage. There will, however, be 2n steps in n-bit 
digital system. 
 

 
  

Fig. 11.1 
 
 Resistive divider network is used for converting digital inputs to analog outputs. 
The network for 6 bit binary system shown in figure 11.2 is known as the weighted 
network, as the resistors are weighted inversely with their current values. The input 
binary bits are b5 b4 b3 b2 b1 b0 where b0 is the LSB and b5 is MSB. These binary bits 
may be logic 0 or 1. Logic 0 may further be assumed as 0 volt and logic 1 as VREF.  So 
V0, V1, V2, V3, V4 and V5 are the input voltage levels which may be 0 volt or VREF 
depending on the binary bits. The resistors R0, R1, R2, R3, R4 and R5 are connected to bits 
b0, b1, b2 , b3, b4, b5 respectively. It may be noted from this network that the resistor 
connected to the binary bit is half the value of resistor connected to the previous (lower 
bit). Hence this network also called as the resistive divider network. Let RL is the load 
resistance which is supposed to very high i.e. very much higher than the resistor R0. 

  
Fig. 11.2 



 Now the voltage VL across the load resistance RL can be obtained by using 
Millman’s theorem. This theorem states that the voltage appearing at any node in a 
resistive network is equal to the sum of all the currents that would enter to the node 
divided by the sum of conductances connected to that node.  
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 In this equation (11.1) the load resistance RL is not considered as it is assumed to 
be large enough offering low (almost zero) conductance. From this equation it is clear 
that if the input binary bits are all 1 (in a six bit system) and reference voltage VREF = 6.4 
volts (say), the VL is given by: 

 voltsVxV REFL 4.663
63

1 ==  

In general, the equation (11.1) for output voltage of n-bit binary digits is given as: 
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The output of this network is as per our requirement, and is proportional to the 
input binary data.  

Using the network discussed above, a D/A converter (called binary weighted D/A 
converter or Resistive divider D/A converter) can be designed as given below. The 
schematic diagram of 6-bit D/A converter is shown in figure 11.3. It consists of the 
following major parts. 

(i) n switches, one for each bit applied to the input, 
(ii)  A binary weighted resistive network which changes each of the digital 

level into equivalent binary weighted voltage or current. 
(iii)  A reference voltage source VREF. 



(iv) A summing amplifier that adds the currents flowing in the resistors of the 
network to develop a signal that is proportional to the digital input.  

 

 
 Fig. 11.3 
 In this circuit, one switch is connected to each binary bit. Infact these switches are 
such that when the binary bit is 0, the corresponding resistor of the network gets 
connected to the ground potential and when the binary bit is 1, the corresponding resistor 
of the network gets connected to the VREF volt. The current flowing through any branch 
of the network will be the logical voltage (0volt or VREF volts) divided by the 
corresponding resistor.  
 So the total current I will be given by (ref. fig. 11.3): 
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 Since the voltages V5 through V0 are either 0 volt or VREF volts depending upon 
the bit value, so it customary to take common voltage VREF and bits are kept in place of 
voltages. So V5 is replaced by VREF.b5, V4 by VREF.b4 and so on; the bits b5, b4, b3 etc 
will be 0 or 1. The current I may, therefore, be represented as follows: 
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 This is the equation of current I for 6 input bits. The general equation of current I 
for n input bits is given by: 
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 The voltage at the output of operational amplifier will be given by: 
 IRV fout .−=  

 The resistor Rf is the feed back resistance in the operational amplifier. The output 
voltage of the operational amplifier is proportional to input binary data.  



 The switches connected in figure 11.3 can be replaced by the electronic switches 
(transistorized) as shown in figure 11.4.  When the bit is at logic 1, the corresponding 
transistor conducts and the current flows through the collector resistor as required; and 
when the bit is at logic 0 the transistor goes into cutoff and no collector current flows. 

 
 
 Fig. 11.4 
 
 This D/A converter is economical and simple method to design but suffers the 
following serious drawbacks: 

1. The network in this D/A converter is constructed using the precession 
resistors and resistor has a different value. So it is difficult in practice to 
choose the resistors with accuracy and stability. 

2.  When the number of bits in the network is large, then the current from the 
source will be large enough. The current in the LSB branch (resistor) will 
be much larger than MSB branch. In a 10 bit D/A converter, the current in 
LSB branch will be 512 times larger than the MSB branch. 

Example 11.1:  A 6 bit resistive divider network has 10 volts full scale output, find 
output voltage for an input of 110110. 
Solution:     VREF = 10 volts 
  The output voltage for 6 bit resistive divider network is given by: 
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Example 11.2: A 5-bit resistive divider D/A converter has a resistor of 10 KΩ in MSB 
branch. The reference voltage is 10 volts. The resistance in the feedback path of the 
operational amplifier is 5 KΩ. What will be the output for 11010 input?  
Solution:     VREF = 10 volts R = 10 KΩ   and   Rf = 5 KΩ 
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11.1.2     Binary Ladder D/A Converter 
A more commonly used D/A converter is a binary ladder D/A converter, which removes 
the drawbacks discussed in resistive divider D/A converter. This type of D/A converter 
contains an R-2R ladder network. The R-2R resistive ladder network will now be 
discussed, which gives the output a weighted sum of digital inputs. Such a ladder network 
for 4-bit input is shown in figure 11.5. This network is constructed having only two 
resistor values i.e. R and 2R. In this network b0, b1, b2 and b3 are the input binary bits and 
b0 is the LSB and MSB is b3. Any of these bits will be at the ground potential when the 
corresponding bit is at logic 0 or at the reference potential (VREF) when the input bit is at 
logic 1.  

 
Fig. 11.5 

To examine the behaviour of this network, it is assumed that the bit b3 is at logic 1 
(or VREF potential) as shown in figure 11.6(a). The output voltage corresponding to MSB 
may be calculated as follows. The equivalent resistance at the point X is the parallel 
combination of two resistances each having the value of 2R. So the equivalent resistance 
looking at point X and ground is R as shown in figure 11.6(b). At the point Y again there 
is a parallel combination of two 2R resistances; the equivalent resistance looking at the 
point Y and ground is R as shown in figure 11.6(c). Similarly, one can find the equivalent 
resistance looking at the point Z and ground is R as shown in figure 11.6(d). 
 



 
Fig. 11.6(a) 

 (b) 
                              

 
                        (c)   (d) 
 

From figure 11.6(d) it is clear that the resistance looking at the point W and 
ground is 2R, and the resistance looking towards the bit b3 is also 2R. Thus the output 
voltage at the point W due to bit b3 (MSB) assumed at VREF potential is given by:  
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 The output voltage V0 due to the binary input 1000 (only MSB is high) is half of 
the reference voltage having Thevenis’s resistance R in series with it. Similarly one can 
calculate the output voltage due to the binary input 0100 (i.e. second MSB); the network 
for this case is shown in figure 11.7(a). The resistance looking at the point Y and ground 
is R as shown in figure 11.7(b). The resistance between the point Z and ground is 2R. The 
voltage at point Z and ground is (VREF/ 2) have a Thevenin’s resistance R, as shown in 
figure 11.7(c). 

 



   (a)      (b) 

 
                       (c) Fig. 11.7 

 
From this figure the output voltage V0 at the point W is given by: 
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 So the output voltage due to second MSB (or for binary input 0100) is 
4
REFV

with 

Thevenin’s resistance R in series with it. 
It can further be shown that the output due to third MSB (for binary input 0010) 

is
8
REFV

. And for LSB (0001 binary input) the output is
16
REFV

. Each voltage source will 

have Thevenin’s resistance R in series with the source. The total output voltage in analog 
form, due to all the inputs as 1 (for 1111) can easily be found by adding the outputs 
obtained for each bit as given below: 
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 for LSB. So to distinguish these voltages it is useful to 

write the bit positions along with VREF as given below. So if the bit is 0 the voltage 
corresponding to that bit will be zero otherwise the voltage as discussed above. 
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 The equation (11.4) is the equation for voltage at the output of 4 bit binary ladder 
network. A general equation for the output of n-bit binary data can be given as follows: 
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The output of this network is proportional to the input binary data. So using this 

R-2R ladder network, a D/A converter (called binary ladder D/A converter) can be 



designed as given below. The schematic diagram of 4-bit D/A converter is shown in 
figure 11.8. It consists of the following major parts. 

(i) n switches, one for each bit applied to the input, 
(ii)  A binary ladder network which changes each of the digital level into 

equivalent binary weighted voltage or current. 
(iii)  A reference voltage source VREF. 
(iv) A summing amplifier that adds the currents flowing in the resistors of the 

network to develop a signal that is proportional to the digital input. 

 
 

Fig. 11.8 
 The output voltage Vout of this D/A converter due to MSB (1000 binary input) 
will be calculated as given below: 
 The voltage at the point W due to MSB is VREF / 2 having a Thevenin’s resistance 
R in series with it as discussed above and is shown in figure 11.9 

 

 
 Fig. 11.9 
 From this figure, the current I is given by: 
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and the output voltage Vout is given by: 
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 The output voltage is the same as calculated in equation 11.5, with the difference 
that it has a negative value because the operational amplifier is used in inverting 
configuration. 
 Note that the resistors in the ladder network are either R or 2R. It is the ratio of 
resistances matters rather than the absolute value of resistances. Further the resistors do 
not cover a wide range of magnitude; it is therefore practically possible to get the 
precision in the ratio of their magnitudes. The temperature coefficients of these 
resistances can easily match. Because of these advantages, the ladder network is widely 
used in D/A converters. 
Example 11.3  For a five-bit binary ladder D/A converter the input levels are 0 = 0 volt 
and 1 = + 10 volts, find  

(i) the output voltages caused by each bit 
(ii)  the output voltage corresponding to an input of 10110 
(iii)  the full scale output voltage of the ladder.  

Solution:   
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 The output voltage caused by LSB   volt
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 (ii) The output voltage corresponding to an input of 10110 is  
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 (iii)        The full scale output voltage is given by: 
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11.2 PERFORMANCE CRITERIA FOR D/A CONVERTER 
The D/A converters are available in the form of ICs with different specifications for their 
performances. So before discussing D/A converter ICs it will be better to discuss first the 



characteristics of the converters specified by the manufacturers. These specifications 
include: 

1. Resolution 
2. Accuracy 
3. Monotonicity 
4. Settling time  

1. Resolution: As discussed above, the analog output of D/A converter is proportional 
to the digital input (binary data), so a perfect staircase is obtained if there is an LSB 
increment. The resolution is, therefore, a measure of quality of D/A converter, which is 
defined as the ratio of the LSB increment to the maximum output. For an n-bit D/A 
converter the resolution is given by: 
 The change in output due to LSB increment for n-bit digital input (Step size) 
 = Full scale output / No. of steps 

  
 where )12( −n is the number of steps for n-bit D/A converter.   
 

 

        
The step size for a 10 bit D/A converter, having full scale output voltage as 10 

volts, is given by   mV8.9
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And % Resolution = 0.0978% 
2. Accuracy: Accuracy of a D/A converter is the closeness of the output analog 
voltage to the expected theoretical output. In a linear variation of analog output with 
digital input, the relative accuracy is the maximum deviation of the D/A output compared 
with the linear behaviour. It is expressed as a percent of a full-scale or maximum output 
voltage. For example, if a converter has a full scale output of 10 V and the accuracy is 

%1.0± , then the maximum error for any output voltage is (10V)(0.001) = 10 mV. 
Ideally, the accuracy should be at most ±  ½ of an LSB.   

  For an 8 bit D/A converter, one LSB is %39.00.0039
256

1 ==  of full scale. The 

accuracy should be approximately0.2%± . 
3.  Monotonicity: A D/A converter is said to be monotonic if it gives an analog 
output voltage which increases regularly and linearly with increase in input digital signal. 
Such a quality of the converter is called as monotonicity. In order to demonstrate 
monotonicity of a D/A converter, a counter output is given as digital input to a D/A 
converter and the analog output is displayed on the CRO. Monotonicity then requires that 
the output waveform should be a perfect staircase waveform with steps equally spaced 
and of same amplitude. If the steps are missing or have varying amplitude, the D/A 
converter is defective.  



4.  Settling Time: After the application of digital input to a D/A converter, it takes 
about few nanoseconds to microseconds to produce the correct output. So the settling 
time is defined as the time the converter takes to give an output to settle within ±  ½ LSB 
of its final value. For example, if a D/A converter has a resolution of 10mV, the settling 
time is the measure of the time the converter takes to settle with in ± 5mV of its final 
value. Figure 11.10 illustrates the settling time in a D/A converter. The settling time is 
important because it places a limit on how fast one can change the digital input. The 
settling time depends on the stray capacitance, saturation delay time, and other factors.  

 
Fig. 11.10 

Example 11.4  What is the step size (or resolution in volts) of a 12 bit D/A converter, if 
the full scale output is +10 volts? Find the percentage resolution also. 
Solution: Here   n = 12 
  So step size is given by   
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Example 11.5  How many bits are required at the input of a D/A converter to achieve a 
resolution of 10mV, if the full scale output is 10 volts? 
Solution:   
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So the number of bits required = 10 



11.3  D/A CONVERTER IC 0808 
 There are many commercially available D/A converter ICs. The IC 0808 is the 
most popular, inexpensive and widely used 8 bit D/A converter. It contains a reference 
current source, an R-2R binary ladder network and 8 transistor switches to steer the 
binary currents to the network. Figure 11.11 shows the pin configuration of this D/A 
converter IC 0808.  

 
             Fig. 11.11   
 In this IC pin 5 through 12 are the 8 bit input data so should be connected to input 
data bits. Pin 15 is to be connected to ground through a resistance. Pin 13 is to be 
connected to +5 volt supply. Pin 3 (VCC) is to be connected to – 15 volts. Pin 4 is the 
output current of the ladder network should be connected to the operational amplifier. Pin 
2 is the ground pin. The pin 16 is the frequency compensation pin, a capacitor between 
pin 16 and 3 is to be connected for this purpose.  
 A circuit diagram to get the analog output voltage corresponding to 8 bit digital 
input is shown in figure 11.12. A +5V supply sets up a reference current of 2mA for the 
ladder.  The output current Iout drives the operational amplifier to give final output 
between 0 and 2 volts (approximately) for the 8 bit digital input.  
 

  
 Fig. 11.12 
 
11.4 ANALOG TO DIGITAL CONVERTER 
 Generally the information to be processed by the digital systems is in the analog 
form. So before applying such signals to the digital systems it is necessary to convert the 



signal into its equivalent digital form. The method with the help of which the analog 
signal may be converted to digital form is known as digital to analog (D/A) converter. 
The A/D converter is more complex and difficult than the D/A converter. Followings are 
the different methods for A/D converter, which will be discussed in the next sections.  

(i) Simultaneous A/D converter 
(ii)  Successive approximation D/A converter  
(iii)  Counter or Digital Ramp type A/ D converter 
(iv) Single slope D/A converter 
(v) Dual slope D/A converter 

 
11.5 SIMULTANEOUS A/D CONVERTER 
 This is the fastest and simplest method of converting an analog signal to digital 
signal. It utilizes the parallel differential comparators; the input analog voltage is 
compared by these comparators with known voltages called as reference voltages. The 
comparators gives the low output (logic 0) when the input is less than the reference 
voltage and gives the high output (logic 1) when the input analog voltage exceeds the 
reference voltage. This method of conversion is also called as Flash or parallel type A/D 
converter.  
 For the conversion of analog voltage ranging between 0 to V volts into two bit 
digital output, three comparators (in general 2n – 1 comparators where n in the number of 
bits) are required. The input analog voltage is converted to the 4 (in general 2n) equal 
regions as shown in figure 11.13. If the analog voltage is lying in the first region, then the 

Fig. 11.13 
binary bits (b1, b0) are 00, similarly to second, third and forth regions the binary bits are 
01, 10 and 11 respectively. The reference voltages to the three comparators C0, C1, C2 

should be V/4, V/2, 3V/4 respectively as shown in figure 11.14. The output of the three 
comparators should be connected to the logic gates to produce the desired binary output. 
The read gates and output registers are used to read the digital output.  
 
 



 
Fig. 11.14 

 Referring to figures 11.13 and 11.14, if the input analog voltage exceeds the 
reference voltage to any comparator, the comparator gives high output (logic 1); if on the 
other hand if the input analog voltage is less than the reference voltage of the comparator, 
it gives low output (logic 0). In this way if all the comparators give low output, the 
analog input voltage must be between 0 and V/4 volts (I region) and digital binary output 
should be 00. If the C0 is high and C1 and C2 are low, the input must be between V/4 and 
V/2 volts (II region) and digital binary output should be 01. If C0 and C1 are high and C2 
is low, the input must be between V/2 and 3V/4 volts (III region) and digital binary 
output should be 10. Finally if all the comparators give high outputs, the input must lies 
3V/4 and V volts (IV region) and digital binary output should be 11.  Table 11.2 
summarizes outputs of the comparators.  
     Table 11.2 

 
 By drawing the K –maps (figure 11.15), the expressions for b0 and b1 are obtained 
as: 

  11 Cb =   and   010 CCb ⋅=  

 
 (a)    (b) 
 

Fig. 11.15 
 



 These expressions may be realized using the gates as shown in figure 11.16. The 
output may be reset by applying high signal to the reset line and to read the data a high 
signal is applied to the read line. 

 
Fig. 11.16 

 For the conversion of analog input voltage (0 to V volts) into three bit binary 
output we proceed in the similar method as for the two bits output. For the three bits 
outputs the input voltages are divided into 8 (as 23 = 8) equal regions and 7 (as 23-1 = 7) 
comparators are to be used. So the logic circuit to be designed should have seven inputs 
(output of the seven comparators) and three outputs. The output of comparators and the 
corresponding binary output are shown in table 11.3. 
 

Table 11.3 

 
 The expressions of the output bits can easily be obtained by examining the table 
11.3. 

The bit b2 gives the high output whenever the output of the comparator C3 is high. 
So 32 Cb = . 

The bit b1 is high whenever the output of comparator C1 is high and output of C3 

is low, or whenever the output of comparator C5 is high. So 5311 CCCb +⋅= . 

Similarly, the expression for bit b0 can be obtained as: 

 65432100 CCCCCCCb +⋅+⋅+⋅=  

  



 
        Fig. 11.17 
 These expressions may be realized using the gates as shown in figure 11.17. The 
output may be reset by applying high signal to the reset line and to read the data a high 
signal is applied to the read line.  

The design of a simultaneous A/D converter is quite straight forward and 
relatively easy to understand. However, the design becomes complicated as the number 
of bits is increased, since the number of comparators to be used increases drastically. This 
method has highest speed of conversion. 
11.6 SUCCESSIVE APPROXIMATION A/D CONVERTER  
 Simultaneous A/D converter has the very fast conversion time but becomes 
unwieldy when the required digital bits are more. The successive approximation method 
is most useful and commonly used method. The block diagram four bit successive 
approximation A/D converter is shown in figure 11.18. It consists of a D/A converter, 



successive approximation register (SAR) and a comparator. The basic principle of this 
A/D converter is as follows: 

 
Fig. 11.18 

 In this type of converter, the bits of D/A converter are enabled one by one, 
starting with the most significant bit (MSB). The analog output of the D/A converter 
corresponding to the enabled bit is compared with the input analog voltage. The 
comparator gives the output low if the input analog voltage is less than the output of the 
D/A converter and it gives the high out if the input analog voltage is more than the output 
of the D/A converter. The low output of the comparator resets the corresponding bit of 
SAR, on the other hand if the comparator’s output is high then that bit is retained in SAR. 
In this way the output of D/A converter are compared with the input voltage for all the 
bits starting with the most significant bit.  

Thus the successive approximation method is the process of approximating the 
analog voltage bit by bit starting with MSB. This process is shown in figure 11.19. 
 



 
 

Fig. 11.19 
In order to understand the operation of this type of A/D converter, we will take a 

specific example of a four-bit conversion. Figure 11.20 (a through d) shows the step –by-
step conversion of a given analog input voltage (say 6 volts). It is further assumed that 
D/A converter has the following output characteristics: 

Vout = 8 volts for bit 3 (MSB or b3) 
 Vout= 4 volts for bit 2 (2nd MSB or b2) 
 Vout= 2 volts for bit 1 (3rd MSB or b1) 
  Vout=1 volt for bit 0 (LSB or b0) 

 
(a) 



 
 (b) 

 

 
  (c) 

 

 
(d)                                     Fig. 11.20 

 It is clear from these figures that after completing the conversion cycle. The 
binary code 0110 is retained in SAR, which is binary value of the input voltage (6Volts). 
It is finally displayed on the display devices. 
 
11.7 COUNTER OR DIGITAL RAMP TYPE A/D CONVERTER 
 Another method of converting the analog signal to digital one is the counter or 
digital ramp type A/D converter which utilizes a binary counter to count a continuous 
pulse of standard width and height from a clock. The standard clock pulses are passed 
through a gate which is open for some time to allow these pulses to go to the input of 
counter. Normally the gate is closed and as soon as the start signal is applied a stair case 
voltage is initiated. This voltage is increased linearly with the increase of the binary 
counts in the counter. The gate remains open for the time the linear stair case voltage 
becomes equal to the input analog voltage. The counter records the number of clock 
pulses which is proportional to the input analog voltage. 

Figure 11.21 shows the schematic diagram of this type of A/D converter. The 
analog signal, to be converted to its equivalent digital output, is applied to one input of an 



operational amplifier being used as a comparator.  When a start of conversion pulse is 
applied to the control unit it resets the binary counter and opens the gate. The counter 

 
 

 Fig. 11.21 
starts counting the clock pulses which are of standard width and height. The output of the 
counter is fed to a D/A converter which produces an analog output (stair case voltage) in 
response to the digital signal (output of the counter) as its input. This analog output 
voltage is fed to the reference input of the comparator. So long as the input analog signal 
is greater than the stair case voltage the comparator provides the high output to the gate, 
the gate remains open and the clock pulses are allowed to reach to the input of the 
counter. These pulses are counted by the counter thus continuously increasing the digital 
output. The moment the analog output of D/A converter (stair case voltage) exceeds the 
input analog voltage, the comparator provides a low output disabling the gate and the 
counter stops counting. The binary number stored in the counter represents the digital 
output voltage corresponding to the input analog voltage. The digital output is displayed 
on the display devices. 

Fig. 11.22 



 For a steady input the digital output is as shown in figure 11.22. The output is 
represented by the number of clock pulses counted by the counter till the stair case 
voltage becomes equal to the input voltage. This method of conversion is slow; as for 
maximum input, the counter has to count from zero to maximum number of states for the 
comparison. For each conversion cycle the counter is to be reset and counting starts from 
beginning. The time of conversion is not important in d.c. or slow varying signals as the 
output waveform gives a good representation from which the input waveform can be 
constructed as shown in figure 11.23. But if the conversion time and the signal transient 
time are comparable the reconstructed digital output will not be correct. In this case it is 
necessary to reduce the conversion time by using faster D/A converter.   

 
 Fig. 11.23 
 A modification to this converter is possible if the resetting of the counter is 
avoided each time. For this purpose an up/down counter may be used in place of up 
counter. The circuit shown in figure 11.24 illustrates this modification in which an 

Fig. 11.24 



up/down binary counter is used and the converter proceeds without resetting. The circuit 
is almost the same as the counter or digital ramp type A/D converter. The up/Down 
counter is operated by up or down signals from the control unit. The digital to analog 
converter output controls the output of the comparator. Till the D/A converter output is 
less than the analog input voltage, the up signal is enabled and the counter counts in 
forward direction. When the analog input falls, the down signal is enabled and the 
counter starts reverse counting giving an output corresponding to new analog input as 
shown in figure 11.25. 

   
 Fig. 11.25 
11.8   SINGLE SLOPE A/D CONVERTER  

This type of method is similar to counter or digital ramp type A/D converter. In 
this type of A/D converter also, a gate whose period is proportional to the amplitude of 
the analog sample is generated. For the generation of gate, the input analog voltage is 
compared with the output of an integrator. The output of integrator is a ramp voltage of 
constant slope. The standard clock pulses are passed through the gate and are counted by 
the counter. The gate remains open for the time proportional to the input analog signal.   
The recorded number of pulses is, therefore, the required digital output of the analog 
signal.  
 The schematic block diagram of such an analog to digital converter is shown in 
figure 11.26. Initially a reset pulse is applied which clears the counter and resets the 
integrator. The integrator produces a linearly rising ramp voltage, whose slope will 
depend on the values of the resistance R and capacitor C. The input analog voltage is 
compared by a comparator with the ramp voltage. As long as the integrator output is 
smaller than the input analog voltage, the comparator output is high. This high output 
enables the AND gate. The standard clock pulses are, therefore, allowed to pass through 
the gate which will be counted by the counter. When the ramp voltage becomes greater 
than the input analog voltage, the comparator changes the state thereby disabling the 
AND gate. The counter stops counting. It can easily be seen that the gate duration is 
linearly related to the magnitude of the input analog signal. Hence the count accumulated 
in the counter is a digital representation of the input analog voltage.  
 It may be mentioned here that the precision in the proportionality between the 
gate duration and the magnitude of the input analog signal depends upon the linearity of 
the ramp voltage obtained at the output of the operational amplifier. So the overall 
accuracy will depend upon the stability of reference source, the off-set of the operational 
amplifier, the frequency stability of the clock as well as the values of resistance R and 
capacitance C. 



 
  
 

 Fig. 11.26 
 
11.9 DUAL SLOPE A/D CONVERTER 
 In single slope A/D converter, the accuracy of the converter depends on the 
linearity of the ramp voltage generated by the integrator. The linearity of ramp voltage, 
however, depends on the accuracy of the values of Resistance R and capacitance C of the 
integrator, whose values may vary with time and temperature. The dual slope analog to 
digital converter utilizes two different ramps, one for fixed time and other for fixed slope. 
It is very popular and widely used D/A converter because it has the slowest conversion 
time and relatively low cost. This method offers good accuracy, good linearity, and very 
good noise rejection characteristics.  



  
 Fig. 11.27 
 
 The logic diagram of the dual slope A/D converter is given in figure 11.27. This 
converter is similar to that of the single slope A/D converter. In this converter, the 
integrator forms two different ramps, one for fixed time and other for fixed slope. The 
capacitor of the integrator is first charged with constant current obtained from input 
analog voltage for fixed time then the capacitor is discharged for fixed slope through 
other constant current obtained from a reference voltage source. The basic operation of 
this converter can be understood as follows: 
 This converter consists of standard clock pulses applied to the gate. The gate 
allows the pulses to the input of the counter which counts these pulses. Initially all the 
counters are reset to 0’s and ramp too is reset to zero. Now the control logic allows 
switch S to connect the input analog voltage Vin to the integrator circuit. A constant 

current equal to 
R

Vin  flows through the capacitor C as the inverting input of the 

operational amplifier of the integrator is at virtual ground. The capacitor C will charge 
linearly with this constant current. This results a negative going ramp at the output of the 
integrator. The comparator’s output will be positive which allows the clock pulse to pass 
through the AND gate to the input of the counter. This ramp is allowed for fixed time say 
t1. The actual time t1 is determined by the count detector. The voltage VC at the output of 
the integrator is given by: 
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 The counter when reaches the fixed count at t1, the control logic generate a pulse 
to clear the counter to zero and the switch S connects the integrator input to a negative 
reference voltage ( – VREF). The capacitor C of the integrator starts discharging linearly 
due to the constant current from – VREF.  The integrator thus produces a positive going 



ramp beginning at -VC and increases steadily till it reaches to 0 volt as shown in figure 
11.28. At this time the counter is counting. The conversion cycle ends when VC = 0 volt; 
the comparator produces the low state, which disables the gate and counter stops 
counting. 

 
Fig. 11.28 

 
Let t2 is the time when the output of integrator becomes zero, so the output of the 

integrator is given by: 
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 Since the integrator’s output beginning at 0 volt and integrates down to –VC and 
then integrate back to 0 volt, so the equations (11.6) and (11.7) may be equated as: 
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 In this equation VREF and time t1 are constants, so 
 2tVin ∝               … (11.9) 

 This equation is independent of the values of resistance R and capacitance C. 
Further at the end of conversion cycle, the counts measured by the counter are 
proportional to the input analog signal are latched to display on the display devices.  
 
11.10  A / D CONVERTER IC 0801 
 
There are many commercially available A/D converter ICs. The IC 0801 is the most 
popular, inexpensive and widely used 8 bit A/D converter. This IC uses successive 
approximation method to convert an analog input varying between 0 to 5 volts to an 8-bit 
digital equivalent. It has an on-chip clock generator for which external pins are provided 
to connect a resistance and capacitance. It is a 20 pin IC and operates on +5 volts supply. 
It has an optimum conversion time of approximately 100 µs. Figure 11.29 shows the pin 
configuration of this A/D converter IC 0801.  



 
             Fig. 11.29   
 The 20 pins of this IC are defined as: 
 

Pin 1    CS           –  Chip select terminal which is active low. 

      2  RD  – Output enable terminal which is active low. 

 3 WR  – Start of conversion which is also active low. 
 4    CLK IN           – Capacitor is to be connected between this point and ground 

for internal clock. 

 5 INTR – End of conversion which is active low. 
 6 VIN (+) – Analog input pin (positive terminal) 
 7 VIN(-) – Analog input pin (negative terminal) 
 8 A GND – Analog ground 
 9 VREF – Reference voltage  
 10 D GND – Digital ground 
 11 – 18 – Output bits b7 to b0 respectively. 
 19 CLK R – A resistance is to be connected between this pin and CLK 

IN for internal clock. 
 20 VCC – + 5 volts supply. 
   
 The frequency of the internal clock is given by the expression: 

   
CR

f
.1.1

1=   

 The clock frequency of this converter IC should be in the range of 100 to 800 

KHz. The outputs (bits b0 to b7) are tri-state outputs. If CS or RD is high the output 

pins float. The digital output appears on the output lines when CS and RD are both low. 
 

 
PROBLEMS 

1. Discuss the resistive divider D/A converter. Find the general expression for the 
output voltage of a resistive divider network. 



2. Using the resistive divider network draw the circuit of a 6 bit D/A converter and 
explain its operation. What are the drawbacks of this D/A converter? 

3. Show that the outputs of a binary weighted resistor network are directly 
proportional to the binary inputs. 

4. Draw the schematic diagram of a resistive divider D/A converter. Explain its 
operation. Mention the drawbacks of this converter. 

5. A 5 bit resistive divider network has 0 volts full scale output, find the output 
voltage for a binary input 10101.     (Ans. 6.774 V) 

6. A 6 bit resistive divider D/A converter has resistance of 100 KΩ in MSB branch. 
The reference voltage is 15 V. The resistance in the feed back path of the 
operational amplifier is 39 KΩ. What is the output voltage for the binary input 
101101?        (Ans. – 8.22V) 

7. For a 6 bit resistive divider network, the reference voltage is 10 V, find the 
following: 

 (i) Full Scale output voltage. 
 (ii) The analog output voltage for a digital input of 010011. 
 (iii) The output voltage change due to least significant bit. 
           (Ans.:10V, 3.02 V, 0.16 V) 
8. Draw the schematic diagram of a binary ladder D/A converter. Explain its 

operation. Mention its merits and demerits. 
9. Find the expressions for the output due to MSB and second MSB of a 4-bit binary 

ladder network. 
10. Discuss the binary ladder D/A converter. Find the general expression for the 

output voltage of a binary ladder network. 
11. What are the performance criteria for the D/A converter? Discuss their 

importance while selecting a D/A converter. 
12. For a 6-bit binary ladder D/A converter the input levels are 0 = 0 V and 1 = 10 V, 

find  
(i) The output voltages caused by each bit. 
(ii)  The output voltage corresponding to an input of 101101. 
(iii)  The full scale output voltage of the ladder.  

(Ans. (i) -5V, -2.5 V, -1.25 V, -0.625 V, -0.3125 V, -0.15625 V 
          (ii) – 7.03125 V (iii) – 9.84 V) 

13. For a 5-bit binary ladder D/A converter the input levels are 0 = 0 V and 1 = 10 V, 
find the output voltage corresponding to binary input of (i) 10111 (ii) 01101. 

     (Ans. – 7.1875 V, – 4.0625 V) 
14. What is the step size (or resolution in volts) of a 10 bit D/A converter, if the full 

scale output is +10 volts? Find the percentage resolution also. 
        (Ans. 9.78 mV, 0.0978%) 

15. How many bits are required at the input of a D/A converter to achieve a resolution 
of 15mV, if the full scale output is 15 volts? 

  (Ans. 10 bits) 
16. Give the details of D/A converter IC 0808. Using this IC draw a circuit diagram to 

get the analog output voltage corresponding to 8 bit digital input. 



17. Discuss the simultaneous A/D converter to convert 0 to V volts analog voltage to 
3 bit digital output. Draw the logic diagram also. What are the disadvantages of 
this type of A/D converter? 

18. Draw a logic diagram to convert 0 to V volt analog voltage to its equivalent 2 bit 
digital output using simultaneous A/D converter. 

19. Describe the successive approximation method for A/D conversion. 
20. Draw a schematic diagram of counter or digital ramp type A/D converter. Explain 

its operation. 
21. Describe the modified counter or digital ramp type A/D converter with neat 

diagram. 
22. Draw a schematic diagram of a D/A converter. Explain its operation. 
23. Describe single slope A/D converter with it logic diagram. Mention its merits and 

demerits. 
24. Describe Dual slope A/D converter with it logic diagram.  
25. Give the details of A/D converter IC 0801. 
 
 
 
 ---------- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12 
 

Digital Memories 
 

In digital systems memories are used for the storage of binary information or data. 
It is well known that a flip-flop can be used to store the binary bit (0 or 1). So the flip-
flops can be organized to form storage registers. The storage registers also called as 
memory registers are normally used for temporary storage of a few bits of information. 
These registers are combined to form a memory unit which is capable of storing large 
data. So the information to be stored in the digital system is transferred to these registers, 
where this information is retained and can be retrieved whenever required for processing 
in the digital systems. In this chapter both semiconductor and magnetic memories and 
their applications will be discussed.  

12.1 MEMORY PARAMETERS 

 The memory unit is the important part of the digital systems or digital computers 
as the binary information necessary for processing in the system can be stored in or 
retrieved form this unit. The devices used in the memory unit can either be 
semiconductor devices or magnetic devices. A device or electronic circuit used to store a 
single bit is known as binary memory cell which include a flip-flop, a charged capacitor, 
a single spot on magnetic tape or disc. The characteristics of the device used as a binary 
memory cell should be as:  

1. The device must have two stable states to represent the binary information 0 or 1. 
When the binary memory cell is one of the two stable states, it should not 
consume any power, if it does consume some power it must be small enough so 
that the total power dissipation must not be very large.  

2. The cost and size of each cell should be very small so that the physical size 
occupied by the memory unit and its total cost are not too large.  

3. The time taken to read the information from a group of binary memory cells or for 
storing the information in them should be very small.  

 The memory unit can be used to store a large number of binary words. A binary 
word is a combination of binary bits. The word length is different for different digital 
system or computers; typically it ranges from 8 to 128 bits. A binary memory cell is used 
to store a binary bit. If the length of the word in a system is of 8 bits then eight binary 
memory cells are combined to store a word. Each word stored in the memory unit will 
have different memory locations. The word will always be treated as an entity and can be 



stored in and retrieved form the memory as a unit controlled by the control signals. The 
location of the memory unit where a word is to be stored or written is called the address 
of the word. So the address of the location is to be specified where the word is to be 
stored or retrieved from the memory unit.  The word to be stored in the memory unit is 
first entered in the memory buffer register (MBR) also called as memory data register 
(MDR). The address where the word is to be stored is given in the Memory Address 
Register (MAR) and a WRITE signal is initiated by the control unit and the particular 
word will be written or stored in the specified memory location or the address. The length 
of the MBR is equal to the word length of the system. The length of MAR will, however, 
depend on the capacity of the memory locations.  If a memory unit has the capacity to 
store m words (each of k bits), the length of MAR will be of n bits such that 2n = m i.e. 
the length of MAR will be of 12 bits if the memory unit has the capacity to store 4096 
words as 212 = 4096. In order to read or retrieved the stored word, the address of the 
location from where the word is to be read is given in MAR and then read signal is 
initiated by the control unit. Thus the stored content will be available in MBR. Figure 
12.1 shows the block diagram of a memory system. 

 
 Fig. 12.1 
 There are some important terms related to memory unit which will now be 
discussed. 

 (i)  Destructive and Non-destructive Read Out:   As discussed above to read the 
stored content in some memory location the addresses of the location is given in 
MAR and when the read signal is initiated the stored content is copied into MBR.  
In this process if the copying process leaves the content in the corresponding 



location undisturbed, then the read out process is known as non-destructive read 
out. If on the other hand, the stored content is lost during the reading process then 
the read out process is known as destructive read out.  The read out process in the 
flip-flop binary cells are non-destructive while read out process in the binary cells 
made with magnetic cores is destructive.  

 (ii)  Access Time of Memory:  The time interval between the initiation of the 
READ signal and the availability of the stored content from the required memory 
location is known as the access time of memory. 

 (ii)  Write Time of Memory and Memory Cycle Time: The time interval 
between the initiation of the WRITE signal and the storing of the content in the 
specified memory location is known as the write time of memory. In the 
destructive memory, during the read out process once the stored content is 
available in the MBR, the stored content is lost from the memory location. So in 
the destructive memory once the content is read from the memory location it is 
rewritten back in the same memory location. The time taken for reading the 
content and rewriting back in the same memory location is known as memory 
cycle time. 

 (iv)  Volatile and Non-volatile Memories: The memory unit in which the stored 
content is lost when the power is turned off is known as volatile memory. The 
memory units consisting of flip-flop binary memory cells are the volatile 
memories as data is lost when the power is turned off. The memory unit 
consisting of binary cells made with magnetic cores is known as non-volatile as 
the stored data is not lost when the power is turned off.  

 (v)  Memory Capacity: The number of bits that can be stored in a particular 
memory device or unit is known as the memory capacity. Suppose a memory unit 
can store 2048 twenty-bit words so it has a capacity of 40960 bits as 2048 x 20 = 
40960. Further, 8 bit is known as byte so the capacity of 40960 bits memory is 
5120 bytes or 5 K bytes as 1024 = 210 = 1 Kilo. 

 The larger memory may be represented by mega and 1M (1mega) = 220 = 1024 x 
1024 = 1048576. 

Example 12.1   What are the sizes of MAR and MBR for a 16K x 32 bit memory? 

Solution:  The memory has the capacity to store 16 K words and each word is of 32 bits. 
So the size of MBR is 32 bits as it equal to size of the word. 
The size of MBR is 14 bits as 214 = 16 x 1024 = 16 K. 

Example 12.2   How many words can be stored in 8K x 20 memory unit? How many bits 
can be stored with this memory unit? What are the sizes of MAR and MBR? 

Solution:  It can store 8K = 8 X 1024 = 8192 word and each word is of 20 bits. 

 It can store 8K x 20 = 8 x 1024 x 20 = 163840 bits. 

 Size of MBR = 20 bits 

 Size of MAR = 13 as 213 = 8192. 

 



12.2 SEMICONDUCTOR MEMORIES :   

 The Read Only Memory (ROM) and the Random Access Memory (RAM) are 
the two basic types of semiconductor memories. ROMs are those in which information or 
the data is permanently stored. The information can be read but fresh information cannot 
be written into it. These are nonvolatile memories. The other semiconductor memory 
RAM has both read write facilities. So the RAMs are also called as read write (R/W) 
memories. These are volatile memories.  

12.3   READ ONLY MEMORIES : 

 As discussed above the read only memory is used to read the stored 
information or data but the fresh information can not be written into it. A block diagram 
of a read only memory is shown in figure 12.2, in which 8 words are stored and each 

 

Fig. 12.2 

word is of five bit long. This memory is organized as a two dimensional grid of 8x5 
wires. It has eight horizontal wires and 5 vertical wires. At each intersection point in the 
grid, diode is either present or absent. If a diode is present at the intersecting point then 
that bit of the word is a 1 else it is a 0. This grid connected with diodes at some 
intersecting points is known as diode matrix ROM. The 8 words stored in 8 locations of 
this diode matrix ROM is given in table 12.1. This table indicates that at the zero location 
word 10101 is stored. To read the stored content the address of the location is given into 
MAR, the decoder circuit will activate the corresponding address line and diodes 
connected to that horizontal line conduct. The conducting diodes give rise the current 



flow in the corresponding vertical wires and a high voltage is developed across the 
resistance connected to the vertical line (logic 1). If no diode connected to that horizontal 
line no current will flow to the corresponding vertical line and no voltage (zero voltage) 
is developed across the resistance connected to the vertical line (logic 0). Thus bits b4 
through b0 will be available in the MBR as per the data available or stored in the 
addressed location.                                           

 Table 12.1 

 

 The diodes connected at the intersecting points are fixed by the manufacturer at 
the time of manufacturing according to the data supplied by the users. The data once 
fixed by the manufacturer in the ROM can not be altered.  
 Most ROMs available in the market are made with bipolar transistors or MOS 
transistors instead of diodes. At the intersecting points bipolar transistors or MOS 
transistors are connected.   A bipolar cell for storing a 1 is shown in figure 12.3(a) in 
which the base of the transistor is connected to the row wire while the emitter is 
connected to the column line. When base is high the transistor conducts and a current 
flows through the column wire. A bipolar cell for storing a 0 is shown in figure 12.3(b) in 
which base connection is left open which result no current to flow through column wire. 

 

 
 

(a) (b) 
   Fig. 12.3 

 A block diagram of 8x5 bipolar ROM matrix is shown in figure 12.4 and the data 
stored in different locations are shown in table 12.2. 



 
  
   Fig. 12.4 
 

Table 12.2 

 
 
 A MOS cell for storing a 1 is shown in figure 12.5(a) in which the gate of 
MOSFET is connected to the row wire while the source of the MOS is connected to the 
column line. A MOS cell for storing a 0 is shown in figure 12.5(b) in which gate 



connection is left open. A block diagram of 8x5 MOS ROM matrix is shown in figure 
12.6 and the data stored in different locations are shown in table 12.3. 

 
(a) (b) 
                        Fig. 12.5 
 

 
 
 
 Fig. 12.6 
 
 
 
 
 
 



     Table 12.3 

 
12.3.1  PROGRAMMABLE READ ONLY MEMORY (PROM): 
 In ROM’s the data is fixed at the time of manufacture and the user can simply 
read the stored content. PROM’s are also basically the same but the users can store the 
data as per their requirement. It is programmed by the user only once. It can not be 
reprogrammed. PROM’s are available both in bipolar and MOS technologies. In PROM’s 
bipolar or MOS transistors are connected to each joint and fusible links are provided to 
these transistors. Figure 12.7 illustrates a bipolar PROM array with fusible links provided 
at the emitter of each transistor connected at the joints. The fusible links may be burnt to 
store a bit 0; and a bit 1 is stored to keep the link intact. The user can burn the necessary 
links to store the desired data. For this a special device called PROM programmer is used 
for its programming. 

 
                                                                                               Fig. 12.7 



12.3.2 Erasable Programmable Read Only Memory (EPROM):  

 The information or data once stored in ROM or in PROM can not be altered but in 
EPROM’s the data can be erased and reprogrammed.  Once programmed, the EPROM is 
non-volatile and the stored data will be retained indefinitely. Each binary cell in EPROM 
is formed with MOS transistor having a floating gate. The floating gate is surrounded by 
silicon dioxide which works as an insulator. If a sufficiently high voltage programming 
pulse is applied to the transistor, the high energy electrons are injected into the floating 
gate. Even after the termination of the programming pulse the electrons are trapped into 
the gate. Because the gate is completely isolated the charges can not leak very rapidly. It 
loses nearly 30% of its charge in a decade.  Once the charges are stored on the gate the 
transistor becomes permanently on and the binary cell stores a 0. The cells which are not 
programmed store 1. So by proper programming of the memory the required data may be 
stored in desired memory locations.  

 The data can be erased if EPROM chip is exposed to the ultraviolet (UV) light. A 
quartz window on the chip is provided for the exposure of ultraviolet light. The 
ultraviolet light removes the stored charges on the floating gates of the MOS transistors. 
This in turn brings the EPROM chip back to the unprogrammed state. The erasing 
process usually takes 25 to 30 minutes. Erased chip may further be programmed with 
fresh data. The programmed chip may be protected from stray radiations by placing an 
opaque label on the quartz window of the chip.  

 The various EPROM chips are available with different storing capacities. The 
current popular series of these chips are 27XX, where XX indicates the capacity of the 
memory in kilo – bits. For example 2716 has the capacity (2 K x 8) to store 2 K words 
and each word is of 8 bit. It will have l1 address lines. Similarly, 2732 has (4 K x 8) 
capacity (4 K words, each of 8 bits). 

12.3.3 Electrically Erasable Programmable Read Only Memory (EEPROM ): 

 Electrically erasable Programmable Read Only Memories (EEPROMs) are also 
available as an improvement over EPROM. In EEPROMs also known as E2PROMs, 
individual word in the memory can be electrically erased and reprogrammed. This facility 
is not available in EPROMs. In EPROM’s complete memory contents are to be erased 
and reprogramming of the complete memory chip is to be required even if one or two 
words of the memory are to be altered. Another advantage of E2PROMs is that the 
programming of this chip can be done when connected in the circuit without the use of 
ultra violet source and special PROM programmer unit. The memory cells of E2PROMs 
utilize MOS transistors with floating gate structure similar to EPROMs, with the addition 
of very thin oxide region above the drain. This modification allows the cell to be 
electrically erased. By applying a high voltage (21 V) between the gate and drain of MOS 
transistors, where it will remain even when the power is removed. The application of 
reversed voltage removes the trapped charges from the floating gate and thus erases the 
cell. E2PROMs can be erased in negligibly small time of 10 msec. 

12.4 APPLICATIONS OF ROMs: 

 Read Only Memories are used in variety of tasks in the digital systems. Following 
are the common applications of ROMs: 



 Implementation of Logic Functions:  ROMs can be used as the direct substitute 
of any logic function. For this consider the following example. 

Example 12.3:  Use a 32 x 8 bipolar PROM to form the following functions of five 
variables: 
   ∑= )29,21,16,13,9,8,6,2,1(1f  

   ∑= )30,25,22,16,15,14,10,8,3,0(2f  

   ∑= )31,29,25,21,20,19,11,9,8,5(3f  

   ∑= )29,28,16,13,9,6,5,1(4f  

Solution:   The PROM has the capacity to store 32 words of 8 bit long, so for getting four 
output functions f1 through f4 the output bits are assigned as: 
 01 bf =   12 bf =  23 bf =  34 bf =  

 The remaining output data bits are left open. List of all locations of PROM is 
prepared as shown in table 12.4. Each minterm of the given functions will represent its 
own address. The output bits will have logic 1 for the locations in the table for which the 
minterms is present in the function. For example,  bit 0b  in the  PROM  will  have logic 1  

     Table 12.4 

 

for the locations corresponding to minterms given in 1f  i.e. bit 0b  will have logic 1 for 

the locations 29,21,16,13,9,8,6,2,1  as illustrated in table 12.4. The logic diagram for 
the same is shown in figure 12.8. 



 

      Fig. 12.8 

 Look-up tables:  It is a usual practice to use ROMs as look-up tables for routine 
calculations in a computer. Trigonometric functions, logarithms, exponentials and square 
root etc are programmed as look-up tables in ROMs and used in lengthy calculations. It is 
economical to use look-up tables, rather than to use subroutine or a software program to 
perform the calculations for these functions. For example the look-up table for xy sin=  
can be formed with 128 x 8 ROM.  This ROM will have 8 address lines and 8 output data 
lines. The address input should represent the angle in increment of desired accuracy and 
the output data lines will represent the approximate sine of the angle.  
 Code Converters:  The ROMs can be used as code converter circuits. The data 
expressed in one type of code can be produced in other type of code. For this address 
lines of the appropriate ROM can be used as the representation of the given code and the 
output lines gives the equivalent data in the required code.  
Example 12.4:  Draw a diode matrix ROM that converts the four bit binary numbers to 
gray code. 
Solution:  Diode matrix ROM for the conversion of binary number to gray code is shown 
in figure 12.9, in which the address lines are used to represent the four bit binary numbers 

 



and the output gives the gray codes.  The data may be verified from the table 12.5. 

  

 Fig. 12.9 
Example 12.4:  Draw a diode matrix ROM that implements the square of decimal 
numbers ranging from 0 to 15. 
Solution:  Table 12.6 shows the square data of the decimal number from 0 to 15. The 
binary equivalent of the decimal numbers represents the address of the location. This will 
need the 4 bit address line. It requires eight data lines as the square of 15 is 225 whose 
binary equivalent is 11100001. Figure 12.10 shows the diode matrix ROM that 
implements the square of decimal number ranging from 0 to 15. One can verify the data 
given in table 12.6 and ROM matrix. 
 
 
 
 
 
 
 
 
 
 
 



                        Table 12.6 

 
 

 
 Fig. 12.10 



 Character Generators: ROMs can also be used to generate alphanumeric 
characters (dot patterns) on the video screen of computer monitor. There are many 
character formats that can be designed into ROM character generators. The 5 x 7 dot-
matrix format (fig. 12.11) is generally used for display systems. The letter E is 
represented by this dot matrix. The solid dots in the letter E are lamps which are ON, and 
open dots are off light sources. A character generator ROM stores the dot pattern codes 
for each character at an address corresponding to the ASCII code for that character. For 
example, the dot pattern for the letter E would be stored at address 1000101, where 
1000101 is the ASCII for E. 

  
 Fig. 12.11 
 Function Generator:   The function generator produces sine, saw tooth, 
triangular and square waveforms. ROM can be used to produce such waves. Figure 12.12 
illustrates how ROM look-up table is used to produce sine wave. The output lines of 
ROM are connected to a digital to analog converter. The ROM stores 256 different 8 bit 
values. The values stored at the different locations of ROM are the values of different 
voltage points of the sine wave. The eight address lines of ROM are connected to an 8-bit 
counter. The 8 bit counter sequentially excites the address lines of ROM with the 
application of clock pulse to the counter. The D/A converter gives analog output voltage 
corresponding to the data points of the required waveform. A low pass filter may be used 
at the output of the D/A converter to produce the smooth sine wave.  

  
 Fig. 12.12 
  
12.5 RANDOM ACCESS MEMORIES: 
 Random Access Memory (RAM) is also known as Read/write memory. The Data 
can be written in to the memory location and can be read /retrieved from the memory 
locations. In this memory every memory cell can be addressed directly without the need 



of any other previous cell being addressed first. In other words one may say that the 
contents of any memory location can be accessed randomly. RAM is volatile memory 
that is all the stored contents are lost if power is switched off. Basically RAMs are of 
three types Bipolar RAM and Static MOS RAM and Dynamic MOS RAM. 
 Before discussing the details of the different types of RAM, it becomes necessary 
to discuss first the different methods of memory cell addressing. There are two methods 
of memory cell addressing namely Linear Selection and Coincident Selection (or X-Y 
Selection). 
 Linear Selection:  One method of addressing a RAM is known Linear Selection. 
In linear selection a memory cell can be approached by exciting the address lines 
appropriately. Suppose a random access memory can store 16 words of 4 bit each. In this 
method of selection it will have 64 cells which are arranged into 16 rows and four 
columns. One row will be for each word and one column for each bit in a word. Figure 
12.13 illustrates linear addressing of 16 x 4 ROM cells.  By four select inputs and 4 to 16 
line decoder desired row from 16 rows can approached. 
 

 
 
 Fig. 12.13   
 
 Coincident Selection or X-Y Selection: The other addressing system known as 
coincident selection or X – Y selection shown in Fig.12.14. In this figure 64 memory 
elements are arranged in an 8 x 8 matrix for each word bit. A 64 word 256 bit RAM will 
need four 8 x 8 matrix arrays, one for each of the 4 bits in every word. 



 

 
 Fig. 12.14  
12.5.1 Bipolar RAM:  The cells of RAM make use of flip-flops which are designed 
using bipolar transistors. There are two types of RAM cells are designed using bipolar 
transistors shown in figure 12.15. The first type (fig. 12.15 a) is made using two dual 
emitter transistors. These types of RAM cells are used for linear selection. Triple emitter 
transistors are used in second type of RAM cells (fig. 12.15 b). These types of cells are 
used for coincident selection or X – Y selection 

 
 (a)    (b)  
  Fig. 12.15 
 In the first type (fig. 12.15 a) one emitter of each of transistors Q1 and Q2 are 
connected together to signal S. The second emitter of transistor Q1 serves to sense or 
write a logic 0 (Q1 ON). Similarly the second emitter of transistor Q2 serves to sense or 



write a logic 1 (Q2 conducting). The sense and select terminals provides the low 
resistance path between the emitter and the round thus cell works as a flip-flop. Normally 
the select terminal S is kept low and the current form the conducting transistor flows out 
of this select terminal. For read operation, select line S is kept high. The conducting 
transistor will not conduct through select line but will conduct through sense ‘0’ or sense 
‘1’ line depending upon whether logic ‘0’ or logic ‘1’is stored in the cell. For writing or 
storing operation, the select line S is kept high. For storing logic ‘0’ in the cell, the sense 
line ‘0’ is kept low and sense line ‘1’ is kept high. The transistor Q1 now conducts to 
store logic 0. For storing  logic ‘1’ in the cell, sense line ‘0’ is kept high and sense line ‘1’ 
is kept low thus making the transistor Q2 to conduct. Thus the cell stores logic 1. 

 In the second type bipolar RAM cell (fig. 12.15 b) two select terminals X and Y 
are obtained for connecting them to X and Y lines of coincident selection. The working 
of this triple emitter RAM cell is similar to dual emitter RAM cell. Normally both X and 
Y select terminals are kept low and the current from the conducting transistors flow out 
of these select lines. For read operation, select terminals X and Y are kept high; and thus 
no current flow through these select lines. The conducting transistor will conduct through 
sense ‘0’ or sense ‘1’ line depending upon whether logic ‘0’ or logic ‘1’is stored in the 
cell. For writing or storing operation, the select lines X and Yare kept high. Similarly one 
can explain that for storing logic ‘0’ in the cell the transistor Q1 conducts and Q2 becomes 
off; and for storing logic ‘1’ in the cell, the transistor Q2 conducts and Q1 becomes off.  

12.5.2 Static MOS RAM Cell:  A static MOS RAM cell also known as SRAM cell is 
shown in figure 12.16. It consists of a flip-flop formed by n-channel MOS transistors. 
Here the MOS transistors Q3 and Q4 work as active load and MOS transistors Q1 and Q2 
work as two NOT gates. The cross coupled NOT gates with active loads work as a flip-
flop. It stays in the given state and retains the data indefinitely as long as power is applied 
to the flip-flop. The MOS transistors Q5 and Q6 provide the ‘1’ sense line and ‘0’ sense 
line respectively. The gates of these two transistors are connected together to form a 
select terminal for linear selection.  

  
                                Fig. 12.16 



 Normally the select terminal S is kept low and for read operation, select line S is 
kept high. The transistors Q5 and Q6 will conduct through select line. In order to read or 
sense the state of the flip-flop suppose Q1 in ON and Q2 is OFF. Then the current flows 
through ‘1’ sense line while no current flows through ‘0’ sense line as Q2 is OFF. 
Similarly through the select line, the flip-flop can be set to logic ‘1’ or logic ‘0’ by using 
sense line as data input. 

12.5.3 Dynamic MOS RAM Cell:  Figure 12.17 illustrates a dynamic MOS RAM cell 
also called DRAM cell. It consists of a MOS transistor and a capacitor. The charging of 
the capacitor is controlled by the MOS transistor. The capacitor can hold a very small 
charge when it is charged. The MOS transistor is connected to an address line and a 
bit/sense line. This transistor works as pass transistor. To write a bit ‘1’ on the cell the 
address line is kept high, a high voltage is applied to the bit/sense line. The transistor is 
switched ON and the capacitor is charged. The logic ‘1’ is stored in the cell. However to 
write a bit ‘0’, 0 volt is applied to the sense line and the capacitor is discharged and 0 is 
stored. Though the capacitor has a very large leakage resistance yet it is not an ideal 
capacitor. Thus the charge stored on the capacitor (when logic 1 is stored) discharges 
very slowly and the will be lost. It is therefore necessary to rewrite or refresh the data 
periodically.  

  
 Fig. 12.17 
 To read the stored data in the cell high voltage is again applied to the address line. 
This switches ON the transistor and the capacitor voltage appears on the bit/sense line. If 
a ‘1’ is stored in the cell, the voltage of the bit/sense line will tend to go up to the high 
voltage; and if a ‘0’ is stored in the cell, the voltage of the bit bit/sense line will go down 
to 0 volt. The reading operation of this type of cell is destructive so a write operation 
should immediately be followed.  
 The dynamic RAMs are much cheaper than SRAMs as they allow high packing 
density (bits/chip) due to the simple structure of DRAM cells. The power consumption of 
DRAMs is very small as compared to the SRAMs. The dynamic RAMs are however 
slower in speed than Static RAM. Dynamic RAMs also require refreshing operation after 
regular intervals whereas SRAMs do not require this operation of refreshing.  

12.6  RAM ICs:   Figure 12.18 illustrates RAM IC 7489 of 16 x 4 memory. It is capable 
of storing 16 words of 4 bits. Data can be stored into memory by applying the address   to 



  
 

Fig. 12.18 
the Select input and by providing low voltage to Memory enable (ME ) and write signal. 
However to read the stored content the address is given to the Select input and memory 
enable and read signal are applied low voltages. The data in complemented will appear at 
the Data out terminals. The functional block diagram of this IC is shown in figure 12.19. 

 
                                         Fig. 12.19 
  



 RAM ICs can be connected in parallel to increase the word size. Two ICs 7489 
(16 x4) are connected in parallel which is used as 16 x 8 memory. This is illustrated in 
figure 12.20. 

 
Fig. 12.20 

 Figure 12.21 shows an IC 2147 which is a Static MOS RAM of capacity 4K x 1. 
It contains separate terminals for DATA in (Din ) and DATA out (Dout ). The chip select 

terminal (CS) should be low to activate the chip. The bit may be written or stored in the 

RAM if write signal (WE) is made low, of course the chip select terminal should also be 
activated. Data out (Dout) terminal remains isolated with the rest of the circuit during the 
write operation.   

 
Fig. 12.21 



 Figure 12.22 shows Dynamic MOS RAM chip 4164 of capacity 64K x 1. It has 8 
bit address line. However for 64K memory it should have 16 bit address line, as 

6553610246464216 === xK . For this the memory is arranged into 256 rows and 256 

columns as 256 x 256 = 65536. It contains ROW ADDRESS STROBE (RAS) and 

COLUMN ADDRESS STROBE (CAS) pins for selecting row and column of address. 
The memory arrangement for 256 x 256 is shown in figure 12.23.  

  
 Fig. 12.22 
 

 
  
 Fig. 12.23 
 



 The combination of 8 PROMs (1K x 8) to produce a total capacity of 4 K X 8 is 
illustrated in figure 12.24. This arrangement can very be understood.  

 

 
 
 
 
 
 
 



 Figure 12.25 illustrates the construction of 4K x 8 memory using 4 PROMs (1K x 
8). The PROM 1K x 8 has 10 address lines. However, for 4K memory, it requires 12 
address lines. Two extra address lines in combination with 2 to 4 line decoder are used to 
select the particular chip. This is clearly specified in the figure 12.25. 
 

 
 
 



12.7 MAGNETIC MEMORIES : In the forgoing sections of this chapter semiconductor 
memories have been discussed which utilizes the memory cells based on electrical charge 
or voltage. Magnetic memories are based on the principle that a ferromagnetic material 
can be magnetized by passing a current through it. The direction of magnetization 
depends on the direction of current. The magnetic materials were found to be inexpensive 
and everlasting materials; therefore, it became an ideal choice as the storage devices. 
Magnetic core, magnetic tape and disk, floppy disk etc. are some commonly used 
memory devices.  

12.7.1 Magnetic Core Memory: In the magnetic core memory a core of a ferromagnetic 
material is used as a storage element. The core is usually toroidal is shape as shown in 
figure 12.26. When a current i is passed in the direction indicated in the figure 12.26(a) 
through the winding on the magnetic core, magnetic flux φ  is set up in the clockwise 
direction. The variation of the magnetic flux φ  with current i is shown in figure 12.26(b). 

 

 Fig. 12.26 

This curve is known as hysterisis curve. This hysterisis curve is almost rectangular in 
shape; in fact for the magnetic core memory such a magnetic material is used whose 
hyterisis curve is rectangular in shape. From this curve it is clear that when the core is 
magnetized with the positive direction of current i (curve a b c), the magnetic flux gets 
the saturated value mφ at point c and further increase in the magnetizing current will not 

increase the magnetic flux induced in the core. Now when the current is decreased the 
flux changes according to the curve c b d and stays at the point d where the magnetizing 
current becomes zero. This state is called positive remnant flux. The core remains in that 
state for indefinite period even without supplying any energy. Now if the direction of 
magnetizing current is reversed curve follows the path d e f g and gets the negative 
saturated value of flux mφ− . Now if the magnitude of the current is increased then the 



core attains the negative remnant flux at the point h.  It is therefore clear that the core can 
be magnetized and it attains either the positive remnant flux or negative remnant flux. In 
other words the core remains in either of the two states without any external energy. The 
energy is required only to change the state.  One state may be represented by logic ‘1’ 
and other state by logic ‘0’. 

 A similar situation arises when a current is passed through a wire which passes 
through the axis of the core. The current i following upwards (fig. 12.27) in the wire will 
lead a magnetic flux in the counter clockwise direction and the state attained by the core 
may be represented by a logic ‘1’. Similarly the current –i flowing in the wire (in the 
down ward direction) gives the state represented by logic ‘0’ by setting the flux in the 
clockwise direction.  

 
Fig. 12.27 

In order to read or sense the bit present in the core, it is necessary to have a sense 
coil or sense winding as shown in figure 12.28. For reading the bit present in the core a 
current (- i) is passed through its one winding (read /write winding) and the voltage 
induced across the output or sense winding is detected. Now if a ‘0’ bit is stored in the 

 
 Fig. 12.28 
core, then for reading this bit the voltage induced in the sense coil will be very small , as 
the read current (- i) will not cause significant change in its state. Similarly if a ‘1’ bit is 
stored in the core, read current (- i) will induce a significant change un the sense coil. The 
change in the voltage induced across the sense coil of the core memory will indicate a ‘0’ 
or ‘1’ bit is stored in the core memory cell. This is illustrated in figure 12.29. 
 Magnetic core memories are non-volatile read / write memories and were used in 
main frame computers.  



 
  Fig. 12.29 
 

12.7.2 Magnetic Disk Memory: 

 Magnetic disk storage devices include floppy disk or Hard disk and are used as 
auxiliary memory in the computers. These devices are less expensive compared with the 
semiconductor memories. The access time for these devices is very fast. These devices 
make use of magnetic surfaces. A conducting coil named as Read / write Head is used for 
writing the data on the magnetic surface and retrieving the data from it. The head remains 
stationary while the disk rotates below it for reading or writing operation. Figure 12.30 
shows the read /write operation on the magnetic surface. To write a data bit on the 
magnetic surface a current pulse is applied through the coil of the write head (fig. 12.30 
a). By the application of this current pulse a small segment of the moving magnetic 
surface gets magnetized. The direction of the magnetic flux is controlled by the current 
pulse as per the bit to be stored. Binary ‘1’ is represented by one magnetized polarity of 
the spot of magnetic surface. Similarly, the other polarity of the magnetized spot of the 
magnetic surface represents the binary bit ‘0’. Once a spot of the magnetic surface is 
magnetized by the write head, it will not be changed until changed again by the write 
head. The magnetized spot on the magnetic surface produces an induced voltage in the 
windings of the read head when the surface is passed on the read head. The direction of 
the output induced voltage pulse will be according to the polarity of the magnetized spot 
of the magnetic surface. This is the procedure to read the stored content. (fig. 12.30 b). 
The read and write head are usually combined into a single unit as shown in figure 
12.20(c). 

 
 
 
 
 
 
 
 



 
 

 
Fig. 12.30 

There are several ways to represent the digital data (binary bits 0 or 1) on the 
magnetic surface. They include: Return to zero (RZ), Non-return to zero (NRZ), Bi-
phase, Manchester and Kansas city standards. 

Figure 12.31 illustrates a Return to Zero (RZ) waveform. From this figure it is 
clear that pulse always return to zero after a ‘1’ occurs. For a ‘0’ no pulse occurs during 
the entire bit time.  

  
Fig. 12.31 

 
 Non return to zero (NRZ) waveform is shown in figure 12.32. It is clear from this 
figure that pulse remains high or low during the entire bit level for representing a ‘1’ or  
‘0’ respectively. In this case, waveform does not return to the 0 level until a 0 occurs. 



 
Fig. 12.32 

 Biphase waveform is illustrated in figure 12.33. For a ‘1’, high level is for the first 
half of the bit time and low level for second half of the bit time. Similarly, for a ‘0’, low 
level is for the first half of the bit time and low level for the second half of the bit time. 
So low to high or high to low transition occurs in the middle of the bit time.  

 
Fig. 12.33 

 In the Manchester’s wave form, at the start of a bit time transition from high to 
low represents a ‘0’. If there is no transition it represents a ‘1’. Manchester’s waveform is 
shown in figure 12.34. 
 

 
Fig. 12.34 

 Two different frequencies are used to represent 0s or 1s in the Kansas City 
method illustrated in figure 12.35. The standard eight cycles of 2.4 KHz frequency are 
used  to represent a ‘1’, and four cycles of 1.2 KHz frequency are used to represent a ‘0’. 

 

 
Fig. 12.35 

 
12.7.3 Floppy Disk 

The floppy disk is smaller, simpler and cheaper disk unit. It is a flexible Mylar 
plastic diskette coated with thin film of magnetic material (figure 12.36). This is housed 
in a square plastic jacket which provides handling protection. A small hole called the 
index hole in the floppy is used for referencing all the tracks. Through the access window 
Read / Write head makes contact with the rotating disk. The write protect notch is also 
provided that can prevent new data to be written on the floppy, for which write protect 
notch can be covered with a piece of tape. If this notch is not covered with a piece of tape 
then the fresh data can be written on the floppy several times.  



  
  Fig.12.36 
 
 The floppies of different sizes are available; 5.25 inch floppy is very popular 
(figure 12.37). It is organized into 77 tracks and each track is divided into 26 sectors of 
equal sizes. Each of these sectors can store 128 bytes of data. Total capacity of the disk 
will therefore be:  

Kbytesbytestorbytesxtracktorsxtracks 256256256)sec/(128)/(sec26)(77 ≅=  

 
 

Fig. 12.37 
 

 The format writing the data on each sector is divided into different fields as 
shown in figure 12.38. As per the sequence of rotation as the address mark passes the 
read/write head, it identifies the up coming areas of the sector as ID field. The ID field 
identifies the data field by sector and track number. The data mark indicates if contains 
the good record. The 128 bytes of data can be stored in the data mark which is the part of 
the sector. The average accessing time of a sector is about 500 ms which slower than the 
semiconductor memories. The floppy disks are less expensive and portable. The capacity 
of the floppy disk is very small. However, double density floppy disks are also available 
which can store 256 bytes per sector with a total capacity of 512512 bytes. 



 
Fig. 12.38 

 
12.7.4 Hard Disk System: 
 In hard disk system, magnetic disks of smooth metal plates coated on both sides 
with a thin film of magnetic material are fixed to a rotating shaft. These plates are stacked 
as illustrated in figure 12.39. The disk pack is mounted on a disk drive. The disk drive 
consists of a motor to rotate the disk pack about its axis at a speed of about 3600 to 54oo 
revolutions per minute. The disk pack and a set of magnetic heads mounted on arms are 
sealed in an enclosure. The access arm assembly is capable of moving in and out in a 
radial direction. The hard disk data transfer rates are 1M to 10M bits /sec. The hard disk 
are physically large and bulky so it is quite costly.  
 

 
 
 Fig. 12.39 
 
 



12.8 MAGNETIC BUBBLE MEMORIES : 

 In some magnetic materials such as garnets on applying magnetic field certain 
cylindrically shaped domains called magnetic bubbles are created. The direction of 
magnetization is opposite to that of magnetic field. The diameters of these bubbles are 
found to be in the range of few micrometers. These bubbles can be moved at high speed 
by applying parallel magnetic field to the surface of magnetic materials. Thus the rotating 
field can be generated by an electromagnetic field and no mechanical motion is required. 
Soft magnetic material is also deposited on this device which forms a pre-determined 
path called tracks. Magnetic bubbles are forced to move continuously in a fixed direction 
of these tracks. The presence of a bubble is considered a ‘1’ state, whereas the absence of 
the bubble is considered a ‘0’ state. For writing data into a cell bubble generator is used 
to introduce bubbles and a bubble annihilator removes the bubbles. Read operation is 
performed by a bubble detector.  

 Magnetic bubble memories having capacities of 1 M or more bits per chip have 
been manufactured. The cost and performance of these memories fall between 
semiconductor RAMs and magnetic disks. These memories are non-volatile in contrast 
semiconductor RAMs. In addition these memories are more reliable than magnetic disks 
as there are mo moving parts. These memories are difficult to interface with conventional 
processors. These memories are used in specialized applications where extremely high 
reliability is required.  

12.9 CHARGE COUPLED DEVICES (CCDS): 

 The charge coupled devices (CCDs) are used to store the data. In these devices 
the data are stored in the form of charges on capacitors. They have arrays of cells which 
can hold charge packets of electron. The storage cells do not include transistors like 
dynamic RAMs. A word is represented by a set of charge packets, the presence of each 
charge packet represent the bit value ‘1’. The charge packets do not remain stationary and 
the cells pass the charge to the neighbouring cells with next clock pulse. As the dynamic 
RAMs are to be refreshed periodically, the charges in CCDs must also be refreshed 
periodically. The access time to these devices is not very high. At present this technology 
is used only in specific applications and commercial products are not available. 

12.10 COMPACT DISK READ ONLY MEMORY (CDROM) : 
The compact disk read only memory falls in the category of optical memories. It 

is a direct extension of audio CD. This optical technology is the mass storage device 
capable of storing large data. It can store around 650 Mbytes of data, which is equivalent 
to 2,50,000 pages of printed text. The CD-ROM disk is normally formed from a resin 
named polycarbonate which is coated with aluminum to form a highly reflective surface. 
The data on CD ROM is stored as a series of microscopic pits on this reflective surface. 
A high intensity laser beam is focused to create pits on the master disk. The circular pit of 
around 5 x 104 mm sizes is created whenever a 1 is to be written and no pit (also called a 
land) if a zero is to be written. The master copy of the information is first prepared and 
from the master disk many copies can be reproduced by a process called stamping a disk. 
A top coat of clear lacquer is applied on the CD ROMs surface to protect from dust and 
scratches. The data stored on CD ROMs can be retrieved by a CD ROM reader which 
uses low powered laser beam. The CD ROM disk is rotated by a motor at a speed of 360 



r.p.m. The laser head moves in and out to specified position. As the disk rotates the head 
senses pits and land. This is converted to 1’s and 0s.  
 
PROBLEMS: 
 
1. Define the following terms relating to memory unit. 
 Memory address register, memory buffer register, access time of memory, write 

time of memory, memory cycle time, destructive and non-destructive memory, 
and volatile memory. 

2. What is a memory unit? Explain with block diagram the concept of memory using 
registers connected to memory unit.  

3. What are the sizes of MAR and MBR for a 64K x 8 bit memory? 

4. How many words can be stored in 16K x 10 memory unit? How many bits can be 
stored with this memory unit? What are the sizes of MAR and MBR? 

5. A computer memory is to have 8192 words with 16 bits per word. Find how many 
bits are required for MAR and MBR. 

6. Define Read-only-memory. Explain the organization of a diode matrix. ROM. 

7. Explain bipolar ROM cell. Draw the block diagram of 8 x 3 ROM. 

8. Discuss MOS ROM cell, Draw the block of 8 x 5 MOS ROM matrix. 

9. Describe Programmable Read only memory (PROM) using bipolar ROM cells. 

10. Describe Programmable Read only memory (PROM) using MOS ROM cells. 

11. Describe EPROM and EEPROM. What is the difference between the two. 

12. List the application of various types of ROM. 

13. Describe the applications of ROM as code converter. 

14. Use a 32 x 8 bipolar PROM to form the following functions of five variables: 
   ∑= )29,27,26,23,19,18,16,2,1(X  

   ∑= )31,25,24,23,20,18,10,8,3,0(Y  

   ∑= )28,27,25,21,19,15,10,9,8,3(Z  

   ∑= )29,26,22,11,7,6,5,4(W  

15. Draw the diode matrix ROM for the conversion of binary number to gray codes. 

16. Draw the diode matrix ROM that can implement the cubes of decimal numbers 
ranging from 0 to 8. 

17. How ROM can be used as function generator? 

18. Explain how MOS RAM is programmed. 

19. Explain the linear selection in a random access memory. 

20. Explain the coincident selection in a random access memory. 



21. Discuss static bipolar RAM cell for linear selection as well as for coincident 
selection. 

22. Discuss a static MOS RAM cell. 

23. Discuss a dynamic MOS RAM cell. 

24. What are Random Access Memories? Explain the difference between the bipolar 
RAMs and MOS RAMs. 

25. Discuss the relative merits and demerits of a dynamic RAM cell over static RAM. 

26. Draw the block schematic diagram of RAM IC 7489 of 16 x 4 memory. 

27. Explain how two 16 x 4 Rams can be connected to use 16 x 8 RAMs. 

28. Give the details of dynamic MOS RAM chip 4164 of capacity 64K x 1. 

29. Give the combination of 8 PROMs (1K x 8) to produce a total capacity of $K x 8. 

30. Give the combination of 4 PROMs (1K x 8) to produce a total capacity of 4K x 8. 

31. Discuss the principle and working of magnetic core memory. 

32. Discuss the principle and working of magnetic disk memory. Mention different 
ways to represent digital data on the magnetic surface. 

33. Discuss the principle and working of floppy disk. 

34. Discuss the principle and working of Hard disk. 

35. Write short note on the following: 
 (i) Charge coupled Devices (CCDS) 
 (ii) Compact Disk Read Only Memory (CDROM): 
 
 
 
 
 
 
 _____________ 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix – I  
 
 

COMMONLY USED TTL ICs 
 
 
 
 
Number Description 
7400 Quad two-input NAND gates 
7401 Quad two-input NAND gates with open collector 
7402 Quad two-input NOR gates 
7403 Quad two-input NOR gates with open collector 
7404 Hex Inverter 
7405 Hex Inverter with open collector 
7406 Hex inverter Buffer/driver 
7407 Hex buffer drivers open collector 
7408 Quad two-input AND gates 
7409 Quad two-input NAND gates with collector 
7410 Triple three-input NAND gates 
7411 Triple three-input AND gates  
7412 Triple three-input NAND gates with open collector 
7413 Dual four-input Schmitt trigger NAND gates 
7414 Hex Schmitt trigger inverters 
7416                                        Hex inverter buffer /driver with open collector high         
                                                voltage output 
7417                Hex buffer /driver with open collector high   
                                                voltage output 
7420 Dual four-input NAND gates 
7421 Dual four-input AND gates 
7427                                        Triple three-input NOR gates 
7430 Single eight-input NAND gate 
7431 Quad two-input OR gates 
7440 Dual four-input NAND buffer 
7441 1-of-10 line decoder/driver 
7442 1-of-10 line decoder/driver 
7446 BCD to seven segment decoder/drivers (active low 

outputs 
7447 BCD to seven segment decoder/drivers (active low 

outputs) 
7448 BCD to seven segment decoder/drivers (active high 

outputs) 
7470 Edge triggered J K flip-flop 
7472       Master slave J K flip-flop with AND inputs 



7473 Dual master slave J K flip-flops with separate clears  
and clocks 

7474 Dual edge triggered D-type flip-flops 
7475 Four bit latch 
7476 Dual master slave J K flip-flops with separate 

presets, clears  and clocks 
7483 Four bit full adder 
7485                                        Four bit magnitude comparator 
7486                                     Quad Ex-OR gates 
7489 16 x 4 bit RAM 
7490 Decade counter 
7491 Eight bit serial shift register 
7492 Divide by twelve counter 
7493 Four bit binary counter 
7494 Four bit shift register 
7495 Four bit Right - Left shift register 
74107    Dual J K master slave flip-flops 
74121 Monostable multivibrator 
74141 BCD to decimal decoder/driver 
74145 1- of -10 line decoder/driver 
74150 16 - input multiplexer 
74151 8 – input multiplexer 
74152 8 – input multiplexer 
74153 Dual 4 - input multiplexer 
74154 4 – to – 16 line decoder/demultiplexer 
74164 8 – bit serial to parallel converter 
74165 8 – bit parallel to serial converter 
74176 BCD decade counter 
74177 Binary counter 
74180 8 - bit parity generator/checker 
74181 4 – bit ALU 
74190 Synchronous Up/Down decade counter 
74191 Synchronous Up/Down binary counter 
74192 Synchronous Up/Down BCD counter 
74195 4 – bit parallel shift register 
74196 Decade counter (presettable) 
74198 8-bit shift register 
74246 BCD –to- seven segment decoder/driver 
74290 Decade counter 
74293 4 – bit binary counter 
74393 Dual 4 – bit binary counter 
 
 
 
 
 



Appendix – II 
  

COMMONLY USED CMOS ICs 
 
 
Number Description 
4000 Dual 3 – input NOR gare + inverter 
4001 Quad 2 – input NOR gate 
4002 Dual 4 – input NOR gate 
4006 16 bit Static shift register 
4008 4 – bit Full Adder 
4009 Hex inverter/buffer 
4010 Hex buffer 
4011 Quad 2 – input NAND gate 
4012 Dual 4 – input NAND gate 
4013 Dual D-type flip-flop 
4014 8 –bit static shift register, synchronous 
4015 Dual 4 –bit static shift register 
4016 Quad analog switch/analog multiplexer 
4017 Decade counter 
4018 Presettable divide – by – n counter 
4019 Quad AND/OR gate 
4020 14-bit binary counter 
4021 8 –bit static shift register, Asynchronous 
4022 Octal counter/divider 
4023 Triple 3-input NAND gate 
4024 7 – stage ripple counter 
4025 Triple 3 – input NOR gate 
4026 Decade counter/7 segment decoder 
4027 Dual J K flip-flop 
4028 BCD – to – decimal decoder 
4029 4 bit presettable Up/down counter 
4030 Quad Ex – OR gate 
4031 64 – bit static shift register 
4032 Triple serial adder 
4033 Decade counter/7 segment decoder with ripple 

blanking 
4034 8 – bit universal bus register 
4035 4 bit shift register 
4036 4 x 8 bit static RAM 
4037 Triple AND/OR gate 
4038 Triple serial adder 
4040 12 – bit binary counter 
4041 Quad true/complement buffer 
4042 Quad latch 
4043 Quad NOR R S latch 



4044 Quad NAND R S latch  
4045 21 – stage counter 
4046 Phase locked loop 
4047 Monostable /Astable multivibrator 
4048 8 – input multi function gate 
4049 Hex inverter / buffer 
4050 Hex buffer 
4051 8 – channel analog multiplexer  
4052 Dual 4 – channel analog multiplexer 
4053 Triple 2 – channel analog multiplexer 
4054 4 – segment liquid crystal display driver 
4055 BCD – to – 7 segment decoder for multiplexed 

display 
4056 BCD – to – 7 segment decoder / latch 
4059 Programmable divide – by - counter 
4060 14 stage counter/divider/oscillator 
4066 Quad analog switch 
4068 8 – input NAND gate 
4069 Hex inverter 
4070 Quad Ex – OR gate 
4071 Quad 2 –input OR gate 
4072 Dual 4 –input OR gate 
4073 Triple 3 – input AND gate 
4075 Triple 3 – input OR gate 
4076 Quad D-type register 
4077 Quad Ex – NOR gate 
4078 8 – input NOR gate 
4081 Quad 2 – input AND gate 
4082 Dual 4 – input AND gate 
4085 Dual AND/OR inverter gate 
4086 Dual AND/OR inverter gate 
4089 Binary multiplexer 
4095 J K master slave flip-flop 
4096 J K master slave flip-flop 
4097 8 - channel multiplexer/demultiplexer 
4098 Dual Monostable multivibrator 
4099 8 – bit addressable latch 
4510 BCD up/down counter 
4511 BCD – to – 7 segment latch/decoder/driver 
4512 8-channel data selector  
4513 BCD – to – 7 segment latch/decoder/driver with 

ripple blanking 
4514 4 – to – 16 line decoder with latch 
4515 4 – to – 16 line decoder with latch 
4516 Binary up/down counter 
4518 Dual BCD counter 



4520 Dual binary counter 
4521 24-stage frequency divider 
4532 8 – bit priority encoder 
4537 256 x 1 bit RAM 
4543 BCD – to – 7 segment latch/decoder/driver  
4544 BCD – to – 7 segment latch/decoder/driver with 

ripple blanking 
4547 BCD – to – 7 segment latch/decoder/driver  
4552 64 x 4 bit static RAM 
4556 Dual 2 – to – 4 demultiplexer 
4559 Successive approximation register 
4560 NBCD adder 
4581 4 - bit ALU 
4585 4 – bit magnitude comparator 
4720 256 x 1 bit RAM 
40160 Synchronous programmable decade counter 
40161 Synchronous programmable binary counter 
40162 Synchronous programmable decade counter 
40192 Programmable up/down decade counter 
40193 Programmable up/down binary counter 
40194 4 – bit bidirectional universal shift register 
40195 4 – bit universal shift register 
40373 Octal transparent latch 
40374 Octal D-type flip-flop 
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