
Introduction to Terraform

1 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

 Introduction to Terraform

 Understand with Real Life Examples

 Terraform Core Components

Copyright Notice: Protection of Intellectual Property

This document, and its contents, is the intellectual property of DigiTalk. It is protected under copyright

law and international treaties. Unauthorized use, reproduction, distribution, or resale of this document

or any of its content, in whole or in part, is strictly prohibited.

Any infringement of our copyright will result in legal action and may subject the violator to both civil

and criminal penalties.

For permissions and inquiries, please contact digitalk.fmw@gmail.com

By accessing or using this document, you agree to abide by these terms and conditions.

Thank you for respecting our intellectual property rights.

DigiTalk

https://digitalksystems.com/

Reach us at digitalk.fmw@gmail.com

DigiTalk Channel: https://www.youtube.com/channel/UCCGTnI9vvF_ETMhGUXGdFWw

Playlists: https://www.youtube.com/@digitalk.middleware/playlists

Weblogic Server Architecture: https://youtu.be/gNqeIfLjUqw

mailto:digitalk.fmw@gmail.com
https://digitalksystems.com/
mailto:digitalk.fmw@gmail.com
https://www.youtube.com/channel/UCCGTnI9vvF_ETMhGUXGdFWw
https://www.youtube.com/@digitalk.middleware/playlists
https://youtu.be/gNqeIfLjUqw

Introduction to Terraform

2 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

DigiTalk Udemy Courses and

Coupon Code (Embedded in URL)

SOA Suite Administration

https://www.udemy.com/course/mastering-oracle-soa-suite-12c-

administration/?couponCode=3748CA8CCCF4A124B4E9

JBoss 8 Administration

https://www.udemy.com/course/mastering-jboss-eap-8-administration-from-intro-to-

advanced/?couponCode=C0947AF96757C942530F

OHS Administration

https://www.udemy.com/course/mastering-oracle-ohs-http-12c-web-server-

administration/?couponCode=6203B4E94AA374CFA326

Weblogic Server Administration

https://www.udemy.com/course/oracle-weblogic-server-12c-and-14c-

administration/?couponCode=D6E8B65B3FACB040D423

You can write us on digitalk.fmw@gmail.com if coupon code expired.

https://www.udemy.com/course/mastering-oracle-soa-suite-12c-administration/?couponCode=3748CA8CCCF4A124B4E9
https://www.udemy.com/course/mastering-oracle-soa-suite-12c-administration/?couponCode=3748CA8CCCF4A124B4E9
https://www.udemy.com/course/mastering-jboss-eap-8-administration-from-intro-to-advanced/?couponCode=C0947AF96757C942530F
https://www.udemy.com/course/mastering-jboss-eap-8-administration-from-intro-to-advanced/?couponCode=C0947AF96757C942530F
https://www.udemy.com/course/mastering-oracle-ohs-http-12c-web-server-administration/?couponCode=6203B4E94AA374CFA326
https://www.udemy.com/course/mastering-oracle-ohs-http-12c-web-server-administration/?couponCode=6203B4E94AA374CFA326
https://www.udemy.com/course/oracle-weblogic-server-12c-and-14c-administration/?couponCode=D6E8B65B3FACB040D423
https://www.udemy.com/course/oracle-weblogic-server-12c-and-14c-administration/?couponCode=D6E8B65B3FACB040D423
mailto:digitalk.fmw@gmail.com

Introduction to Terraform

3 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

Introduction to Terraform

Terraform is an open-source tool developed by HashiCorp for Infrastructure as Code (IaC). It allows you to define

and provision infrastructure using a high-level configuration language. The key idea behind Terraform is to

manage your infrastructure in a declarative way, where you describe the desired state of your infrastructure, and

Terraform handles the rest to ensure that the actual state matches the desired state.

Real-Life Examples:

Managing Cloud Infrastructure:

• Example: Suppose you want to set up a new web application that requires an EC2 instance on AWS, an

RDS database, and an S3 bucket. Instead of manually creating these resources through the AWS

Management Console, you can define them in a Terraform configuration file and apply it to automatically

provision and configure these resources.

Setting Up a Development Environment:

• Example: If you are working on a project that needs a consistent development environment across

different machines, you can use Terraform to define the infrastructure required, such as virtual machines,

networks, and other dependencies. This ensures that every developer gets the same setup without manual

configuration.

Components of Terraform

Terraform Configuration Files:

Introduction:

These files are written in HashiCorp Configuration Language (HCL) or JSON and describe the desired state of

your infrastructure.

Example:

main.tf

provider "aws" {

 region = "us-east-1"

}

resource "aws_instance" "web" {

 ami = "ami-0c55b159cbfafe1f0"

 instance_type = "t2.micro"

}

Explanation: This configuration file specifies that an AWS EC2 instance should be created with a specific AMI

and instance type.

Introduction to Terraform

4 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

Providers:

Introduction: Providers are plugins that allow Terraform to interact with cloud services and other APIs. They

are responsible for managing the lifecycle of resources.

Example:

provider "aws" {

 access_key = "your-access-key"

 secret_key = "your-secret-key"

 region = "us-west-2"

}

Explanation: The AWS provider configuration includes credentials and the region where resources will be

provisioned.

Resources:

Introduction: Resources represent the components of your infrastructure, such as servers, databases, and

networking components.

Example:

resource "aws_s3_bucket" "my_bucket" {

 bucket = "my-unique-bucket-name"

 acl = "private"

}

Explanation: This resource block defines an S3 bucket with a unique name and private access control.

Modules:

Introduction: Modules are reusable configurations that help organize and encapsulate infrastructure code. They

can be shared and used across different configurations.

Example:

Define a module for creating an S3 bucket

module "s3_bucket" {

 source = "./modules/s3_bucket"

 bucket_name = "my-bucket"

}

Explanation: This example uses a module located in the ./modules/s3_bucket directory to create an S3 bucket.

Introduction to Terraform

5 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

State Files:

Introduction: State files keep track of the current state of your infrastructure and allow Terraform to make

updates to it. They are essential for maintaining the mapping between configuration and real-world resources.

Example:

terraform state list

Explanation: This command lists all resources in the Terraform state file.

Outputs:

Introduction: Outputs allow you to extract information from your Terraform configuration and make it available

to other configurations or users.

Example:

output "instance_ip" {

 value = aws_instance.web.public_ip

}

Explanation: This output defines a variable instance_ip that will return the public IP address of the EC2 instance.

Variables:

Introduction: Variables allow you to parameterize your configuration, making it more flexible and reusable. They

can be defined with default values or provided during execution.

Example:

variable "region" {

 description = "The AWS region to deploy resources"

 default = "us-west-1"

}

Explanation: This variable region can be used throughout the configuration to specify the AWS region.

Data Sources:

Introduction: Data sources allow Terraform to fetch and use information from existing resources or services.

Example:

data "aws_ami" "latest_amazon_linux" {

 most_recent = true

 owners = ["amazon"]

}

Introduction to Terraform

6 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

Explanation: This data source fetches the latest Amazon Linux AMI.

Provisioners:

Introduction: Provisioners allow you to execute scripts or commands on your resources after they are created.

They can be useful for bootstrapping or configuring resources.

Example:

resource "aws_instance" "web" {

 ami = "ami-0c55b159cbfafe1f0"

 instance_type = "t2.micro"

 provisioner "remote-exec" {

 inline = [

 "sudo apt-get update",

 "sudo apt-get install -y nginx"

]

 }

}

Explanation: This provisioner installs Nginx on the EC2 instance after it is created.

Backends:

Introduction: Backends define where Terraform's state data is stored and how it is accessed. They support remote

storage solutions and state locking.

Example:

terraform {

 backend "s3" {

 bucket = "my-terraform-state"

 key = "terraform.tfstate"

 region = "us-east-1"

 encrypt = true

 }

}

Explanation: This backend configuration stores the Terraform state in an S3 bucket with encryption enabled.

These components of Terraform work together to provide a powerful and flexible way to manage your

infrastructure using code.

Introduction to Terraform

7 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

Examples:

1. Multi-Tier Application Deployment

Scenario: You want to deploy a multi-tier web application with separate tiers for the web server, application

server, and database. This setup ensures that each tier can be managed independently and scaled as needed.

Example:

Define a VPC for network isolation

resource "aws_vpc" "main" {

 cidr_block = "10.0.0.0/16"

}

Define a subnet for the web servers

resource "aws_subnet" "web" {

 vpc_id = aws_vpc.main.id

 cidr_block = "10.0.1.0/24"

 availability_zone = "us-east-1a"

}

Define a security group for the web servers

resource "aws_security_group" "web_sg" {

 vpc_id = aws_vpc.main.id

 egress {

 from_port = 0

 to_port = 0

 protocol = "-1"

 cidr_blocks = ["0.0.0.0/0"]

 }

}

Define an EC2 instance for the web server

resource "aws_instance" "web" {

 ami = "ami-0c55b159cbfafe1f0"

 instance_type = "t2.micro"

 subnet_id = aws_subnet.web.id

 security_groups = [aws_security_group.web_sg.name]

}

Explanation: This example creates a VPC, a subnet for the web servers, a security group, and an EC2 instance

for the web server. It sets up the basic network and security infrastructure for a multi-tier application.

Introduction to Terraform

8 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

2. Automated Infrastructure Scaling

Scenario: You need to automatically scale your infrastructure based on the load. For instance, you want to add

more instances during high traffic periods and reduce them during low traffic periods.

Example:

Define an auto-scaling group with a launch configuration

resource "aws_launch_configuration" "app" {

 name = "app-launch-configuration"

 image_id = "ami-0c55b159cbfafe1f0"

 instance_type = "t2.micro"

}

resource "aws_autoscaling_group" "app" {

 launch_configuration = aws_launch_configuration.app.id

 min_size = 1

 max_size = 10

 desired_capacity = 2

 vpc_zone_identifier = [aws_subnet.web.id]

 tag {

 key = "Name"

 value = "app-instance"

 propagate_at_launch = true

 }

}

Define an auto-scaling policy

resource "aws_autoscaling_policy" "scale_out" {

 name = "scale-out"

 scaling_adjustment = 1

 adjustment_type = "ChangeInCapacity"

 autoscaling_group_name = aws_autoscaling_group.app.name

}

resource "aws_autoscaling_policy" "scale_in" {

 name = "scale-in"

 scaling_adjustment = -1

 adjustment_type = "ChangeInCapacity"

 autoscaling_group_name = aws_autoscaling_group.app.name

}

Explanation: This setup uses an auto-scaling group with a launch configuration to manage instance scaling based

on demand. It includes policies to scale out and scale in the number of instances.

Introduction to Terraform

9 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

3. Creating a Secure, Scalable Database Cluster

Scenario: You need a highly available and scalable database cluster for your application, with automatic backups

and failover capabilities.

Example:

Define a database subnet group

resource "aws_db_subnet_group" "db_subnet_group" {

 name = "db-subnet-group"

 subnet_ids = [aws_subnet.web.id]

}

Define a database cluster

resource "aws_rds_cluster" "db" {

 cluster_identifier = "my-db-cluster"

 engine = "aurora"

 master_username = "admin"

 master_password = "password"

 db_subnet_group_name = aws_db_subnet_group.db_subnet_group.name

 backup_retention_period = 7

 skip_final_snapshot = true

}

Define a database instance in the cluster

resource "aws_rds_cluster_instance" "db_instance" {

 cluster_identifier = aws_rds_cluster.db.id

 instance_class = "db.t3.micro"

}

Explanation: This example provisions an RDS Aurora cluster with a subnet group and an instance. It includes

automatic backups and is designed for high availability.

Introduction to Terraform

10 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

4. Setting Up a Continuous Integration/Continuous Deployment (CI/CD) Pipeline

Scenario: You want to automate the deployment of your application using a CI/CD pipeline, which involves

setting up a build server, a deployment environment, and integrating with a version control system.

Example:

Define an S3 bucket for storing build artifacts

resource "aws_s3_bucket" "build_artifacts" {

 bucket = "my-build-artifacts-bucket"

 acl = "private"

}

Define an IAM role for the CI/CD server

resource "aws_iam_role" "cicd_role" {

 name = "cicd_role"

 assume_role_policy = jsonencode({

 Version = "2012-10-17"

 Statement = [

 {

 Action = "sts:AssumeRole"

 Effect = "Allow"

 Principal = {

 Service = "ec2.amazonaws.com"

 }

 }

]

 })

}

Define an EC2 instance for the CI/CD server

resource "aws_instance" "cicd_server" {

 ami = "ami-0c55b159cbfafe1f0"

 instance_type = "t2.medium"

 iam_instance_profile = aws_iam_instance_profile.cicd_profile.name

 user_data = <<-EOF

 #!/bin/bash

 apt-get update

 apt-get install -y jenkins

 EOF

}

Define an IAM instance profile for the CI/CD server

resource "aws_iam_instance_profile" "cicd_profile" {

 name = "cicd_instance_profile"

 role = aws_iam_role.cicd_role.name

}

Explanation: This setup creates an S3 bucket for build artifacts, an IAM role for the CI/CD server, and an EC2

instance running Jenkins for continuous integration and deployment.

Introduction to Terraform

11 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

5. Setting Up a Monitoring and Alerting System

Scenario: You want to set up a system to monitor your infrastructure and send alerts when certain conditions are

met, such as high CPU usage or disk space running low.

Example:

Define a CloudWatch alarm for high CPU usage

resource "aws_cloudwatch_alarm" "high_cpu" {

 alarm_name = "high-cpu-alarm"

 comparison_operator = "GreaterThanThreshold"

 evaluation_periods = 1

 metric_name = "CPUUtilization"

 namespace = "AWS/EC2"

 period = 300

 statistic = "Average"

 threshold = 80

 alarm_description = "Alarm when CPU exceeds 80%"

 dimensions = {

 InstanceId = aws_instance.web.id

 }

 alarm_actions = [

 "arn:aws:sns:us-east-1:123456789012:my-alert-topic"

]

}

Define an SNS topic for sending notifications

resource "aws_sns_topic" "alert_topic" {

 name = "my-alert-topic"

}

Explanation: This example creates a CloudWatch alarm for high CPU usage and an SNS topic to send

notifications. If CPU utilization exceeds 80%, an alert will be sent to the SNS topic.

These examples illustrate how Terraform can be used to automate various aspects of infrastructure
management, from deploying applications and scaling resources to setting up monitoring and CI/CD
pipelines.

Introduction to Terraform

12 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

DISCLAIMER AND CONSENT

This document is being provided by DigiTalk as part of its effort to assist users in understanding and

working with Terraform. While every effort has been made to ensure the accuracy and reliability of the

information presented in this document, there is a possibility of typographical errors or inaccuracies.

DigiTalk does not guarantee the correctness or completeness of the content provided in this document.

Users of this document are encouraged to cross-reference the information presented here with official

documentation available on their website or other authoritative sources. Any discrepancies or

inaccuracies found in this document should be reported to us at digitalk.fmw@gmail.com.

By using this document, you acknowledge and consent to the following:

This document is not officially endorsed or verified by any third party organization..

The Company makes no claims or guarantees about the accuracy or suitability of the information

contained in this document.

Users are responsible for verifying and validating any information presented here for their specific use

case.

DigiTalk disclaims any liability for any errors, omissions, or damages that may result from the use of

this document.

If you discover any inaccuracies or errors in this document, please report them to

digitalk.fmw@gmail.com, and the Company will endeavor to correct them as necessary.

This consent statement is provided to ensure transparency and understanding of the limitations of the

information contained in this document. By using this document, you agree to abide by the terms and

conditions outlined herein.

