
Docker for Beginners

1 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

 Docker for Beginners

 Introduction and Important Components

 Understand with Real Life Examples

Copyright Notice: Protection of Intellectual Property

This document, and its contents, is the intellectual property of DigiTalk. It is protected under copyright law

and international treaties. Unauthorized use, reproduction, distribution, or resale of this document or any

of its content, in whole or in part, is strictly prohibited.

Any infringement of our copyright will result in legal action and may subject the violator to both civil and

criminal penalties.

For permissions and inquiries, please contact digitalk.fmw@gmail.com

By accessing or using this document, you agree to abide by these terms and conditions.

Thank you for respecting our intellectual property rights.

DigiTalk

https://digitalksystems.com/

Reach us at digitalk.fmw@gmail.com

DigiTalk Channel: https://www.youtube.com/channel/UCCGTnI9vvF_ETMhGUXGdFWw

Playlists: https://www.youtube.com/@digitalk.middleware/playlists

Weblogic Server Architecture: https://youtu.be/gNqeIfLjUqw

mailto:digitalk.fmw@gmail.com
https://digitalksystems.com/
mailto:digitalk.fmw@gmail.com
https://www.youtube.com/channel/UCCGTnI9vvF_ETMhGUXGdFWw
https://www.youtube.com/@digitalk.middleware/playlists
https://youtu.be/gNqeIfLjUqw

Docker for Beginners

2 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

DigiTalk Udemy Courses and Coupon Code

SOA Suite Administration

https://www.udemy.com/course/mastering-oracle-soa-suite-12c-

administration/?couponCode=739A60915F86847014EB

Coupon Code: 739A60915F86847014EB

JBoss 8 Administration

https://www.udemy.com/course/mastering-jboss-eap-8-administration-from-intro-to-

advanced/?couponCode=BF65EB008CFE16686BD2

Coupon Code:BF65EB008CFE16686BD2

OHS Administration

https://www.udemy.com/course/mastering-oracle-ohs-http-12c-web-server-

administration/?couponCode=8E990556B21AF3E1A316

Coupon Code: 8E990556B21AF3E1A316

Weblogic Server Administration

https://www.udemy.com/course/oracle-weblogic-server-12c-and-14c-

administration/?couponCode=87BC1314AC7690FD5294

Coupon Code:87BC1314AC7690FD5294

You can write us on digitalk.fmw@gmail.com if coupon code expired.

https://www.udemy.com/course/mastering-oracle-soa-suite-12c-administration/?couponCode=739A60915F86847014EB
https://www.udemy.com/course/mastering-oracle-soa-suite-12c-administration/?couponCode=739A60915F86847014EB
https://www.udemy.com/course/mastering-jboss-eap-8-administration-from-intro-to-advanced/?couponCode=BF65EB008CFE16686BD2
https://www.udemy.com/course/mastering-jboss-eap-8-administration-from-intro-to-advanced/?couponCode=BF65EB008CFE16686BD2
https://www.udemy.com/course/mastering-oracle-ohs-http-12c-web-server-administration/?couponCode=8E990556B21AF3E1A316
https://www.udemy.com/course/mastering-oracle-ohs-http-12c-web-server-administration/?couponCode=8E990556B21AF3E1A316
https://www.udemy.com/course/oracle-weblogic-server-12c-and-14c-administration/?couponCode=87BC1314AC7690FD5294
https://www.udemy.com/course/oracle-weblogic-server-12c-and-14c-administration/?couponCode=87BC1314AC7690FD5294
mailto:digitalk.fmw@gmail.com

Docker for Beginners

3 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

Introduction to Docker

What is Docker?

Docker is a platform that uses containers to develop, ship, and run applications. Containers are lightweight,

standalone packages that include everything needed to run an application—such as the code, runtime, libraries,

and system tools—ensuring consistency across different computing environments.

Real-Life Analogy

Think of Docker as a high-tech shipping container. Imagine you have a product that you need to send to various

locations. Instead of packing it differently for each location, you use a standardized shipping container that keeps

everything in place. No matter where the container goes, the contents remain the same. Similarly, Docker

containers ensure that an application runs the same way regardless of where it is deployed.

Key Components of Docker

1. Docker Engine

Description: Docker Engine is the core component that runs containers. It is a client-server application with three

main components:

Server (Docker Daemon): Handles container operations.

REST API: Allows interaction with the Docker Daemon.

CLI (Command Line Interface): Provides a way to interact with Docker through commands.

Real-Life Analogy: Think of Docker Engine as a warehouse manager. It handles the operations of storing,

retrieving, and managing shipping containers (containers).

2. Docker Images

Description: Docker Images are read-only templates used to create containers. They contain everything needed

to run an application, including the code, libraries, and dependencies.

Real-Life Analogy: Imagine a pre-packed meal kit with all ingredients and instructions included. Docker Images

are like these meal kits—everything you need to cook a meal (run an application) is included.

How to Create: You can create Docker Images using a Dockerfile, which is a text file with instructions on how to

build the image.

3. Docker Containers

Description: Docker Containers are instances of Docker Images. They are executable units that run the application

with all the necessary dependencies.

Docker for Beginners

4 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

Real-Life Analogy: If Docker Images are meal kits, Docker Containers are the prepared meals. Each meal kit (image)

can be turned into a ready-to-eat meal (container) that runs independently.

Characteristics:

Isolation: Containers run applications in isolated environments.

Portability: Containers can be moved between different environments (e.g., development, testing, production).

4. Docker Hub

Description: Docker Hub is a cloud-based registry service where you can find, share, and manage Docker Images.

Real-Life Analogy: Docker Hub is like a supermarket where you can find and buy various pre-packed meal kits.

You can also share your own meal kits with others.

Key Features:

Public Repositories: Accessible to everyone.

Private Repositories: Accessible only to authorized users.

5. Docker Compose

Description: Docker Compose is a tool for defining and running multi-container Docker applications. It uses a

docker-compose.yml file to configure application services, networks, and volumes.

Real-Life Analogy: If running a single meal kit is easy, preparing a full dinner with multiple dishes is more complex.

Docker Compose helps you organize and manage multiple meal kits (containers) to prepare a complete meal

(application).

How it Works: You define services in a YAML file, and Docker Compose takes care of creating and running the

containers based on this definition.

6. Dockerfile

Description: A Dockerfile is a script with instructions on how to build a Docker Image. It includes commands to set

up the environment, install dependencies, and configure the application.

Real-Life Analogy: A Dockerfile is like a recipe for a meal. It lists all the ingredients and steps needed to prepare

the meal.

Basic Commands in Dockerfile:

FROM: Specifies the base image.

RUN: Executes commands in the container.

COPY: Copies files from the host to the container.

Docker for Beginners

5 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

CMD: Sets the default command to run when the container starts.

How Docker Works

• Write a Dockerfile: Define how to build the Docker Image.

• Build the Docker Image: Use docker build to create an image from the Dockerfile.

• Run a Docker Container: Use docker run to start a container from the image.

• Manage Containers: Use commands like docker ps to list running containers and docker stop to stop them.

Real-Life Example:

Suppose you want to deploy a web application. You write a Dockerfile to define the environment, build the Docker

Image, and then run a container to serve your application. You can also deploy the container to various

environments without worrying about compatibility issues.

Benefits of Using Docker

Consistency: Docker ensures that applications run the same way in development, testing, and production

environments.

Isolation: Each container is isolated from others, providing a secure and stable environment.

Portability: Containers can be moved across different platforms and cloud providers.

Efficiency: Docker uses system resources efficiently, allowing you to run multiple containers on the same machine.

Real-Life Analogy: Using Docker is like having a reliable, standardized shipping container that can be transported

by any truck or ship, ensuring that your goods arrive in the same condition no matter where they are sent.

Docker in Practice

Example Use Case:

Developing a Web Application

Develop Locally: Create a Dockerfile for your web application. This Dockerfile specifies the web server, code, and

dependencies.

Test Locally: Build the Docker Image and run a container to test your application on your local machine.

Deploy to Production: Push the Docker Image to Docker Hub and pull it onto your production server. Run the

container to deploy the application.

Real-Life Example:

A developer builds a web application and packages it in a Docker container. The container is tested locally, pushed

to a registry, and then deployed to a cloud provider, ensuring consistent behavior across all environments.

Docker for Beginners

6 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

Advanced Docker Concepts

1. Docker Volumes

Description: Docker Volumes are used to store data that persists even after a container is stopped or deleted.

They allow you to manage and share data between containers.

Real-Life Analogy: Docker Volumes are like reusable containers for storing ingredients or tools that you need to

access frequently, even if you change the meal kits (containers).

2. Docker Networks

Description: Docker Networks enable communication between containers. You can define custom networks to

manage how containers interact with each other.

Real-Life Analogy: Docker Networks are like setting up a communication system in a restaurant kitchen, allowing

different chefs (containers) to talk to each other and coordinate their work.

3. Docker Swarm

Description: Docker Swarm is a native clustering and orchestration tool for Docker. It allows you to manage a

group of Docker hosts as a single virtual host.

Real-Life Analogy: Docker Swarm is like having a team of delivery trucks that can be managed as a single fleet,

coordinating routes and deliveries efficiently.

Conclusion

Docker simplifies application development and deployment by using containers to ensure consistency, isolation,

and portability. By understanding Docker’s key components—such as Docker Engine, Docker Images, Docker

Containers, Docker Hub, Docker Compose, and Dockerfile—you can leverage Docker to create efficient and

reliable application environments.

With Docker, you can build applications once and run them anywhere, ensuring that your applications work

seamlessly across different environments and platforms.

Docker for Beginners

7 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

DISCLAIMER AND CONSENT

This document is being provided by DigiTalk as part of its effort to assist users in understanding and working

with Docker. While every effort has been made to ensure the accuracy and reliability of the information

presented in this document, there is a possibility of typographical errors or inaccuracies. DigiTalk does not

guarantee the correctness or completeness of the content provided in this document.

Users of this document are encouraged to cross-reference the information presented here with official

documentation available on their website or other authoritative sources. Any discrepancies or inaccuracies

found in this document should be reported to us at digitalk.fmw@gmail.com.

By using this document, you acknowledge and consent to the following:

This document is not officially endorsed or verified by any other third party organization..

The Company makes no claims or guarantees about the accuracy or suitability of the information contained

in this document.

Users are responsible for verifying and validating any information presented here for their specific use case.

DigiTalk disclaims any liability for any errors, omissions, or damages that may result from the use of this

document.

If you discover any inaccuracies or errors in this document, please report them to digitalk.fmw@gmail.com,

and the Company will endeavor to correct them as necessary.

This consent statement is provided to ensure transparency and understanding of the limitations of the

information contained in this document. By using this document, you agree to abide by the terms and

conditions outlined herein.

