
Kubernetes for Beginners

1 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

 Kubernetes for Beginners (Introduction)

 Understand with Real Life Examples

Copyright Notice: Protection of Intellectual Property

This document, and its contents, is the intellectual property of DigiTalk. It is protected under copyright law

and international treaties. Unauthorized use, reproduction, distribution, or resale of this document or any

of its content, in whole or in part, is strictly prohibited.

Any infringement of our copyright will result in legal action and may subject the violator to both civil and

criminal penalties.

For permissions and inquiries, please contact digitalk.fmw@gmail.com

By accessing or using this document, you agree to abide by these terms and conditions.

Thank you for respecting our intellectual property rights.

DigiTalk

https://digitalksystems.com/

Reach us at digitalk.fmw@gmail.com

DigiTalk Channel: https://www.youtube.com/channel/UCCGTnI9vvF_ETMhGUXGdFWw

Playlists: https://www.youtube.com/@digitalk.middleware/playlists

Weblogic Server Architecture: https://youtu.be/gNqeIfLjUqw

mailto:digitalk.fmw@gmail.com
https://digitalksystems.com/
mailto:digitalk.fmw@gmail.com
https://www.youtube.com/channel/UCCGTnI9vvF_ETMhGUXGdFWw
https://www.youtube.com/@digitalk.middleware/playlists
https://youtu.be/gNqeIfLjUqw

Kubernetes for Beginners

2 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

DigiTalk Udemy Courses and Coupon Code

SOA Suite Administration

https://www.udemy.com/course/mastering-oracle-soa-suite-12c-

administration/?couponCode=739A60915F86847014EB

Coupon Code: 739A60915F86847014EB

JBoss 8 Administration

https://www.udemy.com/course/mastering-jboss-eap-8-administration-from-intro-to-

advanced/?couponCode=BF65EB008CFE16686BD2

Coupon Code:BF65EB008CFE16686BD2

OHS Administration

https://www.udemy.com/course/mastering-oracle-ohs-http-12c-web-server-

administration/?couponCode=8E990556B21AF3E1A316

Coupon Code: 8E990556B21AF3E1A316

Weblogic Server Administration

https://www.udemy.com/course/oracle-weblogic-server-12c-and-14c-

administration/?couponCode=87BC1314AC7690FD5294

Coupon Code:87BC1314AC7690FD5294

You can write us on digitalk.fmw@gmail.com if coupon code expired.

https://www.udemy.com/course/mastering-oracle-soa-suite-12c-administration/?couponCode=739A60915F86847014EB
https://www.udemy.com/course/mastering-oracle-soa-suite-12c-administration/?couponCode=739A60915F86847014EB
https://www.udemy.com/course/mastering-jboss-eap-8-administration-from-intro-to-advanced/?couponCode=BF65EB008CFE16686BD2
https://www.udemy.com/course/mastering-jboss-eap-8-administration-from-intro-to-advanced/?couponCode=BF65EB008CFE16686BD2
https://www.udemy.com/course/mastering-oracle-ohs-http-12c-web-server-administration/?couponCode=8E990556B21AF3E1A316
https://www.udemy.com/course/mastering-oracle-ohs-http-12c-web-server-administration/?couponCode=8E990556B21AF3E1A316
https://www.udemy.com/course/oracle-weblogic-server-12c-and-14c-administration/?couponCode=87BC1314AC7690FD5294
https://www.udemy.com/course/oracle-weblogic-server-12c-and-14c-administration/?couponCode=87BC1314AC7690FD5294
mailto:digitalk.fmw@gmail.com

Kubernetes for Beginners

3 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

Introduction to Kubernetes

Kubernetes is a powerful platform for managing containerized applications. Containers encapsulate an application

and its dependencies, ensuring that it runs consistently across different environments. Kubernetes orchestrates

these containers, automating deployment, scaling, and operations. It was originally developed by Google and is

now maintained by the Cloud Native Computing Foundation (CNCF).

1. Cluster

Concept

A Kubernetes cluster is a collection of machines (nodes) that run containerized applications. It provides a unified

view and control plane to manage these applications and their lifecycle.

Components

• Master Node: The control plane of the cluster. It manages the cluster’s state, schedules applications, and

handles the overall cluster management.

• Worker Nodes: Machines that run the application workloads (containers). They communicate with the

master node to receive and execute tasks.

Real-Life Example

Imagine a large factory with various production lines. The factory itself is the cluster, where each production line

represents a worker node. The factory management oversees the production lines, ensuring they operate

efficiently and produce the desired products.

2. Node

Concept

A node is a single machine within a cluster that runs containerized applications. Each node contains the services

necessary for running containers and communicating with the master node.

Components

• Kubelet: An agent running on each node that ensures containers are running in a pod. It communicates

with the master node and manages the node's resources.

• Container Runtime: The software responsible for running containers. Docker is a common example,

though Kubernetes supports other runtimes like containerd and CRI-O.

• Kube-Proxy: Handles network routing and load balancing for services within the cluster.

Real-Life Example

Consider a large office building with multiple floors. Each floor (node) is equipped with office equipment and

resources needed to perform specific tasks. The building’s management system (master node) coordinates

activities across floors, ensuring smooth operation.

Kubernetes for Beginners

4 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

3. Pod

Concept

A pod is the smallest and simplest Kubernetes object. It represents a single instance of a running process in the

cluster. Pods can contain one or more containers that share the same network namespace and storage.

Types

• Single-container Pods: Contains a single container.

• Multi-container Pods: Contains multiple containers that need to work together. These containers share

resources like networking and storage.

Real-Life Example

Imagine a team of chefs working together in a shared kitchen. Each chef (container) works on different aspects of

a meal but uses the same kitchen space (pod). They share the same kitchen tools and ingredients (storage).

4. Service

Concept

A service in Kubernetes provides a stable endpoint for accessing a set of pods. It abstracts the underlying pods

and ensures reliable communication between them.

Types

• ClusterIP: The default service type that exposes the service internally within the cluster.

• NodePort: Exposes the service on each node’s IP address and a static port.

• LoadBalancer: Creates an external load balancer (if supported by the cloud provider) to distribute traffic

to the service.

• ExternalName: Maps the service to an external DNS name.

Real-Life Example

Think of a customer service desk in a company. Regardless of which employee is at the desk, customers can always

reach out to the desk for assistance. The desk provides a consistent point of contact (service) for customers.

5. Deployment

Concept

A deployment manages the creation and scaling of pods. It defines the desired state of applications and ensures

that the actual state matches the desired state.

Kubernetes for Beginners

5 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

Features

• Rolling Updates: Updates applications gradually to avoid downtime. Old versions are replaced with new

ones without taking the application offline.

• Rollback: Reverts to a previous version if the new deployment fails or causes issues.

• Scaling: Adjusts the number of pod replicas based on load or demand.

Real-Life Example

Consider a software development team releasing new versions of a web application. The deployment process

involves gradually updating the application on servers to ensure users experience minimal disruption. If issues

arise, the team can revert to the previous stable version.

6. ReplicaSet

Concept

A ReplicaSet ensures that a specified number of pod replicas are running at any given time. It maintains the desired

number of pod instances for high availability and reliability.

Features

• Scaling: Automatically adjusts the number of pod replicas based on the desired state.

• Self-Healing: Replaces any pods that fail or are terminated to maintain the desired number of replicas.

Real-Life Example

Think of a warehouse with multiple workers handling similar tasks. The warehouse manager (ReplicaSet) ensures

that there is always a specific number of workers available to perform the tasks, replacing any who leave or are

unavailable.

7. StatefulSet

Concept

A StatefulSet manages stateful applications that require unique identities and stable storage. Unlike Deployments,

StatefulSets provide persistent storage and maintain a stable network identity for each pod.

Features

• Stable Network Identity: Each pod gets a unique, stable hostname.

• Persistent Storage: Pods can retain data across restarts.

• Ordered Deployment and Scaling: Pods are deployed, scaled, and terminated in a specific order.

•

Kubernetes for Beginners

6 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

Real-Life Example

Consider a database system where each node (pod) needs a unique identity and persistent data. StatefulSets

manage these nodes, ensuring that each one maintains its identity and data, even if the system is restarted or

scaled.

8. ConfigMap and Secret

Concept

ConfigMaps and Secrets are used to manage configuration and sensitive information for applications.

ConfigMap

Purpose: Stores non-sensitive configuration data that applications need.

Usage: ConfigMaps can be used to provide environment variables, configuration files, or command-line

arguments.

Secret

Purpose: Stores sensitive information such as passwords, tokens, or keys.

Usage: Secrets are encrypted and can be mounted as files or environment variables in pods.

Real-Life Example

Imagine a company's document management system. ConfigMaps are like general company policies that are

shared openly among employees, while Secrets are like sensitive documents that are only accessible to specific

individuals with proper authorization.

9. Ingress

Concept

Ingress manages external access to services within a Kubernetes cluster, typically HTTP/HTTPS traffic. It provides

routing rules and load balancing for incoming requests.

Features

• Routing: Directs traffic to different services based on URL paths or hostnames.

• SSL Termination: Handles SSL/TLS encryption for secure communication.

• Load Balancing: Distributes incoming traffic across multiple service instances.

Kubernetes for Beginners

7 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

Real-Life Example

Think of an event management system where guests arrive at a central entrance (Ingress). Depending on their

ticket type or event type, they are directed to different halls or sections (services) within the venue.

10. Volume

Concept

Volumes provide persistent storage for containers, ensuring that data is retained across pod restarts. Kubernetes

supports various volume types depending on the storage backend.

Types

• EmptyDir: A temporary storage volume that is erased when the pod is deleted.

• PersistentVolume (PV) and PersistentVolumeClaim (PVC): Abstracts storage resources and allows users

to request storage from the cluster.

• HostPath: Uses a file or directory from the host node’s filesystem.

• Network Attached Storage (NAS): Uses network file systems like NFS or cloud storage.

Real-Life Example

Imagine a library where books (data) need to be stored and accessed by multiple sections (pods). The library

(volume) provides a centralized location for books, ensuring that they remain available even if different sections

(pods) come and go.

11. Namespace

Concept

Namespaces provide a way to divide a Kubernetes cluster into multiple virtual clusters. They help organize

resources and manage access within the cluster.

Features

• Resource Isolation: Limits resource access to a specific namespace.

• Name Collision Prevention: Allows resources with the same name to exist in different namespaces.

• Access Control: Enforces policies and permissions at the namespace level.

Real-Life Example

Consider a large corporation with multiple departments (namespaces). Each department operates independently

with its own set of resources and permissions, while still being part of the larger organization (cluster).

Kubernetes for Beginners

8 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

12. Helm

Concept

Helm is a package manager for Kubernetes that simplifies the deployment and management of applications. It

uses charts to define, install, and upgrade applications on Kubernetes.

Features

• Charts: Packages of pre-configured Kubernetes resources that can be easily deployed.

• Repositories: Stores and shares Helm charts.

• Releases: Manage different versions of an application deployed using Helm.

Real-Life Example

Think of Helm as a catalog of pre-assembled furniture (charts) for a home. Instead of building furniture from

scratch, you can order pre-designed pieces that are easy to assemble and deploy in your home (cluster).

13. Operators

Concept

Operators are extensions of Kubernetes that manage complex applications by using custom resources and

controllers. They automate tasks such as deployment, scaling, and backup.

Features

• Custom Resources: Define new types of objects that extend Kubernetes capabilities.

• Controllers: Manage the lifecycle of custom resources and automate operational tasks.

Real-Life Example

Imagine a complex machine in a factory with a specialized operator who knows how to handle and maintain it.

The

Kubernetes for Beginners

9 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

Kubernetes as an Automated Manufacturing Plant

Overview

Think of Kubernetes as a sophisticated manufacturing plant designed to produce a variety of products efficiently.

In this plant, every component and process is meticulously orchestrated to ensure smooth operation and high

productivity. Here’s how the key elements of Kubernetes map to different aspects of this manufacturing plant:

1. Manufacturing Plant (Kubernetes Cluster)

The entire manufacturing plant represents the Kubernetes cluster. Just as a plant is composed of various sections

working together, a Kubernetes cluster is made up of multiple nodes working in unison to run and manage

applications.

2. Production Lines (Nodes)

Each production line within the plant is akin to a Kubernetes node. These production lines (nodes) are equipped

with machinery and tools needed to produce products. They operate independently but are coordinated by the

plant’s central control system (master node) to ensure everything runs smoothly.

3. Assembly Teams (Pods)

On each production line, assembly teams work on specific tasks to produce the final products. In Kubernetes,

these assembly teams are represented by pods. A pod is a group of workers (containers) that collaborate closely,

sharing the same tools and resources (networking and storage) to complete their tasks.

4. Product Managers (Deployments)

Product managers oversee the production of different products. They ensure that the production lines are working

on the right products, manage updates, and handle any issues that arise. In Kubernetes, deployments act like

these product managers. They manage the creation and scaling of pods, handle rolling updates to the product

lines, and ensure that the desired number of products (pod replicas) are produced.

5. Quality Control (ReplicaSets)

Quality control teams are responsible for maintaining consistent product quality. They ensure that a specific

number of products meet the required standards and replace any that fail. Similarly, ReplicaSets in Kubernetes

ensure that a specified number of pod replicas are running and replace any that are unhealthy or terminated to

maintain the desired state.

6. Unique Product Requirements (StatefulSets)

Some products require special handling, such as custom assembly or unique storage. For example, luxury items

might need individual care and unique packaging. StatefulSets in Kubernetes manage these stateful applications,

ensuring that each pod has a unique identity and consistent storage, much like handling products with special

requirements.

Kubernetes for Beginners

10 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

7. Tool and Resource Storage (Volumes)

The plant has a centralized storage area for tools and resources needed by the assembly teams. This storage area

ensures that all necessary equipment is available when needed. In Kubernetes, volumes serve a similar purpose

by providing persistent storage for containers, ensuring that data is retained across pod restarts.

8. Central Control Room (Master Node)

The central control room in the plant oversees all operations, manages production schedules, and coordinates

between different production lines. In Kubernetes, the master node acts as the control plane, managing the

cluster, scheduling applications, and maintaining the overall desired state of the system.

9. Customer Service Desk (Services)

The customer service desk handles incoming requests and directs them to the appropriate production lines or

departments. This ensures that customer inquiries are managed efficiently. In Kubernetes, services provide a

stable endpoint for accessing a set of pods, routing incoming traffic to the correct destination.

10. Operational Guidelines (ConfigMaps and Secrets)

The plant has operational guidelines and sensitive protocols to ensure smooth operations. ConfigMaps represent

non-sensitive configuration data, while Secrets handle sensitive information. Both are crucial for managing the

configuration and secure handling of applications in Kubernetes.

11. Access Points (Ingress)

The plant has specific access points for trucks and suppliers, directing them to the correct loading docks or storage

areas. Similarly, Ingress in Kubernetes manages external access to services, routing traffic based on predefined

rules and ensuring secure communication.

12. Specialized Operators (Operators)

Some complex machinery in the plant requires specialized operators who manage and maintain it. In Kubernetes,

Operators are similar in that they automate the management of complex applications by extending Kubernetes’

capabilities with custom resources and controllers.

Summary

In this automated manufacturing plant, every element is meticulously coordinated to ensure the production

process is efficient and reliable. Kubernetes functions in a similar way, orchestrating containerized applications

across a cluster of nodes, ensuring seamless operation, scaling, and management of applications. Just as a

manufacturing plant optimizes the production of goods, Kubernetes optimizes the deployment and management

of containerized software.

Kubernetes for Beginners

11 | P a g e Copyright © [2023] DigiTalk. All rights reserved.

DISCLAIMER AND CONSENT

This document is being provided by DigiTalk as part of its effort to assist users in understanding and working

with Kubernetes. While every effort has been made to ensure the accuracy and reliability of the information

presented in this document, there is a possibility of typographical errors or inaccuracies. DigiTalk does not

guarantee the correctness or completeness of the content provided in this document.

Users of this document are encouraged to cross-reference the information presented here with official

documentation available on their website or other authoritative sources. Any discrepancies or inaccuracies

found in this document should be reported to us at digitalk.fmw@gmail.com.

By using this document, you acknowledge and consent to the following:

This document is not officially endorsed or verified by any other third party organization..

The Company makes no claims or guarantees about the accuracy or suitability of the information contained

in this document.

Users are responsible for verifying and validating any information presented here for their specific use case.

DigiTalk disclaims any liability for any errors, omissions, or damages that may result from the use of this

document.

If you discover any inaccuracies or errors in this document, please report them to digitalk.fmw@gmail.com,

and the Company will endeavor to correct them as necessary.

This consent statement is provided to ensure transparency and understanding of the limitations of the

information contained in this document. By using this document, you agree to abide by the terms and

conditions outlined herein.

